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Capillarity is the familiar manifestation of the cohesion of liquids. Since Laplace
(Traité de mécanique céleste, vol. IV, supplément au livre X: Sur l’action capillaire,
1805, pp. 1–65), we know that intense attractive forces between the molecules bridge
the small with the large as they shape liquid/vapour interfaces at the macroscopic
scale through the concept of surface tension (menisci, drops, bubbles, puddles,
liquid rise in tubes, etc. . . .). We concentrate on situations where liquids ‘disgregate’,
following the neologism of Clausius (Phil. Mag., vol. 24 (159), 1862, pp. 81–97),
meaning that they fragment by the action of deformation stresses whose intensity
competes with that of cohesion forces. Various examples, including explosions,
blow-ups, hard and soft impacts and shears applied to liquid jets, sheets and drops
are reviewed. They concern applications ranging from liquid propulsion, agricultural
spraying, to the formation of ocean spray, raindrops and human exhalations by
violent respiratory events. In spite of their diversity, the various modes of fragment
production share an ultimate common phenomenology – the ligament dynamics
– suggesting that the final stable droplet size distribution can be interpreted from
elementary principles.
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1. Overview: issues and scope

In his treatise on cohesion, Rowlinson notes that ‘Some problems have always
been with us’. Among them, notably: why does matter stick together (Rowlinson
2002)? We could, identically, ask the same question concerning fragmentation: why
does condensed matter break? After all, even if stressed, sheared, compressed or
stretched, a piece of cohesive matter could well remain as a whole rather than
splitting into pieces; and it actually does so when perturbed sufficiently gently. But
then, what does ‘gently’ means? And when a stressed object breaks, why is it
typically into many pieces, with many more small than bigger ones, rather than just
in two pieces (think of a glass dropped on the floor)? Is there a way to quantify the
diversity of the sizes? Is there a minimum fragment size, or can the object divide
ad infinitum? Why is it that a liquid volume may fragment spontaneously (like a
jet), or on the contrary keep its integrity (like a puddle lying on a solid surface)
depending on its shape only?
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FIGURE 1. Rome, Piazza del Popolo, the lions of the central fountain expectorate a
turbulent water sheet. Random velocity fluctuations and possible bubbles inclusions in
the liquid nucleate holes which, driven by surface tension, grow and merge, leaving the
sheet as a set of connected ligaments. These corrugated ligaments further breakup into a
collection of disjointed droplets broadly distributed in size.

Answers to some of the above questions exist, the others are still under debate
and are the subject of active research in fluid mechanics and beyond. Their study is
the topic of the present review.

1.1. Objects of interest and scope

The subject matter, illustrated in figure 1, will be concerned with liquid sheets,
shells, holes, jets and ligaments, those which ultimately break into stable fragments,
namely the final drops. Since these ligaments, kind of elongated, finite sized rough
columns will be shown to be the ‘sinews’ of liquid fragmentation (Villermaux 2007),
their formation will be tracked, and described along with the instabilities giving
birth to them in a variety of different situations with applications ranging from
liquid propulsion, agricultural spraying, to the formation of ocean spray, raindrops
and human exhalations by violent respiratory events etc. . . . It will be shown that
their dynamics, and final outcome, results from a trade-off between cohesion and
fragmentation.

Attention will be paid in each case to understanding the overall drop size
distribution, for at least two reasons: first because a satisfactory understanding
of a physical phenomenon requires its complete statistical description, particularly
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when it is non-trivial, and second because most applications urge us to do so, as
we explain next.

1.2. Distributions rather than just averages

We list below a number of situations taken from various fields showing the
importance, in fragmentation, of understanding or controlling the overall drops
size distribution, rather than just a mean size.

(i) Liquid propulsion, combustion, drying: fragmentation is a mandatory step
in various industrial processes for example in furnaces, liquid propulsion engines
or drying facilities, contexts where it is usually called atomization (i.e. literally,
down to the atom size). Although produced in a swarm with other droplets densely
packed in space at the atomization nozzle, it is nevertheless often the fate of
an individual liquid droplet which is of practical interest: the length of a liquid
propulsion combustion chamber, or the height of a drying tower depends on the
distance from the injection nozzle for the last, biggest droplet of fuel, or solvent,
to evaporate, burn (Marble 1964) or solidify (Yule & Dunkley 1994). Conversely,
fine droplets burn too soon after their formation, and may damage the injectors.
A better control of the fuel droplet size distribution at injection is one of the ways
to improve car engine consumption (Taylor 2008).

(ii) Agricultural spraying, snow lances, painting and printing industry, dust
control: spray drift is a major concern in agriculture. Standard flat fan atomizers
used to spray fields with fertilizers and pesticides produce broad drops sizes
distributions, with a notable fraction with diameter below 100 µm (called ‘fines’)
likely to be swept by the wind, reaching the farmer’s neighbour’s field who may
not like it, or the river next to it (Hewitt 2000; Kooij et al. 2018). Strategies to
reduce their relative number are the subject of active research (Hilz et al. 2012;
Vernay, Ramos & Ligoure 2015a). The biggest droplets, however, soon fall by their
own weight, are too heavy to hook on plants leaves or rebound on them, splash
like raindrops do, favouring plant-to-plant contamination (Gilet & Bourouiba 2015).
Snow lances, whose popularity is indexed on the progress of global warming, suffer
from the same flaw: light snowflakes from tiny droplets wander aloft, missing the
targeted ski slope, while big droplets fall on the ground before freezing, finally
producing undesired ice. For similar reasons, the rotary atomizers used in the
automotive painting industry produce many droplets that fail to reach the car bodies
they are supposed to coat (Wilson et al. 2018). Dust particles are routinely removed
from air by sprays with a capturing efficiency depending critically on the droplet
sizes (Swanson & Langefeld 2015). The formation of undesired small satellite
droplets causes notorious difficulties in inkjet printing (Wijshoff 2010; Basaran,
Gao & Bhat 2013).

(iii) Geophysics, planetary sciences, precipitations: the Earth was built by high-
energy impacts of planetesimals with metallic cores of their own. The composition
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of the Earth’s mantle depends critically on the time offered to metal–silicate
chemical equilibration as the impactor material settles towards the Earth’s core. It
fragments very much like raindrops form as they fall from clouds in the atmosphere
(Villermaux & Bossa 2009), producing broad size distributions (Marshall & Palmer
1948). Efficient equilibration is achieved with smaller fragments allowing fast
metal–silicate mass transfer, while the fate of bigger ones is to accumulate in the –
therefore iron-rich – core. The overall planet chemical composition relies on frag-
mentation (Deguen, Landeau & Olson 2014; Landeau, Deguen & Olson 2014;
Wacheul et al. 2014).

(iv) Sea spray: the spray produced by wave breaking in the surf zone, or white
caps at the ocean surface, is a superposition of different mechanisms which results
in broadly distributed droplet sizes (nanometres to millimetres, see e.g. O’Dowd &
de Leeuw (2007) and Veron (2015)). If they all contribute to the global air–sea
exchanges, the fate of each droplet in this distribution is not identical: the smallest
aerosols are long lived in the atmosphere, carry salt and diverse chemical/biological
substances (Cochran et al. 2017; Pietsch et al. 2018) over large distances inland
while the biggest spume droplets carry momentum, heat and produce moisture by
evaporation, feeding hurricanes for example, before settling by gravity.

(v) Exhalations, disease transmission, seeding: human exhalations like coughing
or sneezing produce a broad spectrum of droplet sizes, possibly carrying pathogens
and thus mediate disease transmission (Pasteur 1861; Flügge 1897; Winslow &
Robinson 1910; Duguid 1946). This well known fact is currently re-examined
in the light of modern methods and ideas (Turner, Jennison & Edgerton 1941;
Bourouiba, Dehandschoewercker & Bush 2014). The contamination radius of an
infected coughing individual is the distance needed for the last liquid droplet exhaled
from his mouth and staying aloft in air to evaporate (Wells 1955), but it is not clear
which are the nastiest most long-lived droplets in the exhaled spectrum; it has been
suggested that the finest are the nastiest, through a collective evaporation delay
mechanism (Villermaux et al. 2017). Fungi reproduce by ejecting encapsulated
seeds of different sizes, the biggest, heaviest and thus farthest reaching ones being
responsible for substrate exploration, while the smallest exploit the substrate in
the immediate emitter vicinity (Ingold 1971). These airborne spores, like pollens,
can be carried over long distances, crossing oceans (Hirst, Stedman & Hogg 1967;
Aylor 2017).

(vi) Medicine, forensic science, inhaled drugs, scents: some therapies rely on
inhaled aerosols carrying drugs which should be embedded in particles whose size
is critical to escape from the lung’s natural clearance mechanisms. Controlling
particles sizes, and density is vital in this context (Edwards et al. 1997). Experts in
the forensic technique of blood pattern analysis routinely contemplate blood splats to
decipher the circumstances of a homicide. These splats consist of myriads of stains
on the floor which are meaningful only when the fragmentation process creating
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them has been understood (Attinger et al. 2013). Electronic cigarettes (e-cigs) are
efficient, cancer agent free, tobacco smoking alternatives. However, the nicotine-rich
aerosol produced by e-cigs has a droplet size distribution appreciably more skewed
towards small sizes than the tobacco smoke particles, with a fat tail towards ‘nano’
particles; they are, for this reason, considered as suspect (Glantz & Bareham 2018).
There is a, yet unexplored, relationship between the way a fragrance spray has been
atomized, and the persistence of its scent, admittedly a fascinating question.

1.3. A fragmented world

The examples above suggest that we are indeed living in a fragmented world,
in more than one sense. There are other sectors of science where the dilemma
between cohesion and fragmentation has been identified as paramount: for example,
the survival of colonies of living species is known to be influenced by their
habitat fragmentation. While fragmentation is usually believed to have a deterring
impact on wildlife colonies because it promotes species competition for limited
resources and inbreeding, thus hampering bio-diversity (Betts et al. 2019), other
aspects like long lasting adaptation to a given small perimeter substrate in an
immigration/emigration-free isolation is known to favour persistence (Mac Arthur
& Wilson 1967; Letcher et al. 2007). In sociology, spatial fragmentation and its
cultural corollary have been identified to impede social cohesion, and are considered
as a threat to democracy. These topics are, however, out of the scope of this review.

2. Cohesion, aggregation and fragmentation

Before we wonder how cohesive objects break, it is useful to recall in which
manner they have been understood to be, precisely, cohesive.

2.1. Founding idea of Laplace (1805)

The founding idea is due to Laplace (1805). Liquids rise spontaneously in narrow
tubes. Well aware of Newton’s Query 31 (Newton 1704), and of the subsequent
experimental observations by Hawksbee and Jurin intended to solve this inadmissible
exception to the theory of gravitation (see the detailed history in Rowlinson (2002)),
Laplace conjectured, a century later, the existence of a central force between nearby
‘molécules’ (or ‘particles’ as Hawksbee called them; this word has to be understood
as a synonym of ‘small amount’, for instance, Newton (1687) refers to a particle of
time to designate an infinitesimal time increment): two masses m and m′ distant by
f are attracted by a force m m′φ( f ) with φ( f ) assumed to be very intense at short
distance, and evanescent for large separation distances f , in Laplace’s notations. This
formalism, exposed in his Traité de Mécanique Céleste is directly imported from the
one operating for gravitational forces. The work of separation, or binding energy
of the particles pair is u( f ) =

∫
∞

f φ( f ′) df ′. Lord Rayleigh (1890), in his exegesis
of Laplace’s contribution, shows how successive summations provide the attraction
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from a half-space with density ρ on a unit mass at distance z from its bounding
plane ψ(z) = 2πρ

∫
∞

z fu( f ) df , that the mutual attraction between two half-spaces
separated by x is θ(x) = ρ

∫
∞

x ψ(z) dz per unit plane surface area, producing an
internal bulk pressure K= θ(0), and that the separation work of the two planes from
contact is 2σ =

∫
∞

0 θ(x) dx.
Thus defined as an energy per unit surface, what is now called the surface

tension of the material or, equivalently, its fracture energy (we will come back to
this delicate question in § 11), is related to the hypothesized microscopic force φ( f )
by the celebrated formulae

σ =
π

8
ρ2
∫
∞

0
f 4φ( f ) df . (2.1)

Surface tension is a finite quantity provided the force φ( f ) decays fast enough
with f , and it is not the least of Laplace talents to have embarked in this description
without, at the time, an empirical proof of the existence of molecules and ignoring
that, more than a century later, quantum mechanics would rationalize the so-called
van der Waals forces (Israelachvili 1991) by showing that u( f ) ∼ f−6 and that
therefore φ( f ) ∼ f−7, a decay making the integral in (2.1) convergent indeed
(Laplace had envisaged, safely, an exponential decay).

2.2. Clausius disgregation (1862)

Clausius (1862) created the ephemeral concept of disgregation which he himself
soon replaced by the notion of entropy. Clausius wanted to formalize the idea that
a body mass exchanging heat or work with an outside source suffers an ‘alteration
of arrangement’ of the ‘aggregation state’ of its constitutive molecules:

. . . the effect of heat always tends to loosen the connexion between the
molecules, and so to increase their mean distances from one another. In
order to be able to represent this mathematically, we will express the
degree in which the molecules of a body are dispersed, by introducing
a new magnitude, which we will call the disgregation of the body . . .

We would nowadays call disgregation the configurational part of the entropy but it
is interesting to note that by ‘dispersed’, Clausius equally meant loosely aggregated
(like molecules in a liquid), or completely disjointed (like in a gas). Cohesion,
aggregation and fragmentation are thus notions which were thought at this time as
parts of the same problem, or at least as having strong inter-relationships.

We have on purpose recalled the early ‘particulate’ description of matter cohesion
first to underline its origin as an inspiration from the theory of gravitation and
central forces between isolated bodies. It is also possible that Laplace, who knew
well the experimental background of the Cambridge group, notably the one of
Hawksbee, has been influenced by one of his drawings, reproduced in figure 2,
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(iv)

(i)

(v)

(ii) (iii)

FIGURE 2. (i) A sketch from Hawksbee (1709) where ‘particles’ are clearly singled out as
the constitutive components of a liquid, here ascending in a capillary tube. (ii) Breakup
of a laminar, falling smooth water jet (h0 = 4 mm and v0 = 1 cm s−1) contrasted with
the fragmentation of the same, but turbulent jet. (iii) The ‘particulate’ vision of the
rearrangements occurring during ligament breakup (Villermaux, Marmottant & Duplat
2004). (iv) Stripping of ligaments at the surface of a water jet sheared by a fast coaxial
stream (Marmottant & Villermaux 2004b). (v) The time lapse of an isolated ligament
featuring longitudinal rearrangements as it breakup.

where sizable ‘particles’ are clearly evidenced as the constitutive components of
a liquid. And second, because this representation will be useful to understand the
dynamics of fragmentation per se, and the origin of the multiplicity in fragment
sizes, through considerations à la Clausius where disgregation and aggregation
compete on an unstable substrate (§ 9). We examine such an example below.

2.3. Fragmentation of a necklace of magnets

In order to see how cohesion and disgregation compete, it is instructive as a starting
exercise to work out the caricatural problem of the sudden forced radial expansion
of an assembly of attracting particles arranged in a circle: the shatter of necklace of
magnets (Vledouts, Vandenberghe & Villermaux 2015, 2016b).

A set of spherical magnets is assembled in a necklace positioned on a cone with
an incline at 45◦. The cone, guided by an axle, is released from rest at a given
height and when it hits the ground, it is suddenly stopped. An initial impulse in
the radial direction is communicated to each sphere, and the necklace expands at
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(i) (ii)

(iii)

t = 0 t = 1.33 ms

t = 2.66 ms t = 4 ms

(a) (b)

t t

R0

R

¶

a

œ

FIGURE 3. Fragmentation of a necklace of spherical magnets (Vledouts et al. 2015,
2016b). (i) A ring made of spherical magnets of diameter a = 5 mm, mass m = 0.5 g
and mutual contact force φ(a) is placed on a cone, which is let fall on the ground. At
impact, each sphere is communicated a radial speed V and the ring expands. The spheres
separate from each other and start to aggregate, driven by the attractive magnetic force.
The arrows indicate intervals between fragments. (ii) Sketch of the separation process.
(iiia) The conventional direct, sequential cascade of breakups for which the arrow of
time points towards ever smaller fragment sizes. (b) The inverse cascade of aggregations,
occurring after the smallest sizes accessible by the system have been formed in a first
step (dotted arrow). Fragment sizes get larger as time proceeds.

radial speed V . Consequently, the spheres separate from each other; the necklace is
literally ‘atomized’. But, because of the attractive force linking them, the spheres
start concomitantly to aggregate in bigger clusters, a process going on at an ever
slowing down pace to finally stop when the clusters are too heavy, and distant from
each other to aggregate. Fragments of various sizes are then irreversibly formed
(the collision between clusters is inelastic, with virtually no rebound, see Hinch
& Saint-Jean (1999) for the opposite situation). The sequence of events, with the
corresponding inverse cascade of aggregations is illustrated in figure 3.

2.3.1. Radial deceleration
The central force between two spherical particles of diameter a, of magnetization

density M separated by a centre-to-centre distance ` is

φ(`)= φ(a)×
(a
`

)4
, (2.2)
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with φ(a) = πµ0M2a2/24 where µ0 is the vacuum permeability (Jackson 1998).
Spheres are essentially attracted by their nearest neighbours, and the first consequence
of this triplet interactions along the curved necklace shape is the decrease of the
expansion radial speed. Attractive forces on a curved substrate induce a Laplace,
surface tension force decelerating the cohesive necklace. If R is the necklace radius
and R(t= 0)= R0, its equation of motion writes

mR̈=−φ(Rθ)× 2 sin(θ/2), (2.3)

θ = a/R0� 1, (2.4)

where m is the sphere mass, integrating into

Ṙ2
= V2

− V2
c

(
1−

(
R0

R

)3
)
, with V2

c =
2
3

aφ(a)
m

. (2.5)

The critical velocity Vc is the escape velocity of the process, meaning the velocity
below which an initial expansion at velocity V will coalesce back to the initial
state R0. For V > Vc, the expansion velocity Ṙ is strongly slowed down at short
time, before reaching a steady value, smaller that V as(

Ṙ
V

)2

−−→
t→0

1−
V2

c

V
t

R0
, and Ṙ2

−−−→
R→∞

V2
− V2

c . (2.6a,b)

This decay and final shift from V reflects the transfer of kinetic energy into potential
energy, the one which was spent at breaking the liaisons between the spheres. We
will come back to these energetic considerations in § 11.

2.3.2. Ortho-radial aggregation
The other consequence of the central force φ(`) besides expansion slowing down

is the concomitant aggregation of the spheres, and then of clusters of spheres. Two
neighbour fragments with p and q spheres, respectively, separated by a distance
` between the centre of their facing end spheres interact through φ(`), the force
between the end spheres. The equation of motion for ` then reads

῭ = −
φ(a)

m

(a
`

)4
(

1
p
+

1
q

)
, (2.7)

whose first integral is again

˙̀2 = u2
p,q −

p+ q
pq

V2
c

(
1−

(a
`

)3
)
, with up,q = V

a
R0

p+ q
2

, (2.8)

where up,q is the geometrical initial divergence velocity (i.e. in the ortho-radial
direction) of two clusters of size p and q. Making ζ = `/a and τ = up,qt/a, we have

d2ζ

dτ 2
=−

3
2
εp,q

ζ 4
, (2.9)
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with ζ (0)= ζ̇ (0)= 1 and

εp,q =

(
uc

up,q

)2

, with u2
c = V2

c
p+ q

pq
. (2.10)

The critical velocity uc is the divergence velocity above which two cohesive
fragments with sizes p and q will not reconnect. Initially, p= q= 1 and successive
cluster–cluster coalescences increase these numbers. Aggregation thus proceeds as
long as up,q < uc, or εp,q > 1, and the necklace fragmentation is completed as soon
as εp,q < 1 for all neighbouring fragments of size p and q. The fragment trajectories
described by (2.9), the cluster coalescence time scales, the mean fragment growth
and the details of the aggregation cascade are discussed by Vledouts et al. (2015);
the role of pre-existing defects along the necklace is considered in Vledouts et al.
(2016b).

2.3.3. The Weber number
In this necklace shattering example, as in all fragmentation problems, disgregation

and cohesion compete and cooperate in building the overall fragment size
distribution.

There is a number which measures the initial ratio of these two ingredients,
namely the Weber number (it was, actually, introduced by Weber (1931) not even
in the form of a dimensionless quantity, and in the very different context, examined
in § 8, of jet stability, see also § A.5). In our example, fragmentation is completed
at the end of the inverse coalescence cascade marked by εp,q = 1, a condition we
will first write for the average fragment size p = q = 〈n〉, leaving the discussion
about the distributions of fragment sizes to § 9. From (2.10), we see that

〈n〉3/2 ∼
Vc

V
R0

a
. (2.11)

The surface tension σ of the necklace is approximately such that a2σ ≈
∫
∞

a φ(`) d`
for this one-dimensional cohesive object so that σ ≈ φ(a)/a, and the mass of a
sphere with density ρ is m∼ ρa3. Introducing the particle Weber number

We=
ρu2

1,1a
σ

, (2.12)

where u1,1=Va/R0 is the divergence velocity at the scale of the elementary molecule,
or particle constitutive of the cohesive necklace, we can re-write (2.11) in terms of
We as

〈n〉 ∼We−1/3. (2.13)

This scaling relationship, in which We can at most be equal to 1 for 〈n〉 & 1 can
also be viewed as a simple (but flawed, see § 11) energy balance in which the
kinetic energy 1

2ρ〈n〉a
3u2
〈n〉,〈n〉 of the diverging motion u〈n〉,〈n〉 = 〈n〉u1,1 equilibrates

the cohesion energy aφ(a)= aσ . It was derived essentially in this form, and from
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Fragmentation versus Cohesion

the above reasoning, in different but related contexts (Grady 1982, 2006; Bazant &
Caner 2013).

The relation (2.13) involves naturally the divergence velocity at the scale a of
the molecule and at that scale, We< 1 when the necklace is not trivially atomized
into single particles with 〈n〉 = 1. It is nevertheless customary in many applications
to construct the Weber number on the sample length scale R0, and on the injection,
directly controllable velocity V (Lefebvre 1989; Bayvel & Orzechowski 1993;
Ashgriz 2011). This large-scale Weber number ρV2R0/σ is typically very large
indeed since

We=
ρV2R0

σ

(
a
R0

)3

, (2.14)

with a/R0 � 1 in a macroscopic sample. Even if we will mostly use the (de
facto much larger than unity) macroscopic Weber number in the sequel, one has
to remember that it is the one in (2.12) which is dynamically relevant regarding
fragmentation (see in particular § 11 about energetics).

2.4. Outline

We are now equipped with the essential concepts to apprehend fragmentation
phenomena. After recalling classical results concerning static and dynamic equilibria
in § 3, we will consider the fragmentation of liquid sheets and films in § 4, the case
of shells in § 5, the specific aspects associated with a shear with a gas phase in § 6
and those with impacts in § 7. The spontaneous fragmentation of jets and threads
will be discussed in § 8 and the important case of corrugated ligaments will be
shown to be the key to understand drops size distributions in § 9. Direct cascades
and the formation of fines will be illustrated in § 10 before we end by considerations
on the energetics of fragmentation in § 11. Appendix A is a catalogue of instabilities
relevant to the discussion.

3. Static and dynamic equilibria, classical results

In a liquid volume bounded by an interface with principal radii of curvature R1

and R2 and in view of the construction which has led to (2.1), the pressure p is
(Laplace 1805; Maxwell 1875; Lord Rayleigh 1890)

p =
1
2
ρ2
∫
∞

0
f 3u( f ) df

∫ 2π

0

(
cos2 ψ

R1
+

sin2 ψ

R2

)
dψ, (3.1)

=
π

8
ρ2
∫
∞

0
f 4φ( f ) df

(
1
R1
+

1
R2

)
, (3.2)

= σ

(
1
R1
+

1
R2

)
, (3.3)

which is commonly called the Laplace law. It was Laplace’s programme to compute
the shape of static liquid volumes, but this relation shows that the pressure depends
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FIGURE 4. Classical static shapes discussed in § 3.1. From left to right and top to bottom:
the Segner representation of surface tension; a spherical liquid shell of radius R; ascent in
a wedge; a puddle lying on a solid floor; a liquid film stretched between two opened rings
separated by h; a menisci at a solid wall (wetting angle θ ); capillary ascent in a tube.

solely on the shape of the interface, may it be immobile, or not. We recall below
classical results.

3.1. Shapes of liquid volumes at rest: bubbles, films, minimal surfaces, puddles,
menisci, capillary ascent, capillary length

The shapes discussed below are all reported in figure 4.

3.1.1. Segner (1751) surface tension
The energy per unit surface σ is also a force per unit length, hence the name

surface tension since σ ds is the force acting tangent to the interface perpendicular
to the arc length ds as first suggested by Segner in 1751 (cited by Maxwell (1875),
see also Pomeau & Villermaux (2006)). From there, the structure of the Laplace
law in (3.3) is readily recovered since, in two dimensions like in our necklace
example in § 2.3, the pressure force pRθ acting on an interface arc length Rθ is
equilibrated by the projection of the surface tension force 2σ sin(θ/2) perpendicular
to the interface, leading to

p=
σ

R
. (3.4)

3.1.2. Bubble
Similarly, the surface energy E of a spherical soap bubble can also be computed

from the work spent by the pressure force p(r)= 4σ/r (since in (3.3) R1=R2= r if
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Fragmentation versus Cohesion

r is the current bubble radius, and the bubble shell is bounded by two sides) while
inflating it up to its final radius R as

E =
∫ R

0
4πr2p(r) dr (3.5)

= 2× 4πR2σ (two sides). (3.6)

A soap bubble is an example of liquid shells whose fragmentation modes will be
studied in § 5. Under gravity, their structure is constantly evolving, large bubbles are
not even spheres, but the spheroidal shape is a good approximation for centimetric
bubbles and the reason is that this shape minimizes the surface area (and therefore
the surface energy) for a given volume (see the isoperimetric problem in Courant,
Robbins & Stewart (1996), chapter VII, § 8 for a simple geometrical justification).
It is a nice realization of the principle of least action (see e.g. Isenberg (1978) for
a straightforward application to axisymmetric shapes).

3.1.3. Minimal surface
The catenoid obtained by stretching a film between two circular rings is another

celebrated example of an optimal surface. The rings are opened (hence p= 0), their
radius is R and they are separated by a distance 2h. The radius of the film along the
axis of revolution z is r(z) and r′ = dr/dz. The surface energy E and its variation
δE upon modulations δr from the sought optimal shape are

E= 2σ
∫ h

−h
f (r, r′) dz, with f (r, r′)= 2πr

√
1+ r′2 (3.7)

δE= 2σ
∫ h

−h

{
∂f
∂r
−

d
dz
∂f
∂r′

}
δr dz. (3.8)

The optimal shape corresponds to δE= 0 whatever δr, a condition which cancels the
integrand in (3.8), thus providing the Euler–Lagrange equation whose solution is the
film shape

r(z)
rm
= cosh

(
z

rm

)
, and

R
rm
= cosh

(
h
rm

)
(3.9a,b)

a solution (in fact a couple of solutions with one having a lower surface energy),
which does exist as long as h/R . 0.66 for h/rm ≈ 1.2. The net curvature of the
catenoid is indeed zero (Plateau 1873), and Delaunay (1841) has generalized this
result to any non-zero constant curvature (like if the sections of the end rims were
closed, and the film were either inflated, or deflated with p 6= 0).

3.1.4. Puddle, meniscus
A circular liquid puddle (radius R) lying on a flat horizontal solid surface is

another illustration of the energetic cost associated with interface creation: we
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assume for simplicity that the liquid is indifferent to the solid, meaning that it has
no tendency to wet it, or to be repelled by it (the complete problem involves a
wetting angle, first introduced by Young (1805), taken here as equal to π/2; the
subtleties of wetting phenomena are very well discussed in de Gennes (1985), for
example). Two kinds of energies compete, the potential energy πR2

∫ h
0 ρgz dz of

the liquid in the gravitation field if h is the puddle height, and the surface energy
πR2σ . For a given puddle volume Ω = πR2h, the puddle height h makes the net
energy E

E
Ω
=

1
2
ρgh+

σ

h
(3.10)

minimum (∂E/∂h= 0, ∂2E/∂h2 > 0), when

h=

√
2σ
ρg
≡ a, (3.11)

where a is called the capillary length scale (Landau & Lifshitz 1987). It is, for
the same reason, this length scale which sets the typical dimensions of the liquid
meniscus wetting a vertical solid wall at an angle θ . The expression of the meniscus
profile z(x) is complicated (see e.g. Landau & Lifshitz (1987) and de Gennes,
Brochard-Wyart & Quere (2004)), but the maximal elevation of the meniscus above
the flat interface level far from it (x� a) is given by h= a

√
1− sin θ while, when

θ .π/2, one has z(x)≈ he−x/a; the meniscus is localized indeed.

