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In a back pressured duct with incident shocks, the shock train exhibits violent oscillations
or even a rapid movement when it passes through a shock-wave–boundary-layer
interaction (SWBLI) region. In this study, the dynamics of a shock train system was
investigated. Linear stability analysis was used to identify the underlying cause of the
unstable behaviour. Results from the eigenvalue analysis indicated that as the shock
train enters the SWBLI region, the divergent vibration, which is the outcome of a Hopf
bifurcation, emerges. An analysis based on the feedback mechanism identified a criterion
for this instability, i.e. the sign of the gradient of the maximal pressure that the boundary
layer can sustain. Different unstable motions were also investigated according to the
condition of the non-existence of a limit cycle. These motions were associated with the
speed of the shock train and the configurations of the flow parameter gradients. It was
shown in the controllability matrix that the rapid movement is uncontrollable, which
indicates that there is a low correlation between the shock train motion and the flap
actuator in the SWBLI region. However, for the remaining part of the unstable motion, a
fast-response actuator is required. According to the observability analysis, the shock train
movement contributes more to the variation in the pressure behind the first separation
shock than the backpressure further downstream, which confirms that monitoring the
pressure change along the tunnel is a better method for shock train detection rather than a
polynomial model using the backpressure.

Key words: low-dimensional models, shock waves, boundary layer separation

1. Introduction

For a high-speed airbreathing propulsion system, the compression is performed through
a series of oblique shocks, referred to as a shock train (Sullins & McLafferty 1992). It
plays a major role in decelerating the incoming flow and providing the necessary pressure
rise for the downstream combustion. Understanding the dynamical properties of the shock
train is critical for detecting and preventing inlet unstart because of its devastating effects
on the engine performance (Wagner et al. 2009; Do et al. 2011b; Valdivia et al. 2014; Im
& Do 2018). Recently, the shock train has attracted much attention due to its unsteady
behaviours (Laurence et al. 2013; Im et al. 2016; Riley et al. 2018; Hunt & Gamba 2019).

† Email address for correspondence: changjuntao@hit.edu.cn
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One of the behaviours can be considered as a forced motion, which is dominated
by extrinsic driving sources such as the backpressure (Klomparens, Driscoll & Gamba
2016; Su, Ji & Chen 2016). This unsteady motion can be explained by the fact that
the shock train keeps changing its speed to match the varying backpressure by shifting
the relative Mach number ahead of it (Bruce & Babinsky 2008; Xiong et al. 2018).
Another mode is associated with the intrinsic dynamics of the shock train, which are
self-excited fluctuations of the shock train about its time-averaged position even when
both upstream and downstream conditions remain constant. The description of the shock
train mechanism is further complicated by the presence of such behaviour, which was
initially investigated by Ikui et al. (1974) and confirmed by further studies (Matsuo et al.
1993; Handa, Mitsuharu & Matsuo 2005). The mechanism of this unsteady motion is also
controversial. Yamane et al. (1984a) and Yamane, Takahashi & Saito (1984b) conjectured
that the oscillation is caused by the interaction of the disturbances that travel through
opposite directions and excite each other, whereas Sugiyama et al. (1988) suggested that
the oscillation is caused by a throat-like shape in the shock train. Since the boundary layer
thickness changes along the duct, the throat cross-section also changes and induces the
first shock to oscillate.

To obtain the most basic characteristics of the shock train, most previous studies were
performed in a relatively uniform flow field and they made great progress (Hutchins
et al. 2014; Im et al. 2016; Klomparens et al. 2016; Su et al. 2016; Vanstone et al.
2018; Vanstone, Lingren & Clemens 2018; Xiong et al. 2018; Hunt & Gamba 2019).
However, the potential risks caused by complicating effects such as flow distortion and
shock-wave–boundary-layer interaction (SWBLI), which can emerge in a real flight,
cannot be identified in such studies. For a real intake system, the inherent oblique shocks
reflected from compression surfaces result in an inevitable non-uniform flow field in the
isolator, especially in the streamwise boundary layer. In this situation, the motion of
the shock train changes in the vicinity of the SWBLI, and the unsteady movement of
the shock train induced by the SWBLI emerges in a large amplitude, which is significantly
enhanced compared with the self-excited oscillation (Wagner, Yuceil & Clemens 2010;
Tan, Sun & Huang 2012). In some cases, even with a slight change in the backpressure, a
rapid movement can also be observed (Li et al. 2017; Huang et al. 2018), during which the
shock train leading edge (STLE) passes through the SWBLI region quickly and stabilizes
upstream. This phenomenon may pose a threat to the safety of the engine. In particular,
when the shock train approaches the isolator entrance, the rapid forward movement may
lead to inlet buzz or unstart. Owing to the severely detrimental effects of inlet unstart
on the scramjet performance, many of the studies that intend to control inlet unstart
focused on controlling the shock train position (Donbar 2012; Ashley et al. 2014; Valdivia
et al. 2014; Vanstone et al. 2018), which can effectively suppress inlet unstart before its
onset. However, the unstable motion caused by the SWBLI region may bring difficulty
for shock train detection and location control. Although a successful closed-loop control
has been implemented (Valdivia et al. 2014; Vanstone et al. 2018), the applicability of the
control scheme to a highly distorted inlet, in which the shock train location is nonlinear,
is still uncertain (Wagner et al. 2010; Tan et al. 2012; Wang et al. 2018). Therefore, before
developing a control scheme, the characteristics of the shock train, especially considering
the effects of the SWBLI, should be analysed first.

The focus of this study is to investigate the formation mechanism of the unsteady
motion caused by the SWBLI, because once this mechanism is revealed, an appropriate
control scheme can also be developed. If the unsteady movement is induced by external
excitation, such as unsteadiness in the incoming flow, the shock train can be stabilized
by eliminating the source. However, if the unsteady movement is caused by the intrinsic
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dynamics of the shock train, we should consider how to enhance the system stability. Flow
control (bleeding or ejecting) and feedback control are two usual approaches applied in
isolators for resisting the shock train. Flow control can suppress the unstable movement by
modifying the intrinsic dynamics of the shock train to attain stability. By understanding
the relationship between the flow condition and the shock train motion, we can design a
more effective control method. With a proper controller, the closed-loop control method
has the ability to suppress perturbations by feeding back the deviation (MacMartin 2004).
Valdivia et al. (2014) attempted to arrest inlet unstart by vortex generator jets. However,
this type of active control is challenging due to the rapid actuation time required. The
closed-loop control system can prevent unstart approximately 50 % of the time. Thus,
the capability of the actuator to dominate the shock train motion (controllability) should
be analysed. To suppress perturbations using a closed-loop control system, the deviation
needs to be measured and fed back to the controller. Then, it is also necessary to clarify
how well the shock train movement can be inferred by the monitored signal (observability).
However, only few studies have focused on these issues such that it is still unknown which
flow parameter is responsible for the instability and whether the actuator is capable of
dominating the shock train in this situation.

