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We develop a general framework for understanding the nonparametric (aging) prop-
erties of nonnegative random variables through the notion of intrinsic aging. We also
introduce some new notions of aging. Many classical and more recent results are
special cases of our general results. Our general framework also leads to new results
for existing notions of aging, as well as many results for our new notions of aging.

1. INTRODUCTION AND SUMMARY

Consider a nonnegative absolutely continuous random variable Y . The random vari-
able Y could be the time to default in a credit risk (e.g., Ammann [1]), the lifetime of
a reliability system (e.g., Barlow and Proschan [2]), or the demand for an item in a
supply chain (e.g., Porteus [15]). Nonparametric (aging) properties of the distribution
function of this random variable often play a crucial role in characterizing the optimal
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operational policies associated with the random variable. For example, the pricing of
a default swap in credit risk, the replacement policy for a reliability system, or setting
the price-only contract in a supply chain can depend on the nonparametric properties
of the distribution of Y .

In this article we develop a general framework for studying nonparametric classes
of random variables, based on the cumulative hazard rate and the notion of intrinsic
aging (e.g., Çinlar and Ozekici [5] and Çinlar, Shaked, and Shanthikumar [6]). Let X
be a nonnegative absolutely continuous random variable. Suppose X is the intrinsic
life of a reliability system. The actual lifetime T of this system will depend on how the
intrinsic age is accumulated over the calendar time. For example, under extreme con-
ditions the system will age faster than under milder conditions. Suppose the intrinsic
age of the system at time t is φ(t) (φ(0) = 0). Then

T = inf{t : φ(t) ≥ X; t ∈ R+}.

We give a very general result (Theorem 5.3) that allows us to relate aging properties of
random intrinsic lifetimes to aging properties of actual lifetimes, given the appropriate
conditions on φ. It also allows us to generate classes of distributions starting with a
canonical element of the class. Our approach unifies many existing results, leads
to new results for existing notions of aging, and suggests new notions of aging. In
this article almost all of the results are new; any result that is not new is given with
a reference.

Applications of our results span a number of areas of applied probability. In clas-
sical reliability theory, there are many important and well-understood aging notions
for a nonnegative absolutely continuous random variable Y . These notions relate to the
hazard, or failure, rate, and to the residual life, YR(y) = {Y − y|Y > y}. More recently,
the importance of a different notion of aging for income distributions (see Belzunce,
Candel, and Ruiz [3,4]) and pricing problems (see Lariviere and Porteus [10]) has
been recognized. In the pricing context, Y is the random valuation of a customer
for a product, so F̄(p) = P(Y > p) is the probability that a random customer will
buy the product at price p and pF̄(p) is the expected revenue for price p. It turns
out (see Remark 2.1 in Section 2) that the aging notion that is appropriate for this
application is based on the proportional, or length-biased, failure rate of the ran-
dom variable Y , defined by l(t) = th(t), where h(t) = f (t)/F̄(t) is the usual hazard
rate of Y and f (t) is the density of Y . The proportional failure rate was introduced
by Singh and Maddala [19] in the context of modeling income distributions. For
the pricing model, l(p) is the elasticity of demand. We study the scaled conditional

life, YSC(y)
d= {Y |Y > y}/y (called the left proportional residual income by Belzunce

et al. [4]). This is more relevant for pricing problems than the residual life YR(y)
because it more directly relates to the elasticity. In particular, P(YR(y) > a) repre-
sents the proportion of the market willing to pay at least a out of those willing to pay
at least y, whereas P(YSC(y) > a) represents the proportion willing to pay at least
a%(×100) more than y, among those willing to pay at least y. The latter is more
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directly related to the elasticity. Among other results, we show that if Y has increasing
proportional failure rate (IPFR), then YSC(y) is decreasing in y in the hazard rate sense.
We also introduce the complementary notions of scaled hazard rate and scaled residual
life and show that to have a unique optimizer for an inspection problem for incoming
components, Y must have increasing scaled hazard rate, where Y is the quantity of
components inspected before the first defect in an arbitrary order of inspection. We
show how different notions of aging lead to different properties for the residual life,
the scaled conditional life, and the scaled residual life. We also introduce two new
notions of aging that imply IPFR and we study their closure properties.

In Section 2 we give extensive background material. We first define hazard rate,
cumulative hazard rate, and residual lifetime and then extend these notions (Section
2.1). Our approach depends heavily on notions of aging determined by properties
of the cumulative hazard rate function and preserved depending on properties of the
intrinsic aging function, so we define a number of properties of functions that can be
considered extensions of convexity (Section 2.2). We then define various notions of
aging, based on the properties of the cumulative hazard rate (Section 2.3). Finally,
we recall some definitions of various stochastic orders and define some new orders.
In Section 3 we give a unified approach to show which aging properties of intrinsic
lifetimes imply other aging properties of actual lifetimes. In Section 4 we connect
our notions of aging (from Section 2.3) to our new notions of residual lifetimes (from
Section 2.1). In Section 5 we give conditions on the intrinsic aging property such
that properties of the intrinsic lifetime are preserved for the actual lifetime. We show
that recent results for IPFR random variables are consequences of our general results.
Finally, in Section 6 we show how classes of random variables with our new aging
properties can be generated from primitive random variables such as exponential or
Pareto random variables.

Throughout the article, the terms “increasing,” “positive,” and so forth are used
in the nonstrict sense.

2. PRELIMINARIES AND DEFINITIONS

2.1. Various Notions of Hazard Rates and Residual Lifetimes

The following notation will be used. For any random variable Y , we denote its
distribution function by FY and its survival function by F̄Y . When Y is abso-
lutely continuous, we denote its density function by fY . For a nonnegative random
variable Y (FY (0) = 0; limy→∞ FY (y) = 1), we define aY = inf{y : FY (y) > 0} and
bY = sup{y : FY (y) < 1}. Note that bY could be infinite, and aY ≥ 0. Throughout we
will consider only nonnegative random variables and we generally suppose they are
absolutely continuous. However, to preserve some duality properties, we also permit
mixtures of continuous random variables with the constant (degenerate random vari-
able) 0; that is, Y will have a density fY on (aY , ∞), and if aY = 0, Y may also have a
point mass at 0, FY (0) = P{Y = 0} > 0.

https://doi.org/10.1017/S0269964809990015 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990015


“S0269964809990015jra” — 2009/8/3 — 18:27 — page 566 — #4

�

�

�

�

566 R. Righter, M. Shaked, and J. G. Shanthikumar

2.1.1. Residual Life and Hazard Rate (e.g., Barlow and Proschan [2]).
The residual life of a random variable Y is defined as

YR(y)
d= {Y − y|Y > y} , aY ≤ y < bY ,

and the hazard rate (also called the failure rate) of Y is given by

hY (y) = lim
�↓0

1

�
P {YR(y) ≤ �)} , aY < y < bY .

