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SUMMARY
In this work a new nonoverconstrained redundant decoupled
robot, free of compound joints, formed from three parallel
manipulators, with two moving platforms and provided with
six active limbs connected to the fixed platform, called
LinceJJP, is presented. Interesting applications such as multi-
axis machine tools with parallel kinematic architectures,
solar panels, radar antennas, and telescopes are available for
this novel spatial mechanism.

1. Introduction
Since the pioneering contributions of Gough1,2 and Stewart3

a tire testing machine and a flight simulator, respectively,
where both inventions are based on parallel mechanical
devices known as hexapods with active variable limbs,
parallel manipulators have received an increasing interest
and attention from the scientific community. Furthermore,
potential applications of most parallel manipulators such
as multi-axis machine tools, pointing devices, solar
panels, radar antennas, telescopes, walking machines, micro
manipulators, and so on have found relevant roles in the
world of the industry substituting slow, but firmly, at the
serial manipulators. An example of the success of parallel
manipulators in the industry is the robot Delta, invented by
Clavel4,5 which, in spite of its lower mobility, can performs a
wide variety of tasks. On the other hand, it is well known that
parallel manipulators based on hexapod architectures makes
mechanisms strongly coupled in kinematics, dynamics, and
control. Decoupled parallel manipulators are a viable option
to overcome such drawbacks.

A decoupled parallel manipulator can be understood in
different ways: (i) the position and orientation of the moving
platform can be achieved separately by means of different
sets of active joints, (ii) not all the active limbs are connected
at the moving platform, and (iii) one degree of freedom
(DOF) of the moving platform is influenced by only one
active joint, the perfect decoupled robot. The first option
was investigated by Hunt and Primrose6 for fully parallel
manipulators and was applied by Zlatanov et al.7 in the
design of a 6-DOF three-legged parallel manipulator. The
second option allows mixed motions over the end-effector
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or output platform and it is used in this contribution.
Furthermore, taking into account that the forward position
analysis (FPA) of parallel manipulators with decoupled
motions can be easily derived in closed form, Gallardo-
Alvarado et al.8 proposed a family of nonoverconstrained
redundantly actuated parallel manipulators and Gao et al.9, 10

developed a 5-DOF machine tool. Of course, as it is shown
in refs. [11–13], the idea of decoupled motions is also
applicable to the so-called defective parallel manipulators, in
other words, spatial parallel manipulators with fewer than six
DOF. However, these contributions proposed asymmetrical
manipulators and in some cases the inclusion of compound
joints, or kinematic pairs formed from two or more distinct
kinematic pairs, difficult the mechanical assembly and
performance of these parallel manipulators. Alternatively,
the manipulability and workspace can be increased by
connecting a serial manipulator to the moving platform
of a parallel manipulator, a natural an evident possibility.
For example, a spherical wrist can be attached at the
moving platform of a Tricept yielding a 6-DOF spatial
mechanism,14 other combinations were reported in Carbone
and Ceccarelli.15,16 Furthermore, if the spherical wrist is an
open chain, then, in order to improve the stiffness, the serial
manipulator can be remplazed by a parallel manipulator,
producing a serial–parallel manipulator (see, for instance,
references).17–21 However, it is important to mention that a
serious drawback of serial–parallel manipulators is that not
always is possible to attach the active limbs at the fixed
platform, thus the corresponding payload/capacity ratio, a
fundamental characteristic of parallel manipulators, could be
questionable.

In this work a novel decoupled robot, called LinceJJP,
formed from an inner serial–parallel manipulator and an
external parallel manipulator, with a common moving
platform in which, unlike the contributions of Brodsky et al.22

and Austad,23 all the active limbs are attached at the fixed
platform is introduced.