A previously developed shock train model (Li et al. 2017) has motivated us to investigate
the intrinsic dynamics of the shock train by means of a linear stability analysis. In
this study, the Smart–Ortwerth model described by Smart (2015) was utilized to obtain
the equilibrium state of the shock train, and at this equilibrium state, linearization was
performed to obtain the state-space form of the shock train model. Then, the dynamical
properties of the shock train system were revealed during the process of passing through
the SWBLI region. The relationship between the key parameter in the boundary layer
and shock train stability was deduced theoretically based on the free-interaction theory.
Because the rapid movement poses a greater potential threat than oscillations, the
formation of these two unstable movements was analysed further based on the limit cycle
theory. Based on the state-space model, a controllability analysis was conducted to analyse
the ability of the actuator to dominate the shock train motion. In practice, the shock
train location cannot be directly measured; thus, an estimation of the location using the
monitored signal that can be treated as the output of the shock train system is required
to feed back to the controller. We constructed an expression for the output energy, and
with a singular value decomposition, the contribution of the shock train motion to the
output was obtained. Based on this analysis, a better approach for shock train detection
was confirmed theoretically, and some phenomena observed in previous studies were also
explained. These aspects are the key findings of this investigation, which can provide a
basis for shock train control.

The structure of the paper is as follows. In § 2, the shock train model and its linearization
are presented. Section 3 describes the linear stability analysis, which is necessary to
confirm if the shock train unsteady movement induced by the SWBLI is caused by its
intrinsic dynamics. In § 4, we present the analysis of the key parameter responsible for the
intrinsic dynamics and its effects. After analysing the cause of the unsteady movement,
the control strategy is subsequently discussed. In § 5, we provide the controllability and
observability analyses and, finally, the concluding remarks are given in § 6.

2. Problem description and model equations

2.1. Statement of the problem
According to previous investigations (Tan et al. 2012; Li et al. 2017; Huang et al.
2018), the shock train behaviour is closely associated with the boundary layer condition.
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Shock-wave – boundary-

layer interaction

 

Shock train

leading edge 

The first separation shock 

FIGURE 1. Schematic of the problem domain.

The disturbance due to the SWBLI makes the boundary layer thicken or separate
intermittently along the tunnel, which leads to different shock train behaviours. Thus, the
problem is essentially how a moving shock train behaves in the SWBLI region. To define
the problem, consider the interaction in the schematic shown in figure 1. In practice, the
flow field in the isolator is complex, involving perturbations induced from the incoming
flow and combustion. Thus, it is difficult to establish a fundamental understanding of the
interaction between the shock train and the SWBLI. To simplify this investigation, the
movement of the shock train is considered to be driven by a throttle device that induces
little perturbation and is widely used in the study of shock trains (Hutchins et al. 2014;
Klomparens et al. 2016; Huang et al. 2018; Vanstone et al. 2018; Xiong et al. 2018; Hunt
& Gamba 2019).

Actually, the SWBLI is three-dimensional (3-D), and its effects have been investigated
widely (Bruce et al. 2011; Burton & Babinsky 2012; Clemens & Narayanaswamy 2014;
Grossman & Bruce 2018). In the SWBLI region, a primarily reverse flow zone exists in the
centre of the channel and two tiny corner reverse flow zones are located separately close
to the sidewalls. The corner separation results in the formation of compression waves at
the corner. These compression waves interact with the leading leg of the primary shock
to constitute an intermediate zone. In the intermediate zone, compression waves from
the corner separation lead to a more gradual deceleration and gentler adverse pressure
gradient. Consequently, the boundary layer does not separate in this area (see figure 20 of
Burton & Babinsky (2012)). Compared with the central separation, the corner separation
has less impact. In addition, according to the findings of Wang et al. (2015), the separation
line is straight over the central part of the channel, while the reattachment line is curved,
making the separation length in the streamwise direction near the centreline longer. For
a large aspect ratio, the central interaction zone is relatively two-dimensional (2-D) and
the size is increased; in contrast, the effects of the zones in the corner are weakened (see
figure 8 of Wang et al. (2015)). The unstable movements of the shock train observed by
Tan et al. (2012) and Huang et al. (2018), of which the aspect ratios satisfy the condition
mentioned by Wang et al. (2015), can also confirm this. Furthermore, in the investigation
by Xu et al. (2015), the unsteady shock train motion in the SWBLI region was presented
by a 2-D numerical simulation in the absence of corner and sidewall effects. Based on the
analyses above, it is reasonable to infer that the unsteady behaviour of the shock train in
such case can be triggered by a 2-D interaction alone, and the 3-D effects will be ignored
in the following analysis.

2.2. Shock train modelling
The question here is how to investigate the dynamical mechanism and criterion of the
unsteady shock train movement in the isolator. The key to answering this question is
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to construct an appropriate fluid model for the shock train. Currently, the widely used
computational fluid dynamics model is nonlinear and of high order. It can help display
the details of the flow structures but it is not convenient for analysing the mechanism
and criterion of the unsteady motion. Therefore, the premise in the study of the unsteady
mechanism is to set up a low-order model, which has an advantage of distinctly displaying
the physical mechanism associated with stability. In this section, the problem is further
reduced to one-dimensional.

Some analytical models have been proposed to analyse the dynamics of a normal shock
(Culick & Rogers 1983; MacMartin 2004; Bruce & Babinsky 2008). For a shock train,
which is more complex, some studies have attempted to actively predict the shock train
location using system identification (Hutchins et al. 2014; Vanstone et al. 2018). The
system identification requires no knowledge of the shock train physics; however, a simple
physics-based model was then developed (Vanstone et al. 2018). Xiong et al. (2018)
proposed a correlation with high precision between the amplitude of the shock train motion
and the flow parameters. Unfortunately, these shock train models may be not suitable
for analysing the dynamical properties of the shock train, as the coupling between the
upstream and downstream flow is ignored. The air column between the first shock and the
duct exit also plays a role in the transient behaviour (Sugiyama et al. 1988). When the first
separation shock moves forward, the flow in the shock train region will be reconstructed
transiently. This perturbation has an impact on the flow condition at the throat in the flap
region, and then the flow at the throat affects the entire shock train, making a feedback
system.

We begin by stating the governing equations for the shock train. A detailed derivation of
these equations has been presented by Li et al. (2017), in which the suitability of the model
was examined experimentally and numerically. The difference is that minor modifications
were made to the model in this study to achieve a better fit. The model assumptions
are as follows: (a) ideal gas and inviscid flow assumptions with a constant ratio of
specific heat γ and gas constant R, but the skin friction coefficient, which is associated
with the SWBLI, is considered; (b) quasi-one-dimensional flow; (c) the unsteadiness
phenomena in the incoming flow and shock train region are not considered; and (d) the
heat release due to combustion is ignored. To simplify the modelling, the motion of the
first separation shock is also assumed to represent the entire shock train behaviour. Due
to the limited information obtained from the experiment, the approximate parameters of
the experimental flow fields are obtained by 2-D numerical simulations and are used to
assist the modelling. The free interaction theory, which states the pressure rise behind the
separation shock (Chapman, Kuhen & Larson 1957), is introduced to relate the upstream
and downstream conditions as follows:

p2 − p1

q1
∝

√
2Cf 1

(M1
2 − 1)0.5

, (2.1)

where p is the wall pressure, q is the dynamic pressure, Cf is the skin friction coefficient,
M is the Mach number and the subscripts ‘1’ and ‘2’ denote the upstream and downstream
conditions of the first separation shock, respectively. Because the wall pressure is highly
nonlinear, we use 0.5γ p∞M1

2 to approximate the dynamic pressure q1. Considering that
the Mach number in the current case is larger than 1.5, we approximate (M1

2 − 1)−0.25 to
M1

−0.5 to simplify the calculation. On the other hand, for a moving shock at a velocity with
respect to the channel, M1 is replaced by (u1 − ẋs)/a1 (Culick & Rogers 1983), where u is
the velocity of flow, xs is the location of the STLE and a is the speed of sound. Then we
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have
p2 − p1

p∞
= γ

2
F

(
u1 − ẋs

a1

)1.5 √
2Cf 1, (2.2)

where F is a universal correlation function that is independent of Mach and Reynolds
numbers (Chapman et al. 1957; Matheis & Hickel 2015). It can be used to approximate
the wall pressure evolution for a given Mach number and friction coefficient once F has
been determined by experiments or numerical simulations. For turbulent flow, a value of
F = 7.5 produces a better agreement with the current experimental results (Li et al. 2017).