Observe that aYR(y) = 0, bYR(y) = bY − y for all aY < y < bY . Additionally, hYR(y)(t) =
hY (y + t) for aY < y < bY and 0 < t < bY − y.

The cumulative hazard function HY is

HY (y) = − log{F̄Y (y)}, y ∈ (aY , bY ).

Thus, the failure rate, or hazard rate, of Y is

hY (y) = d

dy
HY (y) = fY (y)

F̄Y (y)
, y ∈ (aY , bY ).

We use the following convention: hY (y) = ∞ (and HY (y) = ∞) if F̄Y (y) = 0; that is,
for finite bY , we set hY (y) = ∞, y ≥ bY . We also define the average failure (or hazard)
rate function h̄Y by

h̄Y (y) = 1

y

[
H(0) +

∫ y

0
hY (z)dz

]
= 1

y
HY (y), y ∈ R+

2.1.2. Conditional Shortfall and Reverse Hazard Rate (e.g., Chandra
and Roy [7]). The conditional shortfall, or inactivity time, of a random variable Y
is defined as

YS(y)
d= {y − Y |Y ≤ y}, aY ≤ y < bY ,

and the reverse hazard rate of Y is given by

rY (y) = lim
�↓0

1

�
P{YS(y) ≤ �)}, aY < y < bY .

Observe that aYS(y) = 0, bYS(y) = y − aY for all aY < y < bY . We also have that
hYS(y)(t) = rY (y − t) for aY < y < bY and 0 < t < y − aY .

We note here that the analysis of this article can be applied to shortfalls and
reverse hazard rate, where we think of time as running backward. Thus, we could
define a cumulative reverse hazard rate as R(x) = ∫ x

bY
r(t) dt and a reverse intrinsic

aging function φ̄(t) as the intrinsic age at bY − t; the results we have for H and φ could
be applied to R and φ̄. The analysis is tedious and the results have less application
than those for hazard rates, so we omit it.
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2.1.3. Scaled Conditional Life and Proportional Failure Rate (e.g.,
Belzunce et al. [3]). The scaled conditional life of a random variable Y is the
total life relative to the current age, conditioned on the current age, and is given by

YSC(y)
d= 1

y
{Y |Y > y} = (y + YR(y))/y, aY < y < bY .

The scaled conditional life is called the left proportional residual income by Belzunce
et al. [3]. The proportional failure rate is

lY (y) = lim
�↓0

1

�
P{YSC(y) ≤ 1 + �)} = yhY (y), aY < y < bY .

Observe that P{YSC(y) ≤ 1} = 0, so aYSC(y) = 1 for all aY < y < bY . Additionally, for
aY < y < bY , hYSC(y)(t) = yhY (yt) = (1/t)lY (yt) for 1 ≤ t < bY/y. The proportional
failure rate is also known as the generalized failure rate of Y , as defined by Lariviere [8]
(also see Lariviere and Porteus [10]). Because the usual failure rate is not a special
case of the generalized failure rate, we prefer the term “proportional failure rate.”

In the context of income distributions, Singh and Maddala ( [19] p. 964) say of
the proportional failure rate that “at any income, it measures the odds against advanc-
ing further to higher incomes in a proportionate sense.” They argue that empirically
income levels tend to constant proportional failure rate at high income levels.

Remark 2.1: As mentioned in Section 1, an application of the proportional failure rate
is to pricing (Lariviere [9]), where lY (p) is the elasticity of demand and where the
optimal price p∗ is such that lY (p∗) = 1. There will be a unique revenue maximizing
price if Y is IPFR; that is, if it is increasing in proportional failure rate (lY (t) is
increasing in t) and if limx↓aY lY (x) ≤ 1 and limx↑bY lY (x) > 1, where (aY , bY ) is the
support of Y . Note that YSC(p) can be interpreted as a consumer surplus factor at price
p: It is a random customer’s valuation of the product relative to price p, given the
customer’s valuation is at least p.

2.1.4. Scaled Residual Life and Scaled Hazard Rate (for finite bY ).
The scaled residual life of a random variable Y is the remaining life relative to the
maximal possible remaining life, conditioned on the current age, and is given by

YSR(y)
d= {Y − y|Y > y}

bY − y
= YR(y)

bY − y
, aY < y < bY .

The scaled hazard rate is

sY (y) = lim
�↓0

1

�
P{YSR(y) ≤ �)} = (bY − y)hY (y), aY < y < bY .

Observe that P{0 ≤ YSR(y) ≤ 1} = 1, so aYSR(y) = 0 and bYSR(y) = 1 for all
aY < y < bY . Additionally, hYSR(y)(t) = (bY − y)hY (y + t(bY − y)) for aY < y < bY

and 0 < t < 1.
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The scaled hazard rate arises in the following inspection context. Consider a
company that receives shipments of size bY of some material from its supplier, where
the material is either continuous, as in fabric, or bY is large. Let Y be the amount
of material that is inspected before the first defect is found. The company chooses
an inspection level y ∈ [aY , bY ] and it inspects an amount min{y, Y} of the batch.
(In practice, aY will probably be zero.) If Y ≤ y, it accepts the inspected portion of
the batch and returns the uninspected portion, an amount bY − Y , to the supplier. If
Y > y, the company accepts the full batch. The (scaled) profit to the company per unit
of inspected material (after inspection costs) is 1 and the (scaled) profit per unit of
uninspected material is c < 1. (If c ≥ 1, there is no point in inspecting.) The company
wishes to choose y to maximize its profit, �(y) = E min{y, Y} + c(bY − y)P{Y > y}.
We have the following.

Theorem 2.1: If sY (y) is strictly increasing, then there is a unique y∗ that maximizes
the company’s total return.

Proof: We take the derivative of the profit function:

�(y) =
∫ y

0
F̄Y (x) dx + c(bY − y)F̄(y),

d

dy
�(y) = F̄Y (y) − cF̄Y (y) − c(bY − y)fY (y)

= F̄Y (y)[1 − c − csY (y)].
If sY (aY ) ≥ (1 − c)/c, then y∗ = aY , and it is optimal to accept the whole lot with
minimal inspection. If sY (aY ) < (1 − c)/c and limy→bY sY (y) ≤ (1 − c)/c, then y∗ =
bY and it is optimal to keep inspecting until the first defect is found or the entire lot
is inspected. Finally, if sY (aY ) < (1 − c)/c < limy→bY sY (y), because sY (y) is strictly
increasing, then there is a unique y∗ ∈ (aY , bY ). �

The scaled hazard rate and scaled residual life can also be applied to reliability
problems. Consider a single-component system with a warm standby that is replaced
every bY time units, where we wish to maximize the proportion of time that the overall
system is available. During a cycle of length bY , if the original component fails at some
time 0 < y < bY and the warm standby has not failed, we will prefer a warm standby
with a smaller scaled hazard rate (i.e., a larger scaled residual life).Another application
is to insurance problems where we are concerned about the total remaining liability
relative to the maximal liability for a customer that has made claims so far totaling
y dollars.

