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Abstract

A major use of neuropsychological assessment is to measure changes in functioning over time; that is, to determine
whether a difference in test performance indicates areal change in the individual or just chance variation. Using 7
illustrative test measures and retest data from 384 neurologically stable adults, this paper compares different
methods of predicting retest scores, and of determining whether observed changes in performance are unusual. The
methods include the Reliable Change Index, with and without correction for practice effect, and models based upon
simple and multiple regression. For all test variables, the most powerful predictor of follow-up performance was
initial performance. Adding demographic variables and overall neuropsychological competence at baseline
significantly but slightly improved prediction of all follow-up scores. The simple Reliable Change Index without
correction for practice performed least well, with high error rates and large prediction intervals (confidence
intervals). Overall prediction accuracy was similar for the other three methods; however, different models produce
large differences in predicted scores for some individuals, especially those with extremes of initial test performance,
overall competency, or demographics. All 5 measures from the Halstead–Reitan Battery had residual (observed2
predicted score) variability that increased with poorer initial performance. Two variables showed significant
nonnormality in the distribution of residuals. For accurate prediction with smallest prediction–confidence intervals,
we recommend multiple regression models with attention to differential variability and nonnormality of residuals.
(JINS, 1999,5, 357–369.)
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INTRODUCTION

One of the major uses of neuropsychological assessment is
to measure changes in functioning over time. Such changes,
on the positive side, may include improved functioning due
to treatments or to spontaneous recovery following brain
injury or toxic exposure. It is also important to be able to
detect deteriorating functioning due to disease progression,
treatment side effects, or other new brain insults. While sta-
tistical methods for comparing groups on neuropsycholog-
ical change are relatively straightforward, techniques for

detecting significant or “real” neuropsychological changes
in individualsare less well developed.

Repeated administrations of neuropsychological tests fre-
quently yield varying results, even in people who have not
experienced any true change in neurobehavioral status. This
is due to less than perfect reliability of test instruments, as
well as practice effects, fluctuations in test taking attitudes,
and other factors. Moreover, these influences are or may be
different for different tests, and for different types of peo-
ple, and many questions exist about how much of a change
in test score is significant or unusual for a particular indi-
vidual and test. More fundamentally, it is unclear what sta-
tistical approach is best suited for predicting a follow-up
neuropsychological test score and what factors should be
considered in the prediction model. Potentially important
factors include baseline performance on the test in ques-
tion, various participant variables (age, history of risks for
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neuropsychological impairment, general level of neuropsy-
chological competence at baseline), features of the test in
question (test–retest reliability, practice effects, floor–
ceiling on test scores), duration of the test–retest interval,
and indicators of the participant’s state at the time of the
testings (mood, cooperativeness, medications consumed).

Furthermore, after settling on a method for predicting a
follow-up neuropsychological test score, additional ques-
tions remain about how best to establish the interval around
the prediction that contains commonly observed differ-
ences between the predicted values and the actual scores on
repeat testing when there has been no real change in the
individual. We will call these intervalsprediction intervals
(Kleinbaum & Kupper, 1978) to be consistent with the sta-
tistical literature, although they also have been calledcon-
fidence intervals(McSweeny et al., 1993; Sawrie et al.,
1996). In this paper, we will use intervals that are expected
to contain 90% of the differences between actual and pre-
dicted test scores. Discrepancies outside the prediction in-
terval are considered to indicate “significant” change.
Usually one tries to define intervals so that, in a population
that is stable, one would have 5% of cases show “signifi-
cant deterioration” and 5% show “significant improve-
ment.” But how should these intervals be determined? For
example, can they be based on the normal distribution? Might
different prediction intervals be needed for different types
of people (oldvs.young, generally high functioningvs.low
functioning)?

In the present article we will address several of these ques-
tions using test–retest data from a large sample of neuro-
logically stable adults. More specifically, we will compare
four models for assessing change in selected neuropsy-
chological variables, using multiple measures of prediction
accuracy: standard deviation of the differences between ob-
served and predicted scores; deviations from expected per-
centages of participants who score outside of designated
prediction intervals in both the positive and negative direc-
tions; and the length of the prediction interval, that is, the
minimum positive and negative deviations from predicted
scores that define significant change (given comparable er-
ror rates, a shorter length indicates more sensitivity to de-
tect true change). For each model we also present methods
for calculatingzscores to facilitate comparing the direction
and degree of change across measures.

The first, and simplest model to be considered here is
the Jacobson and Truax (1991) Reliable Change Index
(RCI). This method bases the significance of a change in
any individual test score on the difference between the ini-
tial and retest scores for the normative subject sample. If
the absolute value of this change exceeds the standard
deviation of the test–retest differences in the norming sam-
ple, multiplied by thez-score cut point that defines a des-
ignated percentile in the normal distribution, the change is
considered reliable (i.e., unlikely to occur by chance). The
most commonly used cutoff percentage point is the 95th,
Za 5 Z.95 5 1.645; this defines a prediction interval that
should include 90% of individuals like those in the norm-

ing sample, with 5% outside the interval on the lower end
and 5% outside on the upper end. In the terms defined
above, the RCI model is equivalent to the predicted retest
value equaling the initial score and the prediction interval
extending in each direction 1.645 standard deviations of
the test–retest differences.

A second model attempts to improve upon the RCI by
including an adjustment for practice effects. In this model,
the predicted retest score is the person’s baseline score plus
the mean practice effect for the normative sample, and the
procedure for defining an unusual deviation from the pre-
dicted value is the same as in the basic RCI procedure
(Chelune et al., 1993).