A simple first-order transient response model (Cui, Wang & Yu 2014) is used to describe
the variation of the pressure behind the first separation shock p2, which is given by

ṗ2 = −p2 − P(xs, pb)

τ
, (2.3)

where the subscript ‘b’ denotes the flow condition at the exit. The propagation time
constant τ is calculated as (xb − xs)/a2 and the location of the throat xb is 0.46. Here,
P(xs, pb) is a function to obtain the pressure behind the first separation shock when the
backpressure pb is disturbed (see Li et al. (2017), p. 8).

The coupling between the upstream and downstream flow, namely the duct volume
effect, is described as follows:

ṁ∞ − ṁb = dρbV
dt

= Vρ̇b + ρbV̇, (2.4)

where ṁ is the mass flow rate. The rate of the density variation at the exit ρ̇b is calculated as
(ρbṗb)/(γ pb) according to the equation of state, and the volume of the region downstream
of the shock train V is described as A(xb − xs) where A is the duct area. The density of the
separated flow is difficult to obtain in the modelling and the flow has a low velocity in this
region, thus, we use the lumped parameter at the exit instead.

According to the equations above, the dynamic features of the shock train are solved
based on its equilibrium states with different backpressures. In the shock train, the core
flow is supersonic whereas the separation flow is subsonic. It is difficult to estimate
the steady-state relationship between the upstream and downstream conditions. Thus,
the Smart–Ortwerth model is employed. Heat release and loss are ignored, and then the
simultaneous ordinary differential equations can be described as

dM2

d(x/DH)
= −M2

(
1 + γ − 1

2
M2

) [(
2

γ pM2

A
Ac

)
dp

d(x/DH)
+

(
4Cf 2

A
Ac

)]
, (2.5a)

d(Ac/A)

d(x/DH)
=

[
1 − M2(1 − γ (1 − Ac/A))

γ pM2

]
dp

d(x/DH)
+

(
1 + (γ − 1)M2

2

)
4Cf 2, (2.5b)

dp
d(x/DH)

= kCf ∞
(
0.5γ pM2) , (2.5c)

where A/Ac and DH are the normalized core flow area and hydraulic diameter, respectively.
Here, Cf 2, which represents the skin friction at the wall in the entire separated region, is
assumed to be zero, k is an empirical constant. According to a previous finding (see figure
8 of Li et al. (2017)), the pressure gradient in the shock train region described by (2.5c)
is set as constant. The function P(xs, pb) can be obtained by solving (2.5) with initial
conditions, p1(xs), M1(xs), A/Ac and terminal condition pb.
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Combined with the disturbance propagation model, duct volume effect and the
equilibrium manifold linearization approach used by Cui et al. (2014), the equations
describing the dynamics of the shock train motion can be concluded as follows:

ẋs = − 4ā1(xs)

3Fγ p∞
√

2M̄1(xs)C̄f 1(xs)

[
p2 − p̄2(xs)

]
, (2.6a)

ṗ2 = − ā2(xs)

xb − xs

[
p2 − P(xs, pb)

]
, (2.6b)

ṗb = − γ RTt

V
[
1 + 0.5(γ − 1)M̄2

b

] [ṁb − ṁ∞] − γ pb

V
V̇, (2.6c)

where ‘¯’ denotes the steady-state parameter. The speed of sound ā1 and ā2 are calculated
with the static temperature of the incoming flow T∞ and the total temperature Tt,
respectively. The distributions of Cf 1(x), p1(x) and the area-averaged Mach number M1(x)
of the unthrottled flow are obtained in advance by a 2-D numerical simulation to assist the
modelling, and the remaining parameters are solved by analytic expressions. Different
from the previous work, the throttling ratio Ab/A in the mass equation of (2.6c) is set as
the input of the shock train system, and p∞ is used in the calculation instead of p1 except
for solving the ordinary differential equations. The validation of the shock train model is
shown in appendix A.

2.3. Linearization of the shock train model
The dynamics equations (2.6) govern the evolution of the system state X = [xs p2 pb]T.
Then, the equations can be written in the form

Ẋ = J (X , t). (2.7)

The linear stability analysis assumes the existence of an equilibrium solution X 0 for the
system (2.6) referred to as the base flow and defined by J (X 0) = 0. Using the standard
small perturbation technique, the instantaneous flow is decomposed into base flow and
small disturbances X = X 0 + εX ′, where ε � 1. The resulting equations are further
simplified by considering that the perturbation is infinitesimal, allowing the nonlinear
fluctuating terms to be neglected. Thus, the nonlinear dynamic equations (2.6) become
a system of linear partial differential equations defined by

Ẋ
′ = AX ′, (2.8)

where the vector X ′ = [xs
′ p2

′ pb
′]T represents the perturbation variables. Here, A =

dJ /dX |X 0 is the Jacobian matrix obtained by linearizing the function Re around the base
flow X 0. To obtain the matrix A, we set X ′ = [xs

′ 0 0]T at X 0. Then we have

Ẋ
′ = AX ′ = A

[
xs

′ 0 0
]T = J (X 0 + εX ′) − J (X 0)

ε
, (2.9)

and the first column of the Jacobian matrix A is given by

[a11 a21 a31]T = J (X 0 + εX ′) − J (X 0)

εxs
′ . (2.10)

Similarly, we obtain the other two columns by setting X ′ = [0 p2
′ 0]T and X ′ =

[0 0 pb
′]T at the same equilibrium point. Then, the eigenvalue of the linearized system
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λ = σ + ωi is also obtained at this equilibrium point. The sign of the leading eigenvalue’s
real part σ determines whether the equilibrium solution is linearly stable or unstable,
whereas its imaginary part ω characterizes the stationary or oscillatory nature of the
associated eigenvector.

3. Mechanism of the unsteady movement induced by SWBLI

Similar to the self-excited oscillation, the significant unsteady movement of the shock
train in the SWBLI region tends to be caused by the intrinsic dynamics of the shock
train system due to the constant upstream condition and the slowly varying downstream
condition. Based on the surrogate model developed in § 2, we performed a linear stability
analysis of the shock train system during the process of passing through the SWBLI region,
which is discussed in the following.

3.1. Characteristics of the unsteady shock train movement
We took the flow conditions in the study by Li et al. (2017) as examples to present the
characteristics of the unsteady movement of the shock train. Tests were conducted at
Mach 1.85 and 2.70 and the stagnation pressures were 0.215 and 0.462 MPa ± 0.5 %,
respectively. The stagnation temperature was 305 ± 5 K. The thickness of the boundary
layer at the exit of the wind tunnel was approximately 3.9 mm. This wind tunnel had
an isolator test section that measures 50 mm wide × 30 mm tall × 320 mm long. Fused
silica windows were placed in the test section sidewalls for an optical access that measures
30 mm tall × 260 mm long.

