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An improved quadratic poly-harmonic
distortion behavioral model

jialin cai, justin b. king and tom j. brazil

In this paper, the basic quadratic form of the poly-harmonic distortion model is first presented and this is then extended to
provide a new, modified quadratic poly-harmonic distortion model. Comparisons between the X-parameter model, the basic
quadratic poly-harmonic distortion model, and the modified version are provided. Both simulation and experimental test
results show that the new modified model provides significant improvements in accuracy, not only for the fundamental fre-
quency, but also for DC. Work on the optimization of the model is also presented, providing further improvements in both the
model extraction time and the file size.
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I . I N T R O D U C T I O N

Behavioral modeling has been developed as an essential tool in
many aspects of modern microwave engineering. It often plays
a key role in the processes of measurement, modeling, and
simulation that are used for the design and verification of
components and systems. It can also greatly improve the effi-
ciency of microwave and RF circuit computed-aided design
(CAD) technology. Accurate behavioral models have the
ability to provide speedy and reliable simulation results,
thereby assisting product innovation. S-parameter models
are perhaps the most successful behavioral models to date,
as they can completely and accurately capture the dynamic
terminal characteristics of any linear, time-invariant multi-
port network. The description is sufficient to predict the
response to any physical signal, provided only that the
signal is small enough. Although the S-parameter model is a
powerful concept, it has the fundamental drawback of requir-
ing linear operating conditions. It can only be applied to
model components or systems involving nonlinearities when
the signal amplitude is reduced to a sufficiently low level [1–4].
However, as microwave technology develops, the operating
frequencies, complexity of signal formats, and power levels,
are all increasing steadily, creating a demand for behavioral
models that can handle significant nonlinearities while also
providing good accuracy over a wide bandwidth.

Verspecht and Root introduced the poly-harmonic distor-
tion (PHD) model to describe nonlinear behavior [5–8]
in 2006. Based on the basic concept of the PHD model,
the commercial simulation environment from Agilent,

advanced design system (ADS), offers the X-parameter
model as a black-box, frequency-domain modeling technique.
X-parameters are the linearization of the spectral map
depending on a large-signal operating point (LSOP), and
include the interaction of small tones with large ones.

The X-parameter model (or PHD model) provides a con-
venient way of modeling RF systems or components, and
also shows good accuracy. However, it should be noted that
the use of 50 V X-parameter data cannot exactly predict the
behavior around the entire Smith Chart; it can only give
good accuracy in a region local to the point where the
X-parameter data are extracted. The method of using load-
pull data in conjunction with the X-parameter model is very
helpful in predicting the variation of the nonlinear device
characteristics with load impedance [9, 10]. Horn et al. [10]
illustrates how load-pull can be used with X-parameter mea-
surements to allow the behavior of the device to be accurately
characterized for high reflection coefficients.

However, when used in conjunction with load-pull, this kind
of extended X-parameter model also has some drawbacks. The
first is that the use of the load-pull method causes an explosion
in file size as model dimensionality is increased by the require-
ment for additional parameters [11]. In addition, the
X-parameter description is also dependent on bias, frequency
and input power and inclusion of these parameters make the
model even larger. The conclusion is that if a model is required
to provide good accuracy over a wide range of use, the user must
accept a data file with a huge size. Another factor is that as more
measurements are included, more time is needed for both
extracting and simulating the model.

Another extension of the original PHD concept, proposed
by Qi and Woodington from Cardiff University, provides
impressive results [12–14]. This work makes the PHD
model not just dependent on the large signal from the input
side, but also from the load side, which allows the model to
include more information.
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By looking closely at the PHD model (or the X-parameter
model), it can be seen that the model is constructed using
the harmonic superposition principle, and the principle holds
when there is a LSOP set by a number of large-signal input
tones (often just one, e.g. A11), plus a number of other small
input tones at the harmonics. In this case, the overall effect
of the small harmonic components can be assumed to be the
linear superposition of the effect of each individual harmonic
component acting alone. In a presentation by Verspecht [15],
it is mentioned that the quadratic PHD (QPHD) model can
give better results when compared with the basic first-order
model. Based on this fact, we explore another way to
improve the accuracy of the PHD model, as an alternative to
the Cardiff model, by increasing the order of the derivatives
of the small perturbations, such that we include more informa-
tion in the model. We then add in a load-dependent parameter
to improve accuracy at non-50 V conditions.

