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A data-driven implementation of a quasi-linear approximation is presented, extending
a minimal quasi-linear approximation (MQLA) (Hwang & Ekchardt, J. Fluid Mech.,
vol. 894, 2020, p. A23) to incorporate non-zero streamwise Fourier modes. A data-based
approach is proposed, matching the two-dimensional wavenumber spectra for a fixed
spanwise wavenumber between a direct numerical simulation (DNS) (Lee & Moser, J. Fluid
Mech., vol. 774, 2015, pp. 395–415) and that generated by the eddy viscosity enhanced
linearisedNavier–StokesequationsatReτ ≈ 5200,whereReτ isthefrictionReynoldsnumber.
Leveraging the self-similar nature of the energy-containing part in the DNS velocity spectra,
a universal self-similar streamwise wavenumber weight is determined for the linearised
fluctuation equations at Reτ � 5200. The data-driven quasi-linear approximation (DQLA)
provides noteworthy enhancements in the wall-normal and spanwise turbulence intensity
profiles. It exhibits a qualitatively similar structure in the spanwise wavenumber velocity
spectra compared with the MQLA. Additionally, the DQLA offers extra statistical outputs in
the streamwise wavenumber coordinates, enabling a comprehensive global analysis of this
modelling approach. By comparing the DQLA results with DNS results, the limitations of
the presented framework are discussed, mainly pertaining to the lack of the streak instability
(or transient growth) mechanism and energy cascade from the linearised model. The DQLA
is subsequently employed over a range of Reynolds numbers up to Reτ = 105. Overall,
the turbulence statistics and spectra produced by the DQLA scale consistently with the
available DNS and experimental data, with the Townsend–Perry constants displaying a mild
Reynolds dependence (Hwang, Hutchins & Marusic, J. Fluid Mech., vol. 933, 2022, p. A8).
The scaling behaviour of the turbulence intensity profiles deviates away from the classic
ln(Reτ ) scaling, following the inverse centreline velocity scaling for the higher Reynolds
numbers.
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1. Introduction

Recently, an increasingly popular approach in modelling turbulent flows is the use of the
linearised Navier–Stokes equations. For example, the linearised Navier–Stokes equations
are used: (i) to understand the origin of coherent structures (del Álamo & Jiménez 2006;
Hwang & Cossu 2010; McKeon & Sharma 2010); (ii) to generate statistical inputs for
the state-space estimation problem (Illingworth, Monty & Marusic 2018; Madhusudanan,
Illingworth & Marusic 2019; Morra et al. 2019; Gupta et al. 2021); (iii) for a predictive
quasi-linear approximation (Hwang & Eckhardt 2020; Skouloudis & Hwang 2021); (iv)
to produce a reduced-order description of exact coherent states and turbulence statistics
in the minimal flow unit (Rosenberg & McKeon 2019; Nogueira et al. 2020); (v) for
statistics completion problems from partial measurements (Zare, Jovanović & Georgiou
2017; Towne, Lozano-Durán & Yang 2019); (vi) to produce reduced-order models for
existing flow control strategies (Luhar, Sharma & McKeon 2014; Ran, Zare & Jovanović
2021). In wall-bounded turbulent flows, an essential feature in modelling the fluctuating
state is how the nonlinear term is replaced. Since wall-bounded turbulent flows are linearly
stable (Butler & Farrell 1993; Pujals et al. 2009), a forcing or driving term is necessary
to generate non-trivial solutions. Since this forcing term directly replaces the nonlinearity,
how accurately this forcing statistically mimics the physics of the nonlinearity has also
been observed as a key to the performance of linear models in their various uses (Gupta
et al. 2021; Morra et al. 2021; Symon et al. 2022).