3.1.5. Capillary ascents
Menisci are one example of the famous shapes, which had remained paradoxical

before he rationalized them, solved by Laplace. Others are the ascent of a wetting
liquid in the sharp interstice between two plates forming a dihedral (Taylor 1712;
Bouasse 1924; Higuera, Medina & Liñán 2008), whose profile is z(x) ∼ a2/(αx)
with α the angle of the dihedral, and x the distance from its apex, and of course
the celebrated capillary ascent in a narrow tube: the weight of the liquid column
ρghπr2 is balanced by the capillary force 2πrσ cos θ at the capillary circumference,
if r is its radius, and θ the wetting angle. The liquid elevation is given by Jurin’s
law (Jurin (1719), who quantified the inverse relationship h∼ r−1)

h
a
=

a
r

cos θ (3.12)

and is equal to zero when the liquid is indifferent to the solid (i.e. θ =π/2 like for
water on a surface of silanized glass).

3.2. Dynamic equilibria: film edge recession, Taylor–Culick formulae, paradox,
holes, Savart sheets and bells

Equilibrium does not mean absence of motion. Capillary forces may be balanced by
inertial and viscous forces, as in the situations we describe below.
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3.2.1. Rim recession: straight edges
Liquid sheets extruded through slits are bordered by a rim, which has its own

dynamics. Holes may nucleate in liquid films, sheets or shells (see § 4), and open
spontaneously. The reason is that at the edge of a ruptured film, surface tension
forces are no more balanced, and communicate inertia to the liquid. We discuss
below the nature of this transfer, its sensitivity to the liquid properties, geometry
(planar or circular), starting first by the integral formulation of Taylor (1959c).

A film of uniform thickness h and surface tension σ is bounded by a free straight
edge with velocity v= ẋ. As the edge recedes under the action of capillary traction,
it accumulates a mass m initially constitutive of the undisturbed film, in a region
of size L, which is the typical distance from the edge where fluid particles are
accelerated irreversibly from v = 0 (the film is at rest), to v. This region defines
the extent of the sheet rim. The force, and mass balances (per unit rim length) over
this region write

Ṗ= 2σ , and ṁ= ρhv, (3.13a,b)

where P= mv is the rim momentum. The factor 2 stands for the two sides of the
film. Expanding the first relation in (3.13) as mv̇ + vṁ = 2σ we seek a constant
receding velocity (as suggested by experiments, see Ranz (1959), Koros, Deckers &
Boudart (1960), Frankel & Mysels (1969), McEntee & Mysels (1969a) and Pandit
& Davidson (1990)), leading to

v =

√
2σ
ρh
, (3.14)

called the Taylor–Culick velocity. It was established along the above lines by Taylor
(1959c) in the context of freely expanding liquid sheets and independently, in the
circular geometry suitable to holes opening on a soap film, by Culick (1960), himself
inspired by experiments of Ranz (1959). Equations (3.13) can be written

d
dt

(
v

∫ t

0
ρhv dt

)
= 2σ , (3.15)

which, for a film with constant thickness indeed leads to x ẋ= v2t, or x= vt when
m(0) = 0. The velocity is constant, given by (3.14), from the start. Although the
pulling force 2σ is permanent, it is the rim velocity which is constant, and not its
acceleration, because the mass m is itself increasing on the way. The cases of an
initial non-uniform film profile h(x) was considered by Keller, King & Ting (1995)
and Raufaste et al. (2015), and non-zero mass by Lhuissier & Villermaux (2011).

Culick offered a deeper understanding of (3.14) in correcting a notable, but
interesting mistake by Dupré (1867, 1869), echoed in plain words by Lord Rayleigh
(1891). The model of Dupré consisted in attributing the entire surface energy
consumed when the rim has travelled a distance x to the kinetic energy of the rim
mass m= ρhx, that is 1

2 mv2
6= 2σx, a flawed equality leading to an over-estimated
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velocity
√

2v when v is given by the (correct) value in (3.14). The reason why
this ‘sentimental’ energy balance (on which we come back in § 11) fails is that
it disregards the energy sink of the inelastic process of accelerating the fluid in
the undisturbed film up to the velocity of the edge, a fraction of the available
energy dissipated by internal viscous fluid friction which represents exactly half
the consumed surface energy. Equivalently, this sink represents the energy loss at
a sudden expansion when the fluid particles pass from the film to the thicker rim
(see § 11).

Estimating the viscous dissipation rate
∫
η(∇v)2 dΩ by η(v/δ)2Ω for a dissipation

volume Ω ≈ h`δ and equating it to the rate of energy loss 1
2(2σ`v) along a rim

portion length `, Culick (1960) further computed the dissipation length scale δ as

δ

h
∼
ηv

σ
(3.16)

∼
η
√
ρhσ
≡Oh, (3.17)

thus defining the Ohnesorge number Oh.
The problem of a receding rim is thus one of the rare instances in Fluid

Mechanics where the net amount of dissipation can be computed exactly from first
principles, even in the presence of inertia. Like in turbulent flows, the dissipative
scale self-adapts to make the energy dissipation finite and independent of the fluid
viscosity η (thus including when η → 0). It is, in this respect, the analogue of
Taylor’s microscale (Taylor (1935), or Liepmann–Taylor scale if one likes to view
it as the thickness of internal shear layers (Dimotakis 2000)) in turbulent flows
obtained by equating the viscous dissipation rate per unit mass ν(u/δ)2 with the
– viscosity independent – kinetic energy injection rate u2/(L/u) with L and u the
stirring scale and velocity, respectively, leading to the familiar relation δ/L∼Re−1/2

if Re = uL/ν is the Reynolds number based on the kinematic viscosity ν of the
fluid. The end of the ‘cascade’ towards smaller scales where now u(δ)∼ u(δ/L)1/3

is marked by the Kolmogorov scale δ/L∼ Re−3/4 (Kolmogorov 1941a). Like in the
rim problem, δ→ 0 when η→ 0 while the energy dissipation rate remains finite.

Viscosity does impact this problem, however, through a not yet alluded to quantity,
namely the rim extent L. We just saw that the dissipation scale δ in (3.17) adapts
to fulfil the mass and momentum constraints in (3.13). The rim extent follows a
qualitatively similar trend. For Oh� 1, the liquid collects in a rim with a close-
to-circular cross-section with radius L ∼ h[1 + (vt/h)2]1/4 →

√
vht given by mass

conservation (see e.g. Gordillo et al. 2011) and where recirculation motions dissipate
the necessary amount of energy at a scale δ� L.

For Oh� 1, however, the picture is different. There is no collecting rim anymore,
because δ is larger than h from the start. Dissipation is spread out diffusively along
the – essentially flat – film which is now set into motion by longitudinal viscous
stresses. Savva & Bush (2009) have shown that in this limit, a fair, short time,
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h(x, t)

u(x, t)

L(t)

x

(ii)(i)

(v)

(vi)

(iii) (iv)
t = 0 t = 0.25 s

t = 0.75 st = 0.5 s
1 cm

20 mm 10 mm

FIGURE 5. Bounded liquid sheets: rim recession and hole opening. (i) Sketch of a
receding rim. (ii) A liquid sheet formed from a slit with edges receding at the constant
Taylor–Culick velocity. Short capillary waves propagate ahead from the front. (iii) Hole
expansion on a viscous film (Debrégeas, Martin & Brochard-Wyart 1995). (iv) Hole
expansion on a water film. (v) Hole expansion on a surface bubble (Lhuissier &
Villermaux 2012a). (vi) Hole expansion on a soap film seen in transparency (left) and in
interferometry, highlighting the characteristic ‘aureole’ (Lhuissier & Villermaux 2009a).

slender slope (h′� 1) description of the velocity u(x, t) along the film (with ẋ0 =

u(x0, t) the film edge velocity) is given by

∂tu= 4ν∂2
x u+ v2δ(x− x0), (3.18)

valid for x>h. The film curvature κ is of order h−1 for distances to the edge of order
h and essentially zero elsewhere, so that its spatial variation at the edge location x0

is caricatured as a Dirac Delta, that is ∂xκ ≈ (2/h)δ(x− x0). The velocity along the
film is thus given by the impulse response of a diffusion equation, providing

ẋ0 ∼ v

√
t
τvis
, and L∼ h

(
t
τvis

)3/2

, (3.19a,b)

where τvis =
ηh
2σ
≡
ν

v2
, (3.20)

898 P1-19

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.366


E. Villermaux

with v the Taylor–Culick velocity in (3.14) above. The relaxation distance L of
the viscous stress from the film edge does depend on the liquid viscosity η, but
this short-time behaviour is a transient, and the film edge finally relaxes towards v,
independent of η (see also Chepushtanova & Kliakhandler 2007). During the
transient as the edge accelerates, the global momentum balance Ṗ = 2σ in (3.13)
is, however, always fulfilled, provided the film momentum P = ρ

∫
hu dx is fully

integrated, from the film edge in x0 to distances far away from it, namely larger
than L, which itself increases in time.

3.2.2. Circular geometry: holes
Liquid films and sheets may nucleate holes. We devote the entire § 4.2 to the cause

of the piercing event, but we describe here the opening dynamics of the hole once
it has been formed. The circular geometry offers a slight complication in the sense
that the border of the film curvature presents now two contributions, of opposite
sign, reading κ = 1/h− 1/r0(t) where r0(t) is the hole radius. The classical study by
Taylor & Michael (1973) has elegantly shown that the shape of the hole envelope
is analogous to the catenary discussed in § 3.1.3 and that the condition for hole
opening coincides with the condition for the catenoid stability: the hole has to be
large enough (r0/h> 1.32) to open spontaneously, otherwise it heals (i.e. r0(t)→ 0
in a finite time, see Courbin & Stone (2006) for an experimental illustration). The
axisymmetric version of the balances in (3.13) is approximately given, in the inviscid
limit for the scaled hole radius ξ = r0(t)/h with t≡ vt/h, by

ξ̇ 2
+

1
2
ξ ξ̈ = 1−

π

4ξ
, (3.21)

which both restores the planar limit in (3.14), that is ξ̇ = 1, and describes hole
healing ξ ∼ (1− t)2/3 depending on ξ being much larger or smaller than π/4≈ 0.78,
respectively (see also Lv, Eigenbrod & Hard (2018) for the healing dynamics in the
presence of gravity).

The circular geometry has nevertheless a real consequence on this rim recession
problem in the viscous limit. The analogue of the initial dynamics (3.18) describing
now the radial velocity field u(r, t) in the film for r0/h� 1 is

∂t(ur)= 4ν
(
∂2

r (ur)−
∂r(ur)

r

)
+ v2r0δ(r− r0) (3.22)

a two-dimensional diffusion equation which solves for the hole radius velocity
ṙ0(t)= u(r0, t) as

r0(t)= r0(0)et/2τvis, (3.23)

an exponential growth in contrast to the power law found in (3.19a,b) for the planar
limit (Savva & Bush 2009). Geometry thus impacts the form of laws.
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Debrégeas et al. (1995), Debrégeas, de Gennes & Brochard-Wyart (1998) have
given an ‘à la Dupré’ description of this problem, by attributing the entire film
surface energy consumed by the hole opening to the dissipation of energy by viscous
stresses, an equality which fails quantitatively in the inertial limit as recalled above,
but which is legitimate for Oh� 1 when inertia is sub-dominant. Equating the rate
of viscous dissipation ∫

∞

r0(t)
2πrh

η

2
[(∂ru)2 + (u/r)2] dr, (3.24)

with u(r, t) = ṙ0r0/r to the rate of surface energy destruction 2πσhṙ2
0 over an

essentially constant in thickness film actually leads to (3.23).
Equation (3.23) is the axisymmetric response to a genuine diffusive, viscous

dynamics and should not, as noted by Debrégeas et al. (1995), be confused with
a viscoelastic effect. When the mechanical response of the material is elastic, the
initial stress propagation along the film is mediated by a shock wave, a phenomenon
also observed in soap films coated by a rigid layer of surfactants (McEntee &
Mysels 1969b; Frankel & Mysels 1969) and responsible for the formation of
a so-called ‘aureole’ propagating upstream from the hole edge with a dramatic
consequence on its stability (see Lhuissier & Villermaux (2009a) and § 6). When
released, the extremity of a stretched rubber band recedes at constant velocity,
proportional to the speed of sound in the material, and to a function of the initial
stretch (Vermorel, Vandenberghe & Villermaux 2007) while an isotropically stretched
rubber sheet will, when ruptured at a point, more likely dissipate energy by opening
radial fractures (Moulinet & Adda-Bedia 2015).

3.2.3. Savart sheet
The premonitory intuition of Savart was that by diverting promptly a liquid stream,

one would gain information on the nature of the liquid itself. The configuration,
declined in two memoirs (Savart 1833c,d) out of four (the two others being Savart
(1833a,b), all published in 1833 in the Annales de Chimie Physique), consists in
letting a jet impacting normally onto a small solid disk (figure 6). It has indeed
proved to be an extraordinary laboratory to study the consequence of liquid cohesion
on the sensible world.

The incident momentum flux (per unity liquid density ρ) carried by the jet
πd2

0/4u2
0 is cancelled by the reaction force of the impactor, and is distributed

radially in an isotropic fashion. It is, however, reduced by an amount of order
πdiδu0u, lost in the boundary layer at the surface of the impactor (with diameter di).
The thickness of that boundary layer is of order (Schlichting 1987)

δ ∼

√
νdi

u0
. (3.25)
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(a)(i) (iii)

(b)

(a)(ii)

(iv)
(v)

(b)

(c)

10 mm

10 mm

d

d0

R

FIGURE 6. Savart sheets and bell. (i) Axisymmetric liquid sheet states: (a) smooth regime.
(b) Flapping regime for larger Weber number (higher than 1000). (c) Perturbation of the
smooth regime by imposing vertical oscillations of the impact rod. (ii) Close-up views of
the free rim of a smooth liquid sheet, for cases (a) and (b) above, adapted from Bremond,
Clanet & Villermaux (2007). (iii) An instantaneous view of a viscous Savart sheet with a
liquid 320 more viscous than water (the water case with the same injection parameters is
shown in the insert, adapted from Villermaux, Pistre & Lhuissier (2013)). (iv) Collision
at an angle (90◦) of two jets of ethanol (left) and water (right), adapted from Bremond
& Villermaux (2006). (v) A stationary Savart bell exhibiting the characteristic catenoid
shape.

If δ is usually small compared to the diameter of the impactor, it may compare with
the sheet thickness itself whose inviscid value at the impactor lip is given by mass
conservation

hinv =
d2

0

8di
. (3.26)

It is only when the Reynolds number Re= ud0/ν is much larger than unity that the
ratio

β =
δ

hinv
= 2

√
(di/d0)3

Re
(3.27)

is appreciably small.

898 P1-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.366


Fragmentation versus Cohesion

The step velocity across the sheet profile at the impactor lip relaxes by viscous
smoothing as it leaves the impactor over a short radial distance of order u0h2/ν

towards a uniform (shear-less) profile with velocity u and thickness h, carrying the
rest of momentum 2πrhu2, and the jet flow rate πd2

0/4u0 = 2πrhu, thus providing
(Villermaux et al. 2013)

u=
u0

1+ β
and h(r)=

d2
0

8r
(1+ β). (3.28a,b)

The ratio of the impulse carried by the sheet in a given radial direction (the average
over the 2π angular directions is zero for an axisymmetric sheet), to the incident
impulse is thus

sheet impulsion
incident impulsion

∼
u2hdi

u2
0d2

0
=

1
1+ β

, (3.29)

indeed smaller than unity. The above relations interpolate between the thin boundary
layer limit (β � 1) for which u ≈ u0(1 − β) and the viscous limit (β � 1) which
involves corrections in β2 (Watson 1964).

Although the surface area of an element of volume travelling radially increases
in proportion of r/d0 (or of d0/h(r), equivalently), surface tension plays no role in
its radial dynamics, which is purely ballistic. The reason is that the net force in the
plane of the (essentially flat) sheet integrated over any closed contour∮

σ ds= 0 (3.30)

is exactly zero, as long as σ is constant over the sheet, as noted by Marmottant,
Villermaux & Clanet (2000). In the absence of other ingredients like the interaction
with the surrounding ambient medium, or heterogeneous hole nucleation processes
studied in the next sections, the velocity u is thus purely radial, and conserved.
Cohesion only compensates for the radial divergence of the streamlines in thinning
the sheet for volume conservation, but at the expense of no net work (see in this
respect the historical mistake of Hagen reported literally in Bouasse (1923), § 107).

Following Taylor (1959c), it is admitted that the radial expansion is halted by
capillary confinement when the Taylor–Culick velocity in (3.14) equals the radial
speed u or, equivalently, when the momentum flux of the sheet equilibrates surface
tension forces, that is

ρu2h(RTC)= 2σ . (3.31)

We will see in § 4 that this is not exactly true and that the corresponding sheet radius
anticipated from (3.31)

RTC = d0
We
16

1
1+ β

(3.32)

−−→
β→0

d0
We
16

with We=
ρu2

0d0

σ
(3.33)
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actually represents an upper bound. As We increases by an increase of the injection
velocity u0, the Reynolds number increases as well, and hence β decreases. The
overall dependence of RTC on We is thus a steeper than the one known for the
inviscid case (RTC/d0 ∼ We), precisely because the relative momentum loss due to
viscosity progressively fades away for larger Re. Also, viscosity delays the transition
to the flapping regime to be analysed in § 6. There are two concomitant reasons for
this delay: the liquid is slowed down, and the sheet is conversely thickened (3.28).
For instance, the sheet thickness at the maximal smooth radial extension is

h(RTC)=
d0

We
(1+ β)2. (3.34)

It is thus doubly difficult for the weakened shear u (by a factor 1+β, see (3.28)) to
move a heavier because thicker sheet (by a factor (1+β)2) perpendicular to its plane
and trigger an undulatory motion (even if the transit time has been augmented) hence
the mandatory recourse to higher Weber numbers for it to be possible (see § 6).

Note finally that the same concepts apply to non-axisymmetric impacts like those
made from the collision of two identical jets at an angle, forming an elongated, bay
leaf kind of shape which is well represented by elementary mass and momentum
balances, as long as the rim does not fragment. The global extent of the sheet, its
width and length, are both proportional to We, like the radius of a circular sheet
(Hasson & Peck 1964; Bremond & Villermaux 2006).

3.2.4. Savart bell
Making a perfectly flat sheet from the impact of a perpendicular jet on a solid

disk is actually difficult (see the method of Clanet & Villermaux (2002) to achieve
this singular limit). The angle α with which the sheet leaves the impactor may not
be equal to π/2. In that case, for instance when α < π/2, the sheet bends in an
axisymmetric way, forming a so-called bell, eventually closing at some downstream
distance from the impact point (Savart 1833c; Boussinesq 1869a,b; Taylor 1959a).
The reason for the bending is liquid cohesion, through Laplace pressure, balanced by
the sheet centrifuge force. If r(z) is the radius of the bell at the axial position z from
the impact point, the sheet presents two components of curvature, namely R−1

1 =

1/r
√

1+ r′2 and the other R−1
2 = r′′/(1 + r′2)3/2 in the plane containing the z-axis.

When gravity is negligible and when the pressure difference between the inside and
the outside of the bell is zero, equilibrium is described by

ρu2h(r)
2σ

1
R2
=

1
R1
+

1
R2
, (3.35)

where u and h(r) are both given in (3.28). Unlike for a bubble where the two radii
of curvature are both equal to the bubble radius, the equilibrium above is not left
unchanged by the substitution R1↔R2 (Clanet 2007). Symmetry is broken, and the
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bell is not spherical; it is actually a catenoid (Boussinesq 1869a,b)

L− r(z)
L− rm

= cosh
(

z− zm

L− rm

)
, (3.36)

with zm being the distance at which the maximal radius rm is reached, both functions
of the initial sheet deflection r′(0) = tan α and of the length scale L = d0We/16
setting the overall size of the bell, which closes on the axis at 2zm. The influence of
gravity, when aligned with the z-axis, can be quantified (Clanet 2007), and Lhuissier
& Villermaux (2012b) have studied the important case where the bell is pressurized
with respect to its environment, leading to a singular, unstable shape studied in § 5.2.

4. Rupture of sheets and films

Having considered how equilibria, static or dynamic, are ruled in some caricatural
instances, we now come to breakup, starting with plane sheets and films.

Free liquid films – by free, we mean not confined between surfactants layers
– are formed in various instances: they arise as a result of various jet impacts
(see § 3.2.3) or splashes in the form of ejecta sheets (Worthington 1908), they
constitute the shell bounding surface bubbles (Blanchard 1963), they can also be
made on purpose through the extrusion of a liquid stream through a slit or annular
thin jet for some spreading applications, in liquid propulsion devices or ornament
fountains (see Dombrowski & Fraser (1954) and figure 1). Liquid films are of
course also involved in various flows of effluents down inclined plates and coating
processes (Craster & Matar 2009; Kalliadasis et al. 2012).

Suspended liquid films, that is those not lying on a solid surface, usually breakup
through their boundary. There, surface tension forces are unbalanced, pulling the
liquid constitutive of the film into a receding rim, which undergoes various
instabilities, before forming cusps, ligaments, and isolated drops.

4.1. Phenomena at the rim: cusps

The main shortcoming of Taylor’s representation in (3.31) is that it is solely
grounded on momentum equilibrium, disregarding the fate of the liquid accumulating
in the rim. Another flaw is that in nature, the rims bordering liquid sheets do not
remain straight for long, and soon present a series of indentations, particularly
obvious on the steady state configuration of the Savart sheet.

In reality, the liquid does not accumulate in the rim, and is always removed
in some way; there are plenty of mechanisms serving this purpose: by gravity
dripping from stationary rims as those found in Savart sheets (Clanet & Villermaux
2002; Villermaux et al. 2013), by centripetal forces when the liquid flows along
a curved rim (Bush & Hasha 2004; Bremond & Villermaux 2006) or when the
rim trajectory is curved like in spinning cups or bursting bubbles (Eisenklam 1964;
Lhuissier & Villermaux 2012a), by non-Galilean body forces when the rim is

898 P1-25

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.366


E. Villermaux

decelerated (Villermaux & Bossa 2011), by an electric field for charged liquids
(Rozhkov, Prunet-Foch & Vignes-Adler 2015; Brosseau & Vlahovska 2017) etc. . . .
In all cases, the liquid is torn off from the rim at a length scale prescribed by a
corresponding instability, thus altering its straight shape, which gets distorted.

de Gennes (1996) had a very clever proposal to solve the Dupré–Rayleigh paradox
recalled in § 3.2.1, by offering a non-dissipative solution to the rim recession
problem, involving droplet ejection from the rim, at 45◦ out of the sheet plane. In
that vision, both mass and momentum are conserved (as well as kinetic energy),
with no mass accumulation by the rim. de Gennes was not truthfully convinced by
his scenario which indeed proved to be incorrect (he writes: ‘Up to now, as far
as I know, nobody has seen droplets escaping during film rupture!’ which is also
incorrect, but for other reasons discussed in § 6), a scenario which has nevertheless
the right flavour of the true scenario.

The liquid is evacuated from the rim essentially in the sheet plane (modulo weak
ejection orientation variations due to the turbulent motions in the rim) from singular
structures called cusps by Gordillo et al. (2014). These were already visible from
Savart’s drawings (figure 7). Like in the de Gennes scenario, the cusp structure
accommodates for both mass and momentum conservation although it leads, unlike
in the de Gennes scenario, to a slightly shifted equilibrium condition compared to
the Taylor equilibrium (3.33).

These cusps represent the saturated state of the rim instabilities caused by the
various effects distorting the rim, like turbulent fluctuations and drop detachment
for instance, and their robust geometry is constrained by both mass and momentum
conservation principles. A sheet border is indented, each indentation presenting a
bulge-like stagnation point at its base called node which drain the liquid through
side jets towards the apex where these jets connect with the jets of their two
adjacent cusps; there, the liquid is ejected in the form of a corrugated ligament,
whose breakup produces the final drops.

If hn is the thickness of the sheet, and θ the angle at the node of the cusp in the
(e1, e2) frame, Gordillo et al. (2014) have shown that the momentum exiting the
stagnation bulge (of size L, proportional to hn) is

m' ρu2hnLe2 − 2σLe2 + σLe1. (4.1)

The rim orientation satisfies the condition for a stationary inclined shock, so that θ
and hn are linked by the condition that the momentum flux ρu2hn cos2 θ absorbed per
unit length of the rim is balanced by the capillary forces 2σ acting perpendicularly
to it, and thus

cos2 θ =
2σ
ρu2hn

, or tan θ =

√
ρu2hn

2σ
− 1. (4.2a,b)
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FIGURE 7. Cusps at the border of Savart sheets: shape and dynamics. Instantaneous
views from above and a comparison with Savart’s drawings, made by eye. There are in
the mean of the order of N ≈ 10 cusps around the sheet, at the tip of which droplets are
formed. Their mean shape is well defined, but they also nucleate, coalesce as they move
along the sheet (adapted from Gordillo, Lhuissier & Villermaux (2014) and Villermaux
& Almarcha (2016)).

Since the momentum flux exiting the node has the same direction as that of the rim,
it follows from (4.1) and (4.2) that

tan θ =
m · e2

m · e1

= 2(ρu2hn/2σ − 1)= 2 tan2 θ, (4.3)

giving the corner angle of the cusp at its node (see figure 7a)

tan θ = 1
2 , that is θ ' 26.6◦. (4.4)

When applied to a Savart sheet where the thickness hn and radius Rn at the node
location are linked by (3.28), and further making use of relations (4.2) and (4.4),
the radial position of the node is expressed as a function of the Taylor–Culick radius
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(with, say, β = 0 as suitable for water), as

1
cos2 θ

=
ρu2

0d2
0

16σRn
=

5
4
, or Rn =

4
5

RTC. (4.5a,b)

The node radius is smaller than RTC as is the radius Re at which the cusps side jets
collide, ejecting ligaments at velocity ue. Gordillo et al. (2014) have documented
quantitatively the hierarchy

Rn < Re < RTC (4.6)

and have explained why, because the oriented side jets at the node carry momentum,
thus cooperating with capillary retraction, equilibrium occurs for a sheet thickness
hn larger than the one expected by the naive balance (3.31). Because of this kick
back to the rim, the ‘effective’ recession speed of an indented sheet is larger than
the Taylor–Culick speed in (3.14), by a modest factor

√
5/4. Along the same lines,

the ejection velocity of the ligaments is found to be approximately ue . u0 sin2 θ ,
that is

ue

u0
. 1−

Rn

RTC
=

1
5
, (4.7)

independent of We, in relative agreement with the measurements reported by Taylor
(1959c) whose ratio is closer to 0.15, and those of Clanet & Villermaux (2002)
who report values ranging between 0.05 and 0.25 depending on We. The ejection
velocities are, moreover, distributed in intensity around the above estimate, and
direction, scattered above and below the sheet plane. Section 11 considers the
energetics of the process.

These cusps are not stationary. They are dynamic structures which evolve in
time, are born, move, merge and die randomly along the sheet edge. However, their
lifetime is much longer than the transit time of the liquid particles flowing through
them for which they are frozen stationary structures, hence the description above.
Their steady-state size distribution has been studied by Villermaux & Almarcha
(2016); elementary geometry shows that there are, in the mean N ≈ 10 cusps at the
periphery of a Savart sheet, so that the mean drop size from the breakup of the
ejected ligaments is

〈d〉 ∼ d0

√
u0/ue

N
∼ d0 (4.8)

unless they are stripped by gravity or centrifuge forces before reaching the cusps
tips (Clanet & Villermaux 2002).

We finally emphasize that these indentations are intrinsic to the dynamics of the
sheet edge and are not the result of any extrinsic forcing. The fact that they have
random and moving locations on the edge means that they do not result from some
asymmetries in the jet or in the impact disk, unlike in the study of Taylor (1959c)
and Dressaire et al. (2013), where the location and number of the cusps was forced
by imposing large amplitude azimuthal modulations of the sheet thickness at the
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impactor, or in Lhuissier, Neel & Limat (2014) where these modulations result from
a viscoelastic instability in the impacting region.

4.2. Spontaneous hole formation

Liquid films also happen to puncture far from their boundaries, nucleating a hole,
or a collection of adjacent holes on the plane of the film. We have seen in § 3.2.2
that holes need to be large enough in radius compared to the film thickness to
open irreversibly (Taylor & Michael 1973). The criterion is identical for polymeric
membranes (Ilton, DiMaria & Dalnoki-Veress 2016) and is somewhat different for
charged liquids which feature electrostatic repulsion at the hole lip (Betterton &
Brenner 1999).

While the sequence of phenomena occurring after a hole has been formed and
opens in the plane of a film is well described and relatively well understood
(see § 4.1), the fundamental question of the hole nucleation process itself has been
less explored. There are in fact many answers to this question, because there are
many ways a film may puncture.

4.2.1. Extremely thin films: thermal fluctuations
Extremely small, thin objects are sensitive to thermal fluctuations. The minimal

energy input to open a hole irreversibly is the surface energy σh2 (the hole radius
must be of the order of the film thickness h, or more). That energy can, provided
a scenario leading to film rupture exists, be supplied by the quantum kBT from
the liquid thermal bath, leading to h ∼

√
kBT/σ ≈ 10−10 m in water at ambient

temperature, a critical film thickness of the order of the inter-atomic distances.
This thermally activated puncture scenario may thus at most apply to extremely thin
films, like Newton black films (Casteletto et al. 2003).

