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Finite descent obstruction for Hilbert
modular varieties

Gregorio Baldi and Giada Grossi

Abstract. Let S be a finite set of primes. We prove that a form of finite Galois descent obstruction
is the only obstruction to the existence of ZS -points on integral models of Hilbert modular varieties,
extending a result of D.Helm and F. Voloch aboutmodular curves. Let L be a totally real field. Under (a
special case of) the absolute Hodge conjecture and a weak Serre’s conjecture formod ℓ representations
of the absolute Galois group of L, we prove that the same holds also for the OL ,S -points.

1 Introduction

A leading problem in arithmetic geometry is to determine whether an equation with
coefficients in a number field F has any solutions. Since there can be no algorithm
determining whether a given Diophantine equation is soluble in the integers Z, one
usually tries to understand the problem under strong constraints of the geometry
of the variety defined by such equation or by assuming the existence of many local
solutions. In the case of curves, for example, Skorobogatov [38] asked whether the
Brauer-Manin obstruction is the only obstruction to the existence of rational points.
�e question, or variations thereof, attracted the attention of Bruin, Harari, Helm,
Poonen, Stoll, and Voloch among others. In particular, Helm and Voloch [26] studied
a form of the finite Galois descent obstruction for the integral points of modular
curves. �e goal of our paper is to present a class of arbitrarily large dimensional
varieties that can be treated similarly to curves. More precisely, we give sufficient
conditions for the existence of OL ,S-integral points on (twists of) Hilbert modular
varieties associated with K, where both L and K are totally real fields.

1.1 What is a Point of a Shimura Variety?

A point of a Shimura variety attached to a Shimura datum (G , X) corresponds to a
Hodge structure (once a faithful linear representation of the group G is fixed). Of
course, not every Hodge structure can arise in this way. Even when the Shimura
variety parametrises motives, there is no description of the Hodge structures coming
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from geometry, nor a conjecture predicting this. However, Shimura varieties have
canonical models over number fields. Hence, we can associate with an algebraic point
a Galois representation, and, conjecturally at least, we can predict which ℓ-adic Galois
representations come from geometry. �is is the content of the Fontaine–Mazur
conjecture [19]. Our study of rational and integral points of Hilbert modular varieties
beginswith an attempt to understandwhen a suitable systemofGalois representations
comes from an abelian variety with OK-multiplication; see Section 2.1 for a more
precise formulation of the question.

Our strategy arises from predictions of the Langlands’ programme, which link the
worlds of

Automorphic forms ←→ Motives ←→ Galois representations.

We refer the reader to [12] for an introduction to this circle of ideas. More pre-
cisely, from a system of Galois representations that “looks like” the one coming
from an abelian variety with OK-multiplication, we want to produce, via Serre’s
modularity conjecture, a Hilbert modular form over L with Fourier coefficients in K.
Eichler–Shimura theory attaches to this modular form an abelian variety over L with
OK-multiplication, which will correspond to an L-point on the Hilbert modular
variety for K. If L = Q, Serre’s conjecture is known to hold true by the work of Khare
and Wintenberger [27], and the Eichler–Shimura theory has been worked out by
Shimura [37]. If L ≠ Q, to make such a strategy work, we need to assume Serre’s
conjecture for the totally real field L and also (a special case of) the absolute Hodge
conjecture, where the latter is required by Blasius in [6] in order to attach abelian
varieties to Hilbert modular forms. In the next section, we present in more detail the
main results of the paper.

1.2 Main Results

Let L,K be totally real extensions of Q and set

nL ∶= [L ∶ Q] and nK ∶= [K ∶ Q].
We denote by w a place of L and by v a place of K. In what follows, one should think
of L as the field of definition and of K as the Hecke field. We denote by OL and OK the
rings of integers of L and K, by Lw (resp. Kv) the completion of L at w (resp. of K at v)
and by OLw

(resp. OKv
) the ring of integers of Lw (resp. Kv). Finally, GL denotes the

absolute Galois group of L.
Let S be a finite set of places of L (including all archimedean places), and consider

a system of Galois representations

ρv ∶ GL Ð→ GL2(Kv)(S)

for every finite place v of K, such that:

S.1 {ρv}v is a weakly compatible system of Galois representations (see Definition
3.1);

S.2 det(ρv) = χℓ, where χℓ is the ℓ-adic cyclotomic character and v ∣ ℓ;
S.3 the residual representation ρ̄v is finite flat at w ∣ ℓ, for all v ∣ ℓ such that ρ̄v is

irreducible and ℓ is not divisible by any prime in S;
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S.4 ρ̄v is absolutely irreducible for all but finitely many v;
S.5 the field generated by the trace of ρv(Frobw) for every w is K.

To make it clear which case is conjectural and which is not, we separate the
statement of our first theorem into two cases depending on whether nL = 1 or nL > 1.

�eorem 1.A If L = Q, there exists an nK-dimensional abelian variety A/Q with OK-
multiplication, such that, for every v, the v-adic Tate module of A, denoted by TvA, is
isomorphic to ρv as representation of GQ.

�eorem 1.B Assume nL > 1. Under the validity of the absolute Hodge–conjecture
(more precisely Conjecture 1.1) and a suitable generalisation of Serre’s conjecture (Con-
jecture 1.2), there exists an nK-dimensional abelian variety A/L withOK-multiplication,
such that, for every v, TvA is isomorphic to ρv as representation of GL .

We apply the above to study the finite descent obstruction, as explored in [38, 39,
25], ofHilbertmodular varieties. A recap is given in Section 4.1.More precisely, denote
by YK the Hilbert modular variety associated with K. Let N be an ideal in OK and
denote by YK(N) the moduli space of nK-dimensional abelian varieties, principally
OK-polarized andwithN-level structure (see Section 2.2.1 for a precise definition). As
a corollary of the above theorems, we prove that the finite Galois descent obstruction
(as defined in Section 4) is the only obstruction to the existence of S-integral points
on integral models of twists of Hilbert modular varieties, denoted by YK(N), over
the ring of S-integers of a totally real field L, generalising [26, �eorem 3]. Assume

that S contains the places of bad reduction of YK(N).�e setY
f−cov
ρ (OL ,S) is defined

in Section 4.1. We prove the following theorem.

�eorem 2 If nL > 1, assume that the conjectures of �eorem 1.B hold. Let Yρ be
the S-integral model of a twist of YK(N), corresponding to a representation ρ ∶ GL →

GL2(OK/N). IfY f−cov
ρ (OL ,S) is non-empty, thenYρ(OL ,S) is non-empty.