In this paper, a new, modified, QPHD (MQPHD) model is
presented. In Section II, the basic theory of the first-order
PHD model, the QPHD model, and the new MQPHD
model are described. The extraction procedures for the
QPHD model and the MQPHD are also provided. In
Section III, both the simulation and experimental test results
of the MQPHD model are presented. Methods for further
optimization of the proposed method, as well as conclusions,
are given in Sections IV and V, respectively.

I I . P H D M O D E L

Given a device-under-test (DUT), its terminal behavior at a
specific port and harmonic can be represented by a spectral
mapping function Fpm. Here all of the relevant incident
spectral components Aqn can be used to obtain each reflected
spectral component, Bpm. Whereby q and p range from one to
the number of signal ports, and m and n range from zero to
the highest harmonic index. The mathematical expression is
as shown in (1)

Bpm = Fpm(A11, A12, A13, . . . , A21, A22, A23, . . . ). (1)

A) The basic PHD model
According to [5, 8], the harmonic superposition principle can
be used to achieve a linearization around a large-signal inci-
dent signal. After that, the expression of the basic PHD
model can be obtained as in equation (2)

Bpm = FBpm A11| |( )Pm +
∑

qn

Spm,qn A11| |( )Pm−nAqn

+
∑

qn

Tpm,qn A11| |( )Pm+nA∗
qn,

(2)

where

P = e+j∅(A11). (3)

The PHD model can be seen as a Taylor series [16] for all
harmonic components around a large-signal excitation. It
simply describes the reflected-waves resulting from a linear
mapping of the incident-waves, in a similar way to classical
S-parameters. The difference is that while it contains a

contribution associated with the incident-waves (Aqn) it also
has terms associated with their conjugates (A∗

qn) Any phase
shift in the incident-waves will just result in the same phase
shift in the reflected wave. Here, the main large-signal A11

creates a phase reference point for all of the other incident
waves. The first term in (2) represents the large-signal operating
condition response due to an incident signal consisting of a large-
signal A11 at port 1 and harmonic 1. The second and third terms
in (2) describe the change in the traveling wave leaving port p at
harmonic m due to the small-signal perturbations arriving at
each port, at each harmonic frequency, while the large signal
A11 continues to be applied. The ability of the system to generate
harmonics is represented by FBpm while the ability of the system
to perform frequency conversion of small perturbation signals is
represented by Spm, qn and Tpm, qn QPHD model.

The basic PHD model described in the previous section
takes into consideration only the first-order small perturba-
tions. If the perturbation is small enough, the model will
have a good level of accuracy. However, if there is a large-
perturbation effect, the model performance begins to degrade.

Here we extend the basic PHD model to a quadratic formu-
lation, which includes the second-order nonlinearity of the
small-signal perturbation. We start from the describing func-
tion (1). After using the harmonic superposition principle,
equation (4) is obtained.

Bpm = Fpm |A11|, 0, . . . , 0( )P+m

+ ∂Fpm

∂Re AqnP−n
( ) ||Aqn|,0,...,0P+mRe AqnP−n

( )

+ ∂Fpm

∂Im AqnP−n
( ) ||Aqn|,0,...,0P+mIm AqnP−n

( )

+ 1
2!
[ ∂2Fpm

∂Re AqnP−n
( )2 ||Aqn|,0,...,0P+mRe AqnP−n

( )2

+ ∂2Fpm

∂Im AqnP−n
( )2 ||Aqn|,0,...,0P+mIm AqnP−n

( )2

+ ∂2Fpm

∂Re AqnP−n
( )

∂Im AqnP−n
( ) ||Aqn|,0,...,0

P+mRe AqnP−n
( )

Im AqnP−n
( )

].