2. Description of the Robot LinceJJP
A general Gough–Stewart platform is a parallel manipulator
composed by a moving platform and a fixed platform
connected to each other by means of six variable limbs UPS-
type (R, U, P, and S = Revolute, Universal, Prismatic, and
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Spherical joint, respectively). The limbs are connected at the
fixed platform by means of six distinct universal joints and
at the moving platform by means of six distinct spherical
joints. Usually, the spherical joints are placed in such a way
that form a plane over the moving platform. It is well known
that such architecture limits seriously the workspace and
manipulability of this mechanism. Furthermore, the FPA, a
necessary step in the design process of any mechanism, is
a complicated task that leads to a multiple solution due to
the coupled motions over the moving platform. In fact, given
the limb lengths of this parallel manipulator, the moving
platform can reach up to 40 different locations with respect
to the fixed platform.24–26

In order to overcome the drawbacks, or at least
to ameliorate it, of a general Gough–Stewart platform,
preserving its merits such as stiffness and accuracy, in this
work a new spatial mechanism is presented. The basic idea
consists of transforming the general Gough–Stewart platform
into a spatial mechanism with decoupled motions over the
output platform (see Fig. 1).

Figure 1(a) is a schematic representation of the classical
general Gough–Stewart platform. Please note that the six
spherical joints attached at the moving platform form a
plane and therefore the workspace of the mechanism is
seriously affected. In addition, the FPA is a complicated
task due to the fact that the pose of the moving platform
depends of the coupled displacements of the six limbs. In
order to improve the manipulability and to increase the
workspace, the spherical joints can be relocated in such a
way that two different planes are formed taking two groups
of kinematic pairs, where each group contains three spherical
joints (Fig. 1(b)). As it is shown in Chen and You,27 the
benefits of this modification are indisputable, however this
option cannot eliminate the problem of coupled motions of
the six limbs. In order to eliminate this inconvenient, the
two planes can be transformed into two moving platforms
connected each other by means of three passive variable
limbs, preserving the outer active limbs which connects the
output platform at the fixed platform (Fig. 1(c)). Several
topologies can be derived from this possibility, and only one
is studied here.

The robot proposed in this contribution consists of an
internal serial–parallel manipulator formed from two serially
connected 3-RPS parallel manipulators,28 and an external 3-
UPS parallel manipulator,1–3,29 (see Fig. 2). As far as the
authors are aware, this architecture or topology had not been
considered in previous works.

As it is shown in Fig. 2, the architecture of the robot
LinceJJP is simple, compact and it is obtained as follows.
The robot is composed by two moving platforms, namely
the middle platform and the output platform, and a fixed
platform. The middle platform is connected at the fixed
platform by means of three RPS-type kinematic chains,
where the prismatic joints play the role of active joints, and
therefore three DOF, one translation, and two rotations are
provided to the middle platform with respect to the fixed
platform. On the other hand, the output platform is connected
at the middle platform by means of three passive RPS-type
limbs, whose function is to restrict one rotation of the output
platform with respect to the middle platform. Finally, the

Fig. 1. The transformation of a general Gough–Stewart platform
into a decoupled robot.

output platform is connected at the fixed platform by means
of three UPS-type kinematic chains, where the prismatic
joints play the role of active joints. With this topology all the
active variable limbs are, conveniently, attached at the fixed
platform.

The idea of using more than one moving platform, of
course, is not new. In fact, the trend of using mechanisms
formed from serially connected parallel manipulators,
also known as hyper redundant manipulators, has been
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Fig. 2. Robot LinceJJP and its geometric scheme.

extensively reported in the literature.30–35 However, in such
mechanisms not all the active limbs can be attached at the
fixed platform. On the other hand, the robot introduced
here differs from the double circular-triangular 6-DOF
parallel robot proposed by Brodsky et al.22 in that such
mechanism is formed with two serially connected 3-DOF
planar mechanisms; where each planar mechanism consists
of a circular–triangular combination, in which the triangle is
connected at the circle by means of three sliders pivoted
on axes, with such architecture only three of the six
active joints can be attached at the fixed platform. In fact,
the design of Brodsky et al.22 requires that active limbs
must be attached at the upper moving platform, with its
corresponding servos. Similarly, taking into account that
the robot patented by Austad23 (see Fig. 3), is composed
of five variable SPS-type limbs and only three of them
can be attached at the fixed platform, then one can assume
that the robot LinceJJP has a compact topology due to
the fact that all the active limbs are connected directly to
the fixed platform, simplifying the kinematics and control
of it.

Finally, in order to verify the novelty of the proposed robot,
the reader is referred to36–38 where an exhaustive atlas of
parallel manipulators as well as constructed prototypes can
be consulted.

Fig. 3. Arm device of Austad.