In figure 2, the modelled trajectories are compared with the experimental ones. At a
lower Mach number, as shown in figure 2(a), the model can predict the trend of STLE
movement in general. According to the trajectory obtained from schlieren images, the
oscillation emerges when the STLE enters the SWBLI region. For a higher Mach number,
as shown in figure 2(b), a rapid forward movement is observed instead of the oscillation.
Both the locations and moments when the unsteady motions occur in the model results are
close to the experimental ones. It should be noted that the oscillation and rapid forward
movement in different conditions are also distinguished by the model. The λ-type shock
train occurs at a lower Mach number and the pressure increases quickly in the front part.
Accordingly, a larger slope was used in (2.5c). In contrast, for the case with a higher Mach
number, the shock train has a χ -type structure and the pressure rise is more gradual. Thus,
a smaller slope was used in (2.5c) during the modelling.

Due to the assumptions in the modelling, this shock train model has some shortcomings,
which are embodied in the following aspects. The coefficient k in the model may be
unsuitable for other situations, due to the strong dependence on the flow conditions.
Setting the coefficient as a constant may not be suitable for all cases. A data set or
fitting function of k obtained according to different flow conditions may give better
performance, but numerous experimental data are required to support this process. Due
to the dimensionality reduction in the modelling and simplification of the flow conditions,
the modelled unsteady process lasts for less time than the experimental one. By using
lumped parameters, which were obtained from a 2-D numerical simulation, parts of the
effects of the SWBLI may be distorted. There exists a coupling between the movements
of the STLEs at the lower and upper walls, however, this coupling is not modelled here,
which also contributes to the disagreement. Nevertheless, the model presents the dynamic
characteristics of the shock train within the SWBLI region and is considered to perform
well considering the difficulty of mechanism modelling.
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FIGURE 2. The STLE trajectories at the bottom wall: (a) at M∞ = 1.85, the values of 0.5γ pM2

and kCf in (2.5c) are assumed to be 85.0 kPa and 0.35 during the modelling and (b) at M∞ =
2.70, the values of 0.5γ pM2 and kCf in (2.5c) are assumed to be 111.4 kPa and 0.16. The location
is normalized with the isolator length Liso and the time is normalized with Liso/u∞. The data are
selected from the experimental results of Li et al. (2017). The entire movements of the STLEs
at M∞ = 1.85 and M∞ = 2.70 can be seen in the supplementary movies 1 and 2 available at
https://doi.org/10.1017/jfm.2020.702.

3.2. Linear stability analysis of the shock train movement
The time-domain behaviour suggests that there exists an instability mechanism inside the
STLE movement. For a more detailed analysis, we focused on the linear stability analysis
of the shock train behaviour. Figure 3 illustrates the details of the STLE movements in the
second region of figure 2(a) and first region of figure 2(b). At the onset of the interaction
between the STLE and SWBLI, the STLE oscillates with an increasing amplitude, which
can be seen both in the model and experimental results. At a lower Mach number, the
oscillation lasts until the STLE passes through the SWBLI region, of which the duration is
approximately 0.300 s; whereas a rapid forward movement occurs instead at a higher Mach
number and the duration is approximately 0.024 s. After the STLE crosses the SWBLI
region, the decreasing amplitude of the oscillation suggests a decay process. According to
the linearized equation set, at each equilibrium point, the Jacobian matrix A has one purely
real eigenvalue and a pair of conjugate eigenvalues. This suggests that when the STLE is
perturbed, it moves to a new position with a decaying oscillatory path as shown in the
enlarged view of figure 3, which is consistent with the experimental results of Vanstone
et al. (2018).

As analysed in a previous study (see figure 7 of Li et al. (2017)), the shock train can be
treated as a closed-loop system, and the characteristic is indicated by its eigenvalues (poles
of the closed-loop system). Figure 4 depicts the variations of the three eigenvalues during
the unsteady movement as shown in figure 3(a). As the parameters vary along the isolator,
the feature of the shock train system is also disparate. To characterize this evolution, the
eigenvalues were plotted against the STLE location and the corresponding changes of
the parameters are with reference to figure 3(a). When the downstream STLE moves into
the SWBLI region, the Cf ahead of it decreases sharply, which indicates that the resistance
of near-wall flow to an adverse pressure gradient becomes weak. Meanwhile the real
parts of the conjugate eigenvalues increase above zero and STLE instability occurs. The
evolution of the conjugate eigenvalues also indicates the occurrence of a Hopf bifurcation
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FIGURE 3. Distributions of the flow parameters at the bottom wall and details of the STLE
motions within the SWBLI regions: (a) M∞ = 1.85 and (b) M∞ = 2.70. The inset shows an
enlarged view of the oscillatory path for the STLE. The dashed line with an arrow indicates the
trend of the shock train movement.

(Sipp et al. 2010; Sansica et al. 2018). When Cf decreases further, the real parts of the
conjugate eigenvalues separate at some positions and the imaginary parts disappear. This
can explain the sudden change in the amplitude in figure 3(a) and the rapid movement in
figure 3(b). Due to a significant increase in Cf when the STLE moves out of the SWBLI
region, the stable real eigenvalue and conjugate eigenvalues emerge again, and then the
STLE moves to a new position with a decaying oscillatory path. However, in the absence
of a quantitative relationship, it would be arbitrary to relate Cf with instability.

According to this qualitative analysis, we can only roughly associate the evolutions
of the eigenvalues with the distributions of the parameters in the boundary layer.
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FIGURE 4. Variations of the eigenvalues during the unsteady shock train movement: (a) real
part and (b) imaginary part.

The existence of positive eigenvalues indicates that the shock train is unstable in the
SWBLI region and a positive feedback mechanism exists. When the shock train is
disturbed in a stable region, the flow makes the direction of ẋs opposite to that of the
offset, pulling the STLE back to the original position, which is called negative feedback.
In contrast, if the shock train is disturbed in an unstable region, the flow makes the
direction of ẋs the same as that of the offset, pushing the STLE away from the original
position, which is called positive feedback. However, the question of what is the underlying
physics of positive feedback in the shock train within the SWBLI region is still open,
and what causes the rapid movement is also still unknown. To find out what triggers the
positive feedback and what causes the rapid movement of the shock train, we performed
a quantitative analysis between the boundary layer conditions and the STLE stability as
presented in the succeeding section.

4. Hopf bifurcation in the shock train behaviour

Continuous dynamical systems that involve differential equations mostly contain
parameters and a slight variation in the parameters can have a significant impact on the
solution. According to the linear stability analysis, it can be found that the shock train
system switches from stability to instability when it enters the SWBLI region. Bifurcation
occurs when a small smooth change made to the flow parameters of the shock train
system causes a sudden qualitative change in its behaviour. Based on the evolution of
the eigenvalues, a Hopf bifurcation is observed in the shock train behaviour. Moreover, a
limit cycle oscillation accompanies it, which can be seen in figure 3(a); while in another
situation, a rapid movement occurs instead of the oscillation. Thus, the main question of
interest is: Which parameter is responsible for the bifurcation and what are its effects?

4.1. Criterion for the instability of the shock train movement
Many studies have shown that the wall pressure gradient is responsible for the unstable
movement caused by the SWBLI in the isolator (Tan et al. 2012; Huang et al. 2018).
This criterion can be suitable for practical applications (Li et al. 2019), but it may not be
rigorous in theory. In this study, we deduced the criterion for the stability of the shock train
motion theoretically. At first, we focused on the motion of the first separation shock, and
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FIGURE 5. Feedback mechanism of the STLE.

its dynamic process described by (2.6a) and (2.6b) can be expressed as several integral
processes with a physical feedback as shown in figure 5. When the STLE stabilizes at
xs, the steady-state relationship between the upstream and downstream conditions of the
first separation shock can be obtained according to (2.2), of which the velocity ẋs is set as
zero. If the downstream flow is disturbed, the pressure behind the first separation shock
deviates from p̄2(xs) and reaches p+

2 . This process is not completed instantaneously, but
takes a period of time. We can obtain the varying rate of the pressure through (2.6b). By
an integral process the actual value of p2 can be obtained. The deviation induced by the
disturbance requires a certain speed of the STLE, which is equal to ẋs, to maintain the
pressure ratio relationship. When the STLE moves to a new position where the local flow
field can sustain p+

2 , ẋs turns to be zero and then the shock train stabilizes. This process
indicates that the motion of the STLE is a feedback system, which is characterized by a
self-balance or a dynamic imbalance.