2.2. Classes of Functions

We will use the following classes of functions. Unless otherwise specified, for all basic
definitions in this article, one can refer to either Marshall and Olkin [12], Ross [16],
or Shaked and Shanthikumar [18].
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Let η : [a, b] ⇒ R+ be a positive increasing function, for 0 ≤ a < b < ∞.
We write

η′(x) = d

dx
η(x), x ∈ (a, b),

and assume that the derivative is well defined on (a, b). For the classes of distribution
functions that we consider later, we will relate properties of distributions to properties
of cumulative hazard H, as defined in Section 2.1, and the intrinsic aging function φ.
Note that H and φ are increasing, and for intrinsic aging functions, a = 0.

Superadditive [Subadditive]: η is superadditive (subadditive) on (a, b) if η(x) +
η(y) ≤ [≥] η(x + y), x, y ∈ (a, b). We denote this by η ∈ SupA [SubA].

Star-Shaped [Anti-Star-Shaped]: η is star-shaped [anti-star-shaped] on (a, b) if
(1/x)η(x) is increasing [decreasing] in x for x ∈ (a, b). We denote this by η ∈ SS
[AntiSS].

Convex [Concave]: η is convex [concave] on (a, ∞) if η′(x) is increasing
[decreasing] in x for x ∈ (a, b). We denote this by η ∈ CX [CV].

Convex in Log Scale [Concave in Log Scale]: η is convex in log scale [concave
in log scale] on (a, b) if xη′(x) is increasing [decreasing] in x for x ∈ (a, b); that
is, η(ex) is convex [concave]. We denote this by η ∈ CX(Log) [CV(Log)].

Log Convex [Log Concave]: η is log convex [log concave] on (a, b) if η′(x)/η(x)
is increasing [decreasing] in x for x ∈ (a, b); that is, log η(x) is convex [concave].
We denote this η ∈ LogCX [LogCV].

Log Convex in Log Scale [Log Concave in Log Scale]: η is log convex in log
scale [log concave in log scale] on (a, b) if xη′(x)/η(x) is increasing [decreasing]
in x for x ∈ (a, b); that is, log η(ex); is convex [concave]. We denote this by η ∈
LogCX(Log) [LogCV(Log)].

For completeness, we also include the following definition that we use later to
define random variables that have an increasing or decreasing scaled hazard rate
(ISFR or DSFR).

Scaled Convex [Scaled Concave]: η is Scaled Convex [Scaled Concave] on (a, b)

if (b − x)η′(x) in increasing [decreasing] in x for x ∈ (a, b). We denote this η ∈
ScCX [ScCV].

Because we only consider increasing functions η : (a, b) → R+, we insert an
I and write η ∈ ISupA and so forth and we sometimes abuse notation and write
η(x) ∈ ISupA and so forth. We also only consider functions where either a = 0 or,
if a > 0, η(a) = 0, and we extend the domain of η to (0, ∞) by defining η(x) = 0
for 0 ≤ x ≤ a and η(x) = ∞ for x ≥ b. Note that we could have a = 0 and η(0) > 0.
However, in some cases we also want to require a = 0 and η(0) = 0, in which case we
write η ∈ ISupA0 for example, and so forth. When we restrict ourselves to functions
η : (a, b) → R+ where b < ∞, we write, for example, η ∈ ICXb. Sometimes we also

https://doi.org/10.1017/S0269964809990015 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990015


“S0269964809990015jra” — 2009/8/3 — 18:27 — page 570 — #8

�

�

�

�

570 R. Righter, M. Shaked, and J. G. Shanthikumar

want functions such that limx→b η(x) = ∞ (where we could have b = ∞), in which
case we write, for example, η ∈ ICX-∞. Finally, when we write in Lemma 2.2 that,
ICX0 ⇒ ISS0, we mean η ∈ ICX0 ⇒ η ∈ ISS0 (i.e., ICX0 ⊆ ISS0).

Lemma 2.2:

ICX0 ⇒ ISS0 ⇒ ISupA0,
ICV0 ⇒ IAntiSS0 ⇒ ISubA0,
ILogCX ⇒ ILogCX(Log) ⇒ ICX(Log),
ILogCX ⇒ ICX ⇒ ICX(Log),
ICV(Log) ⇒ ILogCV(Log) ⇒ ILogCV,
ICV(Log) ⇒ ICV ⇒ ILogCV,
IScCXb ⇒ ICXb

ICVb ⇒ IScCVb,
ILogCX0-∞ = ∅.

Proof: The subset relations are not difficult to show; the proof is omitted. We show
that ILogCX0-∞ = ∅. We need to show that there does not exist a function η : R+ →
R+ such that η(0) = 0, η is increasing without bound, and log η is convex; that is, we
want to show that there does not exist a function ν : R+ → R such that ν(0) = −∞
and ν is increasing without bound and convex, where ν(x) = log η(x). Suppose such
a function ν does exist and pick a2 > a1 > 0 such that −∞ < y1 := ν(a1) < y2 :=
ν(a2) < ∞. Such a1 and a2 exist because we assumed well-defined derivatives, and
hence continuity, in (a, b). Then, by convexity, ν(0) ≥ (y1a2 − y2a1)/(a2 − a1) >

−∞, which is a contradiction. �

The fact that ILogCX0-∞ = ∅ means that if η ∈ ILogCX-∞, then η(0) > 0.
There is an analogous result for ICV(Log) which will have implications for DPFR
random variables as defined in the sequel. In particular, although ICV(Log)0-∞ �= ∅,
there is no function η ∈ ICV(Log)-∞ such that η(0+) > 0.

Lemma 2.3: η ∈ ICV(Log)0-∞ ⇒ ∃a > 0 such that η(x) = 0 for 0 ≤ x ≤ a.

Lemma 2.3 will follow from the last part Lemma 2.2 once we define inverse
functions and complementary sets.

For any increasing function φ : R+ → R+, define its right inverse by

ψ(t) = φ−1(t) = inf{x : φ(x) ≥ t; x ≥ 0}.
Two classes B and BC of functions satisfy the complementary property if

φ ∈ B ⇔ ψ ∈ BC .

Note that B is closed under composition if and only if BC is closed under composition.
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Note that ILogCX-∞C = ICV(Log)-∞, so η ∈ ICV(Log)-∞ ⇔ η−1 ∈ ILogCX-
∞, which means, from the last part Lemma 2.2, that η−1(0) = a > 0, so η(a) = 0,
and because η is increasing, Lemma 2.3 follows.

We use the following notation for composition: η ◦ ν, where (η ◦ ν)(x) =
η(ν(x)). For two classes of functions B1 and B2, let C(B1, B2) be the (largest) set
of compatible input functions defined as follows:

ν ∈ C(B1, B2) ⇔ η ◦ ν ∈ B2 for all η ∈ B1,

ν /∈ C(B1, B2) ⇔ ∃ η ∈ B1 : η ◦ ν /∈ B2.