2.1. Discussion of the mobility of LinceJJP
The correct computation of the effective DOF F in closed
chains is an open problem. An exhaustive review of formulae
addressing this topic is reported in Gogu.39 Regarding to
the existing methods of computation, these formulae are
valid under specific conducted considerations. Clearly, the
problem is more complex for mechanisms formed from
two or more parallel manipulators, so is the case of hyper-
redundant manipulators.

The following is a variant of the well-known Kutzbach–
Grübler formula for computing the DOF of spatial parallel
manipulators

F = 6(n − j − 1) +
j∑

i=1

fi, (1)

where n is the number of links, j is the number of kinematic
pairs, and fi is the number of freedoms of the ith kinematic
pair. For the robot LinceJJP n = 21, j = 6R + 9P + 3U +
9S = 27,

∑j

i=1 fi = 48 and therefore F = 6. In what follows
this apparent correct result is analyzed.

The 3-RPS parallel manipulator was introduced by the
first time by Hunt40 and its kinematic characteristics were
extensively investigated, among others, by Huang and
coworkers41–44. Dai et al.45 proved that in a 3-RPS parallel
manipulator a basis representing the motions of the moving
platform, with respect to the fixed platform, consists of
three elements, two nonparallel coplanar rotations, and one
translation along an axis perpendicular to the plane formed
by the spherical joints. According to this basis, the middle
platform of the robot under study cannot rotate with respect
to the fixed platform along an axis perpendicular to the
plane formed by the spherical joints attached at the middle
platform. It is straightforward to demonstrate that such
argument is valid too for the output and middle platforms,
in fact, the output platform has a rotation restricted with
respect to the middle platform due to the passive 3-RPS
parallel manipulator connecting both platforms. With these
considerations in mind, although the computed DOF of the
robot at hand is six, the output platform does not accept
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arbitrary orientations with respect to the fixed platform.
Finally, in order to reinforce this conclusion, the following
paragraph is an adaptation of interesting comments provided
by one of the reviewers.

The screw system describing the kinematics of the middle
platform, with respect to the fixed platform, is composed of
three screws of zero pitch lying in the plane formed by the
centres of the spherical joints attached to the middle platform.
Similarly, the screw system describing the kinematics of
the output platform, with respect to the middle platform,
is composed of three screws of zero pitch lying in the plane
formed by the spherical joints attached at the output platform.
Therefore, the total composition of the two screw systems
should be 6 DOF; however, due to the fact that they intersect,
they admit a reciprocal wrench, which is the wrench of
infinite pitch orthogonal to the two planes associated to the
spherical joints. Due to this, the robot loses 1 DOF.

3. Finite Kinematics
In this section the position analysis of the proposed robot is
presented.

3.1. Forward position analysis
The FPA is a crucial step in the design process of
parallel manipulators, and for the manipulator robot under
study is formulated as follows: Given a set of six
generalized coordinates {Qi, qi}(i = 1, 2, 3), compute the
feasible locations that the output platform can reach with
respect to the fixed platform.

Due to the decoupled architecture, the pose of the middle
platform, body B, with respect to the fixed platform, body A,
is controlled by means of the internal generalized coordinates
qi(i = 1, 2, 3). Furthermore, the pose of the middle platform
is easily determined through the computation of the
coordinates of the centres of the spherical joints attached
at the middle platform, points si = (xi, yi, zi).

With reference to Fig. 2, the revolute joints attached at the
fixed platform impose the following geometric constraints
over the middle platform

(si − Ri) • ûi = 0 i = 1, 2, 3, (2)

where Ri is the position vector of the nominal point Ri of the
ith revolute joint, ûi is the axis of the revolute joint, si locates
the point si , and the dot • denotes the usual inner product of
the three-dimensional vectorial algebra. Furthermore, three
closure equations can be written as

(si − Ri) • (si − Ri) = q2
i i = 1, 2, 3. (3)

Finally, according to the triangle s1s2s3 three compatibility
equations are given by

(si − sj ) • (si − sj ) = d2 i, j = 1, 2, 3 mod(3) (4)

Expressions (2), (3), and (4) represent a system of nine
equations in the nine unknowns xi, yi, zi(i = 1, 2, 3) that can
be reduced, see for instance references,46,47 into a univariate
16th polynomial equation. Once the coordinates of the points

si are calculated, the origin of the reference frame SB with
respect to the fixed reference frame SA, vector AρB , results
in