To analyse the feedback mechanism of the STLE motion, we defined the deviation ε as

ε = p+
2 − p̄2(xs), (4.1)

where ε is also the perturbation that provides the driving force, p+
2 is the disturbed pressure

behind the separation shock. If ε is equal to zero, the STLE will be maintained at a fixed
position.

For a given acoustic wave p2
+, we get

ε̇ = −˙̄p2(xs) = −dp̄2(xs)

dxs
ẋs. (4.2)

Then, according to (2.6a), (4.2) can be written as

ε̇ = −dp̄2(xs)

dx
ẋs = dp̄2(xs)

dx

4ā1(xs)

3Fγ p∞
√

2M̄1(xs)C̄f 1(xs)

ε = λε, (4.3)

λ = dp̄2(xs)

dx

4ā1(xs)

3Fγ p∞
√

2M̄1(xs)C̄f 1(xs)

, (4.4)

where λ is the eigenvalue of the deviation equation (4.1) for determining the stability of the
self-feedback system. As known, the system will be unstable when λ is positive and stable
when λ is negative. If λ is equal to zero, the system will be at a critical state. As shown
in (4.4), the sign of λ is determined by dp̄2(xs)/dx . The term p̄2(xs), which is calculated
according to the free-interaction theory, indicates how much pressure rise the boundary
layer can sustain in a supersonic flow, and it can also be considered as the critical pressure
that stabilizes the shock.
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Figure 6 presents the distributions of the wall pressure and p̄2(xs) at the isolator
bottom with the conditions involved in the study by Li et al. (2018). In the SWBLI
region, the boundary layer undergoes a significant adverse pressure gradient, and with
the wall pressure increasing, the boundary layer can sustain a larger pressure rise. This
phenomenon is consistent with the findings of Do et al. (2011a) and Im et al. (2016),
in which shock anchoring was observed in the region with a higher pressure gradient.
It can also be confirmed in previous research (see figure 9 of Li et al. (2019)), where
the SWBLI had a retardation effect on the STLE at the beginning of the period when
it passed through. As shown in figure 6, when the STLE moves upstream across the
peak A, the change of sign in the pressure gradient of p̄2(xs) leads to a formation of
the positive feedback mechanism. In the adverse pressure gradient region, the maximal
pressure that the boundary layer can sustain continues to decrease with the STLE moving
upstream. An offset in the upstream direction results in the same direction of the shock
train movement, which is described by (2.6a), pushing the STLE away from the original
position. Meanwhile, the bifurcation appears, transforming the system from stable to
unstable. With an increasing backpressure, the STLE moves into the region with a
favourable pressure gradient and stabilizes further upstream of the favourable pressure
gradient region. The appearance of the favourable pressure gradient increases the maximal
pressure that the boundary layer can sustain. An offset of the STLE position in the
upstream direction results in a positive ẋs (downstream direction) in (2.6a), which means
that the negative feedback process pulls the STLE back to the onset. This provides
the evidence that an adverse pressure gradient of p̄2(xs), and not the wall pressure, is
responsible for the Hopf bifurcation, and the favourable pressure gradient can increase the
stability of the shock train.

4.2. Mechanism of the rapid movement induced by SWBLI
Based on the analysis above, when the STLE passes through the SWBLI region, the Hopf
bifurcation appears. The evolution of the limit cycle in the p2–xs plane is displayed in
figure 7. When the STLE moves into the SWBLI region, the limit cycle grows from the
equilibrium point and then remains stable. With the STLE moving forward, the limit cycle
disappears and then the STLE stabilizes at a new equilibrium point. However, in figure 3,
the STLE exhibits two different types of unstable behaviours: oscillation and rapid forward
movement. In addition, when the shock train passes through point A in figure 6(a), it
behaves more like an oscillation than a rapid movement, although the incoming flow
conditions are similar with those in figure 6(b). Then, this question arises: Why are there
different unstable motions? The Hopf bifurcation is usually accompanied by a limit cycle
oscillation. Thus, we focused on the limit cycle in the following, that is: Under what
condition is the trajectory closed?

For a fixed backpressure, the system (2.6) can be reduced into (4.5b) as follows:

ẋs = f (xs, p2) = − 4ā1(xs)

3Fγ p∞
√

2M̄1(xs)C̄f 1(xs)

[
p2 − p̄2(xs)

]
, (4.5a)

ṗ2 = g(xs, p2) = − ā2(xs)

xb − xs

[
p2 − P(xs, pb)

]
. (4.5b)

Not much is known about the conditions for the existence of the limit cycle; therefore, we
focused our attention on the conditions for its non-existence. If the sign of df (xs, p2)/dxs +
dg(xs, p2)/dp2 does not change in the domain region, there is no closed trajectory for the
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FIGURE 6. Distributions of wall pressure and maximal pressure p̄2(xs) that the boundary layer
can sustain in (a) case B in Li et al. (2018) and (b) case C in Li et al. (2018). The incoming
Mach number of these two cases is 2.70, which is the same as that in figure 2(b). In case B, an
additional angle of the wedge, which is used to generate the incident shocks, is set to achieve a
different distribution in the SWBLI regions from those in figure 2(b). In case C, the distribution
in the SWBLI regions is the same as that in figure 2(b), while the backpressure rising time is
different. (Experiment, EXP; computational fluid dynamics, CFD.)
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FIGURE 7. Evolution of the limit cycle during the STLE unstable movement based on the case
in figure 3(a): (a) model result and (b) experimental result. The pressure p2 in the experimental
result is obtained by interpolation with the measured pressure distribution and STLE position.
Due to the effect of noise, a lowpass filter with a passband frequency of 35 Hz is adopted.
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FIGURE 8. Variation of the divergence of the system (4.1): (a) original case in figure 3(a),
(b) modified case.

system. We have

df (xs, p2)

dxs
+ dg(xs, p2)

dp2
= ẋs

G
dG
dxs

− G
dp̄2(xs)

dxs
+ H, (4.6)

where G = −4ā1(xs)/(3Fγ p∞
√

2M̄1(xs)C̄f 1(xs)) and H = −ā2(xs)/(xb − xs).
The divergence of the system can be obtained through a numerical solution as shown

in figure 8(a). After the STLE crosses the critical point, the divergence increases rapidly
first and then drops sharply through the zero axis. Meanwhile, the STLE oscillates to
divergence and then a rapid movement, which is caused by the unstable real eigenvalue,
occurs. According to the numerical solution in figure 8(a), after the rapid movement, there
exists a region upstream of the STLE in which a sign reversal of (4.6) can occur. Based on
the expression in (4.6), the divergence of system (4.5) can be influenced by the parameter
gradients in the boundary layer. In addition, in figure 6, the limit cycle tends to exist in
the situation with a gentler gradient (refer to the region boxed by the dotted line). For a
further verification, the distributions of Cf (x), p(x) and M(x) were modified based on the
case in figure 3(a) to construct a new situation in which after the rapid movement, the
sign of (4.6) will not change as shown in figure 8(b). The region with an adverse gradient
was shortened with a dimensionless length of 0.020 as shown in figure 9(a) to obtain a
steep gradient. Compared with the original trajectory shown in figure 3(a), no limit cycle
is observed which is similar to the case in figure 3(b).