The third model uses linear regression of the retest scores
on the initial scores in the norming sample to generate a
formula for predicting a follow-up score from any baseline
score (McSweeny et al., 1993). This approach provides cor-
rection for both practice effects and regression toward the
mean. The prediction interval extends in each direction 1.645
times the standard deviations of the residuals estimated by
the regression. That is, a retest score is considered unusual
if the difference between it and its predicted value exceeds
the residual standard deviation from the norming sample
times 1.645, thez-score cutoff for a 90% interval based on
the normal distribution.

The last model to be considered here uses stepwise linear
regression for the prediction of retest scores on the basis of
multiple factors that could be important. In addition to the
baseline scores on the test in question, variables considered
in this prediction model were test–retest interval, demo-
graphic variables, and a measure of overall neuropsycho-
logical competence at baseline. Furthermore, the possibility
of a nonlinear relationship between initial and retest scores
was considered by including the square and the cube of the
initial score in the variable selection. Similarly, the square
and cube of the test–retest interval were evaluated for in-
clusion. For the fourth model, one can use the analogous
method for determining an unusual deviation from the pre-
dicted retest score as in the simple linear regression ap-
proach (Model 3), with the residual standard deviation being
obtained from the multiple regression.

All of the methods discussed so far are based on the as-
sumption that the residuals follow a normal distribution. This
assumption is sometimes false. Thus we examine the distri-
bution of residuals and, for several measures where the re-
siduals have a decidedly nonnormal distribution, we also
present distribution-free intervals.

Finally, to explore whether accuracy of prediction is con-
stant across different levels of predictor variables, we di-
vided cases into subgroups based on their predictor values
and calculated the standard deviation of the residuals for
each subgroup. If these standard deviations were substan-
tially higher for one subgroup than another (e.g., for older
than for younger participants), this implies that different sub-
groups need different cutoffs for defining unusual devia-
tions from their predicted retest values. Although this extra
step could be taken for any of the prediction models, the
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relevant analyses were performed only for the multiple re-
gression model (Model 4) for illustrative purposes.

METHODS

Research Participants

The participants were 384 normal or neurologically stable
individuals who were tested twice as part of several longi-
tudinal studies. All were at least 15 years of age. One hun-
dred thirty-eight participants had no recent trauma history
and were friends of head-injured cases; thesefriend con-
trols had a scheduled test–retest interval of 11 months. One
hundred twenty-one had suffered a recent traumatic injury
that spared the head; these we calltrauma controls.They
were tested for baseline 1 month after trauma, and then 11
months later. All of the friend controls and trauma controls
were tested at the University of Washington under the di-
rection of one of us (S.S.D.). Twenty percent of friend con-
trols and 46% of trauma controls had preexisting conditions
that might affect test performance, the most common being
alcoholism or a head injury in the past. The remaining par-
ticipants in these groups denied any history of conditions
that might be expected to affect brain function. The final
125 participants were enrolled in longitudinal research
projects at multiple sites under the supervision of the neuro-
psychology laboratories at the University of Colorado
(R.K.H.) or the University of California at San Diego (I.G.);
these individuals had no history of trauma or disease involv-
ing the brain. The scheduled test–retest intervals of these
participants ranged from approximately 2 to 12 months.
These samples were chosen to represent a range of demo-
graphics pertinent to neuropsychological status in neuro-
logically stable individuals.

Test Measures

The Halstead–Reitan Neuropsychological Test Battery
(HRB) and the Wechsler Adult Intelligence Scale (WAIS)
were administered to all participants according to instruc-
tions contained in their respective manuals (Reitan & Wolf-
son, 1993; Wechsler, 1955) For the present analyses, the
following representative measures were chosen from these
batteries: the WAIS Verbal and Performance IQs, the Cat-
egory Test (number of errors), the Tactual Performance Test
(TPT)–Total Time (minutes per block for the combined tri-
als with dominant, nondominant, and both hands), Trails B
(number of seconds to complete), Halstead Impairment In-
dex, and Average Impairment Rating (AIR; Russell et al.,
1970). In order to reduce testing time and patient fatigue,
time limits were imposed on the Trail Making Test (Trails
B 5 300 s) and the Tactual Performance Test (10 min each
for trials with dominant, nondominant, and both hands).

Data Analyses

The data analytic approaches for Models 1 through 3 are
outlined above in the Introduction. For the multiple regres-

sion model (Model 4), variables evaluated as potential pre-
dictors for Time 2 score on each neuropsychological measure
include the score on that measure at Time 1, its square and
cube (to allow for a nonlinear relationship), the overall neuro-
behavioral competence at Time 1 as estimated by the Aver-
age Impairment Rating, the test–retest interval (in months),
demographic information, and presence or absence of pre-
existing conditions that could affect brain function. (The lat-
ter were prior hospitalization for head trauma or treatment
for alcoholism, each coded 0 if absent, 1 if present.) Demo-
graphic information included age (in years), years of edu-
cation (counted as 12 for a student currently in high school),
an indicator for current high school student status (0 if not
in high school at first testing, 1 if in high school), sex (0 if
male, 1 if female), and race (0 if White, 1 if Nonwhite). A
variation that omits the measure of overall neurobehavioral
competence allows one to determine how much demo-
graphic information, nonlinear terms, and interval alone add
to the prediction by Time 1 score.