AρB = (s1 + s2 + s3)/3. (5)

Finally, the pose of the middle platform with respect to
the fixed platform is summarized in the 4 × 4 homogeneous
transformation matrix ATB :

ATB =

[
ARB AρB

O1×3 1

]
, (6)

where ARB is the rotation matrix which is computed by
means of the coordinates of the points si(i = 1, 2, 3), for
details see Gallardo-Alvarado et al.48

Following a similar procedure, the pose of the output
platform, with respect to the fixed platform, is computed.
This problem consists of finding the coordinates of the
centres of the spherical joints attached at the output platform,
points Si = (Xi, Yi, Zi), i = 1, 2, 3, given the pose of the
middle platform, with respect to the fixed platform, and the
generalized coordinates Qi(i = 1, 2, 3). To this end, consider
the following closure equations

S1 + S2 + S3 = S′
1 + S′

2 + S′
3,

(S′
i − ri) • û′

i = 0, (Si − Ui) • (Si − Ui) = Q2
i ,

(Si − S′
i) • (Si − S′

i) = e2(i = 1, 2, 3),

(Si − Sj ) • (Si − Sj ) = b2 i, j = 1, 2, 3 mod(3),

(S′
i − S′

j ) • (S′
i − S′

j ) = g2 i, j = 1, 2, 3 mod(3),

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(7)

where Si , S′
i , Ui , ri , (i = 1, 2, 3) are position vectors of the

points Si, S
′
i , Ui, ri, (i = 1, 2, 3) associated, respectively, to

spherical, universal and revolute joints while û′
i is the axis

of the ith revolute joint ri . Equations (7) represent a system
of 18 equations in the unknowns Xi, Yi, Zi, X

′
i , Y

′
i , Z

′
i(i =

1, 2, 3). It is important to emphasize that due to the variable
orientation of the middle platform, the procedure to solve (7)
is more complicated than the derived for the middle platform.
The solution of this kind of equations was successfully
approached by Innocenti and Parenti-Castelli.29

Finally, once the coordinates Si(i = 1, 2, 3) is computed,
the homogeneous transformation matrix ATC between the
output and fixed platforms results in

ATC =

[
ARC AρC

O1×3 1

]
, (8)

where

AρC = (S1 + S2 + S3)/3 (9)

is the geometric centre of the output platform expressed in the
reference frame SA and ARC is the rotation matrix between
reference frames SC and SA. Furthermore, the homogeneous
transformation matrix BTC between the output and fixed
platforms can be calculated from

ATC = ATB BTC. (10)
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3.2. Inverse position analysis
The inverse position analysis consists of finding the limb
lengths of the robot given the pose, or transformation matrix
ATC , of the output platform with respect to the fixed platform.

Clearly, the coordinates of any point W attached at the
output platform can be obtained as

WSA = ARC WSC + AρC, (11)

where WSA is point W expressed in the fixed reference
frame SA while WSC is the same point but expressed in
the moving reference frame SC . The centres of the spherical
joints attached at the output platform are computed by means
of Eq. (11), after the lengths Qi(i = 1, 2, 3) result in

Q2
i = (Si − Ui) • (Si − Ui) i = 1, 2, 3. (12)

On the other hand, due to the tangential arrangement of the
kinematic pairs attached at the middle platform it is possible
to write three geometric constraints as

(S′
1 − r1) • (s2 − s3) = 0, (S′

2 − r2) • (s3 − s1) = 0,

(S′
3 − r3) • (s1 − s2) = 0.

}
(13)

Moreover, according to triangles s1s2s3 and r1r2r3 one can
write

s1 + s2 + s3 = r1 + r2 + r3. (14)

Furthermore, the variable lengths pi are restricted to

(S′
i − ri) • (S′

i − ri) = p2
i (15)

whereas three compatibility geometric constraints are given
by

(si − ri) • (si − ri) = b2 i = 1, 2, 3. (16)

Finally, according to the triangle r1r2r3 it follows that

(ri − rj ) • (ri − rj ) = w2 i, j = 1, 2, 3 mod(3). (17)

Equations (2)–(4) and (13)–(17) allow to determine the
unknowns ri , si , pi , and qi . At this point it is important
to emphasize that, as it was correctly noted by one of the
reviewers, the topology of the proposed robot is such that
there exist passive translations over the middle platform.
The manipulation of such extra DOF allows to improve the
dexterity of the hybrid manipulator. Consider for instance
that the user has the possibility to assign arbitrary values
to one of the generalized coordinates qi in order to avoid
singularities, without affecting the final pose of the output
platform.