For now, it can be concluded that the unsteady movement is induced by the intrinsic
dynamics of the shock train and its stability is affected by the gradient of the maximal
pressure (p̄2(xs)) that the boundary layer can sustain. Steeper adverse pressure gradients
may result in a rapid movement of the shock train, while gentler adverse pressure gradients
tend to induce oscillations. For the case involving a rapid movement, the significant
pressure rise in p̄2(xs) can be treated as a ‘dam’. When the STLE crosses the critical point,
the shock train will release what it has been suppressing even with a small smooth change
in the backpressure. At the critical point, the pressure that the boundary layer can sustain is
relatively high and the forepart of the shock train has already sustained a certain pressure;
therefore, it reaches the backpressure by extending only a relatively short distance. With
a slight variation in the backpressure, the STLE enters into the region where the ability
of the boundary layer to suppress the pressure is greatly reduced. Because the pressure
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FIGURE 9. (a) wall pressure distribution in the case of figure 8(b), (b) corresponding
STLE trajectory.

downstream of the first separation shock is relatively low, the shock train has to extend a
longer distance to reach the similar backpressure. This phenomenon is similar to the case
that involves bleeding or ejecting (He, Huang & Yu 2016; He et al. 2016). A flow control
can improve the flow state in the boundary layer and enhance the maximal pressure that the
boundary layer can sustain. However, when the backpressure ratio is increased above the
critical value, the shock train suddenly relocates upstream. For a gentler adverse pressure
gradient, after this extension the initial movement continues due to the negative damping,
and attains a limiting value due to the control of the negative damping by the increased
positive damping, which is associated with the local flow condition. The positive damping
becomes predominant and further reduces the amplitude of the movement to a certain
value and again the negative damping becomes predominant and continues to increase
the amplitude. Then the limit cycle oscillation emerges. For a steeper adverse pressure
gradient, the positive damping dominates alone and reduces the amplitude to a certain
minimum value, during which only a rapid movement is observed. This finding provides
a possible method of improving the stability of the shock train, namely, eliminating the
adverse pressure gradient region, or at least, turning the rapid movement into oscillation by
moderating the adverse pressure gradient when the adverse pressure gradient is inevitable.

5. Discussion on the shock train control with SWBLI

5.1. Controllability of the shock train movement
In practice, the operation of the scramjet is most probably very close to the boundary
of inlet unstart, and any additional downstream pressure fluctuation or incoming flow
disturbance can lead to unstart (Im et al. 2016). Thus, a trade-off must be made between the
goal and the risk of inlet unstart. The closed-loop control system can be most effective in
combating this (Valdivia et al. 2014; Vanstone et al. 2018) due to the ability of suppressing
perturbations. However, the unstable STLE motion with a large amplitude induced by the
SWBLI brings with it a problem: When the shock train is forced to remain at a certain
position or to follow an instruction, will it be capable of responding to the actuator in
this region?

Before formulating a control system, a physical objective that the control algorithm
will seek to achieve needs to be identified. This objective will be expressed in terms of
system outputs, certain measurable quantities that characterize the system evolution and
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the system input. In a real scramjet, the input is the valve lift of the fuel supply system,
while in this study, we used a motor instead and the throttling ratio u = Ab/A was used
as the system input. The effect of the throttling ratio is represented by the addition of
a new term to system (2.8), which is now written as (5.1a). Taking some equilibrium
configuration as the ‘base’ state, we chose to eliminate the perturbations to the STLE
location xs resulting from perturbations to this base state as the control objective; however,
xs is not directly measurable. Thus, additional directly measurable signals are required to
reconstruct xs. This particular choice of the signal is motivated by practical considerations,
as measurements of pressure are relatively easy to implement in experiments or practical
applications. Choosing this quantity as an output of system (2.8) gives the output (5.1b),

Ẋ
′ = AX ′ + Bu, (5.1a)

Y = CX ′, (5.1b)

where B is a 3 × 1 matrix obtained according to (2.10) and C is a 1 × 3 matrix determined
based on the requirements. It must first be verified that this is in fact feasible given the
internal structure of the system with its inputs and outputs. This can be done by analysing
the controllability and observability of system (5.1). Controllability is characterized by
the rank of the controllability matrix Qc, which can be affected by the control authority
available. The difference between the system dimension (three in the present case) and
rank (Qc) gives the number of uncontrollable states. For the system under consideration,
Qc is calculated according to

Qc = [
B AB A2B

]
. (5.2)

Figure 10 illustrates the variation of the rank of matrix Qc during the shock train
movement in figure 3(b). For the region with an extremely low Cf value, rank (Qc) < 3,
indicating that the system is uncontrollable. If the controllability matrix has rank r ≤ n,
where n is the size of A, then there exists a similarity transformation such that

Ā = TAT T, B̄ = TB, C̄ = CT T, (5.3a–c)

where T is unitary, and the transformed system has a staircase form, in which the
uncontrollable modes, if there are any, are in the upper left-hand corner,

Ā =
[

Auc 0
A21 Ac

]
, B̄ =

[
0

Bc

]
, C̄ = [

Cnc C
]
, (5.4a–c)

where (Ac, Bc) is controllable, all eigenvalues of Auc are uncontrollable.
In the current system, we have defined three state variables: the STLE location xs, the

pressure behind the first separation shock p2 and the backpressure pb. According to this
transformation, it can be found that the controllable part is only pb. The uncontrollability
indicates that the STLE cannot respond to the actuator in this region. The low correlation
between the shock train location and the backpressure can also be observed in previous
experimental results (see figure 10 of Li et al. (2018)), where the STLE motion was
dominated by the SWBLI. Meanwhile, for the rest of the unstable part, in which the STLE
oscillates, rank (Qc) = 3, indicating that the system is controllable. However, according to
the analysis of the magnitude-frequency characteristic, the bandwidth of the STLE motion
is above 70 Hz, which approaches the findings of Tan et al. (2012). In the investigation by
Xiong et al. (2018), the oscillation amplitudes of the shock train decay significantly with
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FIGURE 10. Variation of the rank of Qc during the shock train movement in figure 3(b).

similar excitation amplitudes when the excited frequency increases above 75 Hz, which
also indicates a rough range of the bandwidth of STLE motion in their case. Considering
the existence of oscillation induced by the SWBLI, a rapid actuation time of the actuator
is required to control the unstable motion of the shock train. However, if the shock train is
controlled by adjusting the fuel equivalent ratio, the fuel supply system and the combustion
process limit this execution in a scramjet.

5.2. Observability of the shock train movement
To form a closed-loop control system, the feedback of the STLE location is required.
However, the STLE location cannot be directly measured, and the selection of the
parameters, which are capable of reconstructing the STLE location, is very important (Le,
Goyne & Krauss 2008; Hutzel et al. 2011; Donbar 2012; Ashley et al. 2014). In control
theory, observability is a measure of how well internal states of a system can be inferred
by knowledge of its external outputs. For linear systems, one way of testing whether the
system (2.8) is observable is to define and verify the rank of the observability matrix

Qo =

⎡
⎢⎣

C

CA

CA2

⎤
⎥⎦ . (5.5)

Dynamical system (5.1) is state observable if and only if rank (Qo) = 3. When the
system is observed by means of pressure measurements of p2, which can be realized by
monitoring the pressure along the tunnel, matrix C becomes C2 = [0 1 0]. An additional
method is to use the backpressure pb; then, we have C3 = [0 0 1]. Figure 11 depicts the
variation of the rank of matrix Qo during the STLE movement. For C3, the observability
matrix is full rank, which indicates that all states are observable. In contrast, for C2, rank
(Qo) < 3 during the rapid forward movement. Although the system is unobservable, by
computing the observability staircase form of the state-space system, the unobservable
part was found to be pb.