Intuitively, if we start with a function in C(B1, B2) and input it into a function from
B1, the output is a function from B2. We say a set A is compatible with B1 and B2

if A ⊆ C(B1, B2); for example, ICX(Log) ⊆ C(ICX, ICX(Log)). If B1 = B2 = B, we
write C(B) = C(B, B) and call it the (largest) set of compatible functions. We say a set
A is compatible with B if A ⊆ C(B); for example, ICV ⊆ C(ILogCV). If B is closed
under composition, then B ⊆ C(B). The following lemma is not hard to show.

Lemma 2.4:

(i) The classes ISupA0, ISubA0, ISS0, IAntiSS0, ICX0, ICV0, ICX, ICV,
ICV(Log), ILogCX, ILogCX(Log), and ILogCV(Log) are closed under
composition. The classes ICX(Log), ILogCV, IScCXb, and IScCVb are not.

(ii)

ICX ⊆ C(ILogCX),

ICV ⊆ C(ILogCV),

ILogCX(Log) ⊆ C(ICX(Log)),

ILogCV(Log) ⊆ C(ICV(Log)).

(iii)

ICX(Log) ⊆ C(ILogCX, ILogCX(Log)),

ICX(Log) ⊆ C(ICX, ICX(Log)),

IScCX ⊆ C(ICX, IScCX),

IScCV ⊆ C(ICV, IScCV).

(iv)

ISupAC = ISubA, ISSC = IAntiSS,

ICXC = ICV, ILogCX(Log)C = ILogCV(Log),

ICX(Log)C = ILogCV, ILogCXC = ICV(Log).
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Proof: We show that ILogCX is closed under composition and ILogCV is not. The
other results can be shown with fairly similar arguments. Suppose f , g ∈ ILogCX, so
f , g ∈ ICX. We need to show that

f ′(g(x))g′(x)
f (g(x))

is increasing, but this follows because f ′(g(x))/f (g(x)) and g′(x) are both increasing
and positive. The same argument does not work for ILogCV because ICV ⇒ ILogCV,
not the other way around. For example, f (x) = g(x) = ex ∈ ILogCV, but exp(exp(x))
is not. �

We also have (refer to Lemma 2.4 (iii)) that ICV(Log) ⊆ C(ILogCV,
ILogCV(Log)), but this is weaker than saying ICV(Log) ⊆ C(ILogCV) (from
Lemma 2.4 (ii)); ICV(Log) ⊆ C(ICV, ICV(Log)) is implied by the fact that ICV(Log)
is closed under composition (Lemma 2.4 (i)).

2.3. Classes of Distributions Based on Aging

New Better (Worse) Than Used: A random variable Y (or its distribu-
tion function) is said to have the new better than used (NBU) property
if F̄Y (x)F̄Y (y) ≥ F̄Y (x + y) for any x, y ∈ R+. Equivalently, HY ∈ ISupA0-
∞. We denote this by Y ∈ NBU. The new worse than used (NWU) prop-
erty is similarly defined, with HY ∈ ISubA-∞. (Note that limx→∞ HY (x) =
limx→∞[− log F̄Y (x)] = − log(0) = ∞. Also note that NWU random variables
have infinite support.)

Increasing (Decreasing) Failure Rate on Average: A random variable Y (or its
distribution function) is said to have the increasing failure rate on the average
(IFRA) property, Y ∈ IFRA, if h̄Y (y) is increasing in y. Equivalently, HY ∈ ISS0-
∞. The DFRA property is similarly defined, with HY ∈ IAntiSS-∞.

Increasing (Decreasing) Failure Rate: A random variable Y is said to have
the increasing failure rate (IFR) property, Y ∈ IFR, if hY (y) is increasing in y.
Equivalently, HY ∈ ICX0-∞. The DFR property is similarly defined, with HY ∈
ICV-∞.

Increasing (Decreasing) Reverse Failure Rate: A random variable Y (or its dis-
tribution function) is said to have the increasing reverse failure rate (IRF) property,
Y ∈ IRF, if rY (y) is increasing in y. The DRF property is similarly defined.

Increasing (Decreasing) Proportional Failure Rate: A random variable Y is
said to have the increasing proportional failure rate (IPFR) property, Y ∈ IPFR,
if lY (y) is increasing in y. Equivalently, HY ∈ ICX(Log)-∞. The DPFR property
is similarly defined, with HY ∈ ICV(Log)0-∞. From Lemma 2.3, for Y ∈ DPFR,
we must have aY > 0 (and bY = ∞). The IPFR property is studied, in the context
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of the hazard rate stochastic order, in Ma [11] and in Examples 2.A.6, 7.C.6, and
7.C.6a of Marshall and Olkin [13, pp. 54 and 226].

We now introduce two additional classes based on the class of functions ILogCX-
∞ and ILogCX(Log)-∞, which will also (along with IFR) imply the IPFR
property.

Increasing (Decreasing) Failure Rate Relative to Cumulative Hazard Rate:A
random variable Y is said to have the increasing failure rate relative to cumulative
hazard rate (IFR/C) property, Y ∈ IFR/C, if hY (y)/HY (y) is increasing in y (equiv-
alently, HY ∈ ILogCX-∞). The DFR/C property is similarly defined, with HY ∈
ILogCV-∞. Log concavity of HY is mentioned in Sengupta and Nanda [17],
who showed that HY ∈ ILogCV-∞ ⇒ FY ∈ ILogCV. From the remark after
Lemma 2.2, Y ∈ IFR/C ⇒ aY = 0 and HY (0) > 0.

Increasing (Decreasing) Failure Rate Relative to Average Hazard Rate: A
random variable Y is said to have the increasing failure rate relative to average
hazard rate (IFR/A) property, Y ∈ IFR/A, if hY (y)/h̄Y (y) is increasing in y (equiv-
alently, HY ∈ ILogCX(Log)-∞). The DFR/A property is similarly defined, with
HY ∈ ILogCV(Log)-∞.

Finally, we introduce a class based on the scaled hazard rate.

Increasing (Decreasing) Scaled Hazard Rate: A random variable Y is said to
have the increasing scaled failure rate (ISFR) property, Y ∈ ISFR, if sY (y) =
(bY − y)hY (y) is increasing in y (i.e. HY ∈ IScCXb). The DSFR property is
similarly defined, with HY ∈ IScCVb.

2.4. Various Stochastic Orders

We say that X is greater than Y in the usual stochastic (st) sense, X ≥st Y , if F̄X(t) ≥
F̄Y (t) for all t. Thus, when we say later that, for example, YR(y) is increasing in the
usual stochastic sense in y, we mean YR(y1) ≤st YR(y2) for all y1 ≤ y2 (i.e., F̄YR(y)(t)
is increasing in y for all t). We use the notation YR(y) ↑st to mean YR(y) is increasing
in the usual stochastic sense in y.