4.2.2. Very thin films: van der Waals forces
Intermolecular forces have different origins depending on whether the molecules

are charged, permanently dipolar or dipolar by induction. These forces, called
generically van der Waals forces (Israelachvili 1991), are attractive over a range
of distances which compares to the size of the molecules itself, namely a few
nanometres. The corresponding disjoining pressure −A/h3 where A is a Hamaker
constant (Derjaguin, Churaev & Muller 1987), is responsible for puncturing very
thin films up to a few tens of nanometres (Vrij 1966; Reiter 1992; Erneux & Davis
1993; Sharma & Reiter 1996; Champougny et al. 2017), but does not operate with
much thicker films, despite the fact that appreciably thicker films, of the order of
200 nm (Thoroddsen et al. 2012b), and even more (Nierstrasz & Frens 1998) have
been claimed to be sensitive to this effect.
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4.2.3. External solicitations
A liquid film can be transpierced by a sharp (with a radius of curvature smaller

than the film thickness) solid object, a projectile (see figure 5 and Bull (1904),
Courbin & Stone (2006)), a concentrated air jet (Berendsen et al. 2012; Lhuissier,
Brunet & Dorbolo 2016), a focused laser beam (Wedershoven et al. 2015) or a
spark (McEntee & Mysels 1969a; Lhuissier & Villermaux 2009b), whose action is
applied for a sufficiently long time. Like all fragile objects, liquid films are also
sensitive to the unsteadiness of their environment. The application of a pressure
gradient, or pressure difference across a film sets it in motion, and the corresponding
acceleration may, because the film is a density interface when surrounded by a gas,
lead to destabilization through a Rayleigh–Taylor mechanism. An impulsive pressure
wave (Bremond & Villermaux 2005), or a violent explosion (Vledouts et al. 2016a)
cause the film, accelerated perpendicular to its plane, to grow thickness modulations
which ultimately cause its puncture with a well prescribed wavelength examined
in § 6. The same phenomenon is responsible for the crumpling of liquid bells,
and the formation of transverse indentations at the edge of flapping liquid sheets
(Lhuissier & Villermaux 2012b); it may affect films of arbitrary thicknesses, the
studies just mentioned had microns, to tens of microns thick films.

4.2.4. Internal flaws and defects
Solid hydrophobic particles introduced into a film can, when their size compares

with the film thickness, lead to its rupture as they force the two interfaces of
the film to pinch at the surface of the particle. Anti-foaming agents have taken
advantage of this effect for a long time (Garrett 1992; de Gennes 1998). However,
flaws, impurities or defects in the liquid may not be solid. Immiscible oil droplets
(Dombrowski & Fraser 1954), or bubbles (Lhuissier & Villermaux 2013) also act
as efficient hole nucleation sites in water films for precise reasons that remain
largely elusive. Denkov (2004) notes that, when by chance an oil droplet reaches an
aqueous interface, the resulting surface tension contrast (oils have usually a weaker
surface tension than water) drives a well-defined outward superficial flow. Vernay
et al. (2015a), adapting this result to a radially expanding liquid sheet loaded with
partially miscible oil droplets, argue that it is responsible for the film piercing,
which they do observe experimentally.

4.2.5. Surface inhomogeneities and Marangoni stresses
Chemical and temperature inhomogeneities at the surface of a liquid translate

into inhomogeneities of surface tension. The corresponding Marangoni surface
stress (Marangoni 1878) is communicated to the bulk of the liquid by viscosity in
a way, when the liquid is shallow like in films, which can be dramatic (Scriven
& Sternling 1960). In the Bénard problem of a liquid layer heated from below
for instance (Bénard 1900, 1901), the mean temperature decays from the hot plate
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to the liquid free surface. Since surface tension of a liquid typically decreases
with temperature, this gradient yields a surface shear stress when the interface is
distorted, setting the liquid into motion towards the cooler areas, where the surface
tension is higher (Levich & Krylov 1969). There, the film thickens when at the
same time, the flow away from the hotter regions results in film thinning. Any
initial disturbance of the film thickness or of the interface temperature is thus
amplified (Pearson 1958). This instability may lead to film rupture, and local drying
of the heating plate (Vanhook et al. 1997; Boos & Thess 1999; Kabova et al.
2006), namely the analogue of holes formation. This effect, which may also be
due to differential evaporation in mixtures (Guéna, Poulard & Cazabat 2007) is,
for this reason, used as an efficient cleaning process (Leenaars, Huethorst & Van
Oekel 1990; Matar & Craster 2001). Other experiments of Marangoni stress induced
spreading flows include those of Roché et al. (2014) and Hernández-Sánchez, Eddi
& Snoeijer (2015) suggesting that this kind of mechanisms can affect films up to a
millimetre thick; when coupled to evaporation, it may also provoke the spontaneous
emulsification of weakly miscible mixtures (Keiser et al. 2017; Wodlei et al. 2018).

4.2.6. Thick, spontaneously puncturing films
Yet, if the case of extremely, or very thin films (§§ 4.2.1 and 4.2.2) is satisfactorily

understood, the case of thick films being neither sensitive to thermal fluctuations,
nor to a disjoining pressure, in the absence of sustained temperature, or pollutant
concentration gradient (§ 4.2.5), remains an enigma. Even the precise role of defects
(§ 4.2.4), when they are temperature or soluble chemical agent spots localized in
space in, or at the surface of the film, needs to be clarified. A fundamental issue
is to know whether a localized surface inhomogeneity spontaneously leads to film
rupture in a finite time (Bowen & Tilley 2013), or not (Kitavtsev, Fontelos &
Eggers 2018), besides the possible role of surfactants (Jensen & Grotberg 1992,
1993). The problem is particularly acute for liquid films with high surface tension
like water (Lhuissier & Villermaux 2012a) or mercury (Dombrowski & Fraser
1954) whose surface is easily contaminated by ambient pollutants, those films being
known to puncture spontaneously even if paradoxically thick in the sense of the
above classification (Aljedaani et al. 2018).

Néel & Villermaux (2018) have uncovered a mechanism solving the paradox,
relying on the extreme sensitivity of the film to surface tension inhomogeneities.
The surface tension of a free liquid film is lowered by an amount 1σ over a size a
by chemical or thermal contamination. At the same time this spot diffuses (within
a time a2/D, with D the diffusion coefficient of the pollutant in the substrate), the
Marangoni stress 1σ/a induces an inhomogeneous outward interstitial flow which
digs the film within a time

τ0 ∼

√
ρha2

1σ
, (4.9)
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with ρ the density of the liquid. When the Péclet number

Pe=
a2

Dτ0
(4.10)

is larger than unity, the liquid substrate motion reinforces the surface tension
gradient, triggering a self-sustained instability insensitive to diffusional regularization.
The paradigm is that liquid surfaces are always somewhat dirty to some extent
(Poulain, Villermaux & Bourouiba 2018), and that even a minute amount of dirt is
enough to initiate puncture. The criterion in (4.9)–(4.10) makes precise what ‘dirt’
means.

4.3. Kinematic thinning

By contrast with a round jet, a flat liquid sheet initially at rest, or animated
with a uniform translational velocity along its plane will not amplify thickness
corrugations spontaneously, because surface tension is stabilizing for a flat sheet
(see §§ 8 and A.5). However, a liquid sheet may be prepared in such a way that the
velocity u(x, t) of the fluid particles averaged over its thickness h(x, t) is initially
inhomogeneous along x, namely when u(x, t= 0) is not a constant. Analogously, the
velocity at the origin of space u(0, t) may be fluctuating in time, as it is notoriously
the case for flat fan injectors used in the agricultural spraying context for which
the liquid is turbulent at the nozzle exit. In that instance, the sheet will locally
thin or thicken depending on the sign of the initial velocity gradient (∂u/∂x)t=0

when spatial modulations of u(x, 0) are imposed to the sheet, or of the sign of
the acceleration (∂u/∂t)x=0 when the velocity u(0, t) is modulated in time at the
injector exit. This results from trivial kinematics: if a slow particle released in x= 0
is preceded by a fast particle, their separation distance will further increase, thus
thinning the sheet in-between them. Conversely, a fast particle will catch up a slow
particle ahead to form a shock. This phenomenology applies to jets also (Meier,
Klöpper & Grabitz 1992). The sheet thickness h(t) in Lagrangian time t reads

h(0)
h(t)
= 1− t×

1
u
∂u
∂t

∣∣∣∣
x=t=0

, (4.11)

t=
x

u(0, 0)
. (4.12)

It blows up in finite time at concentrated shocks when (∂u/∂t)x=0 > 0, and decays
like t−1 around large valleys when (∂u/∂t)x=0 < 0, as seen in figure 9 which also
shows how the thin, stretched sheet in the valleys nucleate holes spontaneously,
holes which expand preferentially along the valleys, where the liquid film is the
thinnest. There, the sheet thickness, computed from Taylor–Culick velocity in (3.14)
is found to be about 1 µm, a value often encountered with clean water which
coincides, at least quantitatively, with its Debye screening length (Israelachvili 1991),
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although no precise connection has been made yet (see the different scenarios
discussed in Yaminsky et al. (2010)).

Of course, surface tension comes into play in the strongly distorted regions of
the film interface, namely around the neck between valleys and shocks. Burton &
Taborek (2007) have shown that the inviscid, slender slope conservation equations

∂tu+ u∂xu=
σ

ρ
∂3

x h, (4.13)

∂th+ ∂x(hu)= 0 (4.14)

are compatible with a finite-time singularity h(t)∼ (t?− t)α with α≈ 0.7, presumably
due to a Bernoulli suction effect at the neck.

4.4. ‘Effervescent’ atomization

The terminology ‘effervescent’, or ‘aerated liquid’ atomization and the corresponding
technique was introduced by A. H. Lefebvre in the late eighties (see Sovani, Sojka
& Lefebvre (2001) for a review). It consists in dispersing a minute fraction of a
gas phase within the liquid to be atomized when the mixture is pressurized prior
to its injection in a low pressure chamber. As the pressure suddenly drops, the
gas bubbles expand and fragment the liquid into small volumes, typically much
smaller than those which would have been obtained if the same quantity of gas had
been used to shear the liquid, as in common co-flow atomizers (Lefebvre 1989),
like coaxial jets (Marmottant & Villermaux 2004b). This ‘effervescent’ process,
though not routinely used yet is thus a smart alternative for which a small cause
(the addition of a small quantity of gas), has dramatic effects (substantially reduced
drop sizes), even under modest driving pressures. Its efficiency relies on one hand
in the change of topology of the liquid in the injection stream resulting from
the presence of the bubbles, and on the other hand in the fast bubble expansion
dynamics as the pressure suddenly releases. The coupling between these two effects,
and the associated detailed mechanisms were investigated by Lhuissier & Villermaux
(2013) using a Savart sheet seeded with small air bubbles, themselves inspired by
the work of Dombrowski & Fraser (1954) who were using a fan spray nozzle and
a water/oil emulsion (see figures 8 and 9).

Note that the presence of a dispersed phase within the liquid to atomize is not
mandatory for the realization of the first step listed above, that is the nucleation
of holes. A similar effect is obtained by using a mixture of surfactants inducing
Marangoni stresses, which eventually puncture the sheet (see Rozhkov, Prunet-Foch
& Vignes-Adler (2010), Vernay et al. (2015a) in the context of drop impact). This
mechanism is also similar to the spontaneous de-wetting (through hole nucleation,
or spinodal decomposition) of a thin film from a solid surface (Reiter 1992) even
if it leads to a very different drop sizes population. The impact of fine droplets of
another liquid mediates the nucleation of holes as a result of Marangoni localized
stresses (Thoroddsen, Etoh & Takehara 2006; Aljedaani et al. 2018). Hole formation
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FIGURE 8. Nucleation of holes on thick (larger than a micron) liquid sheets. (i) Holes on
a mercury sheet formed from flat fan atomizer, (ii) holes on a water sheet punctured by
oil droplets dispersed in the liquid (adapted from Dombrowski & Fraser (1954)). (iii) A
network of holes punctured by bubbles in a water Savart sheet shown at two consecutive
instant of time (Lhuissier & Villermaux 2013). (iv) A water droplet coalesces in a water
sheet (a) while an ethanol droplet punctures it (Néel & Villermaux 2018). (v) Impact of
a drop loaded with partially miscible oil droplets, nucleating many holes as it expands
(adapted from Vernay et al. 2015a). (vi) Disintegration of a liquid iron jet poured onto
a refractory brick (Lhuissier & Villermaux 2013). (vii) Impact of a glycerine drop onto
a thin substrate film of isopropanol. The ejecta sheet punctures in a myriad of holes
(Aljedaani et al. 2018).

on a liquid film may also be the result of an inertial instability, as when the film is
violently accelerated perpendicular to its plane (see §§ 5 and 7), leading to patterns
very like those in Bremond & Villermaux (2005). In the industrial practice, figure 8
illustrates that the two former steps leading to the spray are for instance observed
in the GranShot process (Uddeholm AB Sweden) where a single-phase iron melt
is fragmented through the disintegration of a planar liquid sheet. This process is a
major industrial method for granulation of melts at large output, up to several tons
per minute. It is, however, reputed to be ‘. . . not very flexible in term of particle
size and shape, these being largely determined by the physical and chemical
characteristics of the melt’ according to Yule & Dunkley (1994, p. 216), and one
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(i)

(ii) (iii) Air film

FIGURE 9. Kinematic thinning leads to film rupture. (i) Agricultural flat fan nozzles
(Albuz) produce a turbulent sheet, possibly loaded with bubbles. Initial injection velocity
modulations lead to thinning of the sheet along large valleys which, when they are
thin enough (of the order of 1 µm or less), nucleate holes spontaneously. The arrows
indicate the regions where this scenario occurs. This case has to be contrasted with hole
nucleation on very thin sheets where van der Waals forces are at play: (ii) 40 nanometre
thick polymer film on a solid substrate (Reiter 1992) and (iii) bursting of relatively thin
(250 nm) air films (Thoroddsen et al. 2012b).

could therefore expect ‘effervescence’ to give more flexibility, if not control, to the
process.

Overall, whatever the precise hole piercing mechanism may be, the process
features the following successive steps:

(i) nucleation of holes across the sheet, in a more or less synchronous way;
(ii) growth of these holes followed by the junction of the rims bordering them into

a web of ligaments which concentrates all the liquid constitutive of the sheet;
(iii) break up of this ligament web into the collection of drops.

The key quantity is the surface density of the holes, or inter-hole centre distance λ.
It is easy to see that, by volume conservation, the average diameter 〈d〉 of the
ligaments formed from a sheet with thickness h is

〈d〉 ∼
√
〈λ〉h, (4.15)
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(a)

(a)(b)(a)

(a)

(b)
(c)

(d)

(e)

(b)

(a) (b)

(c) (d)

(e) (f)

(b) (c)R
rf

R0

R(t�)

(iv)

(iii)
(i)

(ii)

(v)

First
inflection

Fold
(second

inflection)

¬⊥

¬⊥

FIGURE 10. Rupture of liquid shells. (i) Explosive fragmentation of a liquid shell
expanded by an exothermic chemical reaction (Vledouts et al. 2016a). (ii) Nucleation of
a hole at the foot of a water bubble at the surface of a pool, and its fragmentation
(adapted from Lhuissier & Villermaux (2012a) and Poulain et al. (2018)). (iii) Explosive
boiling (van Limbeek et al. 2013). (iv) Explosion of magma bubbles recorded in nature
(Gonnermann 2005) and re-created artificially (Sonder et al. 2018). (iv) Explosion of a
cohesive ball of metal spheres (Frost et al. 2007). (v) Fragmentation of a crumpled water
bell (Lhuissier & Villermaux 2012b).

a diameter which also sets the mean drop size, as will be seen in § 8. Lhuissier &
Villermaux (2013) have further shown that the overall drop size distribution from
this ‘effervescent’ process is universal provided the holes are not too distant (Néel,
Lhuissier & Villermaux (2020) have quantified what ‘distant’ means and how the
drop size distribution is correspondingly altered, see § 10), and that it is solely
related to the breakup dynamics of the ligaments, irrespective of the geometric
disorder of the holes at the surface of the sheet (i.e. of the distribution of λ). This
drop size distribution will be discussed in § 9.

5. Shells

Liquid sheets are often bent by a pressure difference between their sides, like for
inflated bubbles for instance (figure 10). A spherical liquid shell, or a bubble lying
at the surface of a pool are not bordered by a rim. Their bursting mechanisms are
therefore different from those of bounded liquid sheets.
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5.1. Exploding bubbles and drops

We consider envelopes of cohesive material enclosing a substance or a mixture of
substances whose internal pressure increases rapidly, in other words, an explosion.
This configuration is the three-dimensional analogue with liquids of the ring
configuration initially imagined by Mott (1947) for solids in two dimensions
(see also Grady (2006) and Zhang & Ravi-Chandar (2007, 2008), and § 2.3 for
its discrete version with magnets). This problem, in which the envelope fragment
distribution is the result of a competition between deformation and cohesion, is
relevant to a collection of phenomena spanning over a broad range of length scales,
among which are: exploding blood cells and bacteria (antibiotics like penicillin
disrupt cell walls by explosive lysis, Flores-Kim et al. (2019)), spore dispersal
from plants (Ingold 1971; Hassett et al. 2013), boiling droplets (Frost 1988; van
Limbeek et al. 2013; Antonov, Piskunov & Strizhak 2019), underwater explosions
(Cole 1948), magma eruption in volcanoes (Kedrinskii 2009; Sonder et al. 2018),
up to the torn patterns of supernovae in the Universe (Burrows 2000), among other
examples. Case shells, bombs are obvious examples where one would like an a
priori knowledge of the final fragments as a function of the energy released by the
explosion, and of the physical properties of the enclosing envelope (Zeldovich &
Raizer 2002; Kedrinskii 2005; Frost et al. 2007).

The problem examined here is best discussed in the spherical geometry, and
admits two limits, from the strong, supersonic version involving a detonation
(Sedov 1946), a ‘very intense explosion’ in the words of Taylor (1950a), to the
milder deflagration version consisting, in expanding a liquid bubble filled with a
gas mixture undergoing an exothermic reaction, like a hydrogen/oxygen mixture
for instance (Marangoni & Stefanelli 1873), which propagates at low Mach number
within the bubble. The interest of this configuration is that the course of events
can be followed step by step and in real time, from an initially connex cohesive
material (here a liquid shell), to its dispersion into a collection of stable fragments,
each step being subjected to a precise description (Vledouts et al. 2016a).

5.1.1. Explosive fragmentation of a liquid shell
A reactive mixture is ignited inside a liquid bubble. A flame propagates at

constant velocity ṙf , converting the fresh mixture with density ρu into burnt gases
with density ρb. Since the burnt gases are much lighter than the fresh mixture and
are released on the inner confined side of the flame, they must expand, and by
doing so, push the different phases ahead of the flame front. These are, successively
at increasing distances from the flame, the envelope of the remaining fresh gases,
the liquid shell, and the ambient air. The radial motion of these inertial phases
is thus made at the expense of an elevation of pressure in the burnt gases with
respect to the initial ambient pressure. The important quantity is the shell radius
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acceleration R̈. Vledouts et al. (2016a) have shown that it is related to the pressure
at the flame front by

p(rf )= ρuR̈
(

R2

rf
+
ρ

ρu
h+

ρ∞

ρu
R
)
, (5.1)

where ρ is the density of the liquid shell, h its thickness and ρ∞ the density of the
outside medium (air). The pressure at the flame front is of the order of the recoil
pressure ρuṙ2

f and since the first term dominates in the right-hand side of (5.1) for
short times after ignition when rf = ṙf t�R, the shell radius acceleration is such that

ρu
R2

0R̈
rf
=

3
2
ρuṙ2

f , (5.2)

where R0 is its initial radius, giving

R
R0
= 1+

1
4

(
rf

R0

)3

. (5.3)

The shell radius expands like R(t)∼ t3, with an acceleration R̈∼ t itself strengthening
in time, a violent explosion indeed.

5.1.2. Stability
The dense spherical shell is sandwiched between two media with lighter densities

(the inner unburnt gases, and the outer ambient air), so that, being accelerated
radially, it is liable to develop an inertial instability in the sense of Rayleigh–Taylor
(see §§ A.1 and A.2). The development of this instability is, however, altered by the
presence of two close-by density interfaces, a proximity which is stabilizing (Keller
& Kolodner 1954), as first demonstrated experimentally by Bremond & Villermaux
(2005). If R̈ is the acceleration of a density interface, the cutoff wavenumber of the
instability is

kc =

√
ρR̈
σ
, (5.4)

whose inverse must be compared to the shell thickness h. If kch� 1, the standard
analysis of Lord Rayleigh (1883) holds, for which both the most amplified
wavenumber kc/

√
3, and its growth rate ∼(ρR̈3/σ)1/4 are independent of h. But

when

kch� 1 (5.5)

the coupled distortions of the nearby interfaces hinders the instability development,
which now occurs around a wavenumber given by (see § A.2)

k≈
1
2

k2
ch, with a growth rate ω=

√
ρR̈2h
2σ

(5.6)
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going to zero as h→ 0. The rear and front (in the direction of the shell expansion)
interfaces amplify disturbances inducing thickness modulations of the shell, piercing
it when they are of the order of its initial mean thickness.

Using the expression for the growth rate in (5.6), and further defining the relevant
Weber number

We=
ρ ṙ2

f h

σ
, (5.7)

we find the instability time t? and destabilization radius R(t?)

ṙf t?
R0
∼We−1/4, and

R(t?)
R0
− 1∼We−3/4. (5.8a,b)

It follows that the instability wavelength λ at the piercing time is (Vledouts et al.
2016a)

λ

R0
≈

2π

We3/4
, (5.9)

defining the inter-distance between the growing holes which, through the
‘effervescent’ mechanism described in § 4.4, also sets the mean drop size as in (4.15).
The shape of the drop size distributions is discussed in §§ 9 and 10.

5.2. Singular Savart bell

A liquid film flowing along a curved path experiences centripetal acceleration, as
in Savart bells, a particular liquid shell resulting from the dynamical equilibrium
described in § 3.2.4.

Stationary axisymmetric pressurized bells (i.e. with internal pressure larger than
the ambient) can exhibit sharp pointed shapes. They are characterized by a double
inflection of the bell generator profile (with curvature R−1

2 ), corresponding to not
globally convex bells. Lhuissier & Villermaux (2012b) have shown that this shape is
incompatible with the usual assumption that the detail of the flow across the liquid
sheet constitutive of the bell is unimportant. They have considered the equilibrium
of a curved liquid sheet of finite thickness, that is when

h
R2

(5.10)

is small, but non-zero, sustaining a pressure difference between both sides, and have
shown that several curvatures may be a solution under given flow conditions. The
inflection of the bell profiles is then explained in terms of a spontaneous transition
from a ‘negative’ to a ‘positive’ curvature which conserves mass flow, linear and
angular momenta. That inflection is also a transition from a super to a subcritical
flow (with respect to capillary waves with velocity given by (3.14)), having the status
of a capillary hydraulic jump on a freely suspended sheet, a novel object in fluid
mechanics.
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The local curvature of the sheet along a streamline can be very large at the critical
condition. This is the cause for the azimuthal wrinkles forming at the jump which
result from the inertial destabilization of the sheet (a finite-thickness Rayleigh–Taylor
instability as described above and in § A.2), due to the centripetal acceleration fluid
particles experience as they flow along the highly curved bell profile in the vicinity
of the singular sheet fold. This finding, explaining why the bells are so fragile in
these conditions and rupture easily, also explains the singular shape at the edge of
freely flapping sheets, discussed in § 6.

5.3. Surface bubbles

A surface bubble is an out-of-equilibrium, close-to-hemispherical liquid shell sitting
at the surface of a liquid pool in which it progressively empties. Its shape depends
on both gravity and capillary while its cap continuously drains down to rupture. It
is one of the most common objects in nature since an immensely large number of
bubbles burst every second at the surface of the ocean, feeding the atmosphere in
a considerable amount of water vapor, salt and a collection of chemical/biological
material (Veron 2015; Cochran et al. 2017).

A bubble bursts because its cap (the liquid shell) spontaneously nucleates a
hole on its surface, preferentially close to its foot. At burst, two distinct processes
(discovered by Knelman, Dombrowski & Newitt (1954)) further produce fragments,
the ‘jet drops’ emitted from the collapse of the unbalanced cavity left by the bubble
cap burst (Blanchard 1963; Ghabache & Séon 2016), and the ‘film drops’ resulting
from the destabilization of the cap itself (Blanchard & Sysdek 1988; Resch & Afeti
1991; Spiel 1998).

Lhuissier & Villermaux (2012a) have depicted the complete evolution of an air
bubble formed in a water bulk, from the time it emerges at the liquid surface,
up to its fragmentation in dispersed drops. From the description of the drainage
of the bubble cap film of tap water bubbles, they discovered that the mechanism
of marginal pinching at the bubble foot and associated convection motions in the
bubble cap, known as marginal regeneration drive both the bubble cap drainage
rate, and are responsible for its puncture. Indeed, a bubble is sustained by a surface
tension gradient between its foot (where σ is smaller) and its pole. Surface tension
differences are due to the presence of impurities and surface contaminants of various
kinds, in a small amount in water; it is not possible to make a bubble from distilled
water, but the water surface is readily contaminated at the contact with ambient
air. For a bubble with radius R, the cap film thickness h is set by an equilibrium
between Marangoni convection moving the liquid upwards, and viscous drainage at
the bubble foot. It decays in time t as (Lhuissier & Villermaux 2012a)

h∼ a
(ηa
σ t

)2/3
(

R
a

)7/3

, (5.11)
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a law which is distinct from the drainage law in soap films (Isenberg 1978), or
in very viscous bubbles (Debrégeas et al. 1998). The convection motions opposing
the viscous drainage of the liquid along the cap also introduce periodically spots
of ‘dirt’ in the sense of § 4.2.6 over the bubble cap, thus possibly triggering the
mechanism discovered by Néel & Villermaux (2018), for film bursting. It was, along
these lines, argued by Poulain et al. (2018) that the celebrated relationship between
the cap thickness at bursting hb and the bubble radius

hb ∝
R2

L
(5.12)

discovered by Spiel (1998) could be interpreted from (5.11) as the manifestation of
a competition between Marangoni and mixing effects at the bubble foot, leading to

L= a Sc2/3, (5.13)

with Sc= ν/D the Schmidt number of the impurities in the water if D denotes their
diffusion coefficient.

The mean bubble lifetime 〈tb〉 is an increasing function of its radius

〈tb〉 ∼ tv × Sc
(

R
a

)1/2

, (5.14)

where tv = ηa/σ is a viscous time. Lhuissier & Villermaux (2012a) have further
shown that hole piercing at the bubble foot is a random Poisson process, and
determined the (broad) distribution of bubbles lifetimes of which Poulain et al.
(2018) have provided extensive measurements in different conditions.

Subsequent to a hole nucleation event, the cap bursting dynamics conditions
the resulting spray. Lhuissier & Villermaux (2012a) have given the details of the
processes leading to the (Rayleigh–Taylor) centrifuge destabilization of the hole rim
expanding along the curved bubble cap, the mean drop sizes 〈d〉 and their number
N as

〈d〉 ∼ (R3h5
b)

1/8, and N ∼
(

R
a

)2 ( R
hb

)7/8

, (5.15a,b)

as well as the distribution of the droplet sizes emanating from one bubble burst,
thus offering, combined with known bubbles production rates over the ocean,
an adjustable parameter free prediction for the aerosol flux and spray structure
(for droplets &1 µm) caused by bubble bursting in this precise context (see also
Veron (2015) for a collection of recent data).

In sum, natural and ubiquitous water contaminants enable the birth of a bubble
and sustain it as it ages, but they ultimately also kill it. Dirtiness thus conditions
the entire life of surface bubbles. But if there is a bad, there is also a good dirt
regarding the bubbles lifetime expectancy: it was found by Poulain & Bourouiba
(2018) that some specific bacterial secretions in the liquid enhance the lifetime
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of bubbles, hindering hole nucleation like surfactants do (see also figure 6 in
Néel & Villermaux (2018)). Initially, marginal regeneration governs the bubbles
cap thinning rate, similarly to water bubbles as in (5.12). However, due to their
enhanced lifetime, it is eventually evaporation that governs their thinning, thus
also dramatically decreasing the cap thickness at burst (Champougny et al. 2018).
Miguet et al. (2020) have nevertheless underlined the importance, in order to lock
to this final regime, of working with surfactants exempt from impurities, these
triggering the classical Marangoni piercing mechanism described above.

While still in need of a full rationalization, such observations are certainly relevant
to understand how very fine particles are introduced in the atmosphere from the
ground/sea level.

6. Gone with the wind: shear, flags, spray and exhalations

A liquid volume may fragment as a result of a velocity difference with its
surrounding environment and indeed, a broad class of ‘atomization’ processes
involve a shear at the interface (figure 11). The disintegration and dispersion of a
liquid volume by a gas stream is a phenomenon which encompasses many natural
and industrial operations: the entrainment of spray droplets by the wind over the
ocean, the generation of pharmaceutical sprays, the dispersion of liquid propellants
in combustion engines or the exhalation of postillions are among the many obvious
examples (see § 1.2).

6.1. Shear at the interface

By shear, we do not only mean the simple drag force exerted, for instance, on
receding rims opening on soap films at low Reynolds number in a still atmosphere
(Mysels & Vijayendran 1973; Frens 1974; Reyssat & Quere 2006), we mean
something else, a new ingredient responsible for the destabilization of the interface
of a liquid volume in relative motion with its environment, triggering a subsequent
sequence of events leading to its fragmentation.