In the work of Helm–Voloch, Y is the integral model of an affine curve. In the
case of curves, there are also other tools to establish (variants of) such results, without
invoking Serre’s conjecture. Indeed, as noticed a�er the proof of [26,�eorem 3], Stoll
[39, Corollary 8.8] proved a similar result, under some extra assumptions, knowing
that a factor of the Jacobian of such modular curves has finite Mordell–Weil and
Tate–Shafarevich groups. �e goal of this paper is to push Helm–Voloch’s strategy
to a particular class of varieties of arbitrarily large dimension and whose associated
Albanese variety is trivial (see �eorem 2.2), thereby showing that the method could
also be applied to study L-points.

Another reason for studying rational points of Hilbert modular varieties is the
following. By [13,�eorem 1], every smooth projective geometrically connected curve
C/Q of genus at least two admits a non-constantQ-morphism to either a Hilbert or a
Quaternionic modular variety for K, where K is a totally real number field depending
on C and the choice of a Belyi function β ∶ C → P1. See [13, Remark 2] for a detailed
description of the ambiguities of such a construction. Inspired by [32, �eorem 5.2],
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where the role of the Belyi embedding is played by the Kodaira–Parshin construction
[30], we have the following corollary of�eorem2. For simplicity, we consider rational
points of projective curves, even if our main theorems are about integral points.

Corollary Let C/Q be a smooth projective curve of genus g ≥ 2. Assume the following:

(i) C(AQ)f-cov ≠ ∅;
(ii) there exist two totally real number fields L,K and a non-constant L-morphism

f ∶ CL ∶= C ×Q L Ð→ YK(N),

where YK(N) denotes, as above, the Hilbert modular variety for K of some level
N;

(iii) if L ≠ Q, the conjectures of �eorem 1.B hold true.

�en C(Q) ≠ ∅.
Stoll [39, Conjecture 9.1] conjectured that every smooth projective curve is very

good. �at is, the closure of C(Q) in the adelic points of C is equal to C(AQ)f-ab.
For the definition of C(AQ)f-ab, we refer the reader to [39, Definition 6.1]. For the
moment, we just need to know that

C(Q) ⊂ C(AQ)f-cov ⊂ C(AQ)f-ab ⊂ C(AQ).
Hence, Stoll’s conjecture predicts the following implication:

C(AQ)f-cov ≠ ∅Ô⇒ C(Q) ≠ ∅,
which we are able to prove, as a consequence of �eorem 2, for curves satisfying (i),
(ii), and (iii) from the above corollary.

Proof Fix a point (Pw) ∈ C(AQ)f-cov, which is not empty by (i). Let X/L be the
image of C in Y ∶= YK(N) under the map f of assumption (ii). Notice that, since
C(AQ)f-cov ≠ ∅, C(AL)f-cov ≠ ∅, and therefore, by [39, Proposition 5.9.], X(AL)f-cov
and Y(AL)f-cov are not empty. �e untwisted version of �eorem 2, for a suitable
choice of a finite set S of places of L, implies that Y(L) ≠ ∅ (this is the only step
where (iii) is needed). �e proof of �eorem 2 (cf. Section 4.3) actually guarantees
the existence of a point in Y(L) inducing the fixed f (Pw) ∈ Y(AL ,S)f-cov. Since
Y(L) injects into Y(AL ,S)f-cov, there exists a unique Q ∈ Y(L) inducing f (Pw) ∈
Y(AL)f-cov. Moreover, by construction, f (Pw) lies in X(AL)f-cov, and X(L) = Y(L) ∩
X(AL)f-cov. Eventually, we conclude that Q lies in X(L).

Let Z be the finite Q-subscheme of C given by the GQ-orbit of the pull-back of Q
along the surjective map

CL Ð→ X .

By construction, (Pw) ∈ C(AQ)f-cov ⊂ C(AQ)f-ab lies in Z(AQ). In particular, [39,
�eorem 8.2] implies that Z(Q) ≠ ∅. �at is, C has at least one Q-rational point,
concluding the proof of the corollary. ∎
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1.3 Conjectures

We briefly state the conjectures appearing in�eorem 1.B.

1.3.1 Absolute Hodge Conjecture

We only give a brief overview for the purpose of understanding the conjecture. For
more details, we refer the reader to Deligne–Milne’s paper [16, Section 6], where
Deligne’s category of absolute motives is described. Let X ,Y/C be smooth projective
varieties. A morphism of Hodge structures between their Betti cohomology groups
corresponds to a Hodge class in the cohomology of X × Y :

Hom(H∗Betti(X ,Q),H∗Betti(Y ,Q)) ≅ H2∗
Betti(X × Y ,Q).

We say that a Hodge class α ∈ H2i
Betti(X × Y ,Q), or a morphism of Hodge struc-

tures between their H i ’s, is absolute Hodge if, for every automorphism σ of C, the
class ασ ∈ H2i(Xσ × Y σ ,C) is again a Hodge class. With this definition, we can split
the classical Hodge conjecture into two parts:

Hodge classes = Absolute Hodge classes = Algebraic cycles.

For the purpose of this paper, the following conjecture is enough.

Conjecture 1.1 If X ,Y/C are smooth projective complex varieties such that, for some
i, we have an isomorphism of Hodge structures

H i
Betti(X ,Q) ≅ H i

Betti(Y ,Q),
then there exists an absolute Hodge class inducing this isomorphism.

More precisely, Conjecture 1.1 will be applied when X is a Picard modular variety
and Y is an abelian variety.

1.3.2 Serre’s Weak Conjecture Over Totally Real Fields

Wenow explain the version of Serre’s conjecture we need to assume to obtain themain
theorems when L ≠ Q (see, for example, [10, Conjecture 1.1], where it is referred to as
a folklore generalisation of Serre’s conjecture). For more details, we refer the reader
to the introduction of [10] and references therein. Given a prime ℓ, we denote by Fℓ a
finite field with ℓ elements and by Fℓ a fixed algebraic closure of Fℓ.

Conjecture 1.2 Let ℓ be any odd prime and ρ ∶ GL → GL2(Fℓ) be an irreducible and
totally odd1 Galois representation. �en there exists some Hilbert modular eigenform f
for L such that ρ is isomorphic to the reduction mod λ of ρ f ,λ , where ρ f ,λ is the λ-adic
Galois representation attached to f and λ is a prime of the Hecke field of f dividing ℓ.

Remark 1.1 �is is usually referred to asweak Serre’s conjecture, because there is no
explicit recipe to compute the weight k(ρ) and the level N(ρ). It has been proven [23,

1Here, totally odd means that det(ρ(c)) = −1 for all nL complex conjugations c.
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22] that the refined version follows from the weak version under some assumptions.
We state the results we need in�eorem 3.4.