One such modelling framework, which leveraged ‘predictive’ features of the physics of
wall-bounded shear flows, was recently proposed by Hwang & Eckhardt (2020). In this
approach, referred to as minimal quasi-linear approximation (MQLA), the attached eddy
model of Townsend (1976) was revisited to relax the inviscid limit, allowing statistics to
be predicted for high yet finite Reynolds numbers. The MQLA achieved this by following
the framework of a quasi-linear approximation. The general idea of this approach is to
decompose the velocity state into two separate groups, typically a large- and small-scale
state. An approximation then arises when the nonlinear self-interactions of the small-scale
state are neglected, and instead, a closure is provided. The earliest works that implemented
a quasi-linear approximation (Malkus 1954, 1956; Herring 1963, 1964, 1966) provided
a closure through a marginal stability criterion. The linear stability of wall-bounded
turbulence means that alternative closures have to be provided. Indeed, in modern variants
of quasi-linear approximations, the nonlinear self-interactions of the small-scale state have
been more flexibly modelled, depending on the nature of the flow and the purpose of
the approximation. Such examples include stochastic structural stability theory (Farrell
& Ioannou 2007, 2012), direct statistical simulation (Marston, Conover & Schneider
2008; Tobias & Marston 2013), self-consistent approximations (Mantic̆-Lugo, Arratia
& Gallaire 2014; Mantic̆-Lugo & Gallaire 2016), restricted nonlinear models (Thomas
et al. 2014, 2015; Farrell et al. 2016), a quasi-linear approximation applied to exact
coherent states (Hall & Sherwin 2010; Pausch et al. 2019) and generalised quasi-linear
approximations (Marston, Chini & Tobias 2016; Tobias & Marston 2017; Hernández,
Yang & Hwang 2022a). The MQLA provided a closure through a stochastic forcing
term, implemented self-consistently, i.e. the self-interactions of the small-scale state were
enforced to be consistent with the large-scale state, in this case, the mean profile.

From the perspective of the attached eddy hypothesis, the MQLA can be regarded as
a controlled approximation with the eddies arising from the linearised Navier–Stokes
equations. These linear solutions replace the assumed statistical structure of the
representative energy-containing eddies used by Townsend, Perry and co-workers
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(Townsend 1976; Perry & Chong 1982; Perry, Henbest & Chong 1986). The solutions of
the linearised Navier–Stokes equations used in the MQLA have the advantage of closely
resembling a stage of the self-sustaining process (Hamilton, Kim & Waleffe 1995; Waleffe
1997), a cycle ubiquitous in wall-bounded shear flows and the proposed mechanism for
which each of the energy-containing eddies can be sustained (Hwang 2015). In this
linear portion of the self-sustaining process, streamwise vortices drive the formation of
elongated streaks (i.e. the lift-up effect) (Ellingsen & Palm 1975; Schmid & Henningson
2001; Brandt 2014), the key length scales of which are determined through the eddy
viscosity enhanced linearised Navier–Stokes operator (Hwang & Cossu 2010). Instead of
superposing the representative statistical structure of the energy-containing eddies subject
to constant Reynolds shear stress, as done by Townsend (1976), the nonlinear term in the
linearised fluctuation equations was replaced self-consistently. The linear operator was
modified by an eddy viscosity diffusion term and a forcing structure that generates the
Reynolds shear stress identical to that from the nonlinear mean equation. In other words,
a self-consistent closure of a quasi-linear approximation was provided. With the mean
profile known, the MQLA becomes a predictive framework. The forcing term required to
drive the Reynolds shear stress consistent with the mean profile allows further statistics of
the velocity fluctuations to be determined at different Reynolds numbers.