For matrices C2 and C3 the state xs is observable; however, the abilities necessary
to characterize it are different. Here, we constructed an expression for the output
energy at X 0,

EY = ‖Y‖2
2 =

∫ ∞

0
X 0

T eATtCTC eAtX 0 dt = X 0
TLoX 0, (5.6a)

Lo =
∫ ∞

0
eATtCTC eAt dt, (5.6b)
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FIGURE 11. Variation of the rank of Qo during the shock train movement in figure 3(b).
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FIGURE 12. Variations of the singular values during the shock train movement in figure 3(b).

where Lo is the observability Gramian. It is clear that Lo in (5.6) cannot be extended to
unstable systems. Nevertheless, Lo is also the solution to the following Lyapunov equation
and (5.7) may still have solutions even if A is unstable:

ATLo + LoA + CTC = 0. (5.7)

Using the singular value decomposition, we get Lo = USUT; then,

EY = (
UTX 0

)T
S

(
UTX 0

)
. (5.8)

The element in S corresponding to xs indicates how much it contributes to the
output. By replacing C with C2 and C3 at the same equilibrium point, each singular
value corresponding to xs was calculated and shown in figure 12. It can be inferred
that the STLE motion contributes more to the variation of p2 than pb during the rapid
movement.

The phenomenon observed in previous studies (Tan et al. 2012; Li et al. 2018; Hunt &
Gamba 2019), in which the upstream wall pressure oscillates more strongly than that in
the downstream of the shock train, can also provide evidence. For a further verification,
as shown in figure 13, different methods for estimating the STLE location are compared
through postprocessing using the experimental results in figure 6. According to (5.9), the
STLE location error e is defined as the difference between the estimated locations xpre for
all ns time samples in a run and the locations from the shadowgraph xexp. The root mean
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FIGURE 13. Measured STLE location against predicted location using (a) pressure ratio rise
method and (b) backpressure method. The experimental results in the figures are presented with
a sampling frequency of 200 Hz.

square (RMS) of the error is then the RMS of e as defined in (5.10),

e = xpre − xexp

Liso
, (5.9)

eRMS =
√

e2(1) + e2(2) · · · e2(ns)

ns
. (5.10)

The first method is based on the pressure ratio rise along the tunnel (Le et al. 2008;
Hutzel et al. 2011; Donbar 2012). The time average of approximately two seconds of data
at transducer i in an unthrottled flow is defined as the tare pressures pTare,i (i = 1, 2 · · · 10).
Here, pTare,i is compared with the static pressure at each sample, kΔt, for the same set
of transducers, ps,i(kΔt). A vector of the pressure ratios from the first transducer to the
maximal one can then be created as shown in (5.11). It should be noted that the tare
pressures pTare,i, but not the freestream static pressure, are used to non-dimensionalize the
pressure signals. Thus, the misjudgement of the pressure rise caused by the SWBLI could
be avoided. The shock train location is estimated for each sample by spline interpolation,
using PR(kΔt), a vector of the transducer locations xtr and the desired pressure ratio prdes,

PR(kΔt) =
[

ps,1(kΔt)
pTare,1

ps,2(kΔt)
pTare,2

· · · max

(
ps,i(kΔt)

pTare,i

)]
. (5.11)

By monitoring the pressure rise ratio, which is equal to p2/p1, the location of the shock
train can also be estimated. However, it is difficult to obtain the distribution of p2 along
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the tunnel by experiment; therefore, we used an approximation value instead. The STLE
location and the error using this method is presented in figure 13(a). As can be observed,
the shock train location is estimated well by detecting the pressure ratio rise along the
isolator. Even for the unstable motion in the SWBLI region, the estimation of the rapid
forward movement is very close to the video data. The transducers are located in a range
of x/Liso ≈ 0.14–0.70; thus, the position outside of this region cannot be estimated. The
eRMS result from this run is 0.0196.

Another method involves creating a relationship between pb and the STLE location
(Hutzel et al. 2011). The backpressure from each sample was used in a least squares
regression to provide the static polynomial model as shown in (5.12). Although the
polynomial model has a high order, it performs poorly as shown in figure 13(b). The
eRMS result from this run is 0.0677. According to the singular value analysis, as the STLE
location xs contributes more to p2 than pb, reconstructing the state variable xs with p2 will
result in a better performance,

xs(kΔt) = a0 +
5∑

n=1

an

(
pb(kΔt)

p∞

)n

. (5.12)

6. Conclusions

When the shock train passes through the SWBLI region, violent fluctuations or a
rapid movement occurs. This phenomenon has been observed in previous studies but the
underlying mechanisms responsible for the unsteady motion have not been fully explored.
Through an in-depth analysis of the shock train dynamics, the mechanism that causes the
unsteady movement was clarified and reliably modelled or predicted. The key parameter
in the boundary layer, which is responsible for the instability, was confirmed, and its effect
on the shock train behaviour was also analysed. It is necessary to examine whether the
unstable movement can be controlled and characterized with limited information before
implementing suppression approaches; thus, the controllability and observability of the
shock train were presented during the unstable movement.

According to the evolution of the eigenvalues for the shock train system, at each
equilibrium point outside the SWBLI region, the shock train system has one purely real
eigenvalue and a pair of conjugate eigenvalues, all of which are stable. This is similar to the
findings of Vanstone et al. (2018), in which the identified third-order models consistently
performed better. When the downstream STLE moves into the SWBLI region, the real
parts of the conjugate eigenvalues increase and cross the zero axis, which results in
instability of the shock train (i.e. Hopf bifurcation). After the STLE passes through the
SWBLI region, the stable eigenvalues appear again and the shock train moves to a new
position with a decaying oscillatory path.

By analysing the feedback mechanism of the STLE, the gradient of the maximal
pressure that the boundary layer can sustain, dp̄2(xs)/dx , was found to be responsible
for the bifurcation. In the adverse pressure gradient region, the maximal pressure that the
boundary layer can sustain continues decreasing with the STLE moving upstream, which
forms a positive feedback mechanism in the shock train system. An offset in the upstream
direction results in the same direction of the shock train movement, pushing the STLE
away from the original position, and then the unstable motion occurs. This finding provides
an idea for improving the ability of the inlet to resist the backpressure, that is, to increase
the pressure rise of the first separation shock by flow control, and then accommodate a

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

70
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.702


907 A40-22 N. Li, J. Chang, K. Xu, D. Yu and W. Bao

higher backpressure with the same length of the shock train. However, a coin has two
sides, once it exceeds the critical point the length will increase significantly in some cases.

Various configurations of the boundary flow conditions can also result in different
unstable movements. At a lower Mach number, as the STLE passes through the SWBLI
region, a limit cycle grows from the equilibrium point and then remains stable. With the
STLE moving forward, the limit cycle disappears and then the STLE stabilizes at a new
equilibrium point. With a steep configuration of the parameters in the boundary layer,
the sign of the system divergence cannot change and then there is no closed trajectory
of the STLE, which leads to a rapid forward movement of the shock train. In order to limit
the unstable movement of the shock train, eliminating the adverse pressure gradient region
can help, or at least, turning the rapid movement into oscillation by moderating the adverse
pressure gradient when it is inevitable.