When L = Q, this was proved by Khare and Wintenberger [27]. When L ≠ Q,
Conjecture 1.2 is known when the coefficient field is F3 (Langlands–Tunnell [29, 42]),
but we really need to assume that the conjecture holds for all (but finitely many) ℓ’s.
Indeed, our strategy follows the lines of the proof of modularity theorems assuming
Serre’s conjecture: starting from a system of Galois representations, we produce a
Hilbert modular form whose Fourier coefficients are equal to the traces of Frobenii
modulo infinitely many primes, and hence are equal as elements of OK .

Finally, a potential version of the above conjecture was proved in [41,�eorem 1.6].
�ere, Taylor proves a potentialmodularity result: if ρ̄ ∶ GL → GL2(Fℓ) is a totally odd
irreducible representation with determinant equal to the cyclotomic character, then
there exists L′/L a finite totally real Galois extension such that all the primes of L
above ℓ split in L′ , and there exists f a Hilbert modular form for L′ such that ρ̄ f ,λ′ is
isomorphic to ρ̄ restricted to GL′ .

1.4 Related Work

We compare our results with [32, �eorems 3.1 and 3.7] (later also extended to the
moduli space of K3 surfaces by the first author [3, �eorem 1.3] and Klevdal [28,
�eorem 1.1], where a finite extension of the base field is, however, required). In the
approach of Patrikis, Voloch, and Zarhin, there are no restrictions on the base field,
whereas here it is crucial for L to be a totally real field. We believe that it is easier to
make the results of this paper unconditional. We notice here that the absolute Hodge
conjecture is not enough for such papers. In [32, 3, 28], the Hodge conjecture is not
only needed to descend complex abelian varieties over number fields. Finally, the
version of Serre’s conjecture we are assuming here is always about GL2-coefficients,
and so is certainly easier than the full Fontaine–Mazur conjecture [19].

�anks to the recent breakthroughs on potential modularity over CM fields [1], it
should be possible to extract from the main result of [1, Section 7.1] the following. Let{ρv}v be a compatible system as in Section 1.2, and let nL > 1. Under the validity of
Conjecture 1.1, there exist a totally real extension L′/L and nK-dimensional abelian
variety A/L′ with OK-multiplication, such that, for every v, TvA is isomorphic to ρv
as representations of GL′ .

SinceConjecture 1.1 can be avoided inmany interesting cases, as recalled inRemark
2.7, a potential but unconditional version of �eorem 2 can therefore be obtained.
Unfortunately, the extension L′/L depends on the system of Galois representations{ρv}v , and it is not easy to control a priori its degree over L.

1.5 Outline of the Paper

In Section 2, we collect all the results we need aboutHilbertmodular forms (especially
how Eichler–Shimura works in this setting). In Section 3, which is the heart of the
paper, we prove �eorems 1.A and 1.B. We then explain how these results are related
to the finite descent obstruction for Hilbert modular varieties in Section 4, eventually
proving�eorem 2.
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2 Recap on Hilbert Modular Varieties and Modular Forms

We recall some general facts about Shimura varieties. �e reader interested only
in Hilbert modular varieties can skip Section 2.1, which is not fundamental for the
main results. We then focus on Hilbert modular varieties and Hilbert modular forms,
explaining how they give rise to certain principally polarised abelian varieties.

2.1 A Question on Rational Points on Shimura Varieties

LetSdenote the real torus ResC/R(Gm), and letA f
Q
be the finite adeles ofQ. A Shimura

datum is a pair (G , X) where G is a reductive Q-algebraic group and X a G(R)-orbit
in the set of morphisms of R-algebraic groups Hom(S,GR), satisfying the Shimura–
Deligne axioms ([15, Conditions 2.1.1(1-3)]); furthermore, in what follows, we also
assume thatG is the genericMumford–Tate grouponX.�eShimura–Deligne axioms
imply that the connected components ofX are hermitian symmetric domains and that
faithful representations of G induce variations of polarisable Q-Hodge structures on

X. Let K̃ be a compact open subgroup of G(A f
Q
) and set

ShK̃(G , X) ∶= G(Q)/(X ×G(A f
Q
)/K̃).

Let X+ be a connected component ofX and letG(Q)+ be the stabiliser of X+ inG(Q).
�e above double coset set is a disjoint union of quotients of X+ by the arithmetic
groups Ŵg ∶= G(Q)+ ∩ gKg−1, where g runs through a set of representatives for the

finite double coset set G(Q)+/G(A f
Q
)/K. Baily and Borel [2] proved that ShK̃(G , X)

has a unique structure of a quasi-projective complex algebraic variety. �anks to the
work of Borovoi, Deligne, Milne, and Milne–Shih, among others, the C-scheme

Sh(G , X) = G(Q)/(X ×G(A f
Q
)),

together with its G(A f
Q
)-action, can be naturally defined over a number field E ∶=

E(G , X) ⊂ C called the reflex field of (G , X). �at is, there exists an E-scheme

Sh(G , X)E with an action of G(A f
Q
) whose base change to C gives Sh(G , X) with

its G(A f
Q
)-action.

Let F be a finite extension of E such that there exists a point x ∈ ShK̃(G , X)E(F).
With such a point, we can naturally associate a continuous group homomorphism

ρx ∶ GF ∶= Gal(F/F)Ð→ K̃ ⊂ G(A f
Q
).

�is paper is motivated by the following question.

Question 2.1 Let F be a field as above and let ρ ∶ GF → K̃ ⊂ G(A f
Q
) be a Galois

representation. What are necessary and sufficient conditions such that there exists x ∈
ShK̃(G , X)E(F) and ρ = ρx ?

When the Shimura variety has a natural interpretation as a moduli space of
motives, the above question is naturally related to the Fontaine–Mazur conjecture
[19]. Indeed, both aim to predict when a Galois representation comes from the
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ℓ-adic (or adelic in our case) realisation of amotive. Even when they are not motivical
(see [4, Remark 1.6] for a discussion about this), representations arising in this way
enjoy nice properties. For an example of geometric flavour, we refer the reader to
[4, �eorem 1.3].

2.2 Hilbert Modular Varieties

Let F/Q be a totally real extension of degree nF and fix {σi}nF

i=1 the set of real
embeddings of F into C. We let G be the Q-algebraic group obtained as the Weil
restriction of GL2 from F toQ and letX be nF copies ofH

± = {τ ∈ C ∶ Im(τ) ≠ 0}, on
which G(Q) = GL2(F) acts on the i-th component via σi . �at is,

((a b
c d

) ⋅ (τ1 , . . . , τnF
))

i

=
σi(a)τ i + σi(b)
σi(c)τ i + σi(d) .

In this case, the reflex field of (G , X) is Q, and the set of geometrically connected
components of the Shimura variety S ∶= ShG(Ẑ)(G , X) is Pic(OF)+, where Ẑ denotes
the profinite completion of Z (different choices of level structure will appear later).