(4)

The function can be seen as a second-order Taylor series for
all harmonic components around a large-signal excitation.
We will also find that the real and imaginary parts of the
small perturbation signals must be treated as separate and
independent entities, implying the non-analyticity of the spec-
tral mapping Fpm By substituting the real and imaginary parts
of the perturbation signals by Aqn and their conjugates A∗

qn we
finally obtain the expression of the QPHD model in (5).

Bpm=FBpm |A11|( )Pm+
∑

qn

Spm,qn |A11|( )Pm−nAqn

+
∑

qn

Tpm,qn |A11|( )Pm+nA∗
qn+

∑
qn

Upm,qn |A11|( )Pm−2nAqn
2

+
∑

qn

Vpm,qn |A11|( )Pm+2nAqn
∗2

+
∑

qn

Wpm,qn |A11|( )PmAqnAqn
∗.

(5)
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Note that FB, S, T, U, V, and W are defined as follows:

FBpm = Fpm A11| |, 0, . . . , 0( ), (6)

Spm,qn |A11|( )

=

∂Fpm

∂Re AqnP−n
( ) ||Aqn|,0,...,0 −j

∂Fpm

∂Im AqnP−n
( ) ||Aqn|,0,...,0

2
,

(7)

Tpm,qn |A11|( )

=

∂Fpm

∂Re AqnP−n
( ) ||Aqn|,0,...,0 +j

∂Fpm

∂Im AqnP−n
( ) ||Aqn|,0,...,0

2
,

(8)

Upm,qn |A11|( )

=

∂2Fpm

∂Re AqnP−n
( )2 ||Aqn|,0,...,0 −

∂2Fpm

∂Im AqnP−n
( )2 ||Aqn|,0,...,0

8

−
2j

∂2Fpm

∂Re AqnP−n
( )

∂Im AqnP−n
( ) ||Aqn|,0,...,0

8
,

(9)

Vpm,qn |A11|( )

=

∂2Fpm

∂Re AqnP−n
( )2 ||Aqn|,0,...,0 −

∂2Fpm

∂Im AqnP−n
( )2 ||Aqn|,0,...,0

8

+
2j

∂2Fpm

∂Re AqnP−n
( )

∂Im AqnP−n
( ) ||Aqn|,0,...,0

8
,

(10)

Wpm,qn |A11|( )

=

∂2Fpm

∂Re AqnP−n
( )2 ||Aqn|,0,...,0 +

∂2Fpm

∂Im AqnP−n
( )2 ||Aqn|,0,...,0

4
.

(11)

It is clear that the QPHD model includes more information
about the DUT than the first-order case: it extracts the
second-order nonlinear coefficients of the small perturbation,
involving both real parts and imaginary parts. Because of this,
the QPHD model can be expected to give superior results, and
in particular to give good prediction for a wider range of
reflection coefficient values.

B) MQPHD model
In this work, a MQPHD model has been developed, which
shows improved results when compared with the standard
QPHD approach. The model can be expressed as follows

Bpm = FBpm |A11|( )Pm +
∑

qn

Spm,qn |A11|( )Pm−nAqn

+
∑

qn

Tpm,qn |A11|( )Pm+nA∗
qn

+ amf (|A11|,GL)
[∑

qn

Upm,qn |A11|( )Pm−2nAqn
2

+
∑

qn

Vpm,qn |A11|( )Pm+2nAqn
∗2

+
∑

qn

Wpm,qn |A11|( )PmAqnAqn
∗
]
.