The interface separating two initially parallel streams having different velocities u1

and u2 is naturally unstable: this is the Kelvin–Helmholtz paradigm recalled in § A.3.
The shear 1u= |u2− u1| is always destabilizing and, in the absence of other length
scales in the problem, destabilization of the interface occurs around a wavelength
given by

λ∼
σ

ρ2(1u)2
, (6.1)

where ρ2 is the density of the lightest stream. However, the above results only
applies in the rare situations where a sharp velocity discontinuity at the interface is
a good description. It may be relevant to the initial destabilization of high speed jets
issuing into a quiescent environment from a nozzle at very high Reynolds number
(Hoyt & Taylor 1977) and is also found to be a good model for the flapping
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30 mm 20 mm

(i)

(ii)

(iii)

(iv)

(b)(a)

(a)

(b)
(b)

(c) (d)

0.3 mm

Air

(a) (b) (c)

(d) (e) (f)

1 cm

Side view

FIGURE 11. Shear, flags, spray and exhalations. (i) The bursting of soap films involve a
flapping Squire instability with the outside gaseous environment (Lhuissier & Villermaux
2009b). (ii) Sheets (Savart sheets and a plane sheet extruded from a slit) in the
Squire flapping regime exhibiting the secondary wavy corridor transverse destabilization
mechanism (Bremond et al. 2007; Lhuissier & Villermaux 2012b). (iii) Liquids sheared
by a fast gas stream exhibiting the characteristic ligament formation at the interface:
water–air (Marmottant & Villermaux 2004b), ocean spray (Veron et al. 2012), a polymeric
viscoelastic liquid (Keshavarz et al. 2016) and the phenomenon seen in a dense spray
using an X-ray phase-contrast imaging technique (Wang, Im & Fezzaa 2008). (iv) Human
exhalation from a sneeze: the historical imaging of the phenomenon by H. E. Edgerton at
MIT (Turner et al. 1941), and its modern version (Scharfman et al. 2016) on the right.

instability of fast thin liquid sheets for which the boundary layers have no time to
form (§ 6.3 below).

For a large class of other systems, the existence of boundary layers at the interface
has to be taken into account. Producing a shear between parallel streams implies
conveying channels separated by a splitter plate at the wall of which boundary
layers form. Therefore, in addition to the intrinsic length scale in (6.1) are the two
boundary layer thicknesses δ1 and δ2 of each stream. These two are linked to each
other by the continuity of stress at the interface and in practice, only the one in
the fastest stream (say, u2) matters (see Eggers & Villermaux 2008). Generalizing
Rayleigh’s treatment of the shear instability of a smooth velocity profile (see § A.3)
to the case with density differences between the phases, Villermaux (1998a) has
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shown that the most amplified wavelength and its growth rate are (when u2� u1)

λ∼ δ2

(
ρ1

ρ2

)1/2

, and Re(−iω)∼
ρ2

ρ1

u2

δ2
(6.2a,b)

provided

Weδ =
ρ2(1u)2δ2

σ
(6.3)

>

(
ρ2

ρ1

)1/2

. (6.4)

Mode selection and growth rate are now independent of surface tension but are
solely given by the shape of the velocity profile of the fast stream. Even in the
presence of surface tension, the shear does not affect the layer for wavelengths
shorter than λ given in (6.2). The Rayleigh mode selection thus overcomes the
selection of the Kelvin–Helmholtz mode as long as σ/ρ2u2

2 < δ2(ρ1/ρ2)
1/2, resulting

in (6.4) above.
As recalled in § A.3, this instability mechanism of inflexional velocity profiles is

inviscid, as opposed to the viscous mechanism of boundary layer profiles. Viscous
corrections do exist, however, for u2δ2/ν2 smaller than about 100 (Betchov &
Szewczyk 1963). They were considered for jets by Gordillo & Pérez-Saborid
(2005), in particular.

6.2. Viscoelastic fluids

The case of viscoelastic fluids is, however, more dramatic (Rallison & Hinch
1995). As explained by J. Hinch in an appendix to Azaiez & Homsy (1994), large
non-Newtonian stresses are confined to the shear layer at the interface only, and
thus one anticipates that the stabilizing effect of the normal stresses on the long
unstable waves is just that of an elastic membrane or (dynamical, shear sustained)
surface tension on the Kelvin–Helmholtz instability. For a viscoelastic liquid with
elastic shear modulus G and relaxation time τ , the effective surface tension writes,
according to J. Hinch, as

σ ∼
Gτ 2(1u)2

δ1
(6.5)

in our notations where δ1 stands for the boundary layer thickness in the liquid. The
most amplified wavelength and its growth rate are given, mutatis mutandis, by (A 20)
in § A.3.

The phenomenology of shear instabilities with viscoelastic liquids is qualitatively
similar to those with normal fluids (primary shear destabilization, ligament
formation, broad droplet size distribution, see e.g. Keshavarz et al. (2016)), but a
systematic experimental study is still lacking. It would, however, be welcome: many
exhalations in nature involve non-Newtonian fluids, including human exhalations
(Scharfman et al. 2016). The postillions expelled from the mouth at a cough,
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or sneeze have been torn off by a rapid air flow from a layer of mucus in the lung,
a mucus whose rheological properties are far from Newtonian. Understanding better
their mode of production is necessary to make sense of the inherently very broad
size distribution of particles sizes released at a sneeze (Duguid 1946; Morawska
et al. 2009; Zayas et al. 2012) which has, to date, not received a satisfactory
description.

6.3. Thin films: flapping

The case of thin fast liquid sheets projected in a gaseous environment at rest is the
closest to ideal realization of the pure Kelvin–Helmholtz scenario, albeit in its thin
layer limit, which favours a sinusoidal mode of instability, conferring to the sheet a
characteristic flapping motion. This is the Squire instability explained in § A.4. The
sheets are formed, for instance, by the deflection of a jet impacting a solid surface,
or by extruding the liquid through a thin slit, as with standard flat fan agricultural
nozzles.

The growth rate of the corresponding Squire instability t−1
squire∼

√
ρ2/ρ1× u1/

√
λh

depends on the sheet thickness h, and on the gas to liquid density ratio whereas
the most amplified wavelength λ is given by (6.1) above (see § A.4 and Hagerty &
Shea (1955), Dombrowski & Johns (1963), Crapper et al. (1973) and Villermaux &
Clanet (2002)).

As for the ‘liquid intact length’ of jets in (8.16) in § 8.2 below, the distance,
or ‘radius of intact sheet’ (for a Savart sheet) is given by R = u1tsquire with u1 the
conserved liquid velocity. This is the distance it takes for the flapping amplitude
motion to be intense enough for a secondary mechanism, involving a thin-film
Rayleigh–Taylor instability called the ‘wavy corridor mechanism’ examined below,
to operate. This distance reflects the time of growth of the primary undulations
amplitude, the second mechanism being comparatively much shorter, hence the
proportionality of R to tsquire. The breakup radius of a Savart sheet for which
h(R)∼ d2

0/R is thus, in the Squire regime and in place of (3.33)

R
d0
∼

(
ρ2

ρ1

)−2/3

We−1/3 (6.6)

holding for We & 40
√
ρ1/ρ2 of order 103 for a water sheet moving in air (density

ratio ρ2/ρ1 ≈ 10−3) with velocity u1 (Huang 1970; Villermaux & Clanet 2002).
To the primary Squire undulated pattern of the sheet is superimposed, via the

mechanism described next in § 6.4, a thickness modulation field. On a bounded
liquid sheet, these thickness modulations induce a differential recession speed at
their edge, which may lead to a periodic cutting of the sheet into periodic spanwise
strips of width λ given in (6.1) above (see figure 9 and Kim & Sirignano (2000)).
These strips further recoil into a ligament of diameter

〈d〉 ∼
√
λh, (6.7)
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(i) (iii)

(ii)

¬

er

ez

FIGURE 12. Illustrations of the wavy corridor mechanism: (i) liquid jet in a transverse
cross-flow of air. The centripetal acceleration imparted to the liquid flowing along its
curved path destabilizes the jet (Sallam, Aalburg & Faeth 2004). (ii) Undulated Savart
sheet in the flapping regime. For large enough amplitudes, primary undulations undergo
a transverse destabilization (thickness modulations seen by interferometry) caused by the
accelerations imposed to the liquid at the passage of the primary undulations (Bremond
et al. 2007). (iii) Evidence for the centrifugation of liquid particle at the passage of a
sharp cusp on a crumpled Savart bell, and the consequence of this acceleration on the
transverse thickness field of the sheet (Lhuissier & Villermaux 2012b).

which also sets the average droplet sizes formed by this process, with viscous
corrections when applicable (Dombrowski & Johns 1963; Han, Durst & Zeilmann
2004; Kooij et al. 2018).

6.4. The wavy corridor mechanism

The shear instability generates the characteristic waves extending spanwise,
perpendicular to the direction of the mean flow with a wavelength given either by
(6.1) or by (6.2) depending on Weδ. It is the first step of the inertial destabilization
of the interface, leading to its fragmentation. The second step consists in the
destabilization of these primary waves themselves, through a mechanism we explain
now (figure 12).

As they grow in amplitude, the primary shear waves destabilize in the spanwise
direction to form streamwise ligaments separated by a well defined wavelength λ⊥.
The mechanism responsible for this secondary instability was first proposed by
Marmottant & Villermaux (2004b) to describe the fragmentation of a slow liquid
stream (density ρ1) by a fast gas stream (density ρ2). The fundamental idea exploits
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the fact that, in shear instabilities, the group velocity uc ≈ u2
√
ρ2/ρ1 of the most

amplified perturbation is intermediate between the velocity of the slow stream u1 and
that of the fast stream u2. Fluid particles in the slow stream are thus periodically
accelerated perpendicular to the interface (as if transported in a wavy corridor)
which, therefore, suffers a Rayleigh–Taylor instability. In the reference frame of
the liquid, the interface with elevation ξ ∼ a sin(ωt) experiences an oscillatory
acceleration of intensity

|g| ∼ aω2, (6.8)

with ω ∼ uc/λ and a the amplitude of the primary shear waves. The transverse
instability of the primary wave crests occurs when the Rayleigh–Taylor instability
time scale (σ/ρ1|g|3)1/4 (see (A 8) in § A.1) gets shorter than the residence time of
the waves ω−1, setting both the critical amplitude ac and transverse wavelength λ⊥ as

ac

λ
∼
λ⊥

λ
∼We−1/3

λ , (6.9)

where Weλ =Weδ ×
λ

δ
. (6.10)

From the resulting protrusions of the – now indented – waves crests emerge liquid
ligaments which are further accelerated in the fast gas stream where they fragment
in stable droplets. The volume of the ligaments is of order λ3

⊥
and they typically

produce broad droplet size distributions with average size 〈d〉 ∼ 0.1λ⊥.
This process is sometimes called shear assisted atomization in the context of liquid

propulsion engines. It is responsible for the formation of sea spray by strong winds
over sharp crested waves (Anguelova & Barber 1999; Veron et al. 2012).

The above wavy corridor mechanism operates more generally when a liquid
flows through a curved path and experiences therefore a centripetal acceleration. As
such, it also applies to liquid films and sheets. Depending on the intensity of the
centripetal acceleration and on the thickness of the film, either the infinite depth
(§ A.1), or the finite thickness (§ A.2) versions of the Rayleigh–Taylor instability
apply. This mechanism explains the cellular fragmentation of liquid jets bent in
a cross-flow (see the experiments by Sallam et al. (2004) and the corresponding
theory in § 3.11.3 of Eggers & Villermaux (2008)), the transverse indentations of
undulated liquid sheets (Bremond et al. 2007) and the fragmentation of soap films
by the transverse instability of their flapping receding rim (Lhuissier & Villermaux
2009b), as well as the spontaneous burst of crumpled water bells (Lhuissier &
Villermaux 2012b). It is distinct from the mass concentration mechanism in a
vibrating, non-flowing soap film discussed by Boudaoud, Couder & Amar (1999).

7. Impacts

Impacts between cohesive bodies sometimes result in their fragmentation. The
role of the impact is twofold: it may first simply communicate to the body a
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stress sufficient to overcome cohesion, as in the generic example of the magnets
necklace in § 2.3. This is often how solids break. Second, an impact may also
trigger a shape change of the body to make it sensitive to an intrinsic instability.
This is the case with liquids where fragmentation under impact is mediated by the
transient formation of ligaments, which naturally breakup into drops (§ 8). Note
that this distinction is not exclusive, since the fragmentation of some slender solid
bodies by impact does involve the development of an instability (buckling, see e.g.
Gladden et al. 2005). We describe below several examples of liquid bodies like
drops (the archetype of the stable shape) which fragment once impacted, along with
the mechanisms of their shape change into ligaments.

7.1. Hard impacts

By ‘hard’, we mean a cohesive but deformable object (a liquid volume) impacted by
another rigid object, the paradigm of this being the crushing of a drop on a solid
surface.

7.1.1. Drop impact on solid surface
Among the relevant studies documenting fragmentation on impacts are those of

Ashgriz & Poo (1990) and Qian & Law (1997) who have quantified the conditions
for coalescence or satellite formation in binary collisions of drops, Stow & Stainer
(1977) who have measured the number of fragments of a water drop colliding
with various solid surfaces, dry, wet, smooth and rough, and measured their
size distribution, Mundo, Sommerfeld & Tropea (1995) who performed similar
measurements with liquids of different surface tension and viscosity, Yarin & Weiss
(1995) who measured the fragment size distributions of a drop impacting a shallow
layer of the same fluid, Roisman, Horvat & Tropea (2006) who made various
measurements on the spray resulting from an impact on a dry solid and Xu, Barcos
& Nagel (2007) who singled out the importance of the solid surface texture, and
ambient gas conditions on splashing and resulting fragment distribution while more
recently Thoroddsen, Takehara & Etoh (2012a) and Riboux & Gordillo (2015) or
Wang & Bourouiba (2018) measured some ejection velocities and drops sizes, and
Burzynski, Roisman & Bansmer (2020) also some distributions.

As for all fragmentation processes, a broad collection of fragment sizes is
produced following drop impact, with a typical positively skewed size distribution
presenting many small drops, and fewer larger drops. Despite a recent important
activity on the topic (drops impacts on hydro-phillic, -phobic, textured, rough,
heated etc. . . . surfaces), the remark made by Stow & Stainer (1977) more than 40
years ago is still largely topical:

Almost without exception, recent investigations of splashing have
concentrated on the observation of the hydrodynamics of the impact
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itself with little or no attention being paid to the final consequences of
the event.

Fragmentation indeed remains the poor cousin of drops impact. For instance, there
is not a single section devoted explicitly to this aspect in the recent review by
Josserand & Thoroddsen (2016). This is not new; as noted by Rowlinson (2002)
(p. 56):

. . . the study of cohesion failed to prosper in the 18th century under the
internal difficulties of its own subject matter and the external competition
of other more exciting branches. ‘Everything has its fashions, even
philosophy has its own’, wrote Réaumur in 1749, and cohesion became
an unfashionable subject for many of the leading figures of the day.

The problem can, however, be apprehended with relatively simple guidelines: we
consider a droplet with radius r0 impacting at speed u0 normally onto a rigid, flat
surface which absorbs its momentum, and redistributes it radially in an axisymmetric
fashion, into an expanding sheet. The Savart sheet in § 3.2.3 is the strict analogue,
continuous and steady version of this problem. Because they resort to slightly
different phenomena, we distinguish two regimes, one before the crushing time
r0/u0, and the other after, starting with the latter.

(i) After the crushing time (t> r0/u0): the main droplets

After the drop has crushed on the solid (this steps lasts for about r0/u0), its
volume Ω = 4

3πr3
0 is entirely converted into a circular sheet with radius R(t). Note

that a spherical drop deposited on a surface at zero velocity keeps its shape, and
that its initial radius r0 is not affected. Hence, the effect of an impact at velocity
u0 results for R(t)− r0 in a correction F(u0, t, σ . . .) which must vanish for u0→ 0.
In other words, The expanded drop radius R(t) must write

R(t)= r0 + F(u0, t, σ . . .). (7.1)

The interesting case is obviously not the limit u0→ 0, but rather when the effect
of the impact results in a strong shape change with a maximal radius extension
Rmax � r0. In that case, the liquid constitutive of the drop shapes into a radially
expanding, and recoiling sheet, whose typical thickness h is such that the aspect ratio
h/R is very small. We call u(r, t) and h(r, t) the radial velocity and thickness of the
expanding drop (figure 13), for which we write the Euler equations in the slender
slope approximation |∂rh(r, t)| � 1,

∂tu+ u∂ru= 0 Ballistic motion, (7.2)

r∂th+ ∂r(ruh)= 0 Mass conservation. (7.3)

We do not consider any interaction with the surrounding environment, nor viscous
effects, a limit which suits to the configuration of a drop impacting a solid target

898 P1-49

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.366


E. Villermaux

Side-view

Back-view

Laser
pulse ez

2R0

ex

ex

ey

t = 0 ms
h(r, ƒ, t)

ƒ
r

R(t)

0.27 ms 0.54 ms

2.5 ms1.7 ms1.1 ms

5 mm

Acrylic (3 GPa) Silicone (430 kPa) Silicone (330 kPa) Silicone (165 kPa)

Thin silicone (80 kPa) Silicone (80 kPa) Silicone (45 kPa) Silicone (5.5 kPa)

4 mm

(i)

(viii)

(vii)

(vi)

(v)

(iii)
(ii) (iv)

h(r, t)
R(t)

r

Solid
Jet

Cusp

Drop

d0

h(t)

≈(r, t)

r
d

Rim

R(t)
y

FIGURE 13. Hard and soft impacts. (i) Impact of a laser pulse on a liquid drop which
flattens, expands, is transpierced by holes and fragments (adapted from Klein et al.
(2020)). (ii) Series of events of the fragmentation of a d0= 6 mm water drop falling in an
ascending air stream showing the flattening of the drop into a pancake shape with radius
R(t) and thickness h(t), the inflation of a bag with shape ξ(r, t) bordered by a thicker
corrugated rim, whose breakup leads the final drop sizes d (Villermaux & Bossa 2009).
(iii) Two historically important pictures featuring the soft impact of a drop deforming in
air (Lane & Green 1956), and the drawing of a water drop crushed on a flat hard substrate
by Leonardo da Vinci (da Vinci 1508). (iv) Impact of a drop on a solid substrate (adapted
from Riboux & Gordillo 2015). (v) Drop impact on gradually softer materials, and rarefied
ambient pressures (Howland et al. 2016). (vi) Micro-splashing from the first ejecta sheet
at drop impact a solid (Thoroddsen et al. 2012a). (vii) A water drop impaling on a solid
target, expanding and featuring multi-sized radial ligaments at its rim, from which drops
form (Villermaux & Bossa 2011). (viii) Time series of liquid films impacted by a shock
wave for three different Mach numbers M= 1.03, 1.07 and 1.21 pierced by holes colliding
to form ligament webs (Bremond & Villermaux 2005).

matching its own size in opened air, ingeniously pioneered by Rozhkov, Prunet-Foch
& Vignes-Adler (2002).

The pressure p(r, t) in the liquid is essentially zero after the crunching time. At
the impact point in r= 0, it is roughly

p(0, t)≈ ρu0r0δ(t), (7.4)
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the Dirac Delta contribution ρu2
0δ(t) × (r0/u0) standing for the duration of the

momentum transfer giving rise to the pressure surge, the source of the sheet radial
motion. It lasts for the crushing time r0/u0 which is safely taken as zero provided
the resulting overall evolution of R(t) lasts for a time much larger than r0/u0, as is
checked a posteriori.

We seek for a time-dependent solution of the form (Villermaux & Bossa 2011)

h(r, t)=
f (t)

r
, and u(r, t)=−

ḟ
f

r, (7.5a,b)

where ḟ denotes df (t)/dt. The solution for R(t) is constrained by two conditions
which express that:

(a) the radially expanding fluid particles are arrested at some distance from the
impact point R(t) by capillary confinement;

(b) these fluid particles feed the sheet rim where they progressively all collect.

Global mass conservation thus writes∫ R

0
2πrh(r, t) dr=Ω −

∫ t

0
2πR(t)(u(R, t)− Ṙ)h(R, t) dt, (7.6)

where the second term in the right hand side of (7.6) is the net volume accumulated
at time t in the rim.

Momentum conservation at the rim approximately complies to the standard Taylor–
Culick’s law (modulo a time-varying correction involving R̈ which we discard for
clarity)

ρ h(R)(u(R, t)− Ṙ)2 ≈ 2σ (7.7)

from which, using (7.5) and (7.6), we have

f (t)R(t)=
Ω

2π

(
1−

t
τ

)2

, with τ =

√
ρΩ

πσ
. (7.8)

The ballistic motion in the absence of pressure gradient along r expressed by (7.2)
translates, given the form of u(r, t) chosen in (7.5), to f (t)=A/t with A=Ω/(2πu0)

a (dimensional) constant whose value is set by the initial sheet expansion velocity,
given by Ṙ(0) = u0 (see next paragraph, where we detail the crushing dynamics
itself). The sheet radius is finally

R(t)∼ u0τ
t
τ

(
1−

t
τ

)2

, (7.9)

describing an asymmetric one-period oscillatory motion lasting τ , and providing a
representation for the motion within the sheet u(r, t) and of its thickness h(r, t) as

u(r, t)=
r
t
, h(r, t)∼

Ω

u0rt
, (7.10a,b)
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relations which were found to be adequate by, successively, Villermaux & Bossa
(2011), Vernay, Ramos & Ligoure (2015b) and Wang & Bourouiba (2017) for
t� r0/u0. The maximal amplitude of the motion, reached at t/τ = 1/3, is

Rmax/r0 ∼
√

We, (7.11)

where the impact Weber number is We= u0τ/r0, a well-known scaling dependency
(see e.g. Chandra & Avedisian (1991), Roisman, Riobo & Tropea (2002), Rozhkov
et al. (2002), Mehdizadeh, Chandra & Mostaghimi (2004) and Ukiwe & Kwok
(2005)). Two remarks are in order:

(a) This model for R(t) holds provided the Weber number
√

We∼ τ/(r0/u0) is large,
expressing a clear separation between the drop crushing time (lasting r0/u0),
and the comparatively long inertia–capillary expansion and recoil dynamics of
the deformed drop (lasting τ ).

(b) Although the scaling in (7.11) can be derived equating kinetic energy with
surface energy, the evolution of R(t) is highly dissipative. Dissipation does not
occur at the impact location, nor in the sheet whose motion is conservative,
but at the rim where all the incoming kinetic energy of the particles arrested
at the rim is absorbed. It is overall a fixed fraction of the initial drop kinetic
energy (see § 11).

The kinematics of R(t) explains why and how the liquid initially constitutive of the
drop, which progressively accumulates in a toroidal ligament (the sheet rim), will
degenerate into radial ligaments (first witnessed by da Vinci (1508), see figure 13
and also Marmanis & Thoroddsen (1996)), finally forming drops.

The fundamental ingredient is that the rim sits on a non-Galilean frame which is
ever decelerated (R̈< 0 until t/τ = 2/3, see (7.9)), thus forcing the radial expulsion
of liquid masses with respect to the rim, through a Rayleigh–Taylor-like process (see
Allen (1975) and § A.1). The rim, because of its toroidal shape, is primarily sensitive
to the familiar capillary instability, the very one responsible for its destabilization
(see references in § 4.1 and Zhang et al. (2010)), which occurs, however, here on a
stretched substrate (see § 8.2) because the radius R(t) expands, with stretching rate
Ṙ/R. Once articulated together, these ingredients provide quantitative predictions
to understand the fragmentation scenario: the body force −ρR̈ pushes the unstable
bulges constitutive of the rim outwards at a length scale matching the rim’s diameter,
thus forming the radial ligaments whose breakup produce a droplet size distribution
characteristic of very corrugated ligaments (see figure 13 and § 9). The average
droplet size is

〈d〉
r0
∼We−1/4. (7.12)

Of course, in this slowed down, expanding rim destabilization mechanism, ligament
shedding occurs from the start (Wang & Bourouiba 2018) when −R̈ is maximal,
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and proceeds all the way via the turning point of the sheet radius trajectory (when
Ṙ = 0, as the stretching cancels) when most of the liquid has piled up in the
corrugated rim, up to the cancellation of expulsion force when R̈= 0. Fragmentation
is thus typically completed at t/τ ≈ 2/3.

(ii) Before the crushing time: ejecta sheet and ‘fines’

We have explained in § 3.2.1 that because viscous dissipation occurs at a very
small scale when Oh� 1, the momentum transfer at a collision may lead to the
formation of tiny objects, which may also be formed before the drop crunch
is completed (i.e. for t < r0/u0). We analyse this fine-grained aspect of the
phenomenon here, exploring what happens ‘inside’ the Dirac Delta of the pressure
surge mentioned in the previous section. Two regimes are distinguished:

(I) The geometrical penetration radius of a spherical droplet on a rigid floor is
initially a∼

√
u0r0t. The induced flow u(r, t) ruled by ∂tu+ u · ∇u=−∇p/ρ and

∇ · u= 0 obeys initially, when the velocity amplitude |u| is small enough to neglect
the cross-term u · ∇u (see Lamb (1932), Art. 11 and Cooker & Peregrine (1995))

∂tu=−
1
ρ
∇p, (7.13)

and thus ∇2p= 0. (7.14)

In other words, if the liquid has moved over a distance a in the r-direction, then
it has moved over the same distance in the direction perpendicular to the impact
plane. The consequence of the Laplacian character of the pressure is that since a
is the only initial length scale of the problem (besides r0� a), the net volume of
liquid whose motion is slowed down is of order a3, setting its mass m∼ ρa3 (not to
be confused with the deflected mass ρu0t a2, feeding a radially ejected lamella). The
cancellation of the corresponding momentum initially carried in the impact direction
gives rise to a force f = u0ṁ, and therefore to an isotropic pressure at the impact
point given by

p(0) ∼
f
a2

(7.15)

∼ ρu2
0

√
r0

u0t
, (7.16)

an early time divergence familiar in impact problems (Wagner 1932; Cointe &
Armand 1987; Philippi, Lagrée & Antkowiak 2016). The pressure gradient ∂rp
in the radial direction is of order p(0)/a so that, from the dynamics in (7.13),
u/t∼ u0/t, giving simply

u∼ u0, (7.17)

hence the initial condition Ṙ(0)= u0 leading to the sheet trajectory in (7.9) after the
crushing time.
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The rate of increase of the mass in motion ṁ is proportional to the driving force
p(0) × a2, so that the velocity is constant. With this estimate for u, the amplitude
of the discarded nonlinear term |u · ∇u| in the Euler equation above is of order
u2

0/a∼ 1/
√

t, indeed smaller than 1/t as t→ 0. The intensity of this induced flow is
smaller than the geometrical expansion velocity of the penetration region ȧ∼

√
u0r0/t

as long as t< r0/u0, consistent with the empirical observation that a lamella is seen
to emerge from the impact region when the penetration distance is a fraction of r0,
and that the ejection velocity of the resulting lamella (and detached droplets), is of
order u0 when complications with liquid viscosity, ambient medium and substrate
roughness are negligible (see Xu et al. (2007), Riboux & Gordillo (2015)).

(II) The linear pressure impulse solution in (7.13) does not, however, apply
everywhere in the penetration region. Close to the contact line between the drop
and the solid, the radial velocity u is itself of order ȧ, making the nonlinear term
|u · ∇u| of order u2/δ(t) where δ(t) is some length scale setting the width of the
pressure and velocity gradients close to the contact line. If δ(t) is itself initially
zero and an increasing function of time, the nonlinear term is more singular than
u2

0/t, suggesting that the early time dynamics balances inertia with pressure, at least
in a small region of size δ. Writing p ∼ f /(aδ) so that ∂rp ∼ f /(aδ2), the balance
between |u · ∇u| and |∇p|/ρ at the contact line writes

u2

δ
∼

1
ρ

f
aδ2

, or u∼ u0
a
δ
, (7.18a,b)

providing δ ∼ u0t, (since u∼ ȧ) (7.19)

so that the local pressure in the contact line region (Mandre, Mani & Brenner 2009)
is now of order f /(aδ)∼ ρu0r0/t, indeed more singular than p(0) in (7.16). Detailed
calculations (Birkhoff et al. 1948; Riboux & Gordillo 2014) show that the contact
line velocity is closer to u = 2ȧ (see Howinson et al. (1991), and Philippi et al.
(2016) for a fully self-similar description), albeit affected by viscous corrections
when a non-slip condition applies at the solid surface. Expressing that the deflected
mass ρu0ta2 all enters the ejected lamella which carries its momentum provides the
lamella thickness h as u0∂t(ρu0ta2) ∼ ρu2ah, that is h ∼ (u0/r0)a2/ȧ ∼ t3/2 (see e.g.
Riboux & Gordillo (2014); consistently h< δ as t→ 0).