We say that X is greater than Y in the hazard rate (hr) sense, X ≥hr Y , if hX(t) ≤
hY (t) for all t, so YR(y) increasing in the hazard rate sense in y (YR(y) ↑hr) means
hYR(y)(t) is decreasing in y for all t. (This is at first confusing — a decreasing hazard
rate corresponds to increasing in the hazard rate sense. This is because larger hazard
rates are associated with stochastically smaller random variables.)

Similarly, X is greater than Y in the PFR (FR/C, FR/A, rh) sense if lX(t) ≤
lY (t) (hX(t)/HX(t) ≤ hY (t)/HY (t), hX(t)/h̄X(t) ≤ hY (t)/h̄Y (t), rX(t) ≥ rY (t)) for all t.
Therefore, YR(y) increasing in the PFR (FR/C, FR/A) sense in y (i.e., YR(y) ↑PFR

(YR(y) ↑FR/C, YR(y) ↑FR/A)), means lYR(y) (hYR(y)(t)/HYR(y)(t), hYR(y)(t)/h̄YR(y)(t)) is
decreasing in y for all t and YR(y) increasing in the rh sense in y; that is, YR(y) ↑rh,
means rYR(y)(t) is increasing in y for all t.
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Finally, X is greater than Y in the likelihood ratio sense, X ≥lr Y , if fX(t)/fY (t)
is increasing in t for t ∈ [aX , bX ] ∪ [aY , bY ]. Additionally, a random variable Y is ILR
(DLR) if fY ∈ LogCV ( fY ∈ LogCX). It is well known that X ≥lr Y ⇒ X ≥hr Y and
X ≥rh Y , and that

Y ∈ DLR ⇔ YR(y) ↑lr⇒ YR(y) ↑hr and YR(y) ↑rh,

Y ∈ ILR ⇔ YR(y) ↓lr⇒ YR(y) ↓hr and YR(y) ↓rh .

The following lemma is immediate.

Lemma 2.5: X ≥hr Y ⇔ X ≥PFR Y and X ≥FR/C Y ⇔ X ≥FR/A Y.

3. RELATING CLASSES OF DISTRIBUTIONS

It is well known and easy to show that

IFR ⇒ IFRA ⇒ NBU,

DFR ⇒ DFRA ⇒ NWU,

ILR ⇒ IFR ⇒ IPFR, ILR ⇒ IRF, DLR ⇒ DFR, DLR ⇒ DRF,

where, for instance, by IFR ⇒ IFRA, we mean Y ∈ IFR ⇒ Y ∈ IFRA (i.e., IFR ⊆
IFRA). It is also possible to have random variables that are both IPFR and DFR (e.g.,
the Weibull and gamma distributions with shape parameter ≤ 1).

We extend these relationships for our new classes of distributions.

Lemma 3.1:
IFR/C ⇒ IFR/A ⇒ IPFR,
IFR/C ⇒ IFR ⇒ IPFR,
ISFR ⇒ IFR,
DPFR ⇒ DFR/A ⇒ DFR/C,
DPFR ⇒ DFR ⇒ DFR/C,

DFR ⇒ DSFR,

Proof: The result follows from Lemma 2.2 and from the cumulative hazard
function characterizations of aging properties, for example, Y ∈ IFR/A ⇔ HY ∈
ILogCX(Log)-∞, Y ∈ IPFR ⇔ HY ∈ ICX(Log)-∞, and so forth. �

Since HY ∈ ILogCV-∞ ⇒ FY ∈ LogCV ⇔ Y ∈ DRF [17], we also have
DFR/C ⇒ DRF.

4. AGING PROPERTIES OF RESIDUAL AND CONDITIONAL LIFETIMES

Properties for a random variable Y also have implications for the random variables
introduced earlier, such as the residual life of Y , the scaled conditional life, the scaled
residual life, and so forth.
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4.1. Residual Life

First, let us consider the residual life, YR(y)
d= {Y − y|Y > y}, with aY ≤ y < bY .

Then, for 0 < t < bY − y,

HYR(y)(t) = − log F̄YR(y)(t) = − log F̄Y (y + t) + log F̄Y (y) = HY (y + t) − HY (y),

hYR(y)(t) = hY (y + t).

We have the following lemma. Part (i) and most of part (iv) are well known and
are included for completeness. The new part of (iv), Y ∈ IFR (DFR) ⇔ YR(y) ↓PFR

(YR(y) ↑PFR), is easy to show. Note that we cannot have YR(y) ∈ DPFR from Lemma
2.3 because aYR(y) = 0.

Lemma 4.1:

(i) Y ∈ S ⇔ YR(y) ∈ S ∀y ∈ [aY , bY ) for S = IFR, DFR, ILR, DLR.

(ii) Y ∈ IPFR ⇒ YR(y) ∈ IPFR ∀y ∈ [aY , bY ), and if aY = 0, Y ∈ IPFR ⇔
YR(y) ∈ IPFR ∀y ∈ [aY , bY ).

(iii) YR(y) ↑FR/C (YR(y) ↓FR/C) ⇔ YR(y) ↑FR/A (YR(y) ↓FR/A), y ∈ [aY , bY ).

(iv) Y ∈ IFR(DFR) ⇔ YR(y) ↓hr (YR(y) ↑hr) ⇔ YR(y) ↓PFR (YR(y) ↑PFR)

⇔ YR(y) ↓st (YR(y) ↑st).

Proof: Part (iii) is immediate from Lemma 2.5.
For part (ii), suppose Y ∈ IPFR; that is, xhY (x) is increasing in x (i.e.,

hY (x) + xh′
Y (x) ≥ 0 for all x ∈ [aY , bY )). (To keep the arguments simple, we assume

the cumulative hazard function is twice differentiable; that is, the hazard rate
function is differentiable. The extension to the nondifferentiable case is straight-
forward.) Then hY (t + y) + (t + y)h′

Y (t + y) = hYR(y)(t) + th′
YR(y)(t) + yh′

Y (t + y) ≥
0 for all t and y such that t + y ∈ [aY , bY ). If h′

Y (t + y) ≤ 0, then hYR(y)(t) +
th′

YR(y)(t) ≥ hYR(y)(t) + th′
YR(y)(t) + yh′

Y (t + y) ≥ 0. If h′
Y (t + y) ≥ 0, so h′

YR(y)(t) ≥ 0,
then hYR(y)(t) + th′

YR(y)(t) ≥ 0 because all of the terms are positive. Therefore, thYR(y)(t)
is increasing in t for all y ∈ [aY , bY ) and t ∈ [0, bY − y).