Stepwise linear regression was used to predict retest val-
ues based upon the measures just described. At each step, a
variable was added to the prediction model if it had the high-
est partial correlation among variables not already in the
equation, and if the significance level associated with the
variable was under .05; conversely, a variable was removed
from the model if its significance level rose above .10 as
other variables were added.

It should be noted that, with both the bivariate and multi-
variate regression models (Models 3 and 4), it is possible
for a participant to have no change or even slight worsening
in their score on a retest, but because of adjustment for re-
gression to the mean or other predictors, to have the equa-
tions indicate that this represents improvement over what is
predicted. This occurred very rarely, however, and for the
present demonstrations we conservatively elected to count
this asno changerather thanimprovement. We treated sim-
ilarly those cases where no change or an actual improve-
ment from first to second testings was indicated by the
equations to represent deterioration, although we acknowl-
edge that true deterioration could be manifest by the ab-
sence or diminution of an expected practice effect. In the
over 2,500 predictions evaluated for this paper, these two
situations arose only seven times.

As was pointed out above, in order to identify the “usual”
ranges of retest scores, we examined residuals from the pre-
diction models (i.e., the differences between actual and pre-
dicted retest scores). Most commonly, this is done making
the assumption that the residuals follow a normal distribu-
tion. However, it is possible that, for some measures, the
residuals have a skewed distribution, so that the predicted
range based on the normal distribution actually shows a
higher or lower than desired percent of the normative sam-
ple being classified as “unusual” in one direction. To eval-
uate these possibilities, we examined the actual percent of
cases below the theoretical 2.5, 5, 10, 20, 80, 90, 95, and
97.5 percentage points based on the normal distribution. If
two or more of the actual percentages differed significantly
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from the normal-distribution-based values at the testwise .05
level using a binomial test, we considered the assumption
of normality to be violated and calculated additional inter-
vals around predicted retest scores based on the observed
distribution of the residuals; that is, for these variables, we
will present the observed 5th and 95th percentiles of the
residuals as “distribution-free” 90% prediction intervals.

To examine whether the accuracy of the prediction is con-
stant across different levels of the predictor variables, we
divided the cases into subgroups based on their predictor
values and calculated the standard deviation of the residu-
als for each subgroup. If the standard deviation was at least
25% higher in one subgroup than another, we calculated dif-
ferent prediction intervals for different subgroups. As noted
above, this could be done for any of the methods but is
provided for the multiple regression method for illustrative
purposes.

For any of the methods, one can transform the retest scores
into standardizedz scores by calculatingz score5 sign 3
(observed retest score2predicted retest score)0residual stan-
dard deviation. Sign equals11 for measures where a higher
score indicates better performance (VIQ, PIQ) and equals
21 for measures where a lower score indicates better per-
formance (Category, TPT total, Trails B, Halstead Index,
AIR). Thus a positivezscore indicates better than predicted
retest performances.

RESULTS

The subject sample’s demographic characteristics and test–
retest intervals are described in Table 1. Although only 14%
of the sample is over age 54 and only 11% is Nonwhite,
both low and high education levels are well represented. All
test–retest intervals are between 2 and 16 months, and within
that range, all intervals except the longest contain at least
50 individuals.

Predicting Retest Scores

The means and standard deviations of the scores at each test-
ing, as well as of the Time 2 minus Time 1 difference, are
given in Table 2. The ranges of neuropsychological scores
at the initial testing are also given. Inspection of the mean
Time 2 minus Time 1 difference scores reveals consider-
able variability in the amounts of practice effects they show.
As defined by change from Time 1 to Time 2 compared to
the standard deviation at Time 1, the Category Test and PIQ
show relatively large practice effects whereas the VIQ and
Trails B show relatively small practice effects.

Prediction results based on regression (Models 3 and 4)
are given in Table 3. This table gives the test–retest corre-
lations and the standard deviation of the residuals, as well
as the slope (unstandardized beta) and intercept (constant)
needed to predict the retest score based only upon the initial
test score (Model 3). The table also includes the multiple
correlation after all related predictors were included, as well
as the standard deviation of the residuals after all predictor

variables were entered (Model 4). The additional predictors
also are shown in the order they entered. Except for Hal-
stead’s Impairment Index, the initial test result always en-
tered the prediction model first. All of these predictions
improved significantly with the addition of variables other
than initial test score, although the magnitude of the in-
creased correlation and reduced standard deviation of resid-
uals usually was not large. This is true particularly for the
prediction of VIQ2: After VIQ1 was considered, education,
age, and test–retest interval improved prediction a statisti-
cally significant amount; nevertheless, the improvement in
correlation was slight, in the 3rd decimal place. AIR, the
measure of overall neuropsychological competence, en-
tered most predictions either second or first. That measure
is based on a whole battery of tests. As seen from the itali-
cized entries in Table 3, predictions that are almost as good
can be obtained using only demographics and squares and
cubes of the Time 1 score if AIR is not available.