(12)

Here a correction coefficient amf has been introduced, which
can vary with different reflection coefficients (or load condi-
tions). We set a trial value for amf and then optimize this
value within a certain chosen range to build the modified
model. With the change of load impedance, the correction
coefficient will change as well. As shown later, the MQPHD
model shows much better results than the regular QPHD
model.

The main difference between the QPHD model and the
MQPHD is that the former can be seen as just a truncated
second-order Taylor series, while the latter is a first-order
Taylor series with a modified second-order term, enabling it
to achieve more accurate results.

According to the theory provided before, we can obtain a
similar result for the DC equation from [16, 17]. Horn et al.
[10], as follows:

Ii = XI
i A11| |( )

+
∑

(j,l)=(1,1)

Re SY
i,jl A11| |( )Ajl + TY

i,jl A11| |( )A∗
jl

( )
. (13)

Including the modification already introduced, this becomes:

Ii =XI
i |A11|( ) +

∑
j,l( )= 1,1( )

Re SY
i,jl |A11|( )Ajl + TY

i,jl |A11|( )A∗
jl

( )

+
∑

(j,l)=(1,1)
aDC(|A11|,GL)

Re
UY

i,jl |A11|( )Ajl
2 + VY

i,jl |A11|( )A∗
jl2

+WY
i,jl |A11|( )AjlA∗

jl

( )
.

(14)

Later, DC current results will be compared using the different
models.

C) Model extraction methodology
There are several different methods to extract X-parameter
(basic PHD) models. Examples are: the offset-tone method
[6], the orthogonal phase method [18], and the randomized
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phase method [18]. However, there are six parameters in the
regular QPHD model, which is more than the orthogonal
phase method can handle. Additionally, the offset-tone
method requires specialized equipment [6]. Thus, we choose
instead a more straightforward measurement technique,
namely, the randomized phase method. Theoretically, if a
model has m parameters, then m independent measurements
are sufficient to extract the model. However, in order to
reduce residual model errors and system noise errors inherent
in real measurements, usually more measurements are taken
than theoretically required. Here we use 12 measurements
for all simulation and experimental measurement examples
below.

Taking the simple case of a two-port device as an example,
looking at the scattered wave from port 2 at the first harmonic,
assuming the phase of the large signal is zero, and restricting
B21 to depend only on A21 and A11 then (5) can be reduced to

B21 = FB21 |A11|( ) + S21,21 |A11|( )A21 + T21,21 |A11|( )A∗
21

+ U21,21 |A11|( )A21
2 + V21,21 |A11|( )A21

∗2

+ W21,21 |A11|( )A21A∗
21.

(15)

After sample points are taken, we can arrive at a matrix for-
mulation of the problem, as shown in (15), whereby B21 is
the output wave at port 2, A21 and its conjugate A∗

21 are the
small signal perturbations, and FB, S, T, U, V, and W are
the parameters of the QPHD model. It is assumed that n mea-
surements have been taken, where n is larger than the number
of model parameters. This matrix formulation can be repre-
sented symbolically as shown in equation (16).

B21,1

B21,2

..

.

B21,n

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦=

1 A21,1 A∗
21,1 A21,1A21,1 A∗

21,1A∗
21,1 A21,1A∗

21,1
1 A21,2 A∗

21,2 A21,2A21,2 A∗
21,2A∗

21,2 A21,2A∗
21,2

..

. ..
. ..

. ..
. ..

. ..
.

1 A21,n A∗
21,n A21,nA21,n A∗

21,nA∗
21,n A21,nA∗

21,n

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

×

FB21

S21,21

T21,21

U21,21

V21,21

W21,21

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦

,

(16)

[B]= [A][Q]. (17)

Because [A] is complex and not always square, we have to
obtain the pseudo-inverse

[A]H[B]= [A]H[A][Q]. (18)

The super-script “H” refers to the Hermitian conjugate oper-
ation. Now, the model parameters can be obtained through
the equation below:

[Q]= ([A]H[A])−1[A]H[B]. (19)

After the 50 V QPHD model is obtained, the MQPHD model
can be calculated using MATLAB. The FB, S, T, U, V, and W
terms in the MQPHD model are exactly the same as in the

QPHD model. We use these parameters to extract af(GL) at
different load conditions to build the MQPHD model. The
reflected wave values B212m are first measured at the load
points where we want to extract the dependence of af(GL)
Then, in order to obtain the most accurate af value for the
model, we optimize the af value at each load point, using
the Newton method to minimize the following error function:

Error(a)=|B21−m −B21−af |.