Remark 2.1 To obtain a Shimura variety from the above construction, it is fun-
damental that F is totally real. Indeed, if F is a number field, and G is an algebraic
F-group, then the real points of ResF/QG have a structure of Hermitian symmetric
space if and only if F is a totally real field and the symmetric space associated with
each real embedding of F is Hermitian.

It is interesting to notice here a first difference between modular curves (i.e., when
F = Q) and higher dimensional Hilbert modular varieties. We recall the following
folklore result (see [6, Section 2.3.2.]) to see how it follows fromMatsushima’s formula
[8, �eorem VII.5.2].

�eorem 2.2 Let (G , X) be a Shimura datum as above and let K̃ be a neat2 subgroup

of G(A f
Q
). Consider SK̃ , the Shimura variety associated with (G , X) and K̃. Unless

nF = 1, the first group of Betti cohomology of SK̃ with rational coefficients is trivial. In
particular, there are no non-constant maps from SK̃ to an abelian variety.

To have a better interpretation as moduli space, we actually consider the subgroup
G∗ ofG given by its elements whose determinant is inQ. More precisely, we letG∗ be
the pull-back of

det ∶ G Ð→ ResOF/ZGm

2A neat subgroup of G(A f
Q
) is an open compact subgroup such that every element of K̃ ∩ G(Q) is

neat. Recall that an element g of G(Q) is called neat if the subgroup of Q
×
generated by the eigenvalues

of g in some faithful representationV ofG is free (that is, there are no nontrivial elements of finite order).
�is is independent ofV, as all faithful representationsW are obtained fromV via sums, tensor products,
duals, and subquotients; hence, the group in question is the set of eigenvalues that occur inW.
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to Gm/Q. �e Shimura variety YF ∶= ShG∗(Ẑ)(G∗ , X∗)(C) is connected and comes

with a finite map to S/C. It is a quasi projective nF-dimensional Q-scheme.
In the next section, we present the moduli problem solved by YF . It will be also

clear from such moduli interpretation that the reflex field of YF is the field of rational
numbers.

2.2.1 Hilbert Modular Varieties as Moduli Spaces

As explained, for example, in [17, Section 3], the Shimura variety YF represents the
(coarse) moduli space for triplets (A, α, λ) where:
• A is a complex abelian variety of dimension nF ;
• α ∶ OF ↪ End(A) is a morphism of rings;
• λ ∶ A→ A∗ is a principal OF-polarisation.

By A∗ , we denoted the OF-dual abelian variety of A, i.e,. it is defined as Ext1(A,OF ⊗

Gm). Otherwise, one can obtain such abelian variety considering A∨ (the dual ofA, in
the standard sense) and tensoring it over OF with the different ideal of the extension
F/Q. By principal OF-polarisation we mean an isomorphism λ ∶ A→ A∗, such that
the induced map A→ A∨ is a polarisation.

Furthermore, the Shimura variety of level

U0(N) ∶= {γ ∈ G(Ẑ) ∶ γ ≡ (∗ ∗0 1)modN},
where N is an integral ideal of OF , parametrises triplets as above, equipped with a
N-level structure as follows. We fix an isomorphism of OF-modules

(OF/NOF)2 → A[N]
making the following diagram commutative:

((OF/NOF)2)2 A[N]2

OF ⊗ Z/NZ OF ⊗ µN ,

ψN eλ ,N

where (N) = Z ∩N, ψN is the pairing given by ( 0 1

−1 0), eλ ,N is the perfect Weil
pairing on A[N] induced by the OF-polarisation λ, and OF ⊗ Z/NZ→ OF ⊗ µN is
an arbitrarily chosen isomorphism. When a level structure is needed, we always
assume that N > 3 in order to have a finemoduli space. A rational point of YF(N) ∶=
ShU0(N)∩G∗(G∗ , X) then represents a triple, as above, together with such level struc-
ture. In Section 4.2, we will see a similar description for OL ,S-points of an integral
model of YF(N).

2.3 Eichler–Shimura Theory

We discuss Eichler–Shimura theory for classical and Hilbert modular forms, review-
ing results that attach opportune abelian varieties to modular forms.
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2.3.1 Classical Modular Eigenform

�e following is [37, �eorem 7.14, p. 183 and�eorem 7.24, p. 194].

�eorem 2.3 (Shimura) Let f be a holomorphic newform of weight 2 with rational
Fourier coefficients (an( f ))n .�ere exists an elliptic curve E/Q such that, for all primes
p at which E has good reduction, one has

ap( f ) = 1 − Np(E) + p,
where Np(E) denotes the number of points of the reduction mod p of E, over the field
with p-elements. In other words, up to a finite number of Euler factors, L(s, E/Q) and
L(s, f ) coincide.

More generally, let K( f ) be the subfield of C generated overQ by (an( f ))n for all n.
�en there exists an abelian variety A/Q and an isomorphism K( f ) ≅ End0(A) with
the following properties:

• dim(A) = [K( f ) ∶ Q];
• up to a finite number of Euler factors at primes at which A has good reduction,
L(s,A/Q,K( f )) coincides with L(s, f );

where the L-function L(s,A/Q,K( f )) is defined by the product of the following local
factors where v is a prime of K( f ) not dividing ℓ

det (1 − ℓ−s Frobℓ ∣Tv(A)).
Shimura considers the Jacobian of the modular curve of level N and takes the

quotient by the kernel of the homomorphism giving the Hecke action on f. What
happens if we want to produce an abelian variety with such properties, defined over
our totally real field F, when Q ⊊ F? Here is where Hilbert modular forms come into
play. In the next section, we recall what we need from such theory, and explain Blasius’
generalisation of �eorem 2.3 and why the absolute Hodge conjecture is needed.

2.3.2 Hilbert Modular Forms for F

Let HF denote nF copies of the upper half plane H
+
. We consider subgroups Ŵ ⊂

GL2(OF) of the form U0(N) ∩G(Q)+. Moreover, for λ ∈ F and r = (r1 , . . . , rnF
) ∈

ZnF , we write λr = λr11 ⋯λ
rnF
nF

, where λ i = σi(λ). Similarly, if τ = (τ1 , . . . , τnF
) ∈HF ,

we write τλ = τr11 ⋯τ
rnF
nF

.

Definition 2.1 AHilbert modular form of levelN and weight (r,w) ∈ ZnF × Z, with
r i ≡ w mod 2 (and trivial nebentype character) is a holomorphic function f ∶HF →
C such that

f (γ ⋅ τ) = (det γ)−r/2(cτ + d)r f (τ),
for every γ = (a b

c d) ∈ U0(N) ∩G(Q)+ and for every τ = (τ1 , . . . , τnF
) ∈HF .
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Since Hilbert modular forms are holomorphic functions on HF invariant under
the lattice OF , they admit a q-expansion over O∨F = d

−1, where q = e2π i∑ τ i ; see [24,
Definition 3.1] for more details.