The prediction equations for the multiple regression mod-
els (Model 4 and its variant) are given in Table 4. By sub-
stituting values for an individual of interest, one can calculate
the predicted value at the second testing. For example, if a
60-year old scored .20 min per block on TPT Total (an un-

Table 1. Demographic information for the participant
sample (N 5 384)

Variable N (%) M (SD)

Age (years)
15–24 137 (36) 34.2 (16.7)
25–34 105 (27)
35–44 61 (16)
45–54 25 (6)
55–64 19 (4)
65–74 26 (7)
75 or older 11 (3)

Sex
Male 253 (66)
Female 131 (34)

Racial–ethnic category
White (including Hispanic) 340 (89)
Nonwhite 44 (11)

Education 12.3 (2.7)*
High school student 38 (10)
Less than high school 89 (23)
High school graduate 107 (28)
Some college 112 (29)
College graduate 38 (10)

Test–retest interval (months) 9.1 (3.0)
2.3– 4.9 55 (14)
5.0– 7.9 56 (15)
8.0–10.9 166 (43)

11.0–13.9 106 (28)
15.8 1 (.03)

Preexisting alcoholism (%) 57 (15)
Prior head injury (%) 27 (7)

*Excluding current high school students
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usually good score) and 1.00 on Average Impairment Rat-
ing at the first testing, their TPT Total score at a second
testing is predicted to be TPTtotal25 .5903 TPTtotal12
.03403 TPTtotal12 1 .08443 AIR1 1 .002003 age2
.01555 .590 3 .20 2 .03403 .202 1 .0844 3 1.00 1
.002003 602 .01555 .29. Using only the Time 1 score as
a predictor, this person would have a predicted score of
(.55)3 (.20)1 .145 .25; using the RCI with practice, the

predicted score would be .11. The difference in values pre-
dicted by the models is substantial. For a more usual case,
such as a 20-year-old with Time 1 scores of .60 on TPT To-
tal and 1.50 on AIR, the predictions are much closer: .51 by
Model 2, .47 by Model 3, and .49 by Model 4.

Prediction equations for the Average Impairment Rating
and Trails B are portrayed graphically in Figure 1 for a few
predictor values. Figure 1A shows the predicted Time 2 score

Table 2. Summary of initial, retest, and test–retest difference scores

Time 1 Time 2
Difference
(T2 2 T1)

Measure M (SD) Minimum Maximum M (SD) M (SD)

VIQ 108.4 (13.7) 69 149 109.5 (14.0) 1.1 (4.8)
PIQ 108.5 (11.5) 73 135 113.6 (12.7) 5.1 (6.4)
Category 41.0 (26.1) 4 145 30.4 (25.0) 210.5 (14.1)
TPT Total .52 (0.49) .16 6.0 .43 (0.33) 2.09 (0.29)
Trails B 72.0 (45.2) 25 276 68.2 (46.1) 23.9 (21.6)
Halstead Index .29 (.28) 0.0 1.0 .24 (.27) 2.05 (0.17)
AIR 1.02 (.56) .17 3.36 .88 (.55) 2.14 (0.22)

Table 3. Summary of the regressions. The slope and intercept are given for the prediction based on only initial scores as is the
multiple correlation of retest score with initial score and with all predictors entering. The residual standard error after the initial
score and after all selected variables were entered are also shown. The specific predictors for each measure are shown in the
order of predictor entry. For models where AIR1 entered as a measure of overall competence, the results from the variation
that excluded that predictor are shown below in italics.

Model 3 Model 4

Measure

Correlation
with

initial

Residual
SDafter
initial Slope Intercept

Correlation
with all

Residual
SDafter

all Multiple regression predictors1

VIQ .94 4.8 .95 6.1 .94 4.7 VIQ1, Ed, Age, Interval

PIQ .86 6.4 .95 10.7 .88 6.1 PIQ1, AIR1, Interval, Ed, Race
.87 6.2 PIQ1, Ed, Race, current high school

student

Category .84 13.3 .80 22.6 .88 11.9 Category1, AIR1, Race, Age, Ed
.87 12.3 Category1, Age, Race, Ed, Category1

squared

TPT Total .88 .15 .55 .14 .91 .13 TPTtotal1, AIR1, TPTtotal1 squared, Age
.91 .13 TPTtotal1, TPTtotal1 squared, Age,

TPTtotal1 cubed, Race

Trails B .88 21.3 .90 3.5 .90 19.6 Trails B1, AIR1, Age, TrailsB1 squared,
Ed, Prior head injury

.90 19.9 Trails B1, Age, TrailsB1 squared, Ed,
Prior head injury, Race

Halstead Index .82 .16 .81 .01 .87 .14 AIR1, HI1, Age, HI1 squared, Race,
Sex, HI1 cubed

.85 .14 HI1, Age, HI1 squared, Race, Ed

Average Impairment Rating .92 .21 .90 2.04 .94 .19 AIR1, Age, Race, Ed, AIR1 squared,
AIR1 cubed, Interval

1Initial test scores are indicated by the test name followed by a 1.
Note.AIR 5 Average Impairment Rating, Ed5 education, HI5 Halstead Index, Interval5 test–retest interval.
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on Average Impairment Rating for any Time 1 score for a
White person with a high-school education and a 12-month
test–retest interval. Note that the accuracy of the prediction
and the size of the prediction intervals are not reflected in
Figure 1; these important issues will be addressed later. In
Figure 1A, three curves are shown representing partici-
pants at different ages: 20, 40, and 70 years old. One can
see the curvature in the prediction line and that, even for a
fixed initial score, older people tend to score more poorly at
retest. For comparison, three straight lines corresponding to
expected performance according to Models 1, 2, and 3 also
are plotted on each panel. The simplest, shown by dots, pre-
dicts the Time 2 score to be identical to that at the first test-
ing, according to the Reliable Change Index. The parallel
line below it takes into account the average practice effect
shown in Table 2, as would be done in Model 2. Compared
to regression-based predictions, both of these prediction pro-
cedures tend to estimate values that are more extreme for
people with very good or very bad initial scores. The less
sloped line, shown by long dashes, plots the regression-
based prediction using initial score only; the slope and in-
tercept for this line are given in Table 3.