I I I . M O D E L V A L I D A T I O N

Both computer simulations and experimental tests are used to
verify the new MQPHD model.

Only the fundamental wave is taken into consideration in
the example. In this case, the relationship between the incident
and reflected waves can be expressed as (20)

B21 = FB21 |A11|( ) + S21,21 |A11|( )A21

+ T21,21 |A11|( )P2A∗
21 + af (|A11|,GL)

U21,21 |A11|( )P−1A21
2 + V21,21 |A11|( )P3A21

∗2
[
+W21,21 |A11|( )PA21A21

∗].
(20)

And the expression for DC current is shown as (21)

Ii = XI
i |A11|( ) + Re SY

i,21 |A11|( )A21 + TY
i,21 |A11|( )A∗

21

( )
+ aDC(|A11|,GL)Re

UY
i,21 |A11|( )A21

2 + VY
i,21 |A11|( )A∗

21
2

+WY
i,21 |A11|( )A21A∗

21

( )
.

(21)

The DUT here is a 10 W GaN packaged transistor
(CGH40010F) manufactured by Cree, and the equivalent
circuit model used for simulation is also supplied by the
manufacturer.

Measurements were performed on the GaN transistor, and
the model was extracted by the methodology previously
described. This model was then used to compare simulated
data with experimentally measured data, in order to verify
the accuracy of the model.

A) Computer simulations
The input power in this example is 20 dBm, 1 GHz, and the
device is biased at VGS ¼ 23 V, and VDS ¼ 28 V.

Figure 1 shows the gain curve with the input available
power varying from 220 to 35 dBm. From this figure we
can see that the input-referred 1 and 3 dB compression
points of this DUT are around 10 and 23.5 dBm, respectively,
and at 20 dBm input power, the compression is around 1.6 dB,
which means the nonlinearity is quite strong.

As an example, we choose load data points that have the
same magnitude of reflection coefficient, but different
phases. We compare the MQPHD model results with those
from the regular quadratic model and also from the
X-parameter description (i.e. a first-order PHD model). The
X-parameter model is obtained from a circuit simulation in
ADS (using a device equivalent circuit model provided by
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Cree), and the QPHD and the MQPHD models are extracted
using the method described in Section II(D).

Figure 2 illustrates the points chosen on the Smith Chart.
The red circles, as shown in Fig. 2, represent the test data
points, where the amplitude of the reflection coefficient is
0.5, with the phase values starting from 08, and ending at
3458, with a step size of 158, making 24 points altogether.

The fundamental output voltage at port 2 of the transistor
has been selected as our comparison quantity. The compari-
son results for this case are shown in Fig. 3. The x-axis and
y-axis represent the real and imaginary parts of the voltage.
The blue curve (circles) represents the output of the circuit
model, which we consider to be the true value; the black
curve (triangles) is from the X-parameter model; the
magenta curve (diamonds) is from the QPHD model; the
red curve (stars) is from the MQPHD model. From this
figure, we can see that, the QPHD model provides better pre-
diction than the X-parameter model; however, the MQPHD

provides an even better fit, which means the modified model
represents the best match to the simulated data.

The relative errors of the output voltage from different
behavioral models were calculated using the following equa-
tion, and this measure is used in the comparison results that
follow.

Relative error = |measured value − behavioral model value|
|measured value| .