This very early dynamics produces a fast (ȧ ∼ 1/
√

t), thin (h ∼ t3/2) lamella,
sometimes called the ‘first-ejecta sheet’ (figure 13) which, because it is decelerated
by the necessary capillary confinement (R̈< 0 as above) produces tiny droplets by
a process similar to the one described for the main droplets after the crushing time.
This regime prevails as long as δ < a, that is t< r0/u0, then leaving place to the one
in (7.17). The small droplets are called ‘fines’ in contexts where they are feared for
their long persistence in air, and associated large contamination radius when they
drift in the wind (see § 1.3). Their occurrence has been precisely documented by
Néel et al. (2020) for the collision of liquid rims in the effervescent atomization
process.
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7.1.2. Liquid film hit by a shock wave
Liquid sheets, especially when they are embedded in an explosion (§ 5.1.1), or

are flowing rapidly in a gas phase in which they flap (§ 6.4), suffer accelerations
perpendicular to their plane. We have emphasized the importance of this phenomenon
on their destabilization, through thickness modulations, prelude of holes nucleation
(§ A.2).

A paradigm of this phenomenon is the case of a soap film impulsively accelerated
perpendicular to its plane, when hit by a parallel shock wave in air (qualitatively
similar observations are made when the film is curved, like for a bubble, see Layes,
Jourdan & Houas (2003)). The shock strength is measured by the Mach number
M= v/c, the ratio of the shock velocity v to the sound speed c. Since the acoustic
impedance of water is much larger than that of air, the shock is nearly completely
reflected at the liquid film surface, a rebound which communicates an impulse
setting the film into motion. Elementary gas dynamics (Henderson 1989) provides
the film velocity u(t) and the acceleration time τ as

u(t)= u
(

1−
e−t/τ

2(M2 − 1)

)
, with

u
c
=

2(M2
− 1)

2γM2 − γ − 1
, (7.20)

τ =
ρhc
P

γ + 1
2γM2 − γ + 1

, (7.21)

where P is the gas ambient pressure in front of the shock and γ ≈ 1.4 for air. The
final velocity coincides with the gas velocity behind the shock, while the acceleration
time, reflecting the liquid inertia, depends on the film thickness h.

Even at a moderate Mach number M of order unity, the acceleration time τ is, for
a few microns thick film, extremely short (of the order of 10−5 s), much shorter than
the development time of the thin-film Rayleigh–Taylor instability responsible for its
burst. The acceleration g (in the notation of § A.2) is thus essentially impulsive

g= uδ(t) (7.22)

and a transient gain analysis (because the acceleration is, strictly speaking, time
dependent) predicts the wavelength whose amplitude matches the film thickness h,
thus piercing the film into a collection of holes, as a function of M along with
the time it takes to do so (see figure 13). Holes are denser in the film plane,
and nucleate sooner for a stronger shock (Bremond & Villermaux 2005). This
academic set-up, which confronts precise predictions with a simple – yet not
straightforward – especially designed experiment, demonstrates the importance of
the thin-film limit description of liquid sheet stability.

7.1.3. Drop hit by a laser pulse
A fundamentally very similar problem to the one described above (although

directly motivated by the extreme ultraviolet light production for nanolithography,
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see Klein et al. (2015)) consists in shooting within a very short time an intense
laser pulse on a drop of light-absorbing liquid. Part of the injected light energy
vaporizes a fraction of the liquid drop mass which, as it is released from the drop
surface at the thermal velocity propels, by momentum conservation, the rest of the
drop at constant velocity.

The corresponding surface normal stress deforms the drop into a pancake shape
which expands radially and thins very much like a drop impacting a solid does. At
the same time the sheet expands, Rayleigh–Taylor modes corrugate its thickness for
the same reason explained in § 7.1.2, and its rim destabilizes for the reason explained
in § 7.1.1 above.

Eventually, the resulting liquid sheet is thus fragmented by at least two distinct
processes, the rim shedding ligament breakup process, and a hole-mediated,
‘effervescent’-like process (§ 4.4). The study of Klein et al. (2020) also underlines
the deterministic role played by inhomogeneities in the laser beam on the final
perforation pattern of the expanded liquid sheet.

7.2. Soft impacts

By ‘soft’, we mean a cohesive but deformable object (a liquid volume) impacted
by, or projected into, another medium which deforms as well; the paradigm of this
being the formation of raindrops.

7.2.1. Raindrops
Like many natural objects, raindrops are distributed in size. By extension of what

is known to occur inside the clouds, where small droplets grow by accretion
of vapour and coalescence, raindrops in the falling rain at the ground level
were believed to result from a complex mutual interaction with their neighbours.
Villermaux & Bossa (2009) suggested that the raindrops polydispersity, generically
represented according to the Marshall–Palmer law (Marshall & Palmer 1948), can
be quantitatively understood from the fragmentation products of non-interacting,
isolated drops. Both the shape of the drop size distribution, and its parameters are
related from first principles to the dynamics of a single drop deforming as it falls
in air, ultimately breaking into a dispersion of smaller fragments containing the
whole spectrum of sizes observed in rain.

Large liquid globules fall by their own weight from the base of the clouds (Hobbs
& Rangno 2004), experiencing a drag resistance from the air, the deforming medium
in which they fall. This net drag force results from an inhomogeneous pressure
repartition at the surface of the globule, which thus deforms in a pancake shape
whose radius R(t) is only limited by capillary confinement. From an analysis very
similar to the one in § 7.1.1 (which also proved to be useful for drops hit by a laser
pulse, see § 7.1.3 above and Gelderblom et al. (2016)), it is easily shown that the
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dynamics of R(t) is ruled by

R̈
R
=

1
τ 2

(
1−

6
We

)
, (7.23)

where τ is a characteristic time familiar in the aerodynamics of drops (Ranger
& Nicholls 1969) and We is based on the air density ρa, free-fall velocity
U ∼
√
(ρ/ρa)gd0 and size of the globule d0 as

τ =
d0

2U

√
ρ

ρa
, and We=

ρaU2d0

σ
. (7.24a,b)

Viscous corrections can be incorporated in (7.23), but are superfluous for a low
viscosity liquid such as water and millimetric drops (Kulkami & Sojka 2004).

The maximal size dmax of a stable drop at terminal velocity in quiescent air for
which both U =

√
(ρ/ρa)gdmax and We= 6 (see (7.23)) is

dmax = a
√

6, (7.25)

with a ∼
√
σ/ρg the capillary length, giving dmax ≈ 6 mm, a value which indeed

coincides with the cutoff sizes recorded in natural rain (Marshall & Palmer 1948;
Mason 1971). Larger globules bursts in a catastrophic manner (figure 13), involving
the inflation of a bag bordered by a thick rim which collects most of the liquid,
and whose breakup forms a continuous, exponential-like (∼e−d/〈d〉) distribution of
fragment sizes (see § 9) parametrized by its mean 〈d〉, called the Marshall–Palmer
distribution.

It was known since Bentley (1904), and von Lenard (1904) that the size
distribution steepness 〈d〉−1 is solely related to the rate of rainfall R (typically
measured in millimetres per hour): drops sizes are more broadly distributed in
heavy storms than in fine mists. Villermaux & Bossa (2009) have shown, on the
basis of the above single drop fragmentation scenario supplemented by a simple
mass balance, that these two quantities are related to each other by

〈d〉−1
∼R−2/9, (7.26)

thus giving a status to the scaling exponent 0.21 originally measured by Marshall
& Palmer (2/9 = 0.222 . . .). This scenario also gave the clue to rationalize the
puzzling observation that apparent fall velocities of some drops can be larger than
the terminal velocity expected from their size (Villermaux & Eloi 2011).

Of course, raindrops occasionally collide as they fall towards the ground. However,
the topological change from a big drop into smaller stable fragments – the raindrops
– is accomplished within a time scale much shorter than the typical collision time
between the falling drops. One swallow does not a summer make: the effects of
these rare, decorative events is completely screened by the single drop, spontaneous
breakup phenomenon, which in itself contains the whole spectrum of drop sizes
(Villermaux & Bossa 2010).
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7.2.2. Impact on deformable surfaces
There is a continuum of substrate stiffnesses between the rigid floor used for

standard (hard) drop impact, and the dilute gas of the raindrop (soft) problem
above. The collision of a drop with a layer of the same liquid is an intermediate
case between hard and soft. Starting from the hard side, Howland et al. (2016)
have interestingly considered gradually softer materials by varying the level of
cross-linkage of silicone gels. Splashing of a liquid drop is found to be delayed on
a softer substrate, which deforms like a spring as long as the peak pressure in the
contact line region p∼ ρr0u0/t at early time (see § 7.1.1, (ii), (2)) is larger than its
Young’s modulus E. This damping effect delays and slows down the ejecta sheet,
which may even be suppressed (figure 13). Very deformable substrates like soap
films prevent splashing completely (Courbin & Stone 2006). Wet dense granular
materials like quicksand behave, when impacted, either as a liquid, or as a brittle
solid depending on their initial packing fraction (Soundar Jerome, Vandenberghe &
Forterre 2016).

7.3. Chemical synthesis by impact

Impacts are clearly associated with fragmentation, with the dismantling of macro-
scopic ensembles, but less obviously with the synthesis of complex architectures
from elementary pieces. This is only true at first sight since we have already
mentioned that, as a tradeoff between disgregation and cohesion, fragmentation
amounts to an aggregation process (§ 2), a fact we will further emphasize in § 9. It
is both surprising, and intriguing to realize that this phenomenology also occurs at
the molecular scale.

In the views of Lavoisier, the founder of chemistry as a discipline (Lavoisier
1789), there is an essential difference between mechanical and chemical forces
(Tome II, chapter V), and there is no way that any kind of Trituration, Porphirisation
& Pulverisation (Tome II, chapter IV) could alter the chemical nature of a
constituent. This is not true; it is, however, only in the course of the 19th century
that it was realized, mostly in a piecemeal fashion, by chance, that the effect of a
mechanical action like grinding and milling (‘dry’ chemistry in the words of Faraday,
meaning solvent free) could produce a chemical transformation. Takacs (2013)
gives an extensive historical account of what is now known as Mechanochemistry:
new chemical compounds are formed when constituents in gas phase are sealed
in an agitated box where solid balls collide repetitively. Do & Friscic (2017) and
Howard, Cao & Browne (2018) explain the required technology (very rudimentary
mixer mills, oscillating vessels enclosing grinding balls, see also the method of
Kroto et al. (1985)), the type of reactions concerned, and show how this method
is sometimes advantageous compared to the standard one (consisting in heating a
stationary vessel), because it is faster, and less energy consuming.
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What these authors do not explain, however, is the principle of the method,
which is still unknown and, to some extent, controversial. Tenants of the orthodox
chemistry advocate the ‘hot spot’ theory which says that Arrhenius activation (the
rate of reaction is usually proportional to e−U/kBT) is solely responsible for chemical
conversion, and that high temperatures T are reached at the collision points between
the balls (which is true), favouring the reaction there; that phenomenon has indeed
been known for a long time with shock waves (Vielle 1900), or imploding bubbles
(sonochemistry). Others claim that mechanochemistry is unique in that mechanical
action is capable of effecting chemical changes that are significantly different from
the familiar thermochemical reactions. Triboelectricity, plasma formation, light
emission from the cracks at the surface of the colliding balls are evoked as primary
causes (see Takacs 2013).

While many causes may contribute to the same effect, it is certainly an exciting
endeavour to decipher which is dominant in this fascinating problem. A collision
between spherical balls generates an outward radial expulsion flow from the impact
point and it is maybe not completely coincidental that the complex structures formed
by this process are usually planar, with an ortho-radial symmetry, as if they had been
formed on a plane, the one perpendicular to the collision direction (see e.g. Grätz
et al. (2018a,b) and figure 15); this might be fortuitous.

8. Jets, threads, smooth ligaments

Jets are collimated streams of cohesive matter, usually flowing from a circular
nozzle (when formed from a slit, one refers to a sheet, or planar jet, from a circular
aperture, one refers to a coaxial jet etc. . . .). In the simplest case, a jet is thus a
cylinder continuously extruded from an orifice (figure 14). As such, it is the best
approximation to the columnar structure Plateau (1849) has shown to be unstable,
precisely because it is cohesive (see § A.5). Jets breakup spontaneously; they have
been, for this reason since the dawn of science, the laboratory of many ideas,
brilliant investigations, notorious mistakes and refined analysis. Their physics has
been reviewed elsewhere (see Eggers & Villermaux (2008), including the historical
perspective) and we recall here the essential elements of the fragmentation of a
columnar jet with (smooth) radius h0:

(i) Long varicose undulations with amplitude ε imposed on the jet cross-section
lower its average radius 〈h〉 = h0(1 − ε2) and consequently its surface energy;
the jet is therefore unstable (Plateau 1849).

(ii) The driving force of the instability is Laplace pressure σ/h from the jet
curvature h−1, sub-dominantly counter-balanced by the axial curvature h′′ for
undulations longer than h0.

(iii) Most of the instability period is spent at moving the liquid along the jet from
constricted sections to nearby thicker sections. When capillarity balances inertia,
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(i) (ii) (iii)

(iv)

(v)

(vi)
(vii)

FIGURE 14. Jets. (i) Ascending jet of water falling back on itself under its own weight
in a pulsating motion typical of fountains (Villermaux 1994). (ii) Several falling jets,
including a fast capillary jet keeping its radius constant at breakup, and jets stretching
by gravity (Le Dizès & Villermaux 2017). (iii) The development of a jet formed by
the explosion of a charge on a conical shape liner (DiPersio, Simon & Martin 1960).
(iv) Pulsed jets featuring shocks (Meier et al. 1992). (v) Jet eruption from the collapse of
cavities at the surface of a pool (Ghabache, Seon & Antkowiak 2014b). (vi) A mould of
the thin long cavity made by the trajectory of a shaped charge jet transpiercing a solid
(Poulter & Caldwell 1957). (vii) ‘Pokrovski’ jet formed by the impulsive acceleration of
a curved liquid surface (Antkowiak et al. 2007) and a sketch by Lavrentiev & Chabat
(1980).

we have ρh3
0 × h0/t2

c ∼ σ/h0 × h2
0, that is (Lord Rayleigh 1878)

tc =

√
ρh3

0

σ
(8.1)

and when viscous stresses are the dominant resistive forces, we have η/h0 ×

h0/tv ∼ σ/h0, so that (Lord Rayleigh 1892)

tv =
ηh0

σ
. (8.2)

(iv) A cohesive column does disconnect under the sole action of surface tension
forces, meaning that its radius goes to exactly zero in a finite time (as opposed
to a relaxation towards zero which would require the intervention of an extra
mechanism to explain disruption). An ultimate, universal regime, where the
constricted radius h is the only length scale, describes the singularity as h→ 0
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(i)

(ii)
(iii)

h

L
d

t

FIGURE 15. Ligament aggregation dynamics: (i) capillary driven coarsening, and
instability of an isolated water ligament; successive images are separated by approximately
10−3 s, the initial ligament diameter is approximately a millimetre. Sub-portions of a
ligament with uniform cross-section (marked) destabilize in uniform droplet sizes, while
the other portions undergo coalescence and form bigger droplets. The net volume Ω of
the ligament is conserved while its length L(t) and surface area S(t) decay in time, as
well as the number of blobs B(t) needed to cover it (see § 9.4). (ii) Same phenomenon as
above, from a viscous thread, and its spatio-temporal trace showing the inverse cascade of
aggregations between the blobs constitutive of the ligament. (iii) Illustration of the inverse
cascade in the magnets necklace experiment, for two initial divergence velocities (Vledouts
et al. 2015).

(Eggers 1993; Day, Hinch & Lister 1998). For instance,

ḧ∼−σ/h2, leading to h∼ (tc − t)2/3 in the inviscid limit, (8.3)

ḣ∼−σ/η, leading to h∼ (tv − t)1 in the viscous limit. (8.4)

The celebrated exponent 2/3 reflects capillarity driven inertial motions (Keller
& Miksis 1983; Peregrine, Shoker & Symon 1990); there are other exponents
in situations with additional ingredients (see Eggers & Villermaux 2008).
The duration of this final regime represents typically a small fraction of the
overall instability period (Chen & Steen 1997; Robinson & Steen 2001). With
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non-Newtonian liquids like polymers (Amarouchene et al. 2001), or with dense
suspensions like slurries (Chateau & Lhuissier 2019) these universal scalings
precede, however, other ultimate thinning laws which are specific to each
system.

(v) In all cases, the fragment products of a smooth uniform steady jet have an
average diameter given by the column radius 〈d〉 ∼ h0, with possible smaller
satellites (see § 10). Strongly corrugated ligaments, through a comparatively
longer dynamics preceding the short-termed final singularity, give rise to a
broader continuous distribution examined in § 9.

8.1. Production of jets

8.1.1. Steady injection
A standard jet is produced by extruding a liquid at constant flow rate q= πh2

0v0

through a circular orifice of radius h0 at velocity v0 (non-circular jets present
peristaltic pulsations studied by Lord Rayleigh (1879) and others, see § 6 in Eggers
& Villermaux (2008) for a historical perspective). The very existence of a jet
assumes than it has not fragmented before having formed, in other words, that the
breakup time tc, say, is longer than the transit time 2h0/v0 of the fluid particles over
at least one jet diameter from the nozzle exit: the critical Weber number ρv2

0h0/σ

of the jetting/dripping transition is approximately 4 (Le Dizès 1997), with gravity
corrections (Clanet & Lasheras 1999). The resulting column in uniform translation
remains as such (up to its capillary destabilization) as long as it does not interact
with its environment, nor with external fields like gravity for instance. If gravity
g=−gez is aligned with the direction of the ejection velocity v0 =±v0ez, then the
jet velocity slows down when v0 is oriented upwards (the jet falls back on itself
in a pulsating motion typical of fountains, see Villermaux (1994)), and accelerates
when it is oriented downwards (the jet stretches) since

v∂zv =±g. (8.5)

The jet radius remains essentially unaffected for distances from the orifice of the
order of v2

0/g, and thins (with v0 downwards) for larger distances, by conservation
of the flow rate q as

h(z)=
√

q
πv(z)

, (8.6)

with v(z)=
√
v2

0 + 2gz. (8.7)

Because the jet gets thinner and slenderer as it accelerates, viscous stresses become
soon negligible (for z larger than

√
νv0/g), as well as curvature effects, and is

therefore well described by the inertial dynamics in (8.5).
When the direction of the ejection velocity is at an angle with respect to g, the jet

trajectory forms a parabola as long as shear with the environment does not alter it.
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This alteration results in a slowing down of the fluid particles which happens sooner
when the jet has fragmented into droplets, either by its own capillary instability,
or because the Kelvin–Helmholtz instability has peeled off its surface (see § 6).
The spreading jet from the fire hoses of firefighters and the Geneva lake jet are
notorious examples of jets trajectories influenced by ambient air drag. For the same
reason, jets of very small particles like spores are arrested at a finite distance
from their ejection location by viscous air drag, describing, instead of a parabola,
the well know ‘sporabola’ (Buller 1909–1950; Noblin, Yang & Dumais 2009).
There was, besides, at some point, a competition to make the ‘fastest’ jet (Yafetto
et al. 2008; Tagawa et al. 2012; Avila, Song & Ohl 2015); it is true that reaching
high velocities, and therefore high jet momentum is mandatory for applications to
needle-free micro-jet injection (Cu et al. 2019), water jet cutting or perforation
(Poulter & Caldwell 1957).

Viscous stresses induced by a faster coaxial stream can also be used to accelerate
tiny jets for making them even thinner, a technique sometimes called ‘flow focusing’
(Gañán-Calvo 1998; Gañán-Calvo & Gordillo 2001), or ‘selective withdrawal’
(Cohen et al. 2001) which is widespread in microfluidics to produce mono-size
droplets, or encapsulations (Utada et al. 2005).

Strong focusing is achieved by applying an electric field to conducting liquids
interfaces thanks to the divergence of the electric field intensity at sharp points,
competing with surface tension forces to give rise to the celebrated static ‘Taylor
cone’ solution (see Gañán-Calvo (1997) and the review in Eggers & Villermaux
(2008)). A thin jet emanates at the tip of these cones to form all sorts of very thin
threads and fibres which possibly breakup into droplets (so-called ‘electrosprays’)
or are used for themselves in various applications with considerable technical
importance (Yarin, Pourdeyhimi & Ramakrishna 2014).

8.1.2. Unsteady injection
There is a broad class of jets in nature which are not formed from a continuous

source, but whose injection flow rate is time dependent, and is often an impulse.
This is in particular the case for explosions from shaped charges (Birkhoff et al.
1948; Pugh, Eichelberger & Rostocker 1952; Poulter & Caldwell 1957; DiPersio
et al. 1960), or in some inkjet printing technologies (Wijshoff 2010; Basaran et al.
2013). The common principle in all these situations is the violent collapse of a cavity
at the surface of a liquid, concentrating the fluid impulse into a narrow region of
space at the base of the cavity from which a fast jet emerges with radius h(z, t)
and velocity v(z, t). The cavity may crunch by the collision of surface waves (Zeff
et al. 2000), the capillary (Ghabache et al. 2014a), or gravitational relaxation of a
hollow (Ghabache et al. 2014b), or because it is impulsively shocked (Dear, Field
& Walton 1988; Antkowiak et al. 2007), among other examples.

The injection flow rate q(t) ∼ h(0, t)2v(0, t) at the base of the jet is now time
dependent, typically decaying in time, and is a function of the jet radius at its base
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h(0, t)≡ h0 and of the injection velocity v(0, t)≡ v0, these two quantities having, in
general, no reason to be linked to each other.

The determination of the jet shape h(z, t) from a given set of initial conditions is
still an open problem. A. Antkowiak (personal communication, 2013) has made a
promising remark that may help to find a path to the solution. The reasoning is as
follows: a particle injected at the base of the jet at time τ with velocity v0(τ ) will
be, under a purely ballistic motion along the jet, at distance z at time t such that

z= (t− τ)v0(τ ) (8.8)

or t= τ +
z

v0(τ )
. (8.9)

At a given location z, the temporal variation of the velocity v(z, t) = v0(τ ) with t
and τ linked by (8.9) is thus

∂v

∂t

∣∣∣∣
z

=
v̇0(τ )

1− z
v̇0(τ )

v2
0(τ )

, (8.10)

where v̇0(τ )= ∂τv0(τ ).
The interest of the above relation is that it demonstrates the consequences of

the decay rate of the injection velocity v0(τ ) on the resulting jet’s fate. Let, for
instance, v0(τ )∼ τ

−β where β is a positive exponent (we are generically interested
in situations where the injection flow rate q(t) decays in time because of the base
injection velocity decay). We have two regimes:

(i) Either the decay of v0(τ ) is fast, with β > 1 and in that case we have
asymptotically t∝ z/v0(τ ) and ∂tv ∝−v

2
0(τ )/z so that

v(z, t)∼
z
t
, (8.11)

a self-similar form trivially expressing ballistic motion (∂tv+ v∂zv= 0) found in
several instances involving impacts (Villermaux & Bossa 2011; Ghabache et al.
2014b; Vernay et al. 2015b).

(ii) Or, the decay of v0(τ ) is slow, with β < 1 and in that case t∝ τ and ∂tv∝ v̇0(τ )

so that

v(z, t)∼ v0(t), (8.12)

meaning that there is, at large time, a memory of the injection condition in
the jet which adapts adiabatically to v0(t) at any downstream location, in a
succession of quasi steady states.

This elegant result does not solve alone, however, for the jet shape h(z, t) which
is, along the same one-dimensional description, ruled by mass conservation as

∂th+ v∂zh=− 1
2 h∂zv. (8.13)
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Fragmentation versus Cohesion

In the adiabatic regime in (8.12), one has simply h(z, t) = h0(t), which requires
the knowledge of the radius at its base, not a priori given, and which should
be interpreted case by case from additional ingredients. In the self-similar regime
of (8.11), looking for solutions in the form of monomials like h(z, t)∼ zatb fulfilling
(8.13), we have a+ b=−1/2, but again, nothing constrains the form of the jet (i.e.
the exponent a) from the above local conservation principles, even if its shape, and
dynamics (the exponent b) are linked (Ghabache et al. 2014b). Equation (8.13) can
be solved (see e.g. Gekle & Gordillo 2010) along the same lines as for (8.10) to
provide

h(z, t)=
h0(t)√

1+ z
∂zv0(τ )

v0(τ )

, (8.14)

where h0(t)≡ h(0, t) and ∂zv0(τ )≡ ∂zv(z, τ )|z=0=−v̇0(τ )/v0(τ ), making it clear that
even if the stretching rate at the base of the jet ∂zv(z, τ )|z=0 is known once a form
of the injection velocity v0(τ ) has been conjectured, the unknown base jet radius
h0(t) leaves the jet radius h(z, t) undetermined.

Additional principles, or conservation laws, are needed to close the problem and
understand the empirical fact that fast impulsive jets ultimately look like needles
with a uniform radius shrinking in time, independent of the precise mechanism
which has generated them.

8.2. Mode selection on a varying substate

It is clear from the examples discussed above that the capillary stability of smooth
jets and threads has to be, in general, considered on a moving substrate. This means
that the thinning of the jet radius, in time, space or both has to be accounted for
in the instability analysis. This seemingly simple question is in fact not so easy
to answer quantitatively. Consider as a canonical example a liquid thread, falling
from a nozzle by its own weight under the action of gravity. As it falls, the thread
eventually fragments into drops, a fact that we understand because it has locally a
columnar shape, and thus suffers a capillary instability (§ A.5). How far from the
nozzle exit does breakup occur? Even a distracted look at the possible scenarios lets
one glimpse the potential difficulties of a precise analysis:

A distance z is the product of a velocity v by a time t (see (8.9))

z= vt. (8.15)

Capillary breakup occurs within a residence time along the jet which depends on
the thread radius h and on the physical properties of the liquid. This time is either
the capillary time tc =

√
ρh3/γ when inertia and surface tension are solely at

play, or the viscous capillary time tv = ηh/γ if viscous effects dominantly slow
down the unstable dynamics. We also know that most of the time for breakup is
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spent at developing the instability about the quasi-columnar shape of the thread, the
subsequent phenomena occurring around the pinching instant at the drops separation
being comparatively much faster. When the jet issues from the nozzle ballistically,
keeping its velocity v0 and radius h0 constant, the problem is indeed simple, and
amounts to estimate the relevant time scale to compute the so-called ‘liquid intact
length’ of the jet. For instance, this length is L = v0tc in the inertial limit (see
Eggers & Villermaux (2008) for other cases), giving

L
h0
∼
√

We, with We=
ρv2

0h0

σ
. (8.16)

Subtleties arise when the axial velocity of the jet depends on axial distance z. A jet
falling in the direction of gravity accelerates. If fed at a constant flow rate at the
nozzle, stationarity implies that the thread radius thins with increasing distances from
the exit (see (8.6)). Therefore, if both v and h depend on downstream distance,
which estimates will correctly represent the breakup distance L? Those at the nozzle
exit, those at the breakup distance, or a mixture of the two? As the radius thins, the
instability may switch from an inertia to a viscous dominated regime (the Ohnesorge
number Oh= tv/tc increases). Then, which time scale, tc or tv should be considered
to compute L?

The detailed problem is even more subtle: the capillary instability amplifies
preferentially a varicose perturbation (§ A.5). The most amplified wavelength is
proportional to the local radius h, the other wavelengths having a weaker growth
rate. Since the jet stretches, mass conservation also implies that the distance between
two adjacent instability crests increases with distance from the nozzle exit, thus
weakening the growth rate of a mode initially close to maximal amplification.
Concomitantly, the most amplified mode shifts towards smaller wavelengths because
the jet radius diminishes, also contributing to amplification damping. The capillary
instability has thus to compete with another phenomenon, namely jet stretching,
characterized by another time scale (∂zv)

−1.
There are thus in fine three time scales potentially influencing the instability time:

tc, tv and (∂zv)
−1 which all depend intrinsically on the distance to the nozzle z.

Deciding a priori which one will dominate and how is a hazardous exercise.
Deciphering the relative importance of the coupled effects mentioned above

requires an instability analysis accounting for both the substrate deformation
(jet stretching), and for the modification of the local instability dispersion relation as
the jet thins (to describe the growing relative influence of viscosity). That question
has been first envisaged in the very viscous limit by Tomotika (1936) using an
original Lagrangian formulation. The particular case where v increases linearly
with z was considered by Frankel & Weihs (1985, 1987), and by Clarke (1969),
Senchenko & Bohr (2005), Sauter & Buggish (2005), Javadi et al. (2013) and Le
Dizès & Villermaux (2017) for a gravitationally accelerated jet.
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The method consists in computing, by a WKBJ technique, the amplitude gain a
perturbation can reach at a given location as it is transported along the jet, and look
for the wavelength for which amplification is maximum. These detailed calculations
answer our questions above:

Breakup occurs when the capillary instability growth rate overcomes the
stretching rate of the jet at the same location.

This is the operational criterion for reaching the appropriate scaling laws of breakup
lengths L:

(i) When the jet, fed at constant flow rate q is initially viscous (Oh > 1),
the local stretching rate is given by ∂zv(z) ∼

√
g/(2z) (see (8.7)) while

the viscous capillary growth rate based on the current radius is of order
σ/(ηh)= γ (2gz)1/4/(η

√
q). The latter overcomes the former at a distance L of

order

L∼ (q2g)1/3
( η
σ

)4/3
, (8.17)

first obtained by Javadi et al. (2013), fitting approximately well their
experiments.