Figure 1B depicts the Time 2 Trails B score as a function
of the Time 1 score and initial score on Average Impairment
Rating. This is for a 40-year-old with a high school educa-
tion and no prior history of head injury or alcohol abuse.
For Model 4, one can see that initial overall competence, as
estimated by Average Impairment Rating, has a substantial
effect on the predicted Trails B retest score even after ac-
counting for initial Trails B score. Again, the three straight
lines corresponding to Models 1, 2, and 3 are shown for
comparison.

Comparing Prediction Intervals Based
on the Four Procedures

Table 5 shows, for each of the four prediction models, the
prediction intervals based on the normal distribution as well

as the percent of the norming sample outside those intervals
in each direction. All of the methods considered are de-
signed so that 5% of the cases should be outside the predic-
tion interval in the direction indicating improvement and
5% should be out in the direction indicating deterioration.
As seen in Table 5, for the simplest method based on the
Reliable Change Index (in which the predicted value at Time
2 is the Time 1 score) most of the neuropsychological vari-
ables have a significantly higher than expected percentage
of participants classified as improved and a significantly
lower percentage classified as deteriorated. Most of these
measures have a practice effect, and a method that ignores
it usually suggests that far too many people improve. By
accounting for the average practice effect, Model 2 yields
percentages much closer to those expected. That does not
mean, however, that the differences between the observed
and predicted scores follow a normal distribution. In fact,
Category Test, TPT Total time, Trails B time, and Halstead
Index all have at least two of the checked percentiles sig-
nificantly different from those based on the normal distri-
bution. Additionally, since Model 2 ignores regression to
the mean, as seen in Figure 1, it is likely to predict scores
that are too good for those initially scoring well and too bad
for those initially scoring poorly. The regression methods
take this into account, yielding slightly narrower prediction
intervals; for TPT–Total time per block, the prediction in-
terval narrows substantially by using a Model 3 prediction
based only on the Time 1 score. Category, TPT Total, Trails
B, and Halstead Index show deviations from normality in
the residuals from Model 3. Taking other potential predic-
tors into account (in Model 4) narrows the prediction inter-
val by a slight but statistically significant amount for most
of the measures considered. TPT time again shows a notice-
able decrease in the width of the prediction interval.

Distribution-free intervals

Both Trails B and TPT Total time per block have residuals
that are substantially nonnormal for all of the models. Both

Table 4. Equations to predict retest score based on initial test result and other variables. Equations in italics exclude AIR
as a potential predictor.

VIQ2 5 .9013 VIQ1 1 .03723 age1 .4643 education2 .1943 interval1 6.58
PIQ25 .8033 PIQ12 3.343 AIR1 2 2.383 race1 .3473 education2 .2693 interval1 28.5
PIQ25 .8793 PIQ11 .6073 education2 3.103 race1 2.593 current high school student1 11.5
Category25 .5203 category11 10.83 AIR1 1 7.863 race1 .1433 age2 .7803 education1 1.77
Category25 .4303 category11 .002143 category12 1 .2563 age1 10.03 race2 1.113 education1 1.58
TPTtotal25 .5903 TPTtotal12 .03403 TPTtotal12 1 .08443 AIR1 1 .002003 age2 .0155
TPTtotal25 .8203 TPTtotal12 .1353 TPTtotal12 1 .01183 TPTtotal13 1 .003033 age1 .05143 race2 .103
TrailsB25 .3553 TrailsB11 .001123 TrailsB12 1 14.63 AIR1 1 .3313 age2 1.183 education1 8.393 prior head injury1 22.1
TrailsB25 .5183 TrailsB11 .0009333 TrailsB12 1 .4723 age2 1.543 education1 9.453 prior head injury1 6.963 race1 9.31
HI2 5 2.3053 HI1 1 1.483 HI12 2 .9083 HI13 1 .2143 AIR1 1 .002813 age1 .05753 race1 .03963 sex2 .146
HI2 5 .3033 HI1 1 .3853 HI12 1 .003723 age1 .08673 race2 .00783 education2 .036
AIR2 5 .1883AIR1 1 .3813AIR12 2 .06853AIR13 1 .005063 age2 .01193 education1 .1493 race1 .007773 interval1 .215

Note. Initial test scores are indicated by the test name followed by a 1, retest scores are indicated by the test name followed by a 2. AIR5 Average
Impairment Rating, HI5 Halstead Index, Interval5 test–retest interval in months.
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Panel A

Panel B

Fig. 1. Time 2 score predicted by the four models as a function of Time 1 score. Panel A presents Average Impairment
Rating; the multiple regression predictor (Method 4) is shown for a White person with a high-school education and a
12-month test–retest interval and a selection of ages. Panel B presents Trails–B; the multiple regression predictor
(Method 4) is shown for a 40-year-old with a high school education and no prior head injury and a selection of initial
scores on Average Impairment Rating (AIR).
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have some skewness as well as outliers that inflate the stan-
dard deviation of the residuals. Table 6 gives the distribution-
free prediction intervals for these two measures. Because of
the outliers, the distribution-free intervals are narrower than
the normal-based intervals shown in Table 5 and still result
in 5% of these stable individuals classified as each of im-
proved and deteriorated.