2.3.3 Hecke Operators and Hilbert Eigenforms

On the space of Hilbert modular forms of level

U0(N) ∩G(Q)+,
one has Hecke operators T(n) for every integral ideal of OF coprime with N. �e
definition is analogous to the one for classical modular forms. For example, if p does
not divideN and x is a totally positive generator of p, one defines

(T(p) f )(τ) ∶= Nm(p) f (x ⋅ τ) + 1

Nm(p) ∑a∈OF/p

f (γa ⋅ τ),
where γa ∶= (1 a

0 x). We recall the following definition.

Definition 2.2 A cuspidal Hilbert modular form (i.e., such that the 0-th Fourier
coefficient a0( f ) vanishes) is an eigenform if it is an eigenvector for every Hecke
operator T(n).

As in the case of classical modular forms, if f is an eigenform, normalised so that
a1( f ) = 1, then the eigenvalues of the Hecke operators are the Fourier coefficients,
i.e., T(n) f = an( f ) ⋅ f ; moreover, they are algebraic integers lying in the number field
K( f ) ∶= Q((an( f ))n), as shown in [36, §2].

2.3.4 Eichler–Shimura for Hilbert Modular Forms

Blasius and Rogawski [7], Carayol [11], and Taylor [40] proved that to any Hilbert
eigenform, one can attach representations of GF , similarly to the classical case. More
precisely, one has the following result.

�eorem 2.4 If f is a Hilbert eigenform for F of weight (r, t), level N, and trivial
nebentype character and K( f ) is the number field generated by its eigenvalues, then for
every finite place λ of K( f ), there is an irreducible 2-dimensional Galois representation

ρ f ,λ ∶ GF Ð→ GL2(K( f )λ)
such that for every prime w ∤NNmK( f )/Q(λ) in F, ρ f ,λ is unramified at w and

det(1 − Xρ f ,λ(Frobw)) = X2
− aw( f )X +Nmt−1

F/Q(w).
Assume that f is of weight (2, . . . , 2). As in the classical case, we would like to

have such Galois representations to be attached to opportune abelian varieties. �e
existence of abelian varieties associated with f was first considered by Oda in [31],
and Blasius gave a conjectural solution to such a problem.
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�eorem 2.5 (Blasius) Let f be a Hilbert eigenform for F of parallel weight 2. Denote
by K( f ) the number field generated by the aw( f ) for all w. AssumeConjecture 1.1.�ere
exists a [K( f ) ∶ Q]-dimensional abelian variety A f /F with OK( f )-multiplication such
that for all but finitely many of the finite places w of F at which A f has good reduction,
we have

L(s,A f ,K( f )) = L( f , s),
where the L-function L(s,A f ,K( f )) is defined by the product of local factors

det (1 −Nm(w)−s Frobw ∣Tv(A)Iw),
where v is a prime of K, w is a prime of F , and w and v lay above distinct rational primes.

Proof If K( f ) = Q, this is precisely [6, �eorem 1, p. 3]. As noticed by Blasius [6,
1.10], the proof easily adapts to the general case (where the necessary changes are
hinted at in the remarks in [6, Sections 5.4., 5.7., and 7.6.]). ∎

Remark 2.6 �e proof is completely different from the one of Shimura, since, as
noticed in �eorem 2.2, we cannot obtain a non-trivial abelian variety as quotient
of the Albanese variety of a Hilbert modular variety. Blasius instead considers the
symmetric square of the automorphic representation of GL2,F associated with the
Hilbert eigenform; it is an automorphic representation of GL3,F , and its base change
to a quadratic imaginary field appears in the middle degree cohomology of a Picard
modular variety. He then considers the associated motive and shows that its Betti
realisation is the symmetric square of a polarisedHodge structure of type (1, 0), (0, 1).
�is gives a complex abelian varietyA andConjecture 1.1 (applied to the product of the
Picard modular variety and A) allows us to conclude that A is defined over a number
field containing F. He then finds the desired abelian variety inside the restriction of
scalars of A over F.

Remark 2.7 �eorem 2.5 is known to hold unconditionally in many interesting
cases (for example, when nF is odd, by thework ofHida). Formore details, we refer the
reader to [6,�eorem 3] and references therein.�e proof of such unconditional cases
actually follows Shimura’s proof of�eorem 2.3, rather than the strategy described in
the previous remark.

2.4 A Remark on Polarisations

To use �eorems 2.3 and 2.5 to produce F-points of a Hilbert modular variety, we
need, of course, the abelian varieties produced to be principally polarised (up to
isogeny would actually be enough for our applications, if the isogeny is defined over
the base field F). An abelian variety over an algebraically closed base field always
admits an isogeny to a principally polarised abelian variety. But since the same does
not hold over number fields, some considerations are needed. �e first observation
is that every weight one Hodge structure of dimension 2 with an action by OK( f ) is
automatically OK( f )-polarised, as explained for example in [17, Appendix B].
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As noticed in [6, Remark 5.7.], Blasius first finds a principally polarised abelian
variety A over a finite extension L′/F. Actually, we can assume that A has a prin-
cipal OK( f )-polarisation λ. As explained above, the proof then considers the Weil
restriction of A to F, which is again principally OK( f )-polarised. It is not hard to
see that the construction of [6, section 7] behaves well with respect to the OK( f )-
polarisation, and, therefore, the proof actually produces an OK( f )-polarised abelian
variety over F.

3 Producing Abelian Varieties via Serre’s Conjecture

In this section, we prove�eorems 1.A and 1.B. As in Section 1.2, consider two totally
real fields L andK. We work with a compatible system of Galois representations ofGL

with values in ResK/Q(GL2)(A f
Q
) = GL2(A f

K), where A f
K denotes the finite adeles of

K that “looks like” an algebraic point of the Hilbert modular variety for K. We then
produce a Hilbert modular form for L of weight (2, . . . , 2), and of opportune explicit
conductor. Eventually, we obtain an abelian variety over L that allows us to produce
an L-rational point on the Hilbert modular variety for K.

3.1 Weakly Compatible Systems

�e definition of weakly compatible families presented is due to Serre, who called
them strictly compatible in [35, p. I-11]. It follows from the Weil conjectures that the
ℓ-adic Tate modules of abelian varieties form a weakly compatible system of Galois
representations.

Definition 3.1 (Weakly compatible system) A system {ρv ∶ GL → GL2(Kv)}v is
weakly compatible if there exists a finite set of places S of L such that the following
hold.