Although the attached eddy hypothesis assumes and leverages the self-similar nature of
the eddies, attention has been turned to understanding the statistical structure of the forcing
or nonlinear term. The benefits of having a well-prescribed model for the nonlinear term
are demonstrated, for example, by the performance of state-space estimators (Hœpffner
et al. 2005; Chevalier et al. 2006; Illingworth et al. 2018; Madhusudanan et al. 2019;
Morra et al. 2019), with more physical models for the nonlinear term resulting in better
predictions of velocity statistics across the wall-normal direction (Gupta et al. 2021).
There is a variety of approaches in determining and modelling the forcing term, ranging
from statistically exact control and optimisation-based techniques (for a review, see
Jovanović 2021) to measurement through direct numerical simulation (Chevalier et al.
2006; Nogueira et al. 2020; Morra et al. 2021), as well as more phenomenological
modelling (Jovanović & Bamieh 2001; Gupta et al. 2021; Holford, Lee & Hwang 2023).
For example, Zare et al. (2017) determined a set of two-point coloured-in-time forcing
statistics through an optimisation problem. This optimisation problem had constraints such
that the velocity spectral density exactly matched that of a direct numerical simulation
(DNS). This work was recently complemented by Abootorabi & Zare (2023), which
demonstrated the benefits of an additional eddy viscosity diffusion operator to the
coloured-in-time forcing. While these methods can yield forcing statistics that generate the
exact velocity statistics, often, the techniques are local in the sense that they are applied
to a single wavenumber pair and hence have to be repeated for every wavenumber pair to
build a global forcing structure.

Regarding implementing a predictive framework, the inputs to many models are often
obtained through DNS, which is frequently a desirable output. To address this issue,
Holford et al. (2023) recently identified a global forcing structure across the entire
wavenumbers required for the eddy viscosity enhanced linearised Navier–Stokes operator
with a simplification that the forcing is white in time and decorrelated in space. The
findings revealed the self-similar nature of the forcing spectra corresponding to the main
energy-containing part of the velocity spectra. In the current work, Holford et al. (2023)
is approximately followed to provide a global structure for the forcing across streamwise
wavenumbers and Reynolds numbers.

The main findings of the MQLA (Hwang & Eckhardt 2020) were consistent with the
seminal predictions of Townsend’s attached eddy hypothesis on turbulence intensities. By
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superposing the solutions of the linearised Navier–Stokes equations with a forcing that
provides a self-consistent Reynolds shear stress, a logarithmic decay in the wall-parallel
turbulence intensities was found, as well as a region where the wall-normal turbulence
intensity is approximately constant. Additionally, since the determination of the fluctuating
velocity generated Reynolds shear stress in the MQLA requires integration of the velocity
spectra, the scaling behaviour of the one-dimensional velocity spectra could also be
extrapolated to exceptionally high Reynolds numbers (Skouloudis & Hwang 2021).
A strong qualitative match was found between the one-dimensional spanwise wavenumber
velocity spectra produced by the MQLA and those reported by DNS (Lee & Moser 2015).
However, important quantitative differences were also found. In particular, turbulence
intensities of the MQLA were highly anisotropic compared with those of DNS, with the
streamwise turbulence intensity far exceeding that of DNS. At the same time, the other
velocity components, particularly the wall-normal component, were significantly lower.
This result stems from neglecting the streamwise varying Fourier modes in the MQLA,
causing the absence of streamwise pressure strain that transfers the energy produced in the
streamwise component to the other components (Cho, Hwang & Choi 2018; Lee & Moser
2019). Neglecting the streamwise varying Fourier modes is also understood to prohibit
the MQLA’s capabilities in reproducing features of the self-sustaining process beyond the
lift-up effect, particularly the streak instability or transient growth, which plays a crucial
role in redistributing turbulent kinetic energy from the streamwise velocity component to
the others (Schoppa & Hussain 2002; de Giovanetti, Sung & Hwang 2017; Doohan, Willis
& Hwang 2021; Lozano-Durán et al. 2021).