Factors affecting variability
of the Time 2 scores

Table 7 lists the standard deviation of the residuals from the
multiple regression model, subdivided by age, education,
initial score, and preexisting conditions. Thepoor, aver-
age, andgoodranges for initial score are based on the raw
(demographically uncorrected) scaled scores for the norms
derived by Heaton et al. (1991) and represent scaled scores
less than or equal to 7, between 8 and 11, and greater than
or equal to 12. These ranges contain approximately the worst
20%, middle 50%, and the best 30% of Heaton’s normative
population. With the notable exception of the WAIS IQs,
most measures show substantial differences in variability
among groups defined by initial score, and some by several
other variables as well. In all cases in which the variability
differs substantially, the direction is that poor initial perfor-
mance or factors associated with poor performance are as-

sociated with increased variability on retest. This has major
implications for prediction intervals. The intervals given so
far will tend to be too wide, hence missing true change, in
individuals with good initial performance, and will be too
narrow, hence calling normal variability changed perfor-
mance, in those with poor performance. Table 8 shows re-
vised prediction intervals for Model 4 taking initial
performance into account. The number of categories and
the values grouped together were chosen based on visual
inspection of the scatterplots of residuals by Time 1 score.
When the variability of the residuals was calculated for sub-
groups based on the other predictors shown in Table 7, the
results showed much smaller, though in some cases still sig-
nificant, differences. Thus, although only initial score is ex-
plicitly taken into account, these intervals correct to some
extent for the other differences in variability, as well. Note
that the full range of IQs is presented together because, for
these measures, the variability of the retest score did not
differ appreciably depending on initial score.

Example

Figure 2 shows the predicted retest scores (horizontal lines)
and prediction intervals (bars around the horizontal lines)
for TPT Total for the 2 hypothetical individuals discussed
earlier. Panel A represents the predictions of a “usual” case,

Table 5. Normal-distribution-based prediction intervals and the percentages of participants classified as “unusual” by four models for
predicting neuropsychological retest scores

Model 1
Reliable Change Index (RCI)

Model 2
RCI with practice effect

Model 3
Regression on Time 1 score

Model 4
Regression with all predictors

Measure
Prediction
intervala

Percent
improved

Percent
deteriorated

Prediction
intervala

Percent
improved

Percent
deteriorated

Prediction
intervala

Percent
improved

Percent
deteriorated

Prediction
intervala

Percent
improved

Percent
deteriorated

VIQ 67.9 10* 5 67.9 3 7 67.9 4 7 67.7 4 6
PIQ 610.6 20* 1* 610.6 7 3 610.6 6 3 610.0 4 4
Category 623.2 17* 2* 623.2 6 2* 621.9 5 5 619.6 4 4
TPT–Total 6.48 4 1* 6.48 3 1* 6.31 1* 4 6.21 2* 4
Trails–B 635.6 7 3 635.6 4 4 635.1 4 4 632.3 2* 5
Halstead Index 6.28 14* 4 6.28 3 4 6.26 3* 8* 6.22 5 7
AIR 6.36 14* 0* 6.36 4 5 6.35 5 6 6.32 4 6

aPrediction interval indicates the values around the model-predicted Time 2 score that would be expected to be seen in 90% of the norming sample.
“Improved” and “Deteriorated” indicate the percentage of participants in the norming sample who were actually classified as unusually better or worse,
respectively, at Time 2 based on the indicated method of obtaining the predicted value and a prediction interval based on the normal distribution. Those
that differ significantly from the expected 5% are marked with *.

Table 6. Distribution-free prediction intervals for two measures with frequently nonnormal residuals

Model 1
RCI

Model 2
RCI with practice

effect

Model 3
Regression on
Time 1 score

Model 4
Regression with

all predictors

Prediction interval Prediction interval Prediction interval Prediction interval

Measure Lower Upper Lower Upper Lower Upper Lower Upper

TPT–Total 2.35 .13 2.26 .22 2.14 .25 2.14 .17
Trails–B 238.5 28.5 234.6 32.4 231.4 32.6 225.4 31.7
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with only small variation in the predicted values but sizable
differences in the prediction intervals. Panel B represents a
more atypical individual (older person with excellent TPT
Total initial value), where the different models yield sub-
stantially different intervals and conclusions.

Standardizedz scores

Standardizedzscores corresponding to each of the methods
discussed can readily be calculated from the information pre-
sented.Z scores provide a consistent metric for the mea-
sures and, if the residuals are normally distributed with
constant variability, allow one to easily calculate the prob-
ability of differences this extreme. In general,z score5
sign 3 (observed retest score2 predicted retest score)0
residual standard deviation, with sign being11 or 21 de-
pending on whether higher or lower scores indicate better
performance. For the first model (Reliable Change Index),
the predicted score is the score at initial testing. For the sec-
ond model (Reliable Change Index with Practice Effect),
the predicted score is the score at initial testing plus the av-
erageT2 2 T1 difference given in Table 2. For both models,
the residual standard deviation is the standard deviation of
theT2 2 T1 difference given in the last column of Table 2.
For Model 3 (Regression on Time 1 Score), both the pre-
diction equation (slope3 Time 1 score1 intercept) and re-
sidual standard deviation (residual standard deviation after
initial) are given in Table 3. For Model 4 (Regression on
All Predictors), the predicted value is obtained using the
equations in Table 4. The residual standard deviations are
given in Table 7 as a function of the Time 1 score. Note that

Table 7. Standard deviations of the residuals from the multiple regression model for subgroups
based upon initial levels of predictor variables

Factor VIQ PIQ Category TPT–Total Trails–B
Halstead

Index

Average
Impairment

Rating

Time 1 score
Poor 4.4 5.4 17.0 .26 37.0 .18 .22
Average 4.8 6.4 11.6 .09 15.4 .16 .20
Good 4.7 5.8 4.8 .05 9.8 .09 .14