(i) For all places w of L, ρv is unramified outside the set Sv . Here, we denote by
Sv the union of S and all the primes of L dividing ℓ where ℓ is the residue
characteristic of Kv .

(ii) For all w ∉ Sv , denoting by Frobw a Frobenius element at w, the characteristic
polynomial of ρv(Frobw) has K-rational coefficients, and it is independent of v.

Recall that ρv is said to be unramified at a place w of L if the image of the inertia
at w is trivial. If ρv is attached to the v-adic cohomology of a smooth proper variety
defined over a number field, the smooth and proper base change theorems (see, for
example, [14, I, �eorems 5.3.2 and 4.1.1]) imply that ρv is unramified at every place
w ∉ Sv such that X has good reduction at w.

3.2 Key Proposition

Fix a finite set of places S of L, containing all the archimedean places. To prove
�eorem 1.A and�eorem 1.B, we need the following proposition.
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Proposition 3.1 Assume Conjecture 1.2 and let {ρv}v be a system of representa-
tions satisfying conditions (S.1)– (S.4). For every w /∈ S, let aw ∈ OK be the trace
of ρv(Frobw). �en there exists f a normalised Hilbert eigenform for L with Fourier
coefficients in OK , such that for every w /∈ S, aw( f ) = aw . Moreover, f is of weight(2, . . . , 2) and conductor divisible only by primes in S.

Remark 3.2 If we start with an abelian variety A/L with OK-multiplication, we can
produce a system

ρv ∶ GL Ð→ GL(Tv(A)),
which satisfies the four conditions of (S) for S the union of infinite places and the
set of places of bad reduction; see [33, §3]. Proposition 3.1 hence implies that A is
modular; i.e., there exists a Hilbert modular form for the totally real field L such that

L(A/L, s) = L( f , s)
up to a finite number of Euler factors. Unconditionally, it has been proven that elliptic
curves over real quadratic fields are modular (see [21]), and, more generally, the work
of Taylor and Kisin implies that elliptic curves over L become modular (in this sense)
a�er a totally real extension L′/L. See [9, �eorem 1.16] and reference therein.

In the proof of Proposition 3.1, we use Conjecture 1.2 and the following result due
to Serre (for the proof, see [34, 4.9.4]).

Proposition 3.3 (Serre) Let q be a power of ℓ. Let r ∶ GE → GL2(Fq) be a continuous
homomorphism, where q = ℓt and E is a local field of residue characteristic p ≠ ℓ and
discrete valuation vE . Let eE ∶= vE(p) and c ≥ 0 be an integer such that the image via
r of the wild inertia of E has cardinality pc . We denote by n(r, E) the exponent of the
conductor of r. We have

n(r, E) ≤ 2(1 + eE ⋅ c + eE
p−1
).

We also need to compute the weight and the conductor of the modular forms
produced by Conjecture 1.2. As anticipated in Remark 1.1, this is a known result under
some assumptions. �e weight part stated in the following theorem is a special case
of the work [23]; the conductor part follows from automorphy li�ing methods or can
be seen as a consequence of the main theorem of [22].

�eorem 3.4 [23, 22] Let ℓ > 5 and ρ̄ ∶ GL → GL2(Fℓ) be an irreducible totally odd
representation such that its determinant is the cyclotomic character and it is finite flat
at all places w ∣ ℓ. Assume, furthermore, that ρ̄ satisfies the Taylor–Wiles assumption;
namely,

ρ̄∣GL(ζℓ)
is irreducible,(TW)

where ζℓ is a primitive ℓ-th root of unity. �en if ρ̄ is modular, there exists a Hilbert
modular form of parallel weight 2 and conductor equal to the Artin conductor of ρ̄ giving
rise to ρ̄.

We are now ready to prove Proposition 3.1.
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Proof Our goal is to apply Serre’s conjecture to ρ̄v , the reduction modulo v of the
representation ρv , for infinitely many v ∉ SK , where SK is the following finite set of
primes of K ∶

SK = {v ∶ v ∣ ℓ and w ∣ ℓ for some w ∈ S or ℓis ramified in L}.
Let v be such a prime, and let ℓ be its residue characteristic.

We first compute the conductor N(ρ̄v). Since ρ̄v is unramified outside Sv , the
conductor is divisible only by primes in S. We then apply Proposition 3.3 to E = Lw
and r = ρ̄v . �e image of ρ̄v s contained in GL2(Fℓt), where t ≤ [K ∶ Q] = nK . �e
cardinality of this group is ℓt(ℓ2t − 1)(ℓt − 1). LetWw denote thewild inertia subgroup
of GLw

. If ℓ satisfies the following congruences:

ℓ
nK /≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
±1 mod p if p ≠ 2, 3
±1 mod 8 if p = 2,
±1, 4, 7 mod 9 if p = 3,

(⋆)

then the same congruences hold for ℓt , and hence ρ̄v(Ww) is trivial if p ≠ 2, 3 and is
at most p5 if p = 2 and at most p if p = 3. Hence for v ∉ S laying above ℓ satisfying
the above conditions, using that eE ≤ [L ∶ Q] = nL , the inequality of Proposition 3.3
implies that

nK(ρ̄v , Lw) ≤
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2(1 + nL) if p ≠ 2, 3,
2(1 + 6nL) if p = 2,
2(1 + 2nL) if p = 3.

Writing pw for the prime ideal of L corresponding to w, we hence find that the
conductor of ρ̄v divides

C ∶= ∏
w∈S ,
w∤2,3

p2+2nL
w ⋅ ∏

w∈S ,
w∣2

p2+12nL
w ⋅ ∏

w∈S ,
w∣3

p2+4nL
w .

Finally, notice that ρv is odd thanks to the condition on the determinant, and,
moreover, [5, Proposition 5.3.2] implies that there exists a density one set of primes
such that (ρ̄v)∣GL(ζℓ)

is irreducible, i.e., (TW) is satisfied.

We can apply Conjecture 1.2 to ρ̄v for v ∈ Σ, where Σ is the infinite set of primes
v ∣ ℓ such that v /∈ SK , ℓ satisfies (⋆); ρ̄v is absolutely irreducible and satisfies (TW).We
have produced infinitely many fv Hilbert modular eigenform, which by�eorem 3.4
are of parallel weight 2 and level dividingC.�eir Fourier coefficients are defined over
a ring O(v) ⊂ OK , and at a prime λ ∣ v , the associated Galois representation ρ fv ,λ is
isomorphic to ρ̄v modulo λ. Since the space of Hilbert modular form of fixed weight
and with conductor dividing C is finite dimensional (see [20, �eorem 6.1]), we can
find at least one Hilbert modular eigenform f of parallel weight 2 and level dividing
C defined over some O ⊂ OK such that for infinitely many of the v above, the same
property holds for ρ f ,λ for λ ∣ v. �is implies that for all w /∈ S , the congruence

aw( f ) ≡ aw mod λ ∣ v
holds for infinitely many primes λ, and hence, aw( f ) = aw , as required. ∎
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3.3 Proof of Theorem 1

Recall that, as in Section 1.2, the system (ρv)v is required to satisfy the following
additional property:

the field generated by aw for every w is exactly K .(S.5)

In other words, we have K( f ) = K, where f is the Hilbert modular form for L
produced in Proposition 3.1.