The reverse implication when aY = 0 is immediate. �

As noted in Lemma 4.1(iv), YR(y) ↓st (YR(y) ↑st) ⇒ YR(y) ↓hr (YR(y) ↑hr), even
though hazard rate ordering is stronger than stochastic ordering. We now show a sim-
ilar result: that YR(y) ↓rh (YR(y) ↑rh) ⇒ YR(y) ↓lr (YR(y) ↑lr), even though likelihood
ratio ordering is stronger than reverse hazard ordering. So, for example, YR(y) ↓rh

(YR(y) ↑rh) ⇒ YR(y) ↓hr (YR(y) ↑hr), although the reverse is not true. Also note that
although

Y ∈ ILR ⇔ YR(y) ∈ ILR ⇔ YR(y) ↓lr ,

Y ∈ IFR ⇔ YR(y) ∈ IFR ⇔ YR(y) ↓hr,

we do not have the same relationships for the reverse hazard rate: Y ∈ IRF � YR(y) ∈
IRF and Y ∈ IRF � YR(y) ↑rh. (This is because YR(y) is “forward looking” and the
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reverse hazard rate is “backward looking.” YS(y) is backward looking; see Lemma
4.3.) Because Y ∈ ILR ⇒ Y ∈ DRF, a consequence of the following lemma is that
YR(y) ↓rh ⇒ Y ∈ DRF even though the reverse is not true.

Lemma 4.2: Suppose bY = ∞. Then YR(y) ↑rh (YR(y) ↓rh) ⇔ YR(y) ↑lr (YR(y) ↓lr)

(⇔ Y ∈ DLR(ILR)).

Proof: From [18] we have that YR(y) ↓lr is equivalent to saying that for all α, u, β :
0 ≤ α ≤ u ≤ β < ∞ and for all y1, y2 : aY ≤ y1 ≤ y2 < ∞, we have

P{YR(y1) > u|YR(y1) ∈ [α, β]} ≥ P{YR(y2) > u|YR(y2) ∈ [α, β]}
and this inequality is equivalent to

P{YR(y1 + α) > u − α|YR(y1 + α) ≤ β − α} ≥ P{YR(y2 + α)

> u − α|YR(y2 + α) ≤ β − α}. (1)

Additionally, YR(y) ↓rh is equivalent to saying that for all u′, β ′ : 0 ≤ u′ ≤ β ′ < ∞
and for all y′

1, y′
2 : aY ≤ y′

1 ≤ y′
2 < ∞, we have

P{YR(y′
1) > u′|YR(y′

1) ≤ β ′} ≥ P{YR(y′
2) > u′|YR(y′

2) ≤ β ′}. (2)

That YR(y) ↓lr ⇒ YR(y) ↓rh follows immediately with α = 0, u = u′, β = β ′, y1 = y′
1,

and y2 = y′
2. Suppose YR(y) ↓rh and fix any α, u, β, y1, and y2 such that 0 ≤ α ≤ u ≤

β < ∞ and aY ≤ y1 ≤ y2 < ∞, and let u′ = u − α, β ′ = β − α, y′
1 = y1 + α, and

y′
2 = y2 + α. Note that 0 ≤ u′ ≤ β ′ < ∞ and y′

2 ≥ y′
1 ≥ aY , so Eq. (1) follows from

Eq. (2). �

Recall that the conditional shortfall is YS(y)
d= {y − Y |Y ≤ y}, with aY < y < bY ,

and hYS(y)(t) = rY (y − t). It is well known and easy to see the following lemma holds.

Lemma 4.3: For aY < y < bY , Y ∈ IRF (DRF) ⇔ YS(y) ∈ DFR (IFR) ⇔ YS(y) ↓hr

(YS(y) ↑hr).

4.2. Scaled Conditional Life

Now we consider the scaled conditional life, YSC(y)
d= (1/y){Y |Y > y}, with aY <

y < bY . For t ≥ 1,

HYSC(y)(t) = − log F̄YSC(y)(t) = − log F̄Y (yt) + log F̄Y (y) = HY (yt) − HY (y),

hYSC(y)(t) = yhY (yt),

lYSC(y)(t) = thYSC(y)(t) = ythY (yt) = lY (yt),

and for 0 ≤ t < 1, HYSC(y)(t) = hYSC(y)(t) = lYSC(y)(t) = 0.
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Lemma 4.4: For aY < y < bY , we have the following:

(i) Y ∈ S ⇔ YSC(y) ∈ S for S = IFR, IPFR.

(ii) YSC(y) ∈ IFR/A ∀y ∈ [aY , by) ⇒ Y ∈ IFR/A.

(iii) YSC(y) ↑FR/C (YSC(y) ↓FR/C) ⇔ YSC(y) ↑FR/A (YSC(y) ↓FR/A).

(iv) Y ∈ IPFR (DPFR) ⇔ YSC(y) ↓hr (YSC(y) ↑hr).

(v) YSC(y) ∈ IFR/A ⇒ YSC(y) ↓FR/A (or YSC(y) ↓FR/C).

Proof: Part (i) follows immediately from hYSC(y)(t) = yhY (yt) and lYSC(y)(t) = lY (yt),
and part (iii) follows from Lemma 2.5. Part (iv) is also immediate, because the fact
that hYSC(y)(t) = yhY (yt) = (1/t)ythY (yt) is increasing (decreasing) in y for all t > 0
⇔ lY (x) = xhY (x) is increasing (decreasing) in x (i.e., Y ∈ IPFR (DPFR)).

For part (ii), suppose YSC(y) ∈ IFR/A (and aY > 0; otherwise the result is imme-
diate); that is, HYSC(y) ∈ ILogCX(Log) or thYSC(y)(t)/HYSC(y)(t) = ythY (yt)/[HY (yt) −
HY (y)] is increasing in t, so

[yhY (ty) + ty2h′
Y (ty)][HY (ty) − HY (y)] ≥ ty2[hY (ty)]2 ∀y ∈ (aY , bY ), t ∈ (1, bY/y).

From this, we have [hY (x) + xh′
Y (x)] ≥ 0 and [hY (x) + xh′

Y (x)]HY (x) ≥ x[hY (x)]2

for all x ∈ (aY , bY ) (i.e., HY ∈ ILogCX(Log)), so we have (ii). We also have that
thYSC(y)(t)/HYSC(y)(t) = ythY (yt)/[HY (yt) − HY (y)] is increasing in y because

[thY (ty) + t2yh′
Y (ty)][HY (ty) − HY (y)] ≥ t2y[hY (ty)]2 − ythY (yt)hY (y),

so the first part of (v) follows.The second part of (v) is immediate from Lemma 2.5. �

4.3. Scaled Residual Life

Now let us consider the scaled residual life, YSR(y)
d= {Y − y|Y > y}/bY − y, and

the scaled hazard rate, sY (y) = (bY − y)hY (y), with aY < y < bY < ∞. We have, for
0 ≤ t ≤ 1,

HYSR(y)(t) = − log F̄YSR(y) = − log F̄Y (y + t(bY − y)) + log F̄Y (y)

= HY (g(y, t)) − HY (y),

hYSR(y)(t) = (bY − y)hY (y + t(bY − y)) = (bY − y)hY (g(y, t)),

h′
YSR(y)(t) = (bY − y)2hY (y + t(bY − y)),

d

dy
hYSR(y)(t) = (bY − y)(1 − t)h′

Y (bY t + (1 − t)y) − hY (bY t + (1 − t)y)

= (bY − g(y, t))h′
Y (g(y, t)) − hY (g(y, t)) = s′

Y (g(y, t)),

with g(y, t) = bY t + (1 − t)y = y + t(bY − y), which is positive and increasing in
both y and t. We have the following lemma.
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Lemma 4.5: For aY ≤ y < bY , we have the following:

(i) Y ∈ IFR ⇔ YSR(y) ∈ IFR.