Figure 4 and Table 1 show the relative error and average rela-
tive error of different behavioral models. As we can see,
MQPHD model has much better accuracy when compared
to the X-parameter model. Compared with the regular
QPHD model, the modified model also provides significant
improvements in accuracy.

Besides the fundamental voltage comparison shown before,
the DC current model simulation results are also provided. In
this example, we use the same load points as shown on the
Smith chart in Fig. 2, and the model extraction procedure is
the same as the fundamental extraction method. We choose
the current model as shown in (21), as our DC model example.

Figure 5 shows the DC drain current results from different
models corresponding to the various load reflection coeffi-
cients, as shown in Fig. 2. As can be seen, the MQPHD

Fig. 1. Input versus gain curve.

Fig. 2. Loads points chosen as example in Smith Chart.

Fig. 3. Output voltage from simulation of different model at the example load
points.

Fig. 4. Relative error of output voltage from different models.
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model provide us with the superior results, much better than
the X-parameter model and the regular QPHD model, the
results from this approach almost matching the circuit
model perfectly. Figure 6 shows the relative error from the
three different models, as can be seen, the X-parameter
model has the highest relative error of 5%, which is a signifi-
cant error in the DC current, and might cause large errors in
power efficiency calculations; the regular QPHD model pro-
vides better accuracy, but its highest relative error is also in
excess of 2%; the MQPHD model gives a nearly perfect
result, its relative error close to zero across the sweep. The
average relative errors of different behavioral models are
shown in Table 2. The DC MQPHD model has superior
improvement compared with the fundamental frequency
MQPHD model shown previously. This is because the DC
model has only one variable, i.e. the amplitude, while the
latter cases have two, both amplitude and phase.

B) Experimental tests
In order to validate the proposed behavioral modeling tech-
nique in a real-world environment, measurements were
given from the same Cree GaN transistor in the laboratory.
The device was operated at 1 GHz and excited by a 20 dBm
large signal. VGS and VDS were biased at 23 and 28 V, respect-
ively. The test bench used here is a Mesuro nonlinear meas-
urement system.

The model extraction method of Section II(D) was used in
this experiment, under 50 V terminations. After the model
was obtained, it was used to predict the performance of
the DUT at different load points around the Smith chart.
The load points we choose here are shown in Fig. 7,
whereby the amplitude of the reflection here is 0.2, and the
phase varies around the center point, with 24 points in total.

The fundamental reflected wave at port 2 of the transistor is
used as comparison quantity. The comparisons results for this
case are shown in Fig. 8. There are three behavioral models in
this figure, the X-parameter model in black (triangles), and the
QPHD model in magenta (diamonds), and the MQPHD
model in red (stars), with the blue curve (circles) representing
the measured results. From this figure, we can see that
the QPHD model provides better prediction than the
X-parameter model; however, the modified model provides
us even better results, just as with the simulation results
presented previously.

Figure 9 and Table 3 show the relative error and average
relative error of different behavioral models. As we can see,
the MQPHD model has much better accuracy than

Fig. 5. Drain DC current from different models at different load conditions.

Table 1. Average relative error from different models for fundamental
voltage.

Model Average relative error (%)

X-parameter model 1.3572
QPHD model 0.7523
MQPHD model 0.4814

Fig. 6. Relative error of drain DC current from different models.

Table 2. Average relative error from different models for DC current.

Model Average relative error (%)

X-parameter model 2.3592
QPHD model 0.8184
MQPHD model 0.0156

Fig. 7. Loads points chosen as example in Smith Chart.
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X-parameter model; compared with regular QPHD model,
the modified model also provides an improvement in accuracy.
The improvement is smaller compared to the simulation results
in Fig. 4. The reason is that the example load points here are
closer to the center of the Smith Chart where the model is
extracted (amplitude of reflection coefficient, 0.2 , 0.5), the
accuracy of the QPHD model is already very good, much
smaller than 1%, so it is difficult to improve greatly on this
low value.