Proof Starting with our initial datum of Galois representations, we have produced
aHilbertmodular form f forL.We can then apply�eorem2.5, which gives an abelian
variety A f over L of dimension [K ∶ Q] and an embedding ofOK into End(A). For all
but finitely many w ∣ p at which A f has good reduction

det(1 − XρA f ,v(Frobw)) = 1 − aw( f )X + NwX
2 ,

where v is a finite prime of K not dividing p and ρA f ,v is the GL-representation on
Tv(A f ), the v-adic Tate module of A f . We have therefore produced an abelian variety
A f as stated in�eorems 1.A and 1.B.

We just need to stress that we do not require any conjectural statement in the
case nL = 1. Indeed, we can use �eorem 2.3 in place of Blasius’ conjectural version,
and Serre’s conjecture is fully known thanks to the work of Khare–Wintenberger [27,
�eorem 1.2]. ∎

3.4 A Corollary

We rephrase the main results of the section as needed to prove�eorem 2.

Corollary 3.5 Assume that, in the setting of �eorems 1.A and 1.B, we also have a
representation

ρ ∶ GL Ð→ GL2(OK/N),
for some integral idealN ⊂ OK , such that for all pairs (v , a), where v is a place of K and
a ∈N − {0}, such that va dividesN, the reductions of ρ and ρv modulo va agree. �en
there exists an nK-dimensional abelian variety A/L with good reduction at all w outside
S , and the action of GL on A[N] is given by ρ.

Proof �eorems 1.A and 1.B give an nK-dimensional abelian varietyA/L and, using
the Néron–Ogg–Shafarevich criterion, we can see that it has good reduction at all w
outside S. Finally, GL acts on A[N] via ρ, since the reduction modulo va of ρ and ρv
agree. ∎

4 Finite Descent Obstruction and Proof of Theorem 2

In this final section, we recall the finite descent obstruction for integral points,
explaining how it relates to the system of Galois representations considered in the
previous section. Using �eorem 1, we indeed produce an OL ,S-point of integral

https://doi.org/10.4153/S0008439520000569 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000569


468 G. Baldi and G. Grossi

models of twists of Hilbert modular varieties, which is what we require to prove
�eorem 2.

4.1 Recap on the Integral Finite Descent Obstruction

Let Y/F be a smooth, geometrically connected variety (not necessarily proper) over a
number field F. Let S be a finite set of places of F , and, as before, assume that S contains
the archimedean places and all places of bad reduction of Y. Choose and fix a smooth

model Y of Y over OF ,S . In this section, we recall the definition of the set Y
f−cov

,
which will correspond to the adelic points of Y that are unobstructed by all Galois
covers. Tomake the paper self contained, we recall the discussion from [26, Section 2]
(where the authors work with affine curves). We then recall that, for Hilbert modular
varieties, a point unobstructed by finite covers admits an infinite tower of twists of
covers with a compatible system of li�s of adelic points along the tower (following
[26, Proposition 1]).

Let π ∶ X→ Y be a map of OF ,S-schemes, such that it becomes a Galois covering
over F. Such a map is called a geometrical Galois cover of Y. Denote by Tw(π)
the set of isomorphism classes of twists of π, i.e., of maps π′ ∶ X′ → Y that become
isomorphic to π over F. We have

Y(OF ,S) = ⋃
π′∈Tw0(π)

π′(X′(OF ,S)),
where Tw0(π) is a suitable finite subset of Tw(π) (for a more detailed discussion, we
refer the reader to [38, pp. 105, 106]), and π′ ∶ X′ → Y is a twist of π. In what follows,
w denotes a place of F.

Definition 4.1 WedefineY
f−cov(OF ,S) = Y f−cov

as the set of (Pw)w ∈ ∏w∉S Y(OFw )
such that, for each geometrical Galois cover π, we can write

Pw = π′(Qw), ∀w ∉ S
for some π′ ∈ Tw0(π) and (Qw)w ∈ ∏w∉S X

′(OFw ).
Proposition 4.1 Apoint (Pw)w lies inY

f−cov
if and only if, for each geometrical Galois

cover π ∶ X→ Y, we can choose a twist π′ ∶ X′ → Y and a point (Pw)π ∈ ∏w∉S X
′(OFw )

li�ing (Pw)w in a compatible way (i.e., if π1 , π2 are Galois covers and π2 dominates π1,
then π′2 dominates π′1 and (Pw)π′2 maps to (Pw)π′1 ).

A fewwords to justify the equivalence between the two definitions are needed.�is
is explained in [26, Proposition 1] for curves, and it relies on results from [39] (notably
[39, Lemma 5.7]3 ). In [39], Stoll works with projective varieties and their rational
points, but what he says still holds true for the integral points of non-projective
varieties. Once such differences are taken into account, the proof works in the same
way in our setting.

3It is actually better to refer to the corrected version of [39] available on the author’s website
( www.mathe2.uni-bayreuth.de/stoll/papers/Errata-FiniteDescent-ANT.pdf ).
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Clearly, we have Y(OF ,S) ⊂ Y f−cov
, and so if Y

f−cov
is empty, then Y(OF ,S) has

to be empty as well. What can be said whenY
f−cov

contains a point?

Definition 4.2 IfY
f−cov(OF ,S) ≠ ∅ implies thatY(OF ,S) is non-empty, we say that

the S-integral finite descent obstruction is the only obstruction for the existence of
S-integral points.

From now on, we specialise to the case of Hilbert modular varieties (and their
twists).

4.2 Integral Points on Hilbert Modular Varieties

Recall the notation from Section 2.2.1. Let YK(N) be the nK-dimensional Q-scheme
described in Section 2.2.1 and let N be the integer such that N ∩ Z = (N). �e set of
twists of π ∶ YK(N)→ YK(1) over a number field F corresponds to the set of Galois
representations ρ ∶ GF → GL2(OK/N)whose determinant is the cyclotomic character
χ ∶ GF → (Z/NZ)×. Moreover, a point x ∈ YK(1)(F) li�s to a F-rational point of the
twist of YK(N) corresponding to a representation ρ, if and only if ρ describes the
action ofGF on theN-torsion of the underlying abelian varietyAx (as anOK-module).