(ii) Y ∈ IPFR ⇒ YSR(y) ∈ IPFR ∀y ∈ [aY , bY ); and if aY = 0, Y ∈ IPFR ⇔
YSR(y) ∈ IPFR ∀y ∈ [aY , bY ).

(iii) Y ∈ ISFR(DSFR) ⇒ YSR(y) ↓hr (YSR(y) ↑hr).

Proof: Part (i) is immediate because hYSR(y)(t) = (bY − y)hY (g(y, t)).
For (ii), suppose Y ∈ IPFR (i.e., xhY (x) is increasing in x); that is, hY (x) +

xh′
Y (x) ≥ 0 for all x ∈ [aY , bY ). Then (bY − y)hY (y + t(bY − y)) + (bY − y)(y +

t(bY − y))h′
Y (y + t(bY − y)) = hYSR(y)(t) + th′

YSR(y)(t) + y(bY − y)h′
Y (y + t(bY − y))

≥ 0 for all t and y such that y + t(bY − y) ∈ [aY , bY ). If h′
Y (y + bY (t − y)) ≤ 0, then

hYSR(y)(t) + th′
YSR(y)(t) ≥ hYSR(y)(t) + th′

YSR(y)(t) + y(bY − y)h′
Y (y + t(bY − y)) ≥ 0. If

h′
Y (y + bY (t − y)) ≥ 0, so h′

YSR(y)(t) ≥ 0, then hYSR(y)(t) + th′
YSR(y)(t) ≥ 0 because all

of the terms are positive. Therefore, thYSR(y)(t) is increasing in t for all y ∈ [aY , bY )

and t ∈ [0, bY − y). The reverse implication when aY = 0 is immediate.
Part (iii) is immediate from dhYSR(y)(t)/dy = s′

Y (g(y, t)). �

5. RELATINGTHE AGING PROPERTIES OFTHE INTRINSIC LIFE AND
THE ACTUAL LIFE

Let X be a nonnegative absolutely continuous random variable representing the intrin-
sic life of a reliability system. The actual lifetime T of this system will depend on how
the intrinsic age is accumulated over the calendar time. Suppose the intrinsic age of
the system at time t is φ(t) (with φ increasing). Then

T = inf{t : φ(t) ≥ X; t ∈ R+} =: φ−1(X)

and X = φ(T).
The following results are well known.

Corollary 5.1:

X ∈ NBU ⇔ T ∈ NBU for all φ ∈ ISupA,
X ∈ NWU ⇔ T ∈ NWU for all φ ∈ ISubA,
X ∈ IFRA ⇔ T ∈ IFRA for all φ ∈ ISS,
X ∈ DFRA ⇔ T ∈ DFRA for all φ ∈ IAntiSS,
X ∈ IFR ⇔ T ∈ IFR for all φ ∈ ICX,
X ∈ DFR ⇔ T ∈ DFR for all φ ∈ ICV.

We give a general result for which the above is a special case, as well as new
results for IPFR random variables and for our new notions of aging.

It is easy to show the following key lemma.

Lemma 5.2: HT (t) = HX(φ(t)).

https://doi.org/10.1017/S0269964809990015 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964809990015


“S0269964809990015jra” — 2009/8/3 — 18:27 — page 579 — #17

�

�

�

�

INTRINSIC AGING 579

For a class of functions B, let FB be the family of random variables Y such
that HY ∈ B. For example, FICX(Log) = IPFR. Let I be the identity function I(x) = x
for all x. The next theorem is immediate from the definition of compatible functions
(Section 2.2) and Lemma 5.2.

Theorem 5.3: Let B1 and B2 be two classes of functions and let A ⊆ C(B1, B2).

(i) X ∈ FB1 ⇒ T ∈ FB2 for all φ ∈ A (i.e., φ−1(X) ∈ FB2 for all φ−1 ∈ AC).

(ii) If I ∈ A, then

X ∈ FB1 ⇔ T ∈ FB2 for all φ ∈ A

(i.e., φ−1(X) ∈ FB2 for all φ−1 ∈ AC).

(iii) If B1 = B2 = B (so C(B1, B2) = C(B)) and if I ∈ A, then

X ∈ FB ⇔ T ∈ FB for all φ ∈ A (i.e., φ−1(X) ∈ FB for all φ−1 ∈ AC).

From Lemmas 2.4(ii) and 2.4(iii) we have the following corollary.

Corollary 5.4:

X ∈ IPFR ⇔ T ∈ IPFR for all φ ∈ ILogCX(Log),
X ∈ DPFR ⇔ T ∈ DPFR for all φ ∈ ILogCV(Log),
X ∈ IFR/C ⇔ T ∈ IFR/C for all φ ∈ ICX,
X ∈ DFR/C ⇔ T ∈ DFR/C for all φ ∈ ICV,
X ∈ IFR ⇒ T ∈ IPFR for all φ ∈ ICX(Log),
X ∈ IFR/C ⇒ T ∈ IFR/A for all φ ∈ ICX(Log),
X ∈ IFR ⇒ T ∈ ISFR for all φ ∈ IScCX,
X ∈ DFR ⇒ T ∈ DSFR for all φ ∈ IScCV−∞.

The following is an immediate corollary of Theorem 5.3.

Corollary 5.5: If B is closed under composition, then

X ∈ FB ⇒ T ∈ FB for all φ ∈ B (i.e., φ−1(X) ∈ FB for all φ−1 ∈ BC).

If also I ∈ B, then

X ∈ FB ⇔ T ∈ FB for all φ ∈ B (i.e., φ−1(X) ∈ FB for all φ−1 ∈ BC).

Corollary 5.1 then follows, along with Corollary 5.6, using Lemma 2.4(i).

Corollary 5.6:

X ∈ IFR/A ⇔ T ∈ IFR/A for all φ ∈ ILogCX(Log),
X ∈ DFR/A ⇔ T ∈ DFR/A for all φ ∈ ILogCV(Log),
X ∈ IFR/C ⇔ T ∈ IFR/C for all φ ∈ ILogCX,
X ∈ DFR/C ⇔ T ∈ DFR/C for all φ ∈ ILogCV.
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The results of [14] (the first two parts below) are also a corollary of Corollary 5.4.