Based on the controllability analysis, the rapid forward movement of the shock train
is uncontrollable. While the reset unstable part, which is dominated by oscillations, is
controllable, a rapid actuation time of the actuator is required. Considering that the shock
train in a real scramjet is mainly driven by adjusting the fuel equivalent ratio, it is difficult
to suppress the unstable motion of the shock train induced by the SWBLI due to the slow
actuation time of the entire fuel supply system. However, the findings in this study can
provide a possible method of improving the stability of the shock train, namely, eliminating
the adverse pressure gradient region by flow control, or at least turning the rapid movement
into oscillation by moderating the adverse pressure gradient when the adverse pressure
gradient is inevitable (Huang et al. 2014).

Through the observability analysis, it was also shown that the shock train motion
contributes more to the variation in the pressure behind the separation shock than the
backpressure, which confirms that monitoring the pressure change (a pressure-threshold
value or a pressure standard deviation) along the tunnel is a better method for shock train
detection rather than a polynomial model using the backpressure. Distributed monitoring
ensures that there is always one transducer closest to the STLE when the shock train is
within the isolator. According to the most significant change in the detected pressure
information, the shock train location can be satisfactorily estimated. The shock train
model involved in this study can also provide a new prediction method. In practice, the
combustion needs to be considered and the effect of heat release should not be ignored
in the Smart–Ortwerth model. For different boundary layer conditions or strengths of
the incident shock, the effect can be reflected from the parameter distributions, which
comprise the coefficients of the model. Combined with artificial intelligence technology,
the applicability of the model can be further expanded.
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Linear excitation, Periodical excitation
Case M∞ p∞ (kPa) T∞ (K) Re∗ (m−1) rising time (s) f (Hz) Ap ( pb/p∞)

1 2.43 17.8 378 8.70 × 107 step signal — —
2 2.70 21.7 182 1.70 × 107 ramp signal, 5.20 — —
3 2.70 39.2 182 3.07 × 107 ramp signal, 3.13 — —
4 2.70 52.5 182 4.11 × 107 ramp signal, 3.13 — —
5 2.70 69.5 182 5.44 × 107 ramp signal, 2.35 — —
6 2.70 24.8 182 1.94 × 107 — 4.97 0.52
7 2.70 24.7 182 1.94 × 107 — 4.96 0.69
8 2.70 24.8 182 1.94 × 107 — 9.22 0.25
9 2.70 24.9 182 1.95 × 107 — 9.92 0.36
10 2.70 25.0 182 1.96 × 107 — 23.10 0.10
11 2.70 25.0 182 1.96 × 107 — 24.32 0.15

TABLE 1. Incoming flow conditions.

Appendix A. Validation of the shock train model

Numerical and experimental results were chosen to validate the modelling approach.
The corresponding flow conditions are presented in table 1. The dynamic features of the
shock train can only be identified roughly by schlieren images, and due to the limitations
of the motor system, the flap responds slower than the shock train. For a step signal, the
measured dynamic characteristics are those of the motor system. If a real step signal,
whose rise time is smaller than the response time of the shock train, can be conducted by
the motor, the dynamic features can be measured very well. Thus, we chose the numerical
result in the study by Li et al. (2017) to validate the shock train model, in which the
excitation can be conducted rapidly, and the incoming flow conditions are presented as
case 1 in table 1. Figure 14 shows the comparisons of the responses of the shock train to
step signals. The positions of the shock train are scaled with the height of the duct h. The
comparisons show that the model can satisfactorily approximate the steady-state value of
the numerical results, except for the second step. This may be caused by the transition of
the STLEs at the two sides. Considering that the propagation speed of the acoustic wave is
calculated with the stagnation temperature, the time lag is shorter than the numerical one.
Due to the absence of viscosity in the modelling, the oscillation in the damping process is
a little stronger. Qualitatively, a comparison between the model results and the numerical
data shows that the low-order model has the capability of describing the shock motion.

Experimental results with different backpressure rising times, frequencies f and
amplitudes Ap of the backpressure ratio were chosen to evaluate the deviations between
the modelled and experimental results. For linearly varying excitations, the shock train
trajectories from four datasets obtained on different days are depicted in figure 15(a). The
incoming flow conditions are presented as case 2 to case 5 in table 1. As the sequences
are different, the trajectories are plotted against the flap angles. The error of the predicted
location is presented in figure 15(b), which is defined as

e = xpre − xavg

Liso
, (A 1)

where xpre is the modelled location and xavg is the averaged location of the four cases.
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FIGURE 14. Responses of the shock train to step signals: (a) variations of the backpressures
and (b) trajectories of the STLE. The values of 0.5γ pM2 and kCf in (2.5c) are assumed to be
75.0 kPa and 0.30.
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FIGURE 15. (a) Experimental and modelled trajectories of the STLE with linearly varying
excitations and (b) error of the prediction. The experimental trajectories in the figures are
presented with a low sampling frequency to avoid excessive overlap.

The maximum error occurs in the SWBLI region and is largely caused by asynchrony.
In the modelled trajectory, the instability occurs later and the rapid movement lasts
a shorter time. Downstream of the SWBLI, the STLE moves slower than that in the
experiment. In contrast, in the upstream region, the STLE is highly synchronized with the
experimental one. This is probably caused by the different configurations of the pressure
gradient in the shock train upstream and downstream of the SWBLI in the experiment.
To address this issue, a time-varying k in (2.5c) can be introduced. The process of the
rapid movement was determined by flow parameters, which were obtained by a numerical
simulation. Obviously, the speed of the rapid movement is overestimated. The greatest
uncertainty may come from the estimation of the distribution of the flow parameter.
A coefficient correction in the model can reduce this error.

For periodical excitations, the shock train trajectories are illustrated in figure 16. At a
small amplitude, the predicted trajectories follow the experimental ones well. At a large
amplitude, as shown in figures 16(a) and 16(b), when the STLE at the bottom wall passes
through the SWBLI, the significant oscillation makes the STLE at the ceiling wall interact
with the SWBLI on this side; then, this movement causes a further upstream motion of the
STLE at the bottom wall. This deviation is caused by the limitation of the current model in
which the movement of the STLE on a single side is considered and the coupling between
the STLEs is ignored. The RMS of the deviations between the model and experimental
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FIGURE 16. Comparisons of the experimental and modelled trajectories of the STLE with
different conditions: (a) f = 4.97 Hz, Ap = 0.52; (b) f = 4.96 Hz, Ap = 0.69; (c) f = 9.22
Hz, Ap = 0.25; (d) f = 9.92 Hz, Ap = 0.36; (e) f = 23.10 Hz, Ap = 0.10; ( f ) f = 24.32 Hz,
Ap = 0.15.

Case 1 2 3 4 5 6 7 8 9 10 11

eRMS 0.0046 0.0359 0.0335 0.0319 0.0301 0.0742 0.0998 0.0432 0.0489 0.0328 0.0335

TABLE 2. The RMS of the deviations between the modelled and experimental (numerical)
results.

results in all cases are listed in table 2. A comparison between the numerical and model
results shows a small error, in which the self-excited oscillation of the shock train is not
characterized in the simulation. The largest error occurs in the case with a large amplitude,
in which the motion of the STLE on the other side is not considered. For the other cases,
the deviations are less than 5 %, which can be acceptable.
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