Using the moduli interpretation of Section 2.2.1, we can construct a model of
YK(N) over Z, which is smooth over Z[1/b], for some natural number b, divisible
by N. To be more precise,b depends on the level structure and the discriminant of K.
Fixing such a model, which we denote by YK(N), we can talk about OF ,S-points of
YK(N), for any number field F and set of places S containing the archimedean places
and the ones dividing b. Such OF ,S-points then correspond to abelian varieties (with
some extra structure), having good reduction outside S. Recall thatN is assumed to be
bigger than 3, since it is important to have a finemoduli space. For example, the affine
line is the moduli space of elliptic curves and has plenty of Z-points, even though
there are no elliptic curves defined over Z.

We are ready to study the finite descent obstruction for theOL ,S-points ofYK(N)
and its twists, where L is a totally real field (the fact that L is totally real will be used
only in the next section). Let

ρ ∶ GL Ð→ GL2(OK/N)
be a representation whose determinant is the cyclotomic character. Assume that S
contains the places w of ramification of ρ. Under this assumption, arguing as above,
we can considerYρ to be the S-integral model of the twist ofYK(N) corresponding
to ρ. From now on, we assume that Yρ(OL ,S) is non-empty. �e next lemma relates

a point (Pw)w ∈ Y f−cov
ρ to a system of Galois representations as considered in the

previous section.

Lemma 4.2 A point (Pw)w ∈ Y f−cov
ρ (OL ,S) corresponds to the following data:

• for each finite place v of K a representation ρv ∶ GL → GL2(Kv);
• for each finite place w of L such that w ∉ S an abelian variety Aw/Lw of dimension
nK , with good reduction and OK-multiplication;

https://doi.org/10.4153/S0008439520000569 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000569


470 G. Baldi and G. Grossi

satisfying:

• for every place v in K the action of GLw
on Tv(Aw) is given by the restriction of ρv to

the decomposition group at w;
• for all pairs (v , a) such that va dividesN, the reductions of ρ and ρv modulo va agree.

Moreover, every such system satisfies the first four conditions of (S).

Proof We first check, using Lemma 4.1, that an unobstructed point corresponds to
a system of Galois representations as described above, and then we show that every
such system enjoys the desired properties.

�anks to Proposition 4.1, we can fix a compatible system of li�s of (Pw)w on

Y
f−cov
ρ (OL ,S). In particular, for each M divisible by N, we obtain a twist YK(M)′

of YK(M) and a compatible family of points (Pw)M of YK(M)′ li�ing (Pw)w . We
remark here that the latter compatible family of points depends on (Pw)w . Indeed, a
priori, we cannot simply li� ρ to modM coefficients.

By the interpretation of YK(M)′ as moduli space of abelian varieties discussed
above, the point (Pw)M corresponds to an abelian variety Aw/Lw of dimension nK ,
with good reduction and OK-multiplication and prescribed M-torsion. �e other
conditions are easily checked as at the end of proof of [26, �eorem 2].

�e fact that the action of GLw
on Tv(Aw) is given by the restriction of ρv to the

decomposition group at w ensures that (S.1) and (S.2) are satisfied. Moreover, since
Aw has good reduction, Aw[v] ≃ ρ̄v is a finite flat group scheme over OKw

for allw ∣ ℓ
if v ∣ ℓ; this implies that (S.3) also holds.

Finally, we need to show that (S.4) is satisfied. With the three conditions above,
one can show, as in the proof of Proposition 3.1, that the conductor of ρ̄v divides a fixed
idealC of L. Ifw is such thatAw/Lw is supersingular at v, thenAw[v] ≃ ρ̄v is absolutely
irreducible. If there existed infinitely many v such that ρ̄v is absolutely reducible, we
could then write the semisemplification of ρ̄v as direct sum of ϕ and χℓϕ

−1, for some
character ϕ. Since ρ̄v ≃ Aw[v] for w ∣ p, we then have that Aw is ordinary, and hence
ϕ is unramified at w. We also know that the conductor of ϕ divides C; hence, if w ≡ 1
mod C, we have

aw(Aw) ∶= Tr(Frobw , Tv(Aw)) ≡ χℓ(Frobw) + 1 mod v .

Since χℓ(Frobw) = p[Lw ∶Qp], we showed that if we had infinitely many v such that ρ̄v is

absolutely reducible, we would find aw(Aw) = p[Lw ∶Qp] + 1. Since theWeil bound says

that ∣aw ∣ ≤ 2√p[Lw ∶Qp], we reached a contradiction. ∎

Remark 4.3 As discussed above, for any number field F, we have amap from YK(F)
to systems of Galois representations satisfying (S.1)–(S.4). �anks to Faltings [18,
Satz 6], this map has finite fibres. Indeed, if two points give rise to the same system,
the two corresponding abelian varieties have the same locus of bad reduction, which
we denote by S. It follows from the Shafarevich conjecture that Shimura varieties of
abelian type have only finitely manyOF ,S-points. Formore details, we refer the reader
to [43, �eorem 3.2(A)].
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We are now ready to prove themain theorem about descent obstruction forHilbert
modular varieties

4.3 Proof of Theorem 2

We do not treat the cases nL = 1 and nL > 1 separately, but, as in the proof of�eorem
1, we emphasize that we do not need any conjectural statement in the case nL = 1, since
we have Shimura’s unconditional result, �eorem 2.3.

Proof �anks to Lemma 4.2, a point inY
f−cov
ρ (OL ,S), which is assumed to be non-

empty, gives rise to a compatible system of representations of GL , denoted by {ρv}v .
Let E be the the subfield ofK generated by tr(ρv(Frobw)) for allw. If E = K, Corollary
3.5 produces an OL ,S-abelian variety A with OK-multiplication, such that GL acts on
A[N] via ρ. To conclude the proof, we just need to see how A corresponds to a point
P ∈ Yρ(OL ,S). �e only issue that is not clear from the quoted corollary is whether A
is principally OK-polarised, but this follows from the discussion in Section 2.4.

If E is strictly contained in K, i.e., condition (S.5) is not satisfied, we consider
SE , the Hilbert modular variety associated with E and of levelN ∩OE . For the same
reason as above, the system {ρv} corresponds to a OL ,S-point P of the twist by ρ of
SE . �e embedding ResE/QGL2 ↪ ResK/QGL2 induces a map of Shimura varieties

r ∶ SE Ð→ YK(N),
and therefore on their twists by ρ. Via r, we can regard P as anOL ,S-point ofYρ , which
completes the proof of the theorem. �e only difference is that the abelian variety
constructed in this case is not primitive. �is concludes the proof of �eorem 2. ∎
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