Corollary 5.7:

(i) X ∈ IPFR ⇔ Xa ∈ IPFR for all a ≥ 0.

(ii) X ∈ IPFR ⇔ aX ∈ IPFR for all a ≥ 0.

(iii) X ∈ IPFR ⇒ loga X ∈ IPFR for all a ≥ 1.

(iv) X ∈ IPFR ⇔ exp{(log X)a} ∈ IPFR for all 0 ≤ a ≤ 1.

Proof: For (i) we use Theorem 5.3 with B1 = B2 = B = ICX(Log) and A =
{φ : φ(x) = x1/a, a ≥ 0} = {φ : φ(x) = xa, a ≥ 0} ⊆ ILogCX(Log). The other parts
follow similarly. �

Lariviere [9] showed that X ∈ IPFR ⇔ log(X) ∈ IFR. This is a special case of
the following theorem, which follows from Theorem 5.3.

Theorem 5.8: For two classes of functions B1 and B2, if φ ∈ C(B1, B2) and φ−1 ∈
C(B2, B1), then

X ∈ FB1 ⇔ T ∈ FB2 .

Corollary 5.9:

(i) X ∈ IPFR ⇔ log(X) ∈ IFR.

(ii) X ∈ IFR/A ⇔ log(X) ∈ IFR/C.

Proof: Let φ(x) = ex for x ≥ 0 (so the system immediately ages to 1 when it is
put into operation) and φ−1(x) = 0 for 0 ≤ x ≤ 1, φ−1(x) = log(x) for 1 ≤ x < ∞.
It is easy to check that φ(x) ∈ C(ILogCX(Log), ILogCX) and φ−1(x) ∈ C(ILogCX,
ILogCX(Log)). �

6. GENERATING CLASSES OF RANDOM VARIABLES

Our approach also shows that we can characterize classes of random variables in terms
of functions of exponential random variables.

Theorem 6.1: For a class of functions B,

X ∈ FB ⇔ X = ψ(Z) for some ψ ∈ BC ,

where Z is exponentially distributed with rate 1, Z ∼ exp(1).

Proof: This follows from Lemmas 5.2 and 2.4(iv), with φ = ψ−1 = HX ∈ B, and
the fact that HZ is the identity function, HZ(t) = I(t) = t. �
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Corollary 6.2: Let Z ∼ exp(1). Then we have the following:

X ∈ NBU ⇔ X = ψ(Z) for some ψ ∈ ISubA,
X ∈ NWU ⇔ X = ψ(Z) for some ψ ∈ ISupA,
X ∈ IFRA ⇔ X = ψ(Z) for some ψ ∈ IAntiSS,
X ∈ DFRA ⇔ X = ψ(Z) for some ψ ∈ ISS,
X ∈ IFR ⇔ X = ψ(Z) for some ψ ∈ ICV,
X ∈ DFR ⇔ X = ψ(Z) for some ψ ∈ ICX,
X ∈ IPFR ⇔ X = ψ(Z) for some ψ ∈ ILogCV,
X ∈ DPFR ⇔ X = ψ(Z) for some ψ ∈ ILogCX,
X ∈ IFR/C ⇔ X = ψ(Z) for some ψ ∈ ICV(Log),
X ∈ DFR/C ⇔ X = ψ(Z) for some ψ ∈ ICX(Log),
X ∈ IFR/A ⇔ X = ψ(Z) for some ψ ∈ ILogCV(Log),
X ∈ DFR/A ⇔ X = ψ(Z) for some ψ ∈ ILogCX(Log).

To characterize IPFR and DPFR random variables, it is more natural, by an
observation of [19], to use Z ∼ Pareto(1, 1) ∈ IPFR ∩ DPFR, which has lZ(t) = 1
for t ≥ 1 = aZ , and HZ(t) = log(t) for t ≥ 1, HZ(t) = 0 for 0 ≤ t ≤ 1. Note that
exponential random variables are not DPFR.Also note that Z = eX , where X ∼ exp(1),
which is consistent with Corollary 6.2, because ex ∈ ILogCX ∩ ILogCV.

Corollary 6.3: Let Z ∼ Pareto(1, 1). Then we have the following:

X ∈ IPFR ⇔ X = ψ(Z) for some ψ ∈ ILogCV(Log),
X ∈ DPFR ⇔ X = ψ(Z) for some ψ ∈ ILogCX(Log).

Proof: This follows from Lemma 5.2, with φ(t) = ψ−1(t) = eHX (t), t ≥ 0, and
HZ(t) = log(t), t ≥ 1. �

Note that the scaled conditional life of a Pareto random variable is also Pareto,

ZSC(x)
d= (1/x){Z|Z > x} ∼ Pareto(1, 1). This is analogous to the fact that the resid-

ual life of an exponential random variable is exponential. As noted earlier, from
Lemma 2.3, for Y ∈ DPFR, aY > 0 (and bY = ∞), which is true for the Pareto
random variable.

Now consider IFR/C and DFR/C random variables. Because ILogCX0-∞ = ∅
from Lemma 2.2, we know that for an IFR/C random variable X, we must have
HX(0) > 0. Thus, exponential random variables are not IFR/C. Let Z be defined by
HZ(z) = ez for z ≥ 0; that is, FZ(0) = P{Z = 0} = 1 − 1/e and h(z) = ez for z > 0.
Thus, Z is a mixture of the constant 0 and a continuous random variable, with f (z) =
eze−ez

for z > 0. Then Z ∈ IFR/C ∩ DFR/C. Note that Z = 0I{X < 1} + [log(X)|X ≥
1] where X ∼ exp(1), which is consistent with Corollary 6.2, because log(x), x ≥ 1 ∈
ICX(Log) ∩ ICV(Log).
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Corollary 6.4: Let Z be such that HZ(z) = ez for z ≥ 0. Then we have the following:

X ∈ IFR/C ⇔ X = ψ(Z) for some ψ ∈ ICV,
X ∈ DFR/C ⇔ X = ψ(Z) for some ψ ∈ ICX.

Proof: This follows from Lemma 5.2, with φ(t) = ψ−1(t) = log(HX(t)), t ≥ 0. �

Finally, let us consider ISFR and DSFR random variables. Such random variables
have finite support. Let U ∼ unif(0, 1). Then sU(t) = (1 − t)hU(t) = (1 − t)/(1 −
t) = 1, so U ∈ ISFR ∩ DSFR. Also note that the scaled residual life for a uniform

random variable is again uniform, USR(u)
d= {U − u|U > u}/(1 − u) ∼ unif(0, 1).
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curves. Sankhyā 57(Series A): 375–383.
4. Belzunce, F., Candel, J. & Ruiz, J.M. (1998). Ordering and asymptotic properties of residual income
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