4. Infinitesimal Kinematics
In this section the velocity and acceleration analyses of the
proposed robot are approached by using the theory of screws.
For detailed information of the kinematic analysis of closed

chains and parallel manipulators, using this mathematical
resource, the reader is referred to.49–52

The modeling of the screws is depicted in Fig. 2. In order
to solve the inverse velocity and acceleration analyses, it
is necessary the introduction of auxiliary screws with the
purpose to satisfy the required rank of the involved Jacobian
matrices, with this consideration in mind the revolute joints
are modeled as cylindrical joints, in which the corresponding
translational velocities are equal to zero. In other words,
0ω1

i = 6ω7
i = 0(i = 1, 2, 3).

4.1. Velocity analysis
Let AωC and AvC

O be, respectively, the angular and linear
velocities of a point O attached at the output platform. The
velocity state, or twist about a screw, of the output platform
with respect to the fixed platform, AVC = [AωC, AvC

O]T , can
be obtained trough the middle and fixed platforms as

AVC = AVB + BVC, (18)

where AVB is the velocity state of the middle platform with
respect to the fixed platform, and BVC is the velocity state
of the output platform with respect to the middle platform.
Furthermore, these kinematic states can be written in screw
form as follows

V = JiΩi , V ∈ {AVB, BVC, AVC} i = 1, 2, 3, (19)

where the Jacobian matrices Ji ∈ {AJB
i , BJC

i , AJC
i } are given

by

AJC
i =

[
12$

13
i , 13$14

i , 14$15
i

, 15$16
i , 16$17

i , 17$18
i

]
,

BJC
i =

[
6$

7
i ,

7$8
i ,

8$9
i
, 9$10

i , 10$11
i , 11$12

i

]
,

AJB
i =

[
0$

1
i ,

1$2
i ,

2$3
i
, 3$4

i ,
4$5

i ,
5$6

i

]
,

whereas Ωi ∈ {AΩB
i , BΩC

i , AΩC
i } are matrices containing the

joint velocity rates. In fact:

AΩC
i =

[
12ω

i
13 13ω

i
14 14ω

i
15 15ω

i
16 16ω

i
17 17ω

i
18

]T
,

BΩC
i =

[
6ω

i
7 7ω

i
8 8ω

i
9 9ω

i
10 10ω

i
11 11ω

i
12

]T
,

AΩB
i =

[
0ω

i
1 1ω

i
2 2ω

i
3 3ω

i
4 4ω

i
5 5ω

i
6

]T
.

The inverse velocity analysis consists of finding the joint
velocity rates of the robot given a prescribed velocity state of
the output platform with respect to the fixed platform, AVC .
This analysis is solved directly by means of expressions
(18) and (19), however the lost freedom of the output
platform must be taken into proper account in order to obtain
the desired velocity state. Furthermore, it is important to
emphasize that the Jacobians AJB

i , BJC
i , and AJC

i must be
invertible, otherwise the robot is at singular configuration.

On the other hand, the forward velocity analysis consists
of finding the velocity state AVC , given the active joint
velocity rates of the robot. It is interesting to note that
due to the decoupled architecture, the velocity state AVB

depends only of the three active joints 2ω3
i(i = 1, 2, 3).