(ii) For an initially non-viscous jet (Oh� 1), the local jet stretching rate is still
∂zv(z)∼

√
g/(2z) while the inviscid capillary growth rate based on the current

radius is now of order
√
σ/ρh3=

√
σ/ρ (2gz)3/8/q3/4. The latter overcomes the

former at a distance L of order

L∼ (q6g)1/7
(ρ
σ

)4/7
(8.18)

as inferred by Le Dizès & Villermaux (2017) who have also discussed
how these scalings are affected by the way the initial perturbation noise is
introduced, either at the orifice exit (localized perturbation), or all along the
jet (ambient noise). Mean droplet sizes follow from this analysis.

Let us finally mention that the above breakup criterion had been anticipated
by Tjahjadi & Ottino (1991) in the formation of emulsions by stirring and by
Villermaux (2012) in the context of the filamentation of molten silicates like clinker
(a mixture of limestone and clay used in the production of cement), angel hair, glass
wool or Pele’s hair (named after Pele, the Hawaiian goddess of volcanoes), those
long and thin solid fibre formed during the eruptions of volcanoes, at the flank of
which they are found. These objects are so violently stretched during eruptions that
they thin down to fractions of a millimetre, and solidify before having broken up.

9. The post Plateau–Rayleigh era: corrugated ligaments

By ‘post’ we refer to the works which, after Savart (1833a) had first documented
the phenomenon, Plateau (1849) had understood the origin of the instability,
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Lord Rayleigh (1878) had computed its growth rate and Weber (1931) had given
a long-wave description of it, have concentrated on the physics of the ultimate,
singular breakup of a liquid thread into disjointed droplets on one side, and on
the other side those which have addressed the inherent multiplicity of droplet sizes.
The modern developments on the first aspect are reviewed in Eggers (1997), and
we concentrate here on the second, namely the fragmentation products per se.

9.1. Paradigm of the corrugated ligament

The smooth, infinitely long columnar structure with uniform cross-section is an
idealization of nature. Even an approximation of such a long uniform cylinder
is actually difficult to produce experimentally; Plateau (1849) used soap films to
minimize the role of gravity but a fast jet emanating from a nozzle smaller than
the capillary length scale is a safer means. However, in nature, drops commonly
form from the breakup of ligaments which have a finite length, and are corrugated
with an uneven cross-section. Since they represent the last but one step before the
formation of drops, understanding their dynamics is paramount to understand the
ubiquitous diversity of drop sizes in sprays.

Besides their tendency to give rise to the standard capillary instability, corrugations
have an intrinsic dynamics, and are continuously produced on a finite-size ligament:
on an initially rough ligament, small sections feed larger adjacent sections but as
they shrink in size, their associated growth rate changes. Also, the Taylor–Culick
recession of the ligament ends feeds the core of the ligament with capillary waves
(Schulkes 1996; Clasen et al. 2009; Hoepffner & Paré 2013). These waves are
dispersive (see e.g. Duchemin et al. (2015)) and travel long distances when their
wavelength is smaller than the ligament (mean) radius because they are stable, with
a non-zero group velocity (see § A.4). These waves possibly overlap with other
preexisting waves (Driessen et al. 2014; Doméjean, Bibette & Bremond 2016), thus
altering dynamically the corrugations landscape of the ligament, and broadening
its spectrum (Stone & Leal 1989), a phenomenon also known for gravity waves
(Falcon, Laroche & Fauve 2007; Redor et al. 2019). Corrugations may also be
due to internal motions within the ligament, as these remnant from the liquid bulk
from which the ligament has been stripped off either because the bulk is already
turbulent (Goodridge, Tao Shi & Lathrop 1996), or as a result of the instability
causing the stripping, as a shear for instance. Being constantly ‘hesitant’ between
local amplification, and longitudinal propagation (Villermaux 2009), the capillary
instability thus develops on a ‘noisy’ substrate, a fact known to broaden the drops
sizes distribution after breakup (see Zhao, Sprittles & Lockerby (2019) for thermally
activated noise).

The result of all these contributions is a landscape of random corrugations which,
because they have diverse origins, are essentially uncorrelated with each other. In
particular, the correlation length along a ligament does not exceed its local radius.
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This legitimates the caricature of a ligament as made of a collection of adjacent
blobs with random diameters d, each interacting with its neighbours in which it
possibly empties, or on which it possibly feeds though an aggregation type of
dynamics driven by capillary forces (figure 15).

9.2. Inverse cascade of aggregations: lessons from a necklace of magnets

We have inaugurated our discussion by noticing that in fragmentation matters, one
must wonder about aggregation in the first place. The magnets necklace was our
starting example in § 2.3. We have seen how the fragments are produced from an
inverse cascade of aggregation of clusters, each carrying an increasing number of
beads n through the cascade. We now describe briefly the construction mechanism
of their distribution.

In the limit of a continuous spectrum for the fragment size n, the rate of change
of b(n, t) dn, the number of fragments having sizes between n and n+ dn at time
t is given by (von Smoluchowski 1917)

∂tb(n, t) = 1
2

∫
∞

0
K(n′, n− n′, t)b(n′, t)b(n− n′, t) dn′

−b(n, t)
∫
∞

0
K(n, n′, t)b(n′, t) dn′, (9.1)

which describes how the distribution changes by the aggregation operation
n − n′ + n′ → n, at a rate given by the so-called kernel K(n − n′, n′, t). This
formulation involves the cluster sizes only when the physical problem does not
present strong spatial correlations and/or segregation phenomena forcing, for
instance, small clusters to interact preferentially with other small clusters. On
the contrary, all clusters are liable to interact with the entire population of clusters
in the Smoluchovski formulation. This limit corresponds to an absence of correlation
between the sizes of the aggregating fragments, that is when the correlation
coefficient (the sum applies to all i fragments along the necklace)

C(p, t)=

∑
i

(ni − 〈n〉)(ni+p − 〈n〉)∑
i

(ni − 〈n〉)2
(9.2)

vanishes at all times and for all neighbouring clusters (i.e. for p > 1), a condition
indeed fulfilled in the necklace problem.

A solution to this equation is known for a limited number of kernels only and in
general one relies on asymptotic techniques to study the asymptotic behaviour of
b(n, t) at long times (Leyvraz 2003). In typical applications, such as aggregation
in chemical reactors (Curl 1963) or aggregation of dust grains in the atmosphere
(Friedlander 2000) or in a turbulent interstellar domain, collisions occur because
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particles are set to move at random by the agitation of the underlying medium
(Ilievski et al. 2011), but may also move on their own driven by attractive forces
(Bleibel et al. 2011).

Equation (9.1) can be written in terms of the probability density function
p(n, t)= b(n, t)/B(t) where B(t)=

∫
∞

0 b(n, t) dn is the total number of fragments.
The equation of evolution of B(t) can be deduced from (9.1),

∂tB(t)= 1
2

∫
∞

0
b(n, t)

∫
∞

0
K(n, n′, t)b(n′, t) dn′ dn. (9.3)

Introducing the rate of aggregation

r(n, n′, t)= 1
2 K(n, n′, t)B(t), (9.4)

we obtain for p(n, t)

∂tp(n, t) = p(n, t)
{∫

∞

0

∫
∞

0
r(m, n′, t)p(m, t)p(n′, t) dn′ dm

− 2
∫
∞

0
r(n, n′, t)p(n′, t) dn′

}
+

∫
∞

0
r(n− n′, n′, t)p(n− n′, t)p(n′, t) dn′, (9.5)

which does not look more engaging than the original formulation in (9.1) except that,
in this problem like in others (Villermaux & Almarcha 2016), the rate of aggregation
decreases with the fragment sizes: small fragments are lighter and reconnect at a
much faster pace than massive fragments. We thus make the following caricature:
large fragments are massive and thus only contribute to the global dynamics by
attracting small fragments while small fragments are likely to aggregate to any other
fragment in the current distribution. Large/small depends on the fragment size n
compared to a threshold n?, to be determined by an extra criterion, a function of
the details of the interaction between the clusters. In this idealization, aggregation
up to n? complies with Smoluchowski’s dynamics at a constant rate r while it is
zero among sizes larger than n?. Thus (9.5) reduces to

∂tp(n, t)=−rp(n, t)
∫ n?

0
p(n′, t) dn′ + r

∫ n?

0
p(n− n′, t)p(n′, t) dn′, (9.6)

which expresses the partial convolution of p(n′, t) with itself. For n?→∞ (all sizes
aggregate at a constant rate r) we recover the classical kinetic aggregation equation
whose solution is an exponential distribution p(n) = e−n/〈n〉/〈n〉 with 〈n〉 ∼ ert

(von Smoluchowski 1917; Leyvraz 2003). Introducing the Laplace transform p(s, t)
of p(n, t)

p(s, t)=
∫
∞

0
e−nsp(n, t) dn (9.7)
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we have from (9.6)

∂tp= rp
(
−

∫ n?

0
p(n, t) dn+

∫ n?

0
e−nsp(n, t) dn

)
. (9.8)

This equation has no analytical solution but is, when n? is finite as first noticed by
Villermaux & Duplat (2003) in the context of scalar mixing, tangent to

∂tp= r′(−p+ p1+1/ν), (9.9)

with ν and r′ yet unknown, both being a function of n? and r. The distribution of
the cluster sizes relative to their mean x= n/〈n〉 such that p(n, t)= f(x)/〈n〉 tends
asymptotically towards a gamma distribution of order ν

f(x)=
νν

Γ (ν)
xν−1e−νx, (9.10)

which constitutes the first important result of this partial convolution theory since it
provides the shape of the cluster distribution.

In order to compute the – still unknown – parameter ν, we further expand e−sn
≈

1− ns+ n2s2/2+O(s3) and write (9.8) as

∂tp= r

(
−〈np〉s+

(
〈n2

p〉

2
+ 〈n〉〈np〉

)
s2

)
+O(s3), (9.11)

with

〈np〉 =

∫ n?

0
np(n, t) dn, 〈n2

p〉 =

∫ n?

0
n2p(n, t) dn. (9.12a,b)

Since p(s, t) is also the generating function of the moments of p(n, t), that is
p(s, t)= 1− 〈n〉s+ 〈n2

〉s2/2+O(s3), term by term identification in (9.9) and (9.11)
yields at order s

r′

r
= ν
〈np〉

〈n〉
(9.13)

and at order s2, using the previous result,

〈np〉

〈n〉

(
〈n2
〉

〈n〉2
+

1− ν
ν

)
=
〈n2

p〉

〈n〉2
(9.14)

so that, in the scaled units of f(x), we have

〈x2
〉 +

1
ν
− 1=

〈x2
p〉

〈xp〉
, (9.15)

with

〈xp〉 =

∫ x?

0
xf(x) dx, 〈x2

p〉 =

∫ x?

0
x2f(x) dx. (9.16a,b)
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Since for f(x) given by the gamma distribution in (9.10) we have 〈x〉 = 1 by
construction and 〈x2

〉 = 1+ 1/ν, we obtain finally

ν = 2

∫ x?

0
xf (x) dx∫ x?

0
x2f (x) dx

≈
2
x?
, (9.17)

which is the second important result of this partial convolution theory since it relates
the width of the distribution (the gamma order ν) with a dynamical parameter of the
physical system, namely the cutoff size for aggregation relative to the mean cluster
size x?=n?/〈n〉 (the approximate value ν≈2/x? is all the more valid that x? is large).

The last step consists in linking the critical size n? to the microscopic dynamics of
the interacting beads. Vledouts et al. (2015) have shown that the aggregation time
between two clusters of sizes p and q (see § 2.3) is

tp,q ≈
a

up,q
(εp,q − 1)−5/6. (9.18)

A fragment of size n will aggregate with another of size 2〈n〉 − n to form a
fragment of size 2〈n〉 if the typical aggregation time for these two fragments is less
than the aggregation time between two typical fragments of the distribution, say of
sizes 〈n〉 ± 〈n〉/

√
ν, with 〈n〉/

√
ν standing for the standard deviation of the cluster

size population. This criterion reads
tn,2〈n〉−n

t〈n〉+〈n〉/√ν,〈n〉−〈n〉/√ν
. O(1), (9.19)

which provides from (9.18) with x? = n?/〈n〉

x? = 1/4 and ν = 8, (9.20a,b)

fitting well the observed gamma distribution in the n/〈n〉 units. The rate of increase
of the mean itself is given by

d〈n〉
dt
=
〈n〉

t〈n〉,〈n〉
, (9.21)

which saturates when ε〈n〉,〈n〉→ 1 as the inverse cascade interrupts because t〈n〉,〈n〉→
∞, thus marking the end of the fragmentation process of the necklace.

The lessons to be drawn from this necklace exercise are the following:

(i) In a process where cohesion and disgregation forces compete at the initial
advantage of the later, aggregation of the fragments proceeds at an ever
slowing down pace up to equilibrium.

(ii) The corresponding inverse cascade is well represented by a partial convolution
scenario where only fragments which aggregate sufficiently fast are allowed to
recombine within the evolution time of the mean. This convolution route selects
gamma distributions.
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Fragmentation versus Cohesion

(iii) The threshold size in units of the mean x? resulting from the above time scale
ratio sets the width of the distribution (i.e. the gamma order ν ∼ 1/x?).

9.3. Rough ligaments: rearrangements versus instability time scales

We consider a ligament with volume Ω =πh2
0L and average radius

〈h〉 = h0(1− ε2), (9.22)

where ε2
= 〈(h − 〈h〉)2〉/〈h〉2 denotes the mean squared relative corrugations

amplitude along the ligament. We have seen in § 8 that such a jet destabilizes
within the capillary time

tc =

√
ρh3

0

σ
. (9.23)

We want to describe the dynamics of the corrugations of the ligament, and notably
that of their amplitude. These involve longitudinal, and radial rearrangements of fluid
particles from which concentrated blobs progressively built by growing or decaying
in size, each separated from its neighbours by bridges conducting the longitudinal
rearrangements, and whose breakup freezes the blob size repartition, thus setting the
final drops.

The rearrangements are made at constant volume, and the arrow of time of the
evolution of the blob assembly points towards the decay of its surface area, in
compliance with the Plateau argument. The length of the ligament, and the number
of blobs is not a priori constrained by any principle, but empirical evidence indicates
that both decay in time.

Corrugations develop on an unstable substrate, whose growth rate is maximum for
longitudinal sizes of the order of the local ligament radius. Blobs have thus the size
of the local radius, which itself fluctuates along the ligaments. This is confirmed by
the observation that the correlation length of the radius fluctuations is of the order
of the ligament average radius.

We thus portray the ligament as an assembly of spherical adjacent blobs,
somewhat like beads on a string with the notable difference that these beads are
not isolated but interact, may feed, or be fed by their environing beads. The driving
force of the mass transfers between the beads is obviously the Laplace capillary
pressure. With this in mind, a simple (inviscid) dynamical model for the longitudinal
velocity v(z, t) and ligament radius h(z, t) is

ρ∂tv =−∂zp, (9.24)

∂th2
+ ∂z(h2v)= 0 (9.25)

giving v ≈ ḣ (the blob’s aspect ratio is of order unity) and

ḧ=−
1
ρ

1p
h

(9.26)
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once derivatives along z have been coarse grained at the correlation length h (i.e.
∂z ≡ 1/h), the local radius. In this blob description, the pressure is simply inversely
proportional to the local radius (namely σ/h) and if a blob is connected with much
bigger blobs with weak internal pressure, then 1p ≈ σ/h. The blob empties in
that case according to the familiar (see § 8 and Eggers & Villermaux (2008) for
references and many more details) finite-time singularity

h∼ 〈h〉(1− t/tc)
2/3 (9.27)

for a blob with initial radius of order, say, 〈h〉.
This is not, however, the typical situation occurring along a ligament. A given blob

is more likely connected to alike blobs, whose radii h± δ are affected by a random
fluctuation of order δ such that 〈δ〉 = 0 and 〈δ2

〉 = 〈h〉2ε2. The value of δ is random,
but is assigned positively, and negatively to the radius of each adjacent blobs, thus
describing a local radius gradient along the ligament, of intensity δ/h. We thus
account for the adverse presence of adjacent blobs through a mean field correction
involving a pressure term averaged over the positive, and negative excursions of the
typical corrugations noting that 1

2 [(h+ δ)
−1
+ (h− δ)−1

] = h/(h2
− δ2)−1. The driving

pressure writes

1p = σ

(
1
h
−

1
h(1− δ2/h2)

)
(9.28)

= −
σ

h3
δ2. (9.29)

Obviously, 1p= 0 for a stationary array of all identical blobs when δ = 0 and for
δ 6= 0, a longitudinal flow sets-in (Sierou & Lister 2004; Brasz, Bemy & Bird 2018)
which interferes with the capillary instability (Decent & King 2008). The dynamics
of a blob radius h(t) in the assembly, now incorporating the influence of the adjacent
blobs, is thus given by

ḧ=
σ

ρ

δ2

h4
> 0. (9.30)

Its acceleration is positive reflecting the coarsening process through which blobs
feed on their smaller adjacent neighbours. The environment of a blob with radius h
averaged over the blob assembly (σ/ρ)〈δ2/h4

〉 ≈ (σ/ρ)ε2/〈h〉2 is thus such that its
average time of growth t−2

h = 〈ḧ/h〉 is given by

1
t2
h
=

1
t2
c

〈h〉
h
ε2 (9.31)

at leading order in ε2.
Along a ligament, longitudinal rearrangements compete with the capillary

instability which, as seen from (9.27) for instance, occurs within tc. However, all
blob sizes smaller than h?= ε2

〈h〉 have, according to (9.31), a growth time th smaller
than the capillary time tc. These blobs have thus time to coarsen, to participate to

898 P1-74

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.366


Fragmentation versus Cohesion

the inverse cascade, while larger sizes grow at a slower pace, and suffer the capillary
instability.

In view of the partial convolution theory recalled in § 9.2 above, the critical size
h? sets the extent of the convolution range: the blob’s sizes will grow by the addition
of, at most, an increment h? within the time interval tc. If δ is distributed randomly
along the ligament, the additions are made at random between adjacent blobs and
their size distribution is a gamma distribution as in (9.10) of order given by (9.17)

ν ∼
〈h〉
h?
= ε−2 (9.32)

=
〈h〉2

〈h2〉 − 〈h〉2
. (9.33)

We comment further on this blob’s representation, and on the meaning of the limit
values of ν in the next section.

9.4. Blobs on a ligament: fractional convolutions, gamma distributions

The longitudinal rearrangements period in a ligament lasts for a time of the order
of tc, a time which serves as the reference time scale in what follows

t=
t
tc
. (9.34)

Let b(d, t) be the distribution of the number of blobs of size d constitutive of a
ligament at time t (i.e. b(d, t) dd is the number of blobs with size between d and
d+ dd), and its Laplace transform

b(s, t)=
∫
∞

0
b(d, t)e−sd dd. (9.35)

The total number of blobs, irrespective of their size B(t), the length of the ligament
(the sum L(t) of the blobs’ diameters d), its surface area (the sum S(t) of the blobs’
projected area d2) and its volume (the sum Ω(t) of the blobs’ volumes d3) are
obtained from the generating function b(s, t) as (we denote b′(0, t)= ∂sb(s, t)|s=0)

B(t)=
∫
∞

0
b(d, t) dd= b(0, t), (9.36)

L(t)=
∫
∞

0
db(d, t) dd=−b′(0, t), (9.37)

S(t)=
∫
∞

0
d2b(d, t)dd= b′′(0, t), (9.38)

Ω(t)=

∫
∞

0
d3b(d, t) dd=−b′′′(0, t). (9.39)

Corrugations, whose dynamics is driven by surface tension obey, for the reasons
explained in § 9.1, a self-convolution rule analogous to (9.9), described by
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Villermaux et al. (2004)

∂tb=−Bγ−1b+
1

3γ − 2
bγ , (9.40)

where the parameter γ & 1 is very sensibly related to the corrugation state of the
ligament. The factor 3γ − 2 reflects the conservation of the ligament volume. If its
surface were conserved (as for rearrangements in two dimensions), this factor would
be 2γ − 1. The blob population is left unchanged through (9.40) when γ = 1.

The convolution operates on the blob size distribution b(d, t), expressing an
addition in sizes space, while to total volume Ω =−b′′′(0, t) is conserved through
the evolution of the size assembly (∂tΩ = 0); it writes

Ω =
γ

2
((γ − 2)L3B−2

+ 3LSB−1) (9.41)

so that, since Ω is independent of time, so are L3B−2 and LSB−1, giving

L=
(

Ω

γ (2γ − 1)

)1/3

B2/3, (9.42)

S= γ
(

Ω

γ (2γ − 1)

)2/3

B1/3, (9.43)

with the total number of blobs given by

B(t)= B(0)
(

1− 3
(γ − 1)2

3γ − 2
t

B(0)1−γ

)1/(1−γ )

. (9.44)

Random additions between adjacent blobs coarsen the population of blobs (when
γ > 1) whose average size increases in time, at the expense of the number of blobs
B which decreases in time as well as the length L and surface area S of their support.

The decrease of the ligament surface area S is compatible with the
thermodynamic Plateau principle stating that an isolated system evolves
so as to lower its surface energy. However, this decrease is not, in the
present theory, a direct consequence of that precise principle, but rather a
consequence of a principle of aggregation between sub-parts of a volume
otherwise globally conserved.

The average blob size 〈d〉 = L/B and variance, with 〈d2
〉 = S/B are such that

〈d2
〉 − 〈d〉2

〈d〉2
= γ − 1 (9.45)

= ε2 from (9.33) (9.46)

at all times during the coarsening process provided γ is itself constant in time,
which happens to be an experimental fact (see figure 18 in Marmottant & Villermaux
(2004a)). In other words, the relative corrugation state of the ligament is preserved
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during the coarsening process and will therefore set the relative width of the drop
size distribution b(d, t= 1) obtained at the breakup time t= 1.

The distribution of blob sizes b(d, t) is itself a solution of the evolution (9.40).
A change of variables (see e.g. Friedlander 2000)

b(d, t)=
B4/3

Ω1/3
f(η, τ ) (9.47)

with η= d
(

B
Ω

)1/3

, and τ =
(

B(t)
B(0)

)2

, (9.48)

which consists in counting blob sizes d in units of their current average 〈d〉 ∼
(Ω/B)1/3 and measuring time through the evolution of the number of blobs, links
the Laplace transform f (s′, τ )=

∫
∞

0 f(η, τ )e−s′η dη of the scaled distribution f(η, τ )

to the one of the original distribution as b(s, t) = Bf (s′, τ ) with s′ = (Ω/B)1/3s.
Though (9.40), f (s′, τ ) converges towards

f (s′)= (1+ (γ − 1)s′)−1/(γ−1) (9.49)

independent of τ . Its inverse in sizes space defines b(d) as a gamma distribution

b(d/〈d〉)= B(1)
νν

Γ (ν)

(
d
〈d〉

)ν−1

e−ν(d/〈d〉) (9.50)

of order (Villermaux et al. 2004; Villermaux 2007)

ν =
1

γ − 1
. (9.51)

The surface tension driven coarsening process of the ligament, accompanying
its destabilization into disjointed droplets gives rise to a self-preserving blob size
distribution identical, for the same reason, to the cluster size distribution of the
exploding magnets necklace. The capillary time marks the end of the inverse
coalescence process between adjacent blobs which are at t= 1 de facto too distant
to exchange fluid particles anymore since they are separated. The capillary time tc

is the equivalent of the escape time in the necklace problem.
The blob size distribution at t= 1 provides the drops size distribution p(d) at the

end of the aggregation process, and is given by

p(d) = f(d/〈d〉)/〈d〉 (9.52)

= b(d/〈d〉)/B(1) (9.53)

identically to (9.10). The width of this distribution relative to its mean is given by
1/
√
ν, a property of the central limit theorem (see also (9.45)). To conclude,

(i) Rough ligament: an initially corrugated ligament with γ & 1 will give rise to
the positively skewed distribution of sizes customary found in sprays described
by (9.50) with a finite ν, larger than unity. Given the link between the values
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of ν = 1/(γ − 1) = ε−2 and the geometry of the ligament made in § 9.3, a
corrugation amplitude is unlikely to be larger than half a ligament mean radius
so that ν is typically equal to 4 in a very rough, but still cohesive ligament,
and otherwise larger.

(ii) Smooth ligament: an initially uniform thread with γ → 1 will give rise
to a uniform collection of drops f(d/〈d〉) → δ(d/〈d〉 − 1), the Dirac delta
distribution being indeed the limit of a gamma distribution with order ν→∞.
In that special limit, the number of drops B(1) is identical to the initial
number of blobs B(0) covering the thread, since this number is left invariant
through (9.40); in the language of § 9.3, this results from the absence of a net
longitudinal flow, and thus of any ligament coarsening in that case.

9.4.1. Integer convolution and physical blobs ‘à la Hauksbee’
The fractional convolution dynamics in (9.40) has a clear meaning when γ is

interpreted as a ratio of length scales (9.45) which itself reflects a ratio of time
scales (9.31). However, its meaning in terms of addition of blob sizes is not
immediately apparent, precisely because γ is typically not an integer and that the
relationship between partial convolution and the addition of random variables is not
immediately apprehensible. In fact, it is, if one views the exchanges between the
adjacent blobs defining the ligament cross-section thickness as mediated by smaller,
physically identified blobs, somewhat ‘à la Hauksbee’ like in the drawing of in
figure 2. In this vision, the ligament section is composed of ν parallel independent
layers inside which the physical sub-blobs truly add their sizes at random during
the coarsening process. Two adjacent sub-blob sizes d′1 and d′2 in one of the ν

layers add up as (figure 16)

d′1 + d′2 = d′ (9.54)

thus thickening the layer. The sub-blobs are independent so that 〈d1d2〉 = 〈d′〉2.
Obviously, 〈d〉 = ν〈d′〉, and since the layers are independent, the blob size
distribution b(d, t) results from the sub-blob size distribution q(d′, t) by a simple
convolution process

b(d, t)= q(d′, t)⊗ν . (9.55)

The analogue of the dynamics in (9.40) for the Laplace transform of q(d′, t) now
reads (Villermaux et al. 2004)

q(s, t)= b(s, t)γ−1, (9.56)

∂tq=−(γ − 1)Bγ−1q+
γ − 1
3γ − 2

q2, (9.57)

which defines a complete, integer convolution equation of order 2 consistent with the
complete sum in (9.54) leading, as is well known since von Smoluchowski (1917),
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Fragmentation versus Cohesion

(i)

(iv)

(a) (b)

(iii)(ii)

d�

d

FIGURE 16. (i) When lit from behind through a comb grid, a water jet is hardly discerned
as its smooth surface leaves the projected grid unaltered. Increasing the flow rate causes
turbulent hieratic motions to set in, which distort and corrugate the jet. Gridlines caustics
are more distorted for higher flow rates, revealing ever smaller surface corrugations,
varying on length scales smaller than the jet diameter. Eventually, turbulent fluctuations are
intense enough to overcome surface tension confinement, and the jet fragments. (ii) The
decomposition of a ligament into blobs, themselves composed of sub-blobs. (iii) Stripping
of sub-blob from a ligament, and its rupture into stable drops illustrating how liquid
fragmentation results from a trade-off between disaggregation, and cohesion forces. The
pictures are also a tribute to Edgerton, whose first Moment of Vision, in 1932, was a
turbulent jet from a faucet (Edgerton 1979). (iv) The dripping of a cohesive ‘liquid’ made
of active particles (ants grabbing each other) hanging on a rod; the falling droplets are
distributed in size (Thereulaz et al. 2001).

to a pure exponential distribution

q(d)=
ν

〈d〉
e−ν(d/〈d〉) (9.58)

for the sub-blob distribution q(d) and therefore, by ν = 1/(γ − 1) convolutions, to
the gamma distribution in (9.50) for the ligament blob distribution.

The mean layers thickness h0/ν = (γ − 1)h0 is the mean free path of the internal
motions across the ligament, those producing the random additions. This mean free
path is necessarily smaller than h0 itself as long as cohesion preserves the ligament
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integrity in the rearrangement period, thus suggesting the following bounds: γ < 2
and ν > 1.

9.5. Dissection of a jet

The model we have described consists in visualizing a liquid ligament as a collection
of interacting blobs, themselves made of sub-blobs aggregated at random. In this
view, the number ν of virtual sub-blobs per ligament average radius is a function of
the ligament roughness ε2

∼ ν−1. Since, according to this vision, the whole is the
sum of its parts, it is tempting to extract from a ligament a fraction of its volume
and see how this dissected part has contributed to the construction of the whole.

Imagine a process by which smaller ligaments are stripped from a main ligament.
After complete breakup, a fraction α of the drops will come from the stripped
ligament, and the other fraction 1− α from the main ligament. If the sub-ligament
has been stripped at random from the main ligament core, the size distribution of
its droplets is a gamma distribution; let 〈d′〉 be its average, ν its order and denote

Γ (ν, x= d/〈d〉)=
νν

〈d〉Γ (ν)
xν−1e−νx, (9.59)

we thus have for the stripped ligament droplet size distribution

q(d′)= Γ (ν, d′/〈d′〉). (9.60)

Then, the construction of § 9.4.1 predicts, if the stripping operation has been made
at random, that the size distribution of the main drops should be

p(d)= q(d′)⊗k with k=
〈d〉
〈d′〉

, (9.61)

so that p(d)= Γ (kν, d/(k〈d′〉)), (9.62)

where 〈d〉 = k〈d′〉 is the average drop size of the main drops from the original
ligament. The stripped droplets distribution q(d′) is the ‘quantum’ from which,
by linear superposition, the distribution of the main ligament is produced. In other
words, the stripped ligament is a specimen of those constitutive of the main ligament,
across which they are randomly stacked. Similarly, although in a different context,
the concentration distribution of random mixtures is the convolution of quanta, or
‘solitary strips’ formed by the stirring motions in the flow, which overlap at random
by molecular diffusion in an additive fashion (Villermaux 2019).