Figure 10 shows the DC drain current results from different
models corresponding to the various load reflection coeffi-
cients, as shown in Fig. 8. As can be seen, the MQPHD
model provides us with the best results, much better than
the results from X-parameter model, and the regular QPHD
model, the data almost matching those of the measured data
perfectly. Figure 11 and Table 4 show the relative error and

average relative error from the three different models, respect-
ively, as can be seen, the MQPHD model gives a nearly perfect
fit, its relative error close to zero, superior to both the
X-parameter model and QPHD model.

I V . M O D E L O P T I M I Z A T I O N

As shown above, the modified model has better accuracy com-
pared with both the X-parameter model and the regular
QPHD model. However, it has a disadvantage: it takes time
to find the best correction coefficient amf or aDC or DC
part) to get the optimal result at each load condition. If we
use this method to sweep the whole Smith chart, it would be
rather time-consuming.

Fig. 9. Relative error of reflected wave from different models.

Fig. 8. Fundamental reflected wave B21 from simulation of different measured
model at the example load points.

Table 3. Average relative error from different models.

Model Average relative error (%)

X-parameter model 0.4717
QPHD model 0.2508
MQPHD model 0.1958

Fig. 10. Drain DC current from different measured models at different load
conditions.

Fig. 11. Relative error of drain DC current from different measured models.

Table 4. Average relative error from different models for DC current.

Model Average relative error (%)

X-parameter model 0.3340
QPHD model 0.1146
MQPHD model 0.0089
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An effective way to overcome this problem is to find the best
amf at a set of different chosen load points and then use two-
dimensional (2D) interpolation to obtain an amf value at any
given load condition. This greatly simplifies the building of
the modified model throughout the whole Smith chart.

As an example, we chose 24 test load condition points to
compare directly extracted values of af at these points with
values obtained using 2D interpolation. The chosen 24 points
are in blue (crosses) as shown in Fig. 12. The red load points
(circles) shown in Fig. 12, are used for the interpolation test.
The amplitude of reflection coefficient of these load points
are 0.6 and 0.8, respectively. Firstly, we extract af at all the
red circle load points, then we use these af value to do interpol-
ation to find the af at the blue load points (crosses), finally we
use these af value obtained from 2D interpolation to calculate
the reflected wave B21 and compare this with the B21 obtained
from the model which extracted the af directly.

The results of this comparison are shown in Fig. 13, and the
values of af are shown in Fig. 14. Here, the magenta curve

(diamonds) shows the results from the QPHD model, the
red curve (stars) is from the MQPHD model, for which the
af value is found by direct extraction, the blue curve
(squares) comes from the MQPHD model, for which the af

value is obtained using the 2D interpolation method. From
Table 5 we can see that the interpolation points provide an
almost exactly same accuracy compared to the case where af

is directly extracted, demonstrating the effectiveness of the
optimization method. This approach will greatly decrease
the model extraction time, because it is not then necessary
to extract af at every point.

V . C O N C L U S I O N

The QPHD model is studied and implemented, and the rela-
tive errors are provided in this paper. A new MQPHD model,
is presented based on the regular QPHD model. The modified
model introduced here has been shown to give more accurate
results compared to X-parameter model and the regular
QPHD model over a wide range of conditions. As a result, it
can be used with very different reflection coefficients provid-
ing better accuracy compared with the other two approaches.
This MQPHD model provides an effective method to describe
a DUT throughout the whole Smith chart using only 50 V

parameters, with a relatively compact model format.
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Fig. 13. Relative error comparisons between the 2D interpolated model and
the directly extracted version.

Fig. 12. Directly extracted af value reference points (red circles) and test
points for interpolation (blue crosses).

Fig. 14. af values from both the 2D interpolated model and the directly
extracted version.

Table 5. Average relative error from direct extracted model and opti-
mized model.

Model Average relative error (%)

QPHD model 2.0485
Directly-extracted MQPHD model 1.2332
2D interpolation MQPHD model 1.2353
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