Furthermore, since 3$4
i and 4$5

i are reciprocal to the remaining
screws representing the revolute joints in the same limbs, the
application of the Klein form, {∗; ∗}, between the velocity
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state AVB and these reciprocal screws, the reduction of terms
leads to

JT
1 Δ AVB = [0 2ω

1
3 0 2ω

2
3 0 2ω

3
3]T , (20)

where J1 = [3$4
1,

4$5
1,

3$4
2,

4$5
2,

3$4
3,

4$5
3] and Δ =

[
O I
I O

]
is an

operator of polarity defined by the 3 × 3 identity matrix I and
the 3 × 3 zero matrix O. Henceforth, the velocity state AVB

is obtained directly from Eq. (20).
In order to compute the velocity state AVC please note that

the screws 16$17
i (i = 1, 2, 3) are reciprocal to the remaining

screws, in the same limb, representing the revolute joints
of the UPS-type limbs. Thus, after applying the Klein
form between these screws and the velocity state AVC , the
reduction of terms yields

{
16$17

i ; AVC
}

= 14ω
i
15 i = 1, 2, 3. (21)

Similarly, the application of the Klein form of the screws
9$10

i (i = 1, 2, 3) to both sides of Eq. (18) allows to write

{
9$10

i ; AVC
}

=
{

9$10
i ; AVB

}
i = 1, 2, 3. (22)

Finally, casting into a matrix–vector form Eqs. (21) and
(22) one obtains

JT
2 Δ AVC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14ω
1
15

14ω
2
15

14ω
3
15{

9$10
1 ; AVB

}
{

9$10
2 ; AVB

}
{

9$10
3 ; AVB

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (23)

where J2 = [16$17
1 , 16$17

2 , 16$17
3 , 9$10

1 , 9$10
2 , 9$10

3 ]. Therefore
the velocity state AVC can be computed directly from Eq.
(23). Please note that the forward velocity analysis requires
that the active Jacobian matrices J1 and J2 must be invertible,
otherwise the manipulator is at a singular configuration.

In what follows the redundancy of the robot is briefly
explained. First, consider that according to subsection
2.1 AωB • AτB = BωC • BτC = 0 where AτB and BτC are,
respectively, normal vectors to the planes s1s2s3 and S1S2S3.
Furthermore, it is evident that AωC = AωB + BωC . Therefore
the lost rotation of the robot leads to

AωC • (AτB + BτC) − AωB • BτC − BωC • AτB = 0. (24)

Equation (24) is called a zero-torsion condition and indicates
that one element of the angular velocity AωC can be written
as a linear combination of its remaining components. With
this consideration in mind the velocity state AVC can be
considered, by using a proper reference frame, as a five-
dimensional vector which implies that it is possible to write,
according to Eqs. (20) and (23), AVC in terms of first-order

coefficients53 as

AVC = GQ + Q∗ (25)

where Q is a 5 × 1 matrix containing five of the six
generalized or active joint velocity rates which is affected
by the 5 × 5 matrix G whose elements are the corresponding
first order coefficients of the chosen active joints while Q∗
is a 5 × 1 matrix formed with the remaining active joint
multiplied by its corresponding first order coefficients. Given
a prescribed velocity state AVC , expression (25) indicates
that the user can select five of the six active joints and the
remaining one can be used in order to avoid/escape from
possible singularities, if any. Furthermore, the extra active
joint can be used with the purpose to optimize trajectories.
This feature is one of the main benefits of the robot LinceJJP.

4.2. Acceleration analysis
Let AαC and AaC

O be, respectively, the angular and linear
accelerations of a point O of the output platform. The reduced
acceleration state, or accelerator, of the output platform with
respect to the fixed platform, AAC = [AαC, AaC

O − AωC ×
AvC

O]T , can be obtained trough the middle and fixed platforms
as

AAC = AAB + BAC + [AVB BVC], (26)

where AAB is the accelerator of the middle platform with
respect to the fixed platform, BAC is the accelerator of the
output platform with respect to the middle platform and the
brackets [∗ ∗] denote the Lie product. Furthermore, these
accelerators can be written in screw form as follows:

A = JiΩ̇i + Li A ∈ {AAB, BAC, AAC}i = 1, 2, 3, (27)

where Ω̇i ∈ {AΩ̇B
i , BΩ̇C

i , AΩ̇C
i } are matrices containing the

joint acceleration rates of the corresponding limbs, whereas
Li ∈ {ALB

i , BLC
i , ALC

i } are composed Lie products given
by

ALC
i =

16∑
j=12

⎡
⎣

jωj+1i
j $j+1

i

17∑
k=j+1

kωk+1
i k$k+1

i

⎤
⎦ ,

BLC
i =

10∑
j=6

⎡
⎣

jωj+1i
j $j+1

i

11∑
k=j+1

kωk+1
i k$k+1

i

⎤
⎦ ,

ALB
i =

4∑
j=0

⎡
⎣

jωj+1i
j $j+1

i

5∑
k=j+1

kωk+1i
k$k+1

i

⎤
⎦ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(28)