The resulting overall drops size distribution r(d) is thus the average of the two
distributions q(d) and p(d) weighted by the fraction α

r(d)= αΓ (ν, d/〈d′〉)+ (1− α)Γ (kν, d/(k〈d′〉)) (9.63)

describing a bimodal distribution when 〈d′〉 and 〈d〉 are sufficiently distant from
each other, that is when k is appreciably larger than unity. One distribution being
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Fragmentation versus Cohesion

generated by the other through the convolution operation in (9.61), it is shifted to
larger sizes by a factor k, and is also broader than the source distribution from
which it originates. There is thus a rigid link between the two modes of the global
distribution r(d): the orders of the stripped and of the main distributions are in the
same proportion as their respective averages, namely k as expressed by (9.61).

This dissection operation was realized experimentally making use of a turbulent
jet. Indeed, if turbulent motions are superimposed on a mean jet flow, and if these
are intense enough, they may overcome capillary cohesion to force the ejection of
parts of the liquid from the jet core, a fact known for a long time (Schweitzer 1937;
Wu & Faeth 1995). The intensity of the (root mean squared) velocity fluctuation u
relative to the average jet velocity U is measured by the opening angle β of the
fragmenting jet as u=U tan β when

We=
ρu2d0

σ
> 1, (9.64)

with d0 the jet diameter at the injector exit. When We < 1, the jet, although its
surface is rough because of the liquid agitation, remains cohesive so that β = 0
and no stripping occurs. For We & 1, ligaments are actually stripped from the main
jet core, with a typical size, of order 〈d′〉 ∼ σ/ρu2, which equilibrates cohesion and
disgregation forces.

Observations of a moderately stripping jet with We = O(3–4) indeed reveal
bimodal overall drops size distributions r(d) well fitted by (9.63) with orders ν of
approximately 4 characteristic of strong corrugation, with an inter-mode convolution
order k ≈ We, bridging the stripped ligament size with the main droplet average
size 〈d〉, itself of the order of the jet diameter d0. Because the random aggregation
scenario is constrained in distribution shape, gamma orders and mean sizes ratios
which should be all consistent with each other, a successful fit satisfying all the
constrains constitutes a strong support to the theory.

For larger We (and larger jet Reynolds number), as the spectrum of the background
turbulence in the jet broadens, the stripped ligaments are more broadly distributed
in size, and possibly eject ligaments themselves so that the bimodality of the
overall distribution disappears, leaving place instead to an essentially monotonically
decreasing, exponential-like distribution. The distribution is now a compound, whose
status we discuss in the next section.

9.6. Compound distributions

Sprays are built from the breakup of ligaments, but all ligaments may not be
identical in a given fragmentation operation. The poly-dispersity of the drops in
a given spray may thus result both from the distribution of the drops coming
from the breakup of a given ligament, and also from the distribution of the
volumes carried in the population of the ligaments. A few particular cases exhibit
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a close-to-homogeneous population of ligaments so that the poly-dispersity of the
drop sizes in the spray is all contained by that arising from the breakup of a single
ligament (see e.g. Marmottant & Villermaux (2004a), Bremond & Villermaux
(2005), Zhao et al. (2011), Vu & Dumouchel (2018)). There is, however, no reason
that this should be a general rule.

Let q(d/dl) be the drop size distribution arising from the breakup of a ligament
with size dl (this distribution belongs to the gamma family with an order ν given
the corrugation state of the ligament), and let L(dl/〈d〉) be the distribution of the
ligament diameters dl in a particular fragmentation protocol. Small ligaments will
produce smaller droplets than larger ligaments. The overall distribution of sizes d
has thus two sources of variability, the one coming from the distribution of dl, and
the one coming from the distribution of d for a given dl. When these two factors
are independent of each other, we expect the final droplet size distribution p(d) to
be given by a linear superposition of the two effects as

p(d)=
∫

q(d/dl)L(dl/〈d〉) ddl (9.65)

making it clear that p is a mixture of both q and L.

9.6.1. Exactly computable ligament size distribution
An important result was derived by Lhuissier & Villermaux (2013) in the

two-dimensional version of the ‘effervescent’ atomization protocol (see § 4.4). In this
configuration, a liquid sheet is pierced at random locations in a nearly synchronous
fashion. In this purely random, Poisson hole nucleation process, the sheet evolves,
once the rims have all coalesced, towards a web of ligaments drawing exactly the
edges of the Voronoï polygons from the nucleation sites. A series of geometrical
constructions provides the distribution of distances λ of the ligaments from the
closest nucleation site and, more importantly regarding the present discussion, the
distribution L(dl) of ligament diameters dl, given by

L
(

x≡
dl

〈dl〉

)
= 4Γ

(
5
4

)4

x3e−[Γ (5/4)x]
4
, (9.66)

〈dl〉 =
2
√

2
π3/4

Γ

(
5
4

)√
〈λ〉h, (9.67)

where 〈λ〉 is given by the density of holes. This is a distribution highly peaked
around its mean 〈dl〉, the reasons for this being first the nonlinear transformation
involving a square root in (9.67), and second that ligaments are built by an additive
interaction of adjacent hole rims, thus averaging out the disorder induced by the
Poisson hole nucleation process. The consequences of this narrowness is that the
poly-dispersity in the resulting spray is practically entirely due to the one coming
from the ligament breakup per se. Indeed, with nearly mono-sized ligaments

L(dl/〈d〉)≈ δ(dl − 〈dl〉), (9.68)
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the drop size distribution p is, as seen from (9.65), well approximated by a q itself,
and is thus a gamma distribution characteristic of ligament breakup (see (9.59))

p(d)≈ Γ (ν, d/〈dl〉) (9.69)

of order ν found to be, for effervescent atomization, close to 3–4. This holds as long
as the collision of the rims forming the ligaments is not too violent. When this is
no longer the case, breakup proceeds from a different scenario, examined in § 10.3.

9.6.2. Ligaments produced from corrugated ligaments: Bessel functions
Often the ultimate ligaments, those forming the drops, are themselves stripped

from other corrugated ligaments. This situation occurs when a source ligament
is suddenly accelerated, or decelerated for instance, and therefore elongates into
secondary ligaments from its initial protrusions. Relevant examples are found with
drops impact (Villermaux & Bossa 2011) where the fragments are ejected from
the expanding rim of the flattened impacting drop, with rims collisions when the
collision triggers the expulsion of ligaments transverse to the collision direction
(Néel et al. 2020), a situation occurring generically in turbulent sheets randomly
pierced by holes as in flat fan atomizers (Kooij et al. 2018).

In that case, the source ligament sizes dl are themselves distributed according to
the distribution characteristic of corrugated ligaments, namely a gamma distribution.
Thus, with Γ (ν, x) given in (9.59) and with

q(d/dl)= Γ (ν, d/dl), for the elementary drop size distribution, (9.70)

L(dl/〈d〉)= Γ (µ, dl/〈d〉), for the ligament size distribution, (9.71)

we obtain from (9.65) a compound distribution of drop sizes with average 〈d〉 given
by that of L(dl/〈d〉) as (Villermaux & Bossa 2011)

p

(
ζ =

d
〈d〉

)
=

2(µν)(µ+ν)/2

Γ (µ)Γ (ν)
ζ (µ+ν)/2−1Kµ−ν(2

√
µνζ), (9.72)

where Kµ−ν is the modified Bessel function of order µ− ν, and where µ reflects the
roughness of the distribution in ligament sizes dl, while ν reflects that of the drops
producing ligament corrugations, in this construction. In the final expression (9.72),
the roles of µ and ν are, however, interchangeable (the distribution is unchanged
by the permutation µ↔ ν), both variabilities composing in an additive fashion, by
principle: indeed, the square of the standard deviation 〈ζ 2

〉/〈ζ 〉2− 1 of p(ζ ) in (9.72)
is

1+µ+ ν
µν

, (9.73)

meaning, for instance, that the width of the final drop size distribution relative to its
mean is given by that of the ultimate ligament breakup (1/

√
ν) when the ligaments
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are all alike (µ→∞), as in the effervescent atomization protocol (see § 9.6.1 above,
and Lhuissier & Villermaux (2013)).

In the other limit where µ is moderate, the overall drop size distribution p(d)
is a compound of stable drops coming from the breakup of ligaments essentially
exponentially distributed in size, a phenomenon encountered for instance with the
‘soft’ impact of drops bursting due to a relative motion in air (Villermaux & Bossa
2009). The large excursion tail of p(d) is broader than an exponential, but narrower
than a pure power law. Good fits using (9.72) were obtained by Néel et al. (2020)
in strong rims collisions, and from well converged distributions in fragmenting
turbulent sheets by Kooij et al. (2018, 2019).

9.6.3. Random stripping
Drops forming ligaments may be stripped from an agitated liquid bulk: hieratic

motions pointing perpendicular to the liquid surface may, if they are strong enough
to overcome capillary restoration at the interface, force the ejection of a ligament;
we have given such an example in § 9.5, where essentially only one class of
ligaments is ejected from a weakly turbulent jet, the class for which the critical
condition for ejection in (9.64) is met, corresponding to ligaments a couple of times
smaller than the main jet from which they originate.

We envisage now the extreme limit where a broad spectrum of length scales is
sufficiently excited in the liquid bulk to seed a broad spectrum of ejected ligament
sizes. This is not a sequential cascade of breakups scenario, but on the contrary a
process of concomitant, parallel ejections, with different sizes. Let 〈d〉 be the mean
drop size in the final spray. We know from § 9.5 that a drop whose size d is of the
order of 〈d〉 comes from a ligament with diameter of the order of 〈d〉, and that this
ligament is a random stack of k quanta (see § 9.5 for this terminology) of diameter
〈d〉/k. These ligaments may well be stripped from the liquid bulk on their own
(provided, if they are driven by a velocity fluctuation uk such that 〈d〉/k > σ/ρu2

k),
and breakup to contribute to the overall spray.

We thus consider an a priori very broad spectrum of ligament sizes

〈d〉
k
〈k〉
, for k= 0, 1, 2 . . .∞, (9.74)

with 〈k〉 some average number, larger than unity and assume that an elementary
ligament drop size distribution q(d, k) is associated with each value of k, whose
occurrence in the collection of drops forming ligaments is given by a probability
p(k). Given the range we authorize for k, the original liquid volume is no more
dissected as in § 9.5, but pulverized into quanta which are left free to recombine
according to a number frequency given by p(k).

In order to reach sensible results easily, we further assume that the distribution
q(d, k) is very narrow (it is, strictly speaking, a gamma distribution and we make
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its order ν→∞, an assumption all the more justified that 〈k〉 is large)

q(d, k)= δ
(

d− 〈d〉
k
〈k〉

)
(9.75)

and that the number of quanta k is distributed at random in each ligament, meaning
that p(k) is a Poisson distribution

p(k)=
〈k〉ke−〈k〉

k!
. (9.76)

Obviously, the overall drop size distribution p(d) writes, analogously to (9.63)

p(d)=
∞∑

k=0

p(k)q(d, k) (9.77)

and one checks that since
∑

kp(k) = 〈k〉, we have
∫

dp(d) dd = 〈d〉. The Laplace
transform of q(d, k) in units of d/〈d〉 reads

q(s, k)= e−s(k/〈k〉) (9.78)

and the Laplace transform of p(d/〈d〉) is thus

p(s) =
∞∑

k=0

p(k)q(s, k) (9.79)

= e−〈k〉(1−e−s(k/〈k〉)) (9.80)

s→0
−−→
〈k〉>1

(
1+

s
〈k〉

)−〈k〉
, (9.81)

which defines p(d/〈d〉) as a gamma distribution of order 〈k〉

p(x= d/〈d〉)=
〈k〉〈k〉

Γ (〈k〉)
x〈k〉−1e−〈k〉x. (9.82)

The accumulation of independent contributions from random ligaments produce
gamma distributions, through a construction mechanism similar to the one we have
described to understand the emergence of gamma distributions from the breakup
of a single ligament in § 9.4.1. The drop size distribution is universal in the d/〈d〉
units, a fact recognized long ago; for instance, Simmons (1977a,b) notes that, for
a large collection of industrial sprays, the distribution of sizes is, in shape, solely
determined by its mean, and that its tail is well fitted by an exponential fall off, as
in (9.82).

Such a scenario suits well to the fragments issuing from a turbulent jet at large
Reynolds number Ud0/ν ∼ 2 × 104 with initial large internal velocity fluctuations
u/U ≈ 0.1, and therefore with a Weber number defined in (9.64) appreciably larger
than unity, of the order of We= 13 (figure 17). The corresponding range of excited
scales, measured by the range of k values is of course narrower than the infinite
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FIGURE 17. Fragmentation of a water jet (shot at an angle to the direction of gravity)
as the level of turbulent fluctuations in the incoming stream is varied while the flow rate
carried by the jet is kept constant. (a) A potential jet with very few internal turbulence
fragmenting into the classical main drop/satellite drop size distribution. Curves are fit
by (9.63). (b) Stripping of transitional ligaments with We=O(3–4) defined in (9.64) and
fit by (9.63). (c) Fully stripped jet, all converted into a random set of sub-ligaments and
a fragment distribution given by (9.82).
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range in (9.74), but spans nevertheless a decade. These scales extend from d0/We
(the threshold for We> 1) defining kmin= (d0/〈d〉)〈k〉/We, to the limit of the capillary
unstable range for a jet, namely πd0, defining kmax = (d0/〈d〉)〈k〉π. By definition of
the quantum, kmin = 1 so that kmax =We and therefore

〈k〉 =
〈d〉
d0

We
π
. (9.83)

Since the measured mean drop size is 〈d〉 ≈ 0.53d0, the expected value of the mean
number of quanta per ligament is 〈k〉 = 2.1, indeed slightly larger than unity. The
observed overall drop size distribution p(d/〈d〉) is very well represented by the
gamma distribution in (9.82), of best fitted order 〈k〉 ≈ 1.9.

9.6.4. A note concerning the mean
The aggregation theory and its variants we have developed in this chapter predict

the shape of the drops size distribution in units of their mean (i.e. d/〈d〉). The only
thing this theory does not predict from its intrinsic ingredients is the mean diameter
〈d〉. This may look odd since in fragmentation studies, one is used to see first a
discussion about the mean size, then some considerations on the fluctuations about
the mean, and possibly general statements on the shape the fragment distribution
should have. We have in fact taken the problem in reverse, in addressing the
microscopic process at play for building the fragment distribution in the first
place. We have discovered that it is an aggregation process from an elementary
quantum, to macroscopic fragments; from that observation, we have inferred what
the distribution shape should be. It is therefore clear why the average fragment size
cannot be predicted from the only ingredient that fragments are constructed by an
inverse cascade of aggregation; for this, one has to decide when the inverse cascade
stops, and this decision requires an additional physical ingredient.

Understanding the distribution shape and the mean size are, in fact, two separate
discussions. Think, for instance, of the velocity distribution in a gas: the Maxwell
shape relies on general arguments of symmetry and homogeneity of space (Maxwell
1867) while the mean speed is independently fixed by temperature. Similarly, the
shape of Planck’s spectral radiance of the black body (Planck 1901) solely relies on
the fact that light emission is quantized, while the wavelength of maximal emission
(Wien’s displacement law λmT ∼ h̄c/kB) expresses thermal equilibrium. The magnet
necklace fragmentation problem in § 9.2 is also exemplary in this respect; there,
the cascade interrupts when the aggregation time of the mean fragment becomes
infinite, thus setting its value. This divergence reflects the radial expansion geometry
particular to the necklace problem. Different expansion rates lead to different mean
fragment sizes, but the distribution shape is universal when fragments sizes are
measured in units of their mean.

Similarly, for the fragmenting turbulent jet whose distribution has been computed
in (9.82), the new ingredient one has to put in to determine 〈d〉 is, as in (9.19)
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and (9.31), a ratio of time scales indicating the end of the cascade. Above the
stripping transition (We & 1), blobs recombine on a capillary time scale as they
separate in the diverging base flow. A mean size is attained when the recombination
time

√
ρ〈d〉3/σ balances the substrate divergence time d0/u, so that we expect

〈d〉
d0
∼We−1/3, (9.84)

where the Weber number is the one from (9.64) constructed on the divergence
velocity u. The structure of (9.84) is, not surprisingly, identical to the one in (2.13).

Recombination equilibrates substrate divergence for a jet expanding freely but,
in line with the discussion we made about the viscous dissipation scale in the
Taylor–Culick rim recession problem in § 3.2.1, the above reasoning leading to
(9.84) can be adapted to a confined, turbulent flow where now the reference time is
the divergence time 〈d〉/u(〈d〉) at the scale 〈d〉 itself when the divergence velocity
is scale-dependent, like within the inertial range of scales at large Reynolds number
where u(d)∼ u(d/d0)

1/3. In that case one anticipates that (Kolmogorov 1949)

〈d〉
d0
∼We−3/5, (9.85)

a relationship which was actually found by Hinze (1955) to fit well the maximal
droplet sizes in emulsions recorded originally by Clay (1940) using various
apparatus, including a turbulent pipe, and a Taylor–Couette flow (see Lemenand
et al. (2003) for a reedition of this type of experiments).

10. Formation of ‘fines’, direct cascades

Conventionally viewed as a process where the arrow of time points towards
ever smaller sizes by the repeated action of various stresses, the fragmentation of a
cohesive material results, on the contrary, from an inverse cascade of aggregations at
the microscopic level, starting with the smaller atoms, up to stable bigger fragments
(§ 9, in particular). The cascade is interrupted when separation forces overcome
cohesive forces, leaving the broken material in a dispersed state whose statistics is
interpretable from first principles in simple situations like for the magnet necklace
in § 2.3.

The reason for this regrettable confusion is to a large part attributable to an
authoritative argument personified, without his knowledge, by Kolmogorov. He
produced in 1941 a short note (not to be confused with the three celebrated notes
on turbulence that same year), written in German, in the USSR academy of sciences
Doklady motivated by discussions he had had with a colleague (Razumovsky)
about the size statistics of fragments during ore processing (Kolmogorov 1941b).
This colleague had found that the logarithm of the particle sizes during crushing
and grinding was well represented by a Gaussian. In these kinds of processes,
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a cohesive material breaks sequentially because it is exposed to a successive series
of solicitations or stresses involving repeated impacts with an object (using jaw
crushers, hammer mills, ball mills etc. . . . see Coulson et al. (2002)), or between
the fragments themselves; the size distribution builds up step by step as the number
of uncorrelated, repeated solicitations increases. Kolmogorov came up with an
elegant and simple idea where the size of any daughter particle derives from that
of the mother particle through a product series of random multipliers (smaller than
unity), yielding the celebrated ‘log-normal distribution’ along with the mental image
of the ‘direct cascade towards smaller scales’ (fortunately not accompanied, unlike
for turbulence, by a poem paraphrasing Swift . . .). This argument, probably because
it is clever and straightforward, partly also because it emanated from Kolmogorov,
has been since then blindly transported by many (in solid fragmentation, and liquid
atomization, see the critical review in Villermaux (2007)) to situations where the
log-normal distribution has no reason to be, simply because there is no repeated
sequence of mechanical action at all, but instead a single action; and in that case
there is indeed a cascade, but it is in reverse as explained in § 9.

With this caution in mind, we give below a few examples of direct cascades in
nature where there is at least one step of size reduction from a big object, to a
smaller one. When the size reduction process persists over multiple steps, very small
particles, sometimes called ‘fines’, are produced (figure 18).

10.1. Iterated thread fission, coalescence cascade

Capillary instabilities responsible for the breakup of an initially smooth ligament
may follow each other sequentially: the thin neck linking two neighbour bulges in
the process of separating is locally a liquid thread as well, which may also suffer a
capillary instability, itself producing bulges linked by a thinner ligament etc. . . . The
process was already visible in Plateau’s experiments with olive oil (Plateau 1849)
and it has been since then identified in related contexts involving viscous fluids
(Brenner et al. 1994; Wong et al. 2004; Villermaux et al. 2013), not to mention
viscoelastic fluids where the phenomenon is the rule (Oliveira & McKinley 2005;
Keshavarz et al. 2020). The consequence of this scenario is the typically bimodal
character of the drop size distribution (the small drops are called ‘satellites’), which
present two broad but well-separated peaks (see e.g. Basaran et al. (2013) in the
context of inkjet printing), and even a fractal sequence of iterated peaks when the
cascade has the chance to persist over multiple steps (Tjahjadi et al. 1992), which
is rare. With water, however, the capillary breakup is so fast that the phenomenon
is virtually absent, unless altered by ad hoc perturbations (Lafrance & Ritter 1977).
Surfactants on the other hand foster a counter Marangoni stress in the pinch-off
region which delays breakup, and favours a multiple step cascade (Kamat et al.
2018). Rough ligaments with random pre-existing corrugations follow a different,
opposite route (§ 9).
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(b)

(b)

(a)(i)

(iv) (v)

(vi)

(ii) (iii)
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4 mm

h
¶

ds

d
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FIGURE 18. Examples of direct cascades and production of ‘fines’. (i) Iterated instabilities
on a viscous thread (Brenner, Shi & Nagel 1994). (ii) Formation of a satellite drop on
a viscous stretching ligament (Villermaux et al. 2013). (iii) Production of ‘fines’ by the
impact of two liquid rims opening on a liquid sheet (Néel et al. 2020). (iv) Breakup of a
viscous liquid bridge featuring three steps of consecutive capillary instabilities (Tjahjadi,
Stone & Ottino 1992). (v) Cascade of incandescent droplets in fireworks where a daughter
drops is the mother drop of the next step and, (vi) detail of the trace of the successive
droplets and of their ligament-mediated fragmentation (Inoue et al. 2017).

Similar capillarity driven cascades are found in the hesitant coalescence of a drop
on a liquid pool (Thoroddsen & Takehara 2000) presenting remarkably up to six
steps, the bursting of viscous bubbles (Herman & Mesler 1987; Bird et al. 2010),
or the gravitational settling of heavy drops in a lighter liquid (Thomson & Newall
1885; Arecchi et al. 1996).

10.2. Imploding cavities

We have explained in § 8.1.2 how the collapse of a cavity at the surface of a
liquid, concentrating the fluid impulse into a narrow region of space at the base
of the cavity produces a fast jet, whose breakup forms droplets which may be
very fast, and tiny. This is an only one-step cascade, but it is emblematic of these
configurations bridging the large (the cavity size) with the small (the final droplets).

There was a rule of thumb dating back to Blanchard (1963) saying that, for a
cavity made from a bubble of size R at the surface of water, the jet speed at bubble
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burst is roughly R/tc(R) ∼
√
σ/ρR and the droplet size is approximately 0.1R.

Recent research on the topic revived by Ghabache et al. (2014a) has shown that
things are much more complicated, and that a crucial partner in the process
is the capillary waves train emitted at bubble collapse, which travels along the
cavity surface and which is the main focussing mechanism triggering jet emission.
Surprisingly, liquid viscosity fosters even faster, and thinner jets (Ghabache & Séon
2016); ejection velocities can be twenty times as large as the capillary velocity. An
intense debate has followed (Gordillo & Rodríguez-Rodríguez 2019) to describe the
appropriate scaling laws.

10.3. Collision of rims

The fines are these smaller droplets that are produced from an auxiliary mechanism
besides the formation of the standard drops in a fragmentation process. Néel et al.
(2020) report their formation in a controlled experiment which isolates an individual
fragmentation protocol: the collision of two rims bordering growing adjacent holes
on a liquid sheet. The standard drops come from the capillary breakup of the fused
rims. Occasionally, the rims collision is strong enough to trigger a new, splash-like
mechanism, producing an expanding lamella perpendicular to the main sheet, which
destabilizes into finer drops, first discovered by Lhuissier & Villermaux (2013) in
the context of sheet breakup, more precisely for sheets which nucleate multiple holes
(§ 4.4). Because surface tension forces are not balanced at their rim, holes grow in
diameter and eventually merge with neighbouring growing holes in the sheet plane.
The merging event may simply consist in an inelastic coalescence of the rims or,
if the collisional rims are sufficiently fast and thick, may trigger a splash. This is
the cylindrical version of the binary impact of spherical drop problem (Bradley &
Stow 1978; Ashgriz & Poo 1990; Roisman 2004). The phenomenon is very similar
to the one known for drops impacting a solid (see Worthington (1876) and Riboux
& Gordillo (2015) and the review in Josserand & Thoroddsen (2016)), or a layer
of the same liquid (Thoroddsen 2002; Agbaglah & Deegan 2014), as well as for
the entry of a solid in a water pool (Worthington 1908; Wagner 1932). It produces,
right upon impact, a thin fast lamella ejected from the impact point in the direction
perpendicular to the collision plane, at the edge of which small (compared to the
impacting rims diameter) droplets are formed; this is the way fines are produced by
this one-step cascade process (see § 7.1.1).

Note that the adjectives ‘fine’ as opposed to ‘coarse’, or ‘small’ versus ‘big’
have no concrete reality in the absence of an absolute reference scale. Their use
reflects more a personal appreciation. For instance, the drops emitted from the jet
sparking at the collapse of a cavity (the so-called Worthington jet, that he himself
found ‘exquisite’ and ‘graceful’, see Worthington (1908, p. 78), and which is
usually qualified as ‘fast’ (Gordillo & Rodríguez-Rodríguez 2019)) are sometimes
considered as ‘tiny’ (Ghabache & Séon 2016) while Woodcock et al. (1953)
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considered them as ‘giant’ nuclei. It is true that when the cavity is the one of
a bubble at the surface of a liquid pool, the jet drops are larger than those formed
from the disruption of the bubble cap (Spiel 1994). Similarly, the threshold size of
100 µm defining fine droplets for spray drift in agriculture relates to normal wind,
humidity, temperature conditions and typical fields dimensions. These may vary,
and hence will the threshold. Interestingly, a similar 100 µm threshold has been
identified in human exhalations like sneezing (Wells 1955), a fact which clearly
underlines its anthropomorphic nature.

10.4. Reactive droplets, fireworks

Known since the Edo period (1603–1868) in Japan, one of the most popular
hand-held fireworks has been the Senkou-Hanabi. This traditional firework generates
light streaks similar to branched pine needles, with ever smaller ramifications. These
streaks are the trajectories of incandescent reactive liquid droplets bursting from
a melted powder (so-called ‘black powder’, a mixture of carbon C, sulfur S, and
potassium nitrate KNO3). Inoue et al. (2017) have uncovered the detailed sequence
of events, which involve a chemical reaction with the oxygen of air, thermal
decomposition of metastable compounds in the melt, gas bubble nucleation and
bursting, liquid ligaments and droplet formation, all this occurring in a sequential
fashion proceeding over up to eight generations.

In contrast to situations where energy for breakup is injected in the system from
the start, and decays as it produces an inverse cascade of coalescences between
fragments (§ 9) like, for instance, the elements of the Universe synthesized in stars
do (Alpher, Bethe & Gamow 1948; Burbidge et al. 1957), this direct cascade is
self-sustained by a constant injection of heat from the reaction of carbon with the
oxygen of air. It is this exothermic reaction which, at every step of the cascade,
initiates the nucleation of gas cavities in the metastable liquid droplets. Like in
atom fission (Born 1937; Bohr 1939), droplets divide sequentially and self-similarly,
down to an elementary brick where heat release and losses equilibrate, marking the
end of the cascade.

A similar phenomenology is encountered in the combustion of multi-component
fuel droplets with high volatility differential (Avedisian & Andres 1978; Rao,
Kamakar & Basu 2017), or with emulsions (Rao & Basu 2020). In both cases,
the volatile phase nucleates a vapour bubble within the continuous liquid phase of
the droplet, a bubble which burst and ejects a ligament when reaching the droplet
surface.

10.5. Minimal fragment size

A direct cascade is always ultimately interrupted by a dissipative physical ingredient
(viscosity, heat conduction etc. . . .) whose relative importance grows as sizes decay,
and which finally becomes dominant. In that case, the corresponding limit fragment
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size pertains to the range of the continuum scales (see e.g. Kendall 1978). However,
if the cohesive material is initially dismantled into its elementary atoms (this
condition requires that the microscopic particle Weber number in (2.12) is larger
than unity), as in the magnets necklace problem, then fragments as small as the
elementary brick can be formed (provided they escape, by chance, the aggregation
dynamics forming the macroscopic final fragments), precisely because they are
formed from the start, and not at the end of an interrupted direct cascade. Besides,
such a scenario is compatible with the experiment of Kroto et al. (1985) who
synthesized a complex molecular architecture (Backminsterfullrene) from elementary
bricks laser ablated from a piece of graphite (see also § 7.3).

The heuristically exciting question of the minimal fragment size in comminution,
the science of size reduction by crushing and grinding, certainly requires more
attention.