Age
$60 4.8 5.8 15.6 .29 32.0 .18 .19
,60 4.6 6.0 11.3 .09 17.4 .13 .23

Education
In high school 4.3 6.9 14.7 .05 9.5 .07 .20
,12 years 4.8 5.8 15.4 .16 26.5 .16 .22
$12 years 4.7 6.0 9.9 .12 17.8 .13 .18

Preexisting alcohol
Yes 4.6 6.9 12.8 .12 22.8 .18 .21
No 4.7 5.9 11.7 .13 19.0 .13 .19

Prior head injury
Yes 4.1 5.9 9.9 .15 23.6 .15 .22
No 4.7 6.0 12.0 .13 19.2 .13 .19

Table 8. Prediction intervals based on regression on all selected
variables allowing interval width to vary depending on the
initial score. The standard deviation of the residuals and
whether the intervals are based on the normal distribution
(N) or are distribution-free (DF) are also shown.

90% prediction interval

Measure—Time 1 score SD
Lower

endpoint
Upper

endpoint Basis

VIQ
Full range 4.7 27.7 7.7 N

PIQ
Full range 6.1 210.0 10.0 N

Category errors
25 or less 5.2 28.6 8.6 N
26–59 12.6 220.6 20.6 N
60 or more 17.0 228.0 28.0 N

TPT–Total time
.4 or less .06 2.10 .10 N
.41–1.24 .14 –.22 .22 N
1.25 or more .42 2.69 .69 N

Trails–B time
40 or less 8.6 214.1 14.1 N
41–99 14.0 223.0 23.0 N
100 or more 40.4 266.5 66.5 N

Halstead Index
.1 or less .09 2.11 .20 DF
.2 or more .16 2.27 .27 N

Average Impairment Rating
.75 or less .16 2.26 .26 N
.76 or more .21 2.35 .35 N
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Panel A

Panel B

Fig. 2. Examples of prediction intervals for TPT–Total for 2 hypothetical individuals. The predicted value is repre-
sented by the horizontal line within the box; the prediction interval is represented by the box around the line. The
increased precision with the use of regression and distribution-free intervals is seen both with the “usual” case in Panel
A and the less typical case in Panel B. The differences in predicted values and the decreased variability for individuals
with good initial scores are seen in Panel B.
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residuals of the Halstead Index were skewed with a long
right tail for individuals with a low Time 1 score. For these
cases, probabilities based on thez score for the Halstead
Index may be inaccurate.

DISCUSSION

This study addressed three main questions: which factors or
variables should be considered in predicting follow-up re-
sults on neuropsychological tests, which statistical method
is best for predicting the follow-up test scores, and which
method is best for determining the likelihood that any given
deviation from a predicted follow-up score represents a true
change in ability? These questions were considered using
seven illustrative test measures from the WAIS and the
Halstead–Reitan Battery.

Some advantages of this study’s design include (1) a par-
ticipant sample that is significantly larger than those in pre-
vious studies of test–retest changes in neuropsychological
performance, (2) inclusion of subjects with widely varying
demographic characteristics and levels of baseline test per-
formance (Tables 1 and 2), (3) test–retest intervals that also
are variable and are fairly representative of intervals in-
volved in clinical and research situations, and (4) inclusion
of test measures that have been used extensively in neuro-
psychological clinical and research applications. A limita-
tion is that WAIS and not WAIS–R IQs were included.
Although these two versions of the Wechsler Intelligence
Scales have similar psychometric properties and appear to
perform similarly in retest situations (Matarazzo et al., 1980;
Wechsler, 1981) they are not identical (Reitan & Wolfson,
1990) and the version used here admittedly is outdated. In-
deed, with the publication of the WAIS–III in 1997, the
WAIS–R may soon be considered outdated! Nevertheless,
we would suggest that the exact version of the Wechsler
included here is of limited importance, since the goals of
our study were not test specific.

Our results indicate that the most powerful predictor of
follow-up test performance is initial test performance. Ini-
tial scores alone accounted for 67% to 88% of the variance
in follow-up test scores. By contrast, addition of other pre-
dictors in the multiple regression model resulted in increase
in explained follow-up test score variance of from 0.8% to
8.5% (Table 3).

After considering the linear component of the relation-
ship between baseline and follow-up test scores, the multi-
ple regressions also included small but statistically significant
nonlinear components for four of the five Halstead-Reitan
Battery measures (but for neither of the WAIS IQs). It ap-
pears that the nonlinear influence is to predict less deviant
follow-up scores when Time 1 scores are extreme. This ef-
fect is similar to, but goes farther than, the linear correction
for regression to the mean. It is seen for exceptionally poor
or good Time 1 scores on the AIR and Halstead Index, ex-
ceptionally good scores on Trails B and exceptionally poor
scores on the TPT.

Demographic variables contributed significantly to the pre-
diction of all follow-up test scores, even after baseline scores
on the same tests were considered. In general, demographic
variables tended to exert additional influences on follow-up
scores that are in the same direction as their influences on
initial scores (Heaton et al., 1996); for example, even given
the same initial score on a test, older and less well educated
participants tend to do somewhat worse on follow-up test-
ing than do younger and better educated individuals. These
findings with regard to the influence of age on test–retest
changes are consistent with previous reports of reduced prac-
tice effects in older groups (Horton, 1992; Mitrushina &
Satz, 1991; Ryan et al., 1992; Shatz, 1981). Similarly, in the
current study, participants with worse overall neuropsycho-
logical competence at baseline (represented here by the Av-
erage Impairment Rating) tended to do even worse on second
administrations of individual tests than would be predicted
on the basis of their baseline scores on the same tests.