The inverse acceleration analysis consists of finding the
joint acceleration rates of the robot given a prescribed
accelerator AAC . This analysis is carried out by means of
expressions (26) and (27). On the other hand the forward
acceleration analysis consists of finding the accelerator of
the output platform with respect to the fixed platform AAC

given the active joint acceleration rates of the robot. This
analysis is very close to the presented to solve the forward
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velocity analysis, therefore only the obtained expressions are
included here. The accelerator AAB can be computed upon
the expression

JT
1 Δ AAB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

{
3$4

1; ALB
1

}
2ω̇

1
3 +

{
4$5

1; ALB
1

}
{

3$4
2; ALB

2

}
2ω̇

2
3 +

{
4$5

1; ALB
2

}
{

3$4
3; ALB

3

}
2ω̇

3
3 +

{
4$5

3; ALB
3

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (29)

whereas the accelerator AAC can be obtained from

JT
2 Δ AAC =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

14ω̇
1
15 +

{
16$17

1 ; ALC
1

}
14ω̇

2
15 +

{
16$17

1 ; ALC
2

}
14ω̇

3
15 +

{
16$17

1 ; ALC
3

}
{

9$10
1 ; AAB + [AVB BVC] + BLC

1

}
{

9$10
2 ; AAB + [AVB BVC] + BLC

2

}
{

9$10
3 ; AAB + [AVB BVC] + BLC

3

}

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (30)

Finally, please note that the computation of the accelerator
AAC , by means of expression (30), does not require the values
of the passive joint acceleration rates of the robot.

5. Simulations using ADAMS c©

With the purpose to illustrate the functionality of the
proposed robot, in this section the robot LinceJJP is used
as a 5-DOF parallel kinematic machine tool for milling
and drilling operations. To this end, the simulation is
carried out using special commercially available software
like ADAMS c©. Four prescribed trajectories are assigned to
the tool tip as follows:

(1) The tool tip performs a translational rectilinear
displacement from point (0,−1.485,0) to point
(0.508,−1.016,−0.254) in such a way that the spindle
platform moves with a fixed orientation with respect to
the fixed platform.

(2) The tool tip is restricted to move on a semicircle of radius
0.254 located in the XY plane.

(3) The tool tip describes a full circle of radius 0.254 in the
XZ plane, with a fixed orientation of the output platform
with respect to the fixed platform.

(4) The LinceJJP is proved as a simple drilling machine tool.

These tasks were successfully performed with ADAMS c©

and they are summarized in Fig. 4. It is important to mention
that in this section only five of the six active joints were
required.

6. Conclusions
In this work a new nonoverconstrained decoupled redundant
robot called LinceJJP is presented. As far as the authors are

Fig. 4. The robot LinceJJP working as a versatile multi-axis
machine tool.

aware this type of architecture has not been considered in
previous works. The main features of LinceJJP are:

• Symmetry, a design criterion introduced in robot
kinematics by Gosselin and Angeles54

• Free of compound joints. In other words, the kinematic
joints are placed at different locations.

• Decoupled architecture. Only three of the six active limbs
connect the output and fixed platforms.

• A semiclosed form solution is systematically obtained
to solve the FPA, a challenging task of most parallel
manipulators.

• The proposed robot does not require of special conditions
of mechanical assembly in order to satisfy the intersection
of screws, and therefore it can be considered as a
nonoverconstrained spatial mechanism.

• The six active limbs are attached at the fixed platform,
simplifying the kinematics and control of the robot.

• Redundancy. An extra DOF which can be used with the
purpose to avoid/escape from singular configurations, as
well to optimize trajectories, is available for the proposed
robot. Furthermore, any of the six active joints can play
this role.

Due to these characteristics LinceJJP is a viable option for
practical applications such as redundant multi-axis machine
tools, telescopes, radar antennas, solar panels, and so on.
Finally, by means of special software like ADAMS c©,
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LinceJJP is simulated as a five-DOF redundant parallel
kinematic machine tool.
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