11. Energetics of fragmentation

It is tempting, in front of a complicated problem where many intermingled effects
are at play, to resort to general principles, an attitude sometimes adopted in despair
in fragmentation mechanics. Because one must be extremely cautious in retaining
the relevant ingredients when working these principles out, their use is most of the
time hazardous. This is particularly the case with energy whose interest in science –
because it is globally conserved – was first advocated by von Helmholtz (1847) in
a celebrated pamphlet.

11.1. Misconceptions

We have already seen in § 3.2.1, about the Taylor–Culick recession speed of a
liquid film edge, how a naive because incomplete application of a principle of
conservation between kinetic and surface energy, disregarding dissipation (which
represents exactly half the total surface energy swept by the film edge) leads to a
flawed prediction (in absolute value, not in scaling dependencies). The error is even
worse if one considers the recession of an end bulge attached to a cylindrical liquid
ligament: the surface tension force not only feeds kinetic energy and dissipation,
but also needs to work against the Laplace pressure σ/h inside the ligament (with
radius h). The equivalent of (3.13) now writes Ṗ=2πhσ −πh2(σ/h) and ṁ=ρπh2v,
leading to v =

√
σ/ρh while a balance surface/kinetic energy would give 2

√
σ/ρh,

involving an error by a factor 2 due to the neglect of both dissipation and internal
pressure work.

Fluid particles arrested at a rim dissipate their kinetic energy. The energy
dissipated by a mass m experiencing a velocity drop 1u is equal to the kinetic
energy of the velocity difference 1

2 m(1u)2, a result known since Borda (1763) (see
also appendix B in Villermaux & Bossa (2011)). Consider for instance the dynamics
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of the expanding–retracting sheet formed by the impact of a liquid drop with kinetic
energy E = 1

2 mu2
0 such that τ =

√
m/σ � r0/u0, that is We� 1 (§ 7.1). The sheet

radial velocity is u(r, t) = r/t and the velocity decrement at the rim in r = R(t)
is 1u(t) = u(R, t) − Ṙ where R(t) is given by (7.9). Since the fate of every mass
particle in the drop is to pass through the rim, estimating the dissipated energy
1E at the rim amounts to estimate the value of (1u)2 over the sheet oscillation
cycle (lasting for about τ ) to form 1E = 1

2 m(1u)2. Since τ is independent of We,
so is 1E/E. The maximal velocity difference is 1u(t/τ = 1/2) = u0/2 (occurring
between the sheet maximal extension in t/τ = 1/3 and the cancellation of the rim
deceleration in t/τ = 2/3) and we have

1E
E
≈

1
4
. (11.1)

The net amount of kinetic energy dissipated in the rim represents a fixed fraction of
the initial kinetic energy of the drop of the order of 25 %, independent of We. The
rest splits into the kinetic energy of the fragments, and their surface energy.

In fact, the difficulty with this concept is that we know that energy is globally
conserved among its various forms (heat, kinetic, radiations, surface, elastic . . .),
but we have no principle to decide how the system will favour each in a particular
situation. Sometimes, by luck, the problem can be completely solved from the
principles of conservation of mass and momentum alone, like for the Taylor–Culick
problem, and the energy budget is then computed a posteriori. An a priori energy
approach is useful when only two kinds of energies are essentially at play, in
quasi-steady situations like for the viscous version of the Taylor–Culick problem
(which involves a tradeoff between viscous dissipation and surface destruction,
see § 3.2.2), or to estimate the limit stress for crack opening in a brittle elastic
material (a tradeoff between stored elastic energy and surface creation, the reality
of a surface energy being, in that context, questionable (Griffith 1921; Bourdin,
Francfort & Marigo 2008)), but when inertia is an ingredient of the problem, things
are less straightforward. The opening of cracks is accompanied by branchings,
acoustic, light emissions etc. . . . which are all sinks of energy (Lawn 1993; Fineberg
& Marder 1999), yet unpredictable for the time being. It is, however, well known
that in typical solid size reduction processes, only 10 % of the input power is
usefully employed at creating new interface area, the rest being dissipated as heat
(see chapter 2 in Coulson et al. (2002)).

This proportion is even larger than the one measured in the fragmentation of a
stationary Savart sheet into droplets (§ 4.1). From the measured speed of the rim
ejecta, Taylor (1959c) estimated that 98 % of the incident kinetic energy ‘disappeared
in the region where the drops were formed’ while Clanet & Villermaux (2002) find
that only 10 % of the initial energy remains in the fragments, most of it in a
kinetic form. The dissipated energy is very sensibly related to the fragment velocity
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decrement 1u from the incident velocity u0 since

1E
E
=

(
1u
u0

)2

(11.2)

giving, according to the ejection velocity at the cusps tips bordering the indented
sheet found in (4.7), 1E/E= (4/5)2 = 64 %.

If from these examples, one sees that there is not a sharp consensus on the exact
figure representing the amount of energy actually employed at creating new surface
area, a certitude is that it systematically represents a small fraction of the available
mechanical energy. It is also useful to note that its relative amount, at least its order
of magnitude, is close to the ratio of the separation energy of the molecules, to the
latent heat in the evaporation of water, which is of the order of 20 % (see Agrawal
& Menon (1992); the comparison of these two forms of energy has been historically
made to infer the size of molecules, as recalled in Rowlinson (2002)).

The ‘sentimental’ vision which consists in attributing arbitrarily the entire
available input energy to the surface energy of the desired products (the fragments),
first formalized by von Rittinger (1867) usually fails dramatically not only in order
of magnitude, but also in law. We have seen an example above concerning the
impact of a drop and inherent dissipation by rims, another is provided by the liquid
shell explosion studied in § 5.1.1: the total available energy is the one released
by the chemical reaction. For a given number of moles m of a (stoichiometric,
say) mixture enclosed in the bubble with radius R0, one knows that the energy
released will be E = −1H × 2

3 m (the formation enthalpy of water vapour by
H2 +

1
2 O2 −→ H2O is 1H = −241 kJ mol−1). An ‘à la von Rittinger’ temptation

is to equate this energy with the one necessary to breakup the liquid shell, and
further assume that this fracture energy is itself reflected by the final surface energy
of the fragments. If Ω = 4πR2

0h is the volume of the liquid shell, N the number
of fragments and 〈d〉 their average size, we thus have Ω ∼ N〈d〉3, and from the
application of the (flawed) conservation principle stated above, E ∼ N〈d〉2σ , from
which one would predict

〈d〉 6=
Ωσ

E
, N 6=

(E/σ)3

Ω2
. (11.3a,b)

The symbol 6= signifies clearly the absurdity of this prediction since, with R0=2 cm,
one has 2

3 m' 10−3 moles at atmospheric pressure, and thus E ' 221 Joules giving
according to (11.3) a fragment size 〈d〉 of the order of 10−12 m, smaller than the
interatomic distance . . .! The reason for this major failure is that this caricature,
which is even wrong in scaling dependencies, disregards several other sinks of
energy, like the work done by the burnt gases to push the unburnt, the shell and
the outside air, thus communicating to them a substantial kinetic energy, but also
disregards the highly dissipative dynamics of the rims and ligament breakup on the
liquid shell, in particular.
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11.2. Efficiency

The inaugural example of the expanded necklace of magnets (§ 2.3) provides again
a way to address the question of the partition of energy in its various forms in
an unambiguous way. The input energy 1

2 NmV2, entirely in a kinetic form, is the
kinetic energy of each bead, all expanding at velocity V times the number of
beads N. The surface energy is the energy spent at opening a link, of order aφ(a),
times the number of opened links N/〈n〉, itself given by the final mean number of
beads per fragment 〈n〉 in (2.13). We thus define, as is customary in the context of
comminution, an efficiency E as the ratio of the surface energy to the input kinetic
energy (see Vledouts et al. (2015) for references and a slightly different description)

E =

N
〈n〉

aφ(a)

1
2 NmV2

, (11.4)

this expression holding when at least one bond has opened, otherwise E = 0 since
no surface creation has occurred. This is what happens when the impact velocity
is smaller than the critical velocity Vc in (2.5) below which the necklace simply
coalesces back to its initial state, remaining un-fragmented.

Above that critical impact velocity, the fragment velocity is given by
√

V2 − V2
c

in (2.6a,b). It is smaller than V , but non-zero. We thus have here a fragmentation
process where the initial energy splits into surface energy, and kinetic energy;
moreover, the ratio of these two forms of energy depends on the strength of the
initial expansion. In terms of the particle Weber number We in (2.12) based on the
divergence velocity at the scale of the elementary beads u1,1 = 2πV/N, one sees,
recalling that ρ ∼m/a3 and σ ∼ φ(a)/a, that the efficiency

E ∼ (N3We)−2/3 (11.5)

is a decaying function of We. For strong impacts when We approaches 1, the
efficiency E which scales as 1/N2 goes to zero as more isolated beads expand (for
larger N), essentially keeping their initial kinetic energy, the energy cost for opening
the bonds linking them being in comparison negligibly small.

Starting from E = 0 when V = Vc (that is We ∼ 1/N), the efficiency thus first
increases as We increases, and then decreases according to (11.5). Vledouts et al.
(2015) give the complete dependence of E on We and N, showing that it is:

(i) non-monotonic;
(ii) always way below unity in absolute value;

exhibiting a maximum (approximately E ≈ 0.3), thus contradicting von Rittinger’s
sentimental principle according to which it should be constant, and of order unity.
The energy budget computed a posteriori in this particular case demonstrates the
vacuity of ‘energy based approaches’ in fragmentation in general.

898 P1-96

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.366


Fragmentation versus Cohesion

Other lumped descriptions (Grady 1982, 2006; Sultanov & Yarin 1990; Bazant &
Caner 2013) have heuristically invoked the expansion rate of a breaking material
to put it in relation with some measure of its cohesion in order to derive fragment
sizes, and others have noticed that there are distinct regimes of fragmentation of a
stressed material where the ejection velocity of the fragments depends on the initial
conditions (Wildeman et al. 2017). The academic exercise of the expanded necklace
of magnets offers a precise picture for which error does not escape from proof.
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Appendix A. Catalogue of relevant instabilities

A list of the instabilities relevant to the phenomena discussed in this review is
provided below in a digest form, including a presentation of the physical mechanism
at play, the scalings for the length and time scales involved, and the full dispersion
equation whose derivation can be found in the appropriate references mentioned in
each case.

In most situations discussed below, instability occurs between two phases
separated by an interface spreading along the x axis with position in the y direction
ξ(x, t) made of a superposition of Fourier modes

ξ(x, t)∼
∑

k

ξkeikx−iωt, (A 1)

whose dynamics is studied mode by mode (in short, ξ(x, t) ∼ ξeikx−iωt) through
the dispersion relation ω(k). The range of unstable k-modes is the one for which
Re[−iω(k)]> 0, defining a growth rate, whose square is given by

ξ̈

ξ
=−ω2. (A 2)

Reasonings in the physical space involve the wavelength λ = 2π/k. In regions
where the fluids are initially at rest, or move at a uniform translation velocity
u0 along the interface, the perturbed displacement field u obeys at lowest order
∂tu+ u0∂xu=−∇p/ρ and since for incompressible fluids ∇ · u= 0, the pressure is
harmonic ∇2p= 0. This property sets the spatial structure of the perturbations

u, p∼ e±kyeikx−iωt. (A 3)
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When the interface is distorted over λ in an unbounded domain, the fluids move over
λ away from it so that the mass in motion in the plane is proportional to ρλ2.

A.1. Rayleigh Taylor

A layer of heavy fluid (density ρ1) is superimposed on a layer on lighter fluid
(density ρ2) perpendicular to the direction of a body force g (the acceleration of a
non-Galilean frame, or gravity), pointing downwards. We denote 1ρ = ρ1 − ρ2 > 0.
The instability mechanism is that of free fall. The Archimedes force 1ρgξλ feeds
the fluids inertia (ρ1 + ρ2)λ

2ξ̈ so that, in the absence of restoring forces at the
interface, the square of the growth rate growth rate is

ξ̈

ξ
∼

1ρ

ρ2 + ρ1

g
λ
. (A 4)

When the heavy fluid is confined in a layer of thickness h suspended on a horizontal
rigid wall, mass conservation uh ∼ λξ̇ in the heavy layer with horizontal velocity
(ρ1 + ρ2)∂tu∼−∂xp leads, with ∂xp∼−1ρgξ/λ, to

ξ̈

ξ
∼

1ρ

ρ2 + ρ1

gh
λ2
. (A 5)

If the fluids are very viscous, the Archimedes force now equilibrates viscous stresses,
of order ηξ̇/λ so that we have now a first-order relaxation dynamics

ξ̇

ξ
∼
1ρg
η
λ. (A 6)

There is, in the cases envisaged above, no mode selection. In particular, small length
scales grow infinitely fast in the inertial limit of (A 4). Since these induce large
interface curvature ξ/λ2, we expect that the corresponding Laplace force σ(ξ/λ2)λ

subtracted to the Archimedes force will limit their growth. The force balance then
leads to

(ρ1 + ρ2)
ξ̈

ξ
∼
1ρg
λ
−
σ

λ3
. (A 7)

The range of unstable length scales is now limited by the capillary length scale
1/a2
=1ρg/σ ≡ k2

c , defining the capillary wavenumber kc. The complete dispersion
equation of this instability (between infinite, inviscid phases) is

(ρ2 + ρ1)ω
2
=−1ρgk+ σk3. (A 8)

The most amplified wavenumber is km= kc/
√

3, with growth rate ∼1ρ/(ρ2+ ρ1)×
√

gkm.
In the opposite stable configuration (ρ1 = 0, ρ2 = ρ for example), we recover the

dynamics of dispersive gravity waves ω ∼
√

gk for k � kc, and that of capillary

898 P1-98

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

36
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.366


Fragmentation versus Cohesion

waves ω =
√
σk3/ρ for k� kc whose group velocity ∂kω is decreasing as

√
g/k,

or increasing as
√
σk/ρ as a function of k, respectively.

This instability was first described in the form of (A 8) by Lord Rayleigh (1883),
who also envisaged the case where the density jump between the phases is smooth
and occurs over a non-zero thickness layer. It was first investigated experimentally
by Lewis (1950). It is described in Lamb (1932) and Landau & Lifshitz (1987)
including the viscous corrections, in Limat (1993) for a finite heavy layer thickness
suspended by a wall, and very thoroughly in Chandrasekhar (1961). When the
acceleration is time dependent, for instance when it is impulsional as when the
interface is hit by a shock, one refers to the Richtmyer (1960), Meshkov (1969)
instability. Modern developments include the study of the instability on time varying
(Duplat & Villermaux 2015), and curved (Balestra et al. 2018) substrates.

The name of Taylor (1950b) is associated with this instability. He indeed
considered the limit with no surface tension, leading to (A 4). However, his interest
was more concerned with a layer of gas of a given density and finite thickness
sandwiched between two gaseous phases of a different density, then accelerated
perpendicular to its plane. The important case of a finite thickness layer with
surface tension is envisaged below.

A.2. Keller Kolodner

Soon after the contribution of Taylor (1950b) to the subject, Keller & Kolodner
(1954) studied the case of a layer of fluid of a given density and finite thickness
sandwiched between two phases of a different density, accelerated perpendicular to
its plane but now incorporating an ingredient Taylor had missed in his analysis,
namely surface tension. That inclusion changes the picture appreciably.

Another way, equivalent to (A 7), to understand the selection of mode for the
instability between two infinite phases is to compute an energy balance, justified in
the inviscid, conservative limit. The loss of potential energy corresponds to a gain
of surface energy

1ρgλ
∫ ξ

0
z dz= σ(

√
1+ ξ ′2 − 1)λ, (A 9)

or 1ρgξ 2
≈ σξ ′2, (A 10)

with ξ ′ ≈ ξ/λ, an equilibrium which is satisfied for λ−1
∼ kc.

When the heavy liquid is concentrated in a thin layer of thickness h, the above
equilibrium now writes (for λ> h)

1ρgh
∫ ξ

0
z dz= σ(

√
1+ ξ ′2 − 1)λ, (A 11)

or
h
λ
1ρgξ 2

≈ σξ ′2 (A 12)
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E. Villermaux

leading to λ−1
∼ k2

ch. The wavelength of the selected mode now depends on the layer
thickness h and is larger for a thinner layer, unlike in the case of a film suspended
on a rigid wall for which the selected mode is still given by kc. In fact both mode
selection and growth rate are affected by the layer thickness in this instability. The
growth rate, obtained from (A 4) since λ−1

� kc is given by

ξ̈

ξ
∼

1ρ

ρ2 + ρ1
gk2

ch (A 13)

and goes to zero for an infinitely thin layer. This is because, when the two interfaces
bordering the film are free to move as they are separated by a distance h� k−1

c , their
respective Laplace pressure jumps, of opposite signs, compensate, thus cancelling the
driving force for the longitudinal flow within the film which is thereby protected
from thickness modulations. This fact, which makes the problem with surface
tension very different from without, explains why, although violently accelerated
when inflated, thin soap films remain stable while comparable accelerations would
disrupt the interface between two infinite phases.

In the practical important case where ρ2/ρ1� 1 corresponding, for instance, to a
liquid film (of density ρ1≡ ρ) surrounded by air, Keller & Kolodner (1954) showed
that the interfaces bordering the film can only amplify in-phase, or out-of-phase
perturbations through a dispersion relation compatible with

ω2
=
σk3

ρ
coth(kh)

1±

√√√√1−

(
1−

(
kc

k

)4
)

tanh2(kh)

 (A 14)

first derived in this form by Bremond & Villermaux (2005), who also first tested its
predictions experimentally for a soap film impacted by a shock wave. The dispersion
relation in (A 14) transits continuously from (A 8) when kch� 1 to a shallow curve
with a plateau at the level given by (A 13) when kch� 1.

The importance of this result in the dynamics of free films has been underlined
by Bremond et al. (2007) and Lhuissier & Villermaux (2009b) to understand the
transverse indentations of flapping liquid sheets, by Villermaux & Bossa (2009) for
bag breakup, by Lhuissier & Villermaux (2012b) for the stability of crumpled water
bells, by Vledouts et al. (2016a) for the fragmentation of exploding liquid shells and
by Klein et al. (2020) for drops hit by a laser pulse.

A.3. Helmholtz Kelvin Rayleigh

A disturbance at the sharp interface between to parallel streams with velocities and
densities u1, ρ1 and u2, ρ2 is advected at the Doppler drift velocity

uc =
ρ1u1 + ρ2u2

ρ1 + ρ2
, (A 15)
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Fragmentation versus Cohesion

intermediate between the velocities of each phases (u1 < uc < u2). When a fast wind
is blowing parallel to a slow liquid stream (u1� u2, ρ2/ρ1� 1), the drift velocity
is essentially given by that of the slow dense stream, uc ≈ u1, and the intensity of
the shearing velocity by that of the fast stream u2. The instability mechanism is
Bernoulli suction at the crests, and compression in the droughts

ρ1λ
2ξ̈ ∼ ρ2u2

2
ξ

λ
λ, (A 16)

where ξ/λ stands for the compression/dilatation factor of the distorted streamlines
close to the interface. Thus

ξ̈

ξ
∼
ρ2

ρ1

u2
2

λ2
(A 17)

exhibiting an ‘ultraviolet divergence’ (Re(−iω)∼ ku2), meaning a divergence at large
k which is regularized by adding the capillary restoration term σ(ξ/λ2)λ in the force
balance above, ensuring the selection of mode

λ∼
σ

ρ2u2
2
. (A 18)

The full dispersion equation incorporating also the influence of gravity is

ω= kuc ±

√
ω2

RT −
ρ1ρ2

(ρ1 + ρ2)2
k2(u2 − u1)2, (A 19)

where ωRT is the Rayleigh–Taylor contribution given by (A 8) above. The shear 1u=
|u2 − u1| is always destabilizing. For g= 0, the most amplified wavelength and its
growth rate are (ρ2/ρ1� 1)

λ∼
σ

ρ2(1u)2
, and Re(−iω)∼

ρ2(1u)3

σ

√
ρ2

ρ1
. (A 20a,b)

The instability mechanism was first understood by von Helmholtz (1868), it
was described quantitatively with the dispersion relation above by Kelvin (1871)
while Lord Rayleigh (1880) complemented the analysis by considering an important
ingredient in practice, namely the existence of a smooth cross-over in the velocity
profile between the phases: an abrupt discontinuity of velocity does not exist in
nature since it is regularized by viscosity, as small as it might be. Boundary layers
smoothing the velocity profiles are inevitable. When the velocity jump occurs
through a transition layer of thickness 2δ, we have (for ρ1 = ρ2 and u1 =−u2 ≡ u
so that the total velocity jump is 1u= 2u)

κΩ =±i
√

e−2κ − (1− κ)2, (A 21)

with Ω = ω/(k1u) and κ = kδ (Lord Rayleigh 1880). The maximal growth rate
is 0.2u/δ for κ ≈ 0.8. The thickness of the cross-over selects the most amplified
wavelength. Starting from a true velocity discontinuity, both diffusive broadening
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and instability compete, altering the growth rate, and mode selection (Betchov
& Szewczyk 1963; Hinch 1984; Villermaux 1998b). The instability mechanism
of this inflectional instability is, however, of a completely different nature than
the instability of a boundary layer along a plate, which is driven by viscosity
(Schlichting 1987). The above result was generalized to any velocities and densities
between the phases by Villermaux (1998a) and applied to the stability of two-phase
shear layers by Marmottant & Villermaux (2004b). With disturbances drifting
downstream as they amplify, the Kelvin–Helmholtz instability is the paradigm of
‘convective instabilities’ (Huerre & Rossi 1998).

A.4. Squire

A fast liquid sheet (velocity u1, density ρ1), with thickness h issuing into a lighter
environment at rest (u2= 0, density ρ2� ρ1) soon destabilizes, sustaining a flapping
motion, like a flag does in the wind. The instability mechanism is of the Kelvin–
Helmholtz type described above, with the additional ingredient, since the sheet has
a finite thickness, that two modes of destabilization are now possible (these are
actually the only two allowed modes): either the interfaces bordering the sheet grow
in phase (sinuous mode), or out of phase (varicose mode).

(i) Sinuous mode: the Bernoulli suction mechanism operates identically to (A 16),
the inertia of the liquid being now limited to a layer of thickness h so that

ρ1hλξ̈ ∼ ρ2u2
1
ξ

λ
λ (A 22)

giving

ξ̈

ξ
∼
ρ2

ρ1

u2
1

λh
. (A 23)

(ii) Varicose mode: the dilatational, or varicose mode implies a flow within the film,
driven by the pressure difference 1p∼ ρ2u2

1ξ/λ between the droughts (where it
is maximal), and the crests (where it is minimal). The acceleration of the film
flow is such that ρ1∂tu ∼ 1p/λ while mass conservation writes hu ∼ λξ̇ . We
have

ξ̈

ξ
∼
ρ2

ρ1

u2
1

λh

(
h
λ

)2

. (A 24)

The growth rate of this destabilization mode is thus smaller by a factor h/λ
than the one of the sinuous mode above, which is indeed preferred.

Capillary restoration σ(ξ/λ2)λ in the force balances above selects the most
amplified wavelength

λ∼
σ

ρ2u2
1
. (A 25)
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Fragmentation versus Cohesion

The principle of this instability was already contained in Lord Rayleigh (1880)
(see also the discussion in Lamb (1932)), but Squire (1953) first conducted a lucid
discussion incorporating the effect of surface tension, and the competition between
the destabilization modes. With κ = kh, Ω = ωh/u1 and α = ρ2/ρ1, the dispersion
relations of this instability writes

(Ω − κ)2Φ
(κ

2

)
+ αΩ2

=
κ3

We
, (A 26)

with Φ(x)= tanh(x) for the sinuous mode, (A 27)

and Φ(x)= tanh(x)−1 for the varicose mode. (A 28)

The Weber number We= ρ1u2
1h/σ should be larger than 2 for the instability to set

in, meaning that the liquid sheet velocity should be larger than the group velocity of
the (stable, see Taylor (1959b) and below) sinuous waves on the sheet (Villermaux
& Clanet 2002). This result has been readily applied to a series of situations
(York, Stubbs & Tek 1953; Hagerty & Shea 1955; Dombrowski & Johns 1963),
including the discussion of the instability on a spatially evolving substrate (like for
a Savart sheet for which h(r)∼ r−1) by Bremond et al. (2007).

In the limits α → 0 and We→ 0, equation (A 26) also describes the dynamics
of stable capillary waves on an immobile film in an evanescent environment
(Lucassen-Reynders & Lucassen 1969). We have ω2

∼ σk3/ρ1 when kh � 1 as
for waves over an infinitely deep medium, and, for the sinuous mode, ω = ±kv
with v =

√
2σ/ρ1h the Taylor–Culick velocity in (3.14) for kh� 1; the celerity of

long sinuous waves on a film coincides with the recession velocity of its edge. In
the same long-wave limit kh � 1, we have ω2

∼ σk4h/ρ1 for the varicose mode,
characteristic of dispersive waves on a medium with finite depth. When kh> 1, the
group velocity ∂kω ∼

√
σk/ρ1 is larger than the Taylor–Culick velocity, explaining

why these dilatational waves are systematically found to propagate ahead from the
receding front as long as they are not damped by viscosity (see figure 5 and Buguin,
Vovelle & Brochard-Wyart (1999) in dewetting films).

A.5. Plateau Rayleigh Weber

Cohesion forces, because they oppose to the formation of large interface curvatures,
are usually stabilizing, a stabilization which operates at large wavenumber (i.e. ∼k3

as in (A 8)); there is one instance, however, where capillary forces are destabilizing.
The argument, due to Plateau (1849), is geometrical. When distorted by thickness
modulations with respect to its planar geometry, a liquid slab, or sheet has its
surface area increased (this is the reason why the spontaneous piercing of liquid
films is such a puzzling problem, see § 4.2). A cylinder, however, when distorted
by long-wavelength varicose modulations of its cross-section, lowers it surface
area at constant volume. The system will naturally explore more this energetically
favourable corrugated state, prelude to its fragmentation in drops.
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Undulations of the jet centreline in a sinusoidal fashion will not affect its net
surface area if its radius remains constant. On the other hand, modulations of the
jet radius may change its surface energy. Consider a liquid cylinder of volume Ω =
πh2

0L. The perturbation

h(z, ϕ)= 〈h〉 + ε cos(kz) cos(mϕ), (A 29)

where k is the longitudinal wavenumber and ϕ the azimuthal angle, can be viewed
as a Fourier mode of a given initial condition h(z, ϕ). The azimuthal modulations
simply correspond to a corrugation of the jet’s mantle, so they always increase the
surface area. All azimuthal modes m> 0 are thus stable (Chandrasekhar 1961) and,
when excited by the non-circular orifice of a jet, lead to oscillations which have been
used to measure surface tension (Lord Rayleigh 1879). We thus proceed with m= 0,
for which the surface energy is given by

E= 2πσ

∫
L

h
√

1+ h′2 dz. (A 30)

The mean radius 〈h〉 has to adjust itself to ensure volume conservation

Ω =

∫
L
πh2 dz=πh2

0

∫
L

dz (A 31)

so that

〈h〉 = h0 −
ε2

4h0
, (A 32)

which is thus smaller (at order ε2) than the unperturbed radius h0. The corresponding
difference 1E=E−E0 in surface energy relative to the initial state E0= 2πh0σ

∫
dz

is
1E
E0
=
ε2

4h2
0
[(kh0)

2
− 1], (A 33)

showing that all modes with wavelength λ= 2π/k larger than the perimeter of the
jet have a negative relative energy 1E < 0, and are thus potentially unstable, as
concluded by Plateau (1849). To find the fastest growing wavelength, on has to
wonder about the dynamics of each mode in the unstable range 0 < x < 1 where
x= kh0.

The dispersion equation of this instability was first established in the inviscid
limit by Lord Rayleigh (1878), followed by a study of the very viscous limit (Lord
Rayleigh 1892). Chandrasekhar (1961) considered the problem comprehensively.
The equations feature the necessary Bessel functions of the cylindrical geometry
and in the inviscid limit, we have, with tc =

√
ρh3

0/σ

ω2t2
c =−x(1− x2)

I1(x)
I0(x)

. (A 34)
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The most amplified wavelength is λ ≈ 9 h0, corresponding to x ≈ 0.67. This
wavelength is large compared to the cylinder radius, suggesting that a long-wave
one-dimensional description of the problem will be a satisfactory caricature. Weber
(1931) took very wisely advantage of this remark, providing a straightforward
derivation which incorporates easily viscous stresses. His result reads

(−iω)tc =

√
1
2(x

2 − x4)+ 9
4 Oh2x4 −

3
2 Oh x2, (A 35)

where Oh=
tv
tc
, with tv =

ηh0

σ
, (A 36)

whose limiting forms are

(−iω)tv = 1
6(1− x2), for Oh� 1, (A 37)

(−iω)tc =
1
√

2
x
√

1− x2, for Oh→ 0. (A 38)

Equation (A 38) provides an excellent fit to the exact relation in (A 34).
All modes in the unstable range (0< x< 1) grow without propagation (Im(−iω)
= 0) whereas all stable modes (x > 1, wavelengths smaller than 2πh0) have a
zero growth rate, but travel along the cylinder, with a non-zero group velocity
√
σk/ρ1 tangent to the one of capillary waves on an infinitely deep medium (§ A.4).

This instability along with many of its applications are reviewed in Eggers &
Villermaux (2008). Its generalization to the case of soft solids has been made by
Mora et al. (2010).
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