Test–retest interval had only a small (though still signif-
icant) influence for just three of the seven follow-up test
measures. The relative lack of significance of time interval
in the present study is consistent with the findings of Mc-
Sweeny et al. (McSweeny et al., 1993), who reported min-
imal effects on the WAIS–R and Wechsler Memory Scale–
Revised retest scores for 50 clinically stable patients with
epilepsy. At least within the limited range of test–retest in-
tervals considered here (2–16 months), it appears that prac-
tice effects do not decrease very much over time.

In sum, although initial performances on these tests were
the best predictors of follow-up performances, other factors
in multivariate models did increase prediction accuracy to
some extent. The most important of these additional predic-
tors were overall neuropsychological competence at base-
line and demographic characteristics that are known to
predict performances on these tests the first time they are
administered. Unfortunately, indicators of the participant’s
state at the time of testing were not recorded consistently
across the studies and, hence, were not included as poten-
tial predictors.

Of the four statistical approaches to predicting follow-up
test scores, the simple Reliable Change Index (RCI) method
clearly performed least well. This method is considered
inadequate because of both its wide prediction intervals
and its poor prediction accuracy (Table 5). Correction for
practice effect (PE) does not affect the width of the pre-
diction interval but helps considerably with the prediction
accuracy. Indeed, in terms of overall prediction accuracy,
results for the RCI1 PE method are not much different
from those of even the most complex (multiple regression)
method. Figure 1 demonstrates, however, that large differ-
ences in predicted retest scores do occur for Models 2 to
4, especially at extremes of initial test performance and0or
extremes of general neuropsychological competence at
baseline.

The residual differences between predicted and obtained
follow-up scores were essentially normally distributed for
five of seven test measures. In these cases computation of
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prediction intervals based upon the normal curve is both con-
venient and justified. For the measures that did have non-
normal residuals (TPT and Trails–B), however, the use of
distribution free prediction intervals was quite important.
In these cases, the width of the prediction intervals was
greatly reduced, potentially allowing the detection of many
more participants whose neurobehavioral functioning has
changed over the follow-up period.

On all five of the Halstead-Reitan Battery measures, par-
ticipants with poor initial performance (and0or other char-
acteristics associated with poor performance) demonstrated
greater variability in the differences between observed and
expected scores at follow-up; Table 7. What this means is
that, for best overall accuracy, prediction intervals need to
be longer for people who do poorly at baseline (yielding
better specificity), but can be reduced somewhat for the other
participants (for better sensitivity). Please note that al-
though level of initial performance is a convenient way to
delineate the high variability subgroup, these cases have
common characteristics that suggest these were not just ran-
dom individuals who “had a bad day” at initial testing.
The participants with poor initial performance tended to
be older and less well educated than those with better ini-
tial performance.

Although the intervals are wider, in some instances than
one might like, they actually represent a best case. Partici-
pants had the initial and following testing in the same set-
ting, often with the same examiner. Also, since the testing
was for research rather than for clinical purposes, there was
little reason for subjects to be anxious about what the tests
would show.

Interestingly, unlike the Halstead–Reitan Battery mea-
sures, WAIS IQs showed fairly constant variability in
obtained-minus-predicted residuals at all levels of initial per-
formance and demographics (Table 7). The likely reason
for this is that, unlike the Halstead-Reitan Battery scores,
the IQs have been age corrected and have undergone other
transformations to improve (normalize) their distributional
properties. In this regard, it is worth noting that most test
measures used in neuropsychological assessments havenot
been subjected to demographic or distributional correc-
tions. Thus, interpretation of repeated administrations of such
tests frequently may benefit from use of variable prediction
intervals (e.g., for oldervs.younger individuals).

Again, simpler prediction models appear to work best with
participants who are more typical in terms of baseline test
performance and demographic characteristics. Simple mod-
els perform less well than do complex models with more
impaired persons, and with those whose demographic char-
acteristics tend to be associated with poorer absolute levels
of performance. Clinical populations are likely to include
many such individuals, so use of complex models may be
indicated for them. It should be noted, however, that it is
unwise to use any prediction model outside the range of val-
ues used to derive it. The ranges of demographic variables
represented here are given in Table 1 while the ranges of
initial scores are given in Table 2.

A decision to use more complex prediction models must
weigh the models’ potential advantages against the nega-
tive factors of increased workload and the potential for in-
creased computation error rates. This is especially true if
the computations will be done by hand (or calculator). Here
is an area of practice in which computer software would be
quite helpful, once the prediction models have been vali-
dated with clinical populations.

Probably the most important limitation of the current study
is that it only included presumably healthy participants. It
is uncertain how well our results will generalize to groups
of people with neurologic disorders and other conditions
(e.g., psychiatric and pain disorders) that may affect level,
reliability, and stability of performance in test–retest situa-
tions (Bornstein et al., 1987; McCaffrey & Westervelt, 1995).
Research is needed to assess the various prediction models
and associated norms with multiple clinical populations, in-
cluding those that have stable as well as progressive or re-
solving impairments. Some work to that end is currently in
progress. To the extent that disorders are associated with
relatively extreme test scores, the suggested advantages of
more complex prediction models may be even greater in clin-
ical than in nonclinical populations. It remains to be seen,
however, whether norms for change, even if based upon com-
plex models that take a variety of predictor variables into
account, can generalize adequately from one population to
another.
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