The present paper aims to extend the MQLA to include the streamwise varying
Fourier modes, with an emphasis on maintaining the predictive nature of the MQLA
at different Reynolds numbers. To this end, a physics-aware data-driven approach will
be taken. Hereafter, the framework of the current study will be referred to as the
data-driven quasi-linear approximation (DQLA) to distinguish it from the MQLA. The
DQLA framework incorporates the physics element through the attached eddy hypothesis
and enforces self-similarity of the forcing with respect to the spanwise length scale.
The detailed structure of the forcing is determined using the DNS database from Lee
& Moser (2015). This approach relies on the self-similar nature of the eddy viscosity
enhanced linear operator (Hwang & Cossu 2010), which has been corroborated by recent
findings on the statistical structure of the forcing of this linear model from Holford et al.
(2023). While developing a predictive model for turbulent statistics and spectra, the DQLA
will provide a fair means of evaluating the performance of the eddy viscosity diffusion
operator within linear modelling frameworks. In particular, by incorporating non-zero
streamwise wavenumbers, it allows for a comprehensive assessment across a wide range
of wavenumber pairs. The results presented represent an initial step, focusing on the
evaluation of velocity spectra.

The paper is organised as follows. The DQLA framework is developed in § 2,
formulating two optimisation problems. Firstly a self-similar weight is determined
following Holford et al. (2023). This weight is then extrapolated across all considered
Fourier modes, and a quasi-linear approximation is then implemented following Hwang &
Eckhardt (2020). The linear model used throughout this study includes an eddy viscosity
diffusion operator, and its significance is briefly discussed. The results of the DQLA at
Reτ � 5200, where Reτ is the friction Reynolds number, are then compared with statistics
from DNS of Lee & Moser (2015) in § 3. Emphasis will be placed on the streamwise
one-dimensional and two-dimensional velocity spectra since the MQLA cannot produce
these statistics. Additionally, any quantitative improvements of the DQLA compared with
the MQLA will be discussed concerning the inclusion of streamwise varying Fourier

980 A12-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

10
73

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.1073


A data-driven quasi-linear approximation for turbulent channel flow

modes. The predictive capabilities of the DQLA will be assessed by extrapolating results
up to Reτ = 105 in § 4. The paper is then concluded in § 5, which summarises the results
and limitations of this framework.

2. Problem formulation

2.1. Turbulent channel flow
A quasi-linear approximation for incompressible, fully developed turbulent channel flow
is considered. The flow domain is the region confined between two infinitely long and
wide plates. The coordinates along the streamwise, wall-normal and spanwise directions
are denoted by x, y and z, respectively, with a corresponding velocity vector u = (u, v, w).
The two plates are located at y = 0, 2h, where h represents the half-width of the channel.
The velocity field is decomposed into a time-averaged mean field, U = (U( y), 0, 0),
and the fluctuating velocity about this mean profile, u′ = (u′, v′, w′), i.e. the Reynolds
decomposition. This results in the following coupled set of equations:

ν
dU
dy

− u′v′ = τw

ρ

(
1 − y

h

)
, (2.1a)

∂u′

∂t
+ (U · ∇)u′ + (u′ · ∇)U = − 1

ρ
∇p + ν∇2u + N, (2.1b)

where
N = −∇ · (u′u′ − u′u′). (2.1c)

Here, t denotes time, ρ the fluid density, p′ the fluctuating pressure, ν the kinematic
viscosity, �(·) a time-averaged quantity and τw is the time-averaged wall shear stress.
Following the typical quasi-linear approximation framework, the time-averaged mean
profile equation retains this form, including the nonlinear Reynolds shear stress term
feeding back from the fluctuating velocity field. The dynamics of the fluctuating velocity
is then ‘linearised,’ dropping the self-advection term.

As the associated linear operator is stable for the turbulent mean profile in channel flow
(Pujals et al. 2009), an additional driving term must be considered for non-trivial statistics.
To this end, the nonlinear term is replaced with the following model:

Nνt, f = ∇ · (νt(∇u′ + ∇u′T)) + f ′, (2.2a)

where f ′ = ( f ′
u, f ′

v, f ′
w) is a stochastic forcing term and Cess’ expression (Cess 1958) is

used for the eddy viscosity profile

νt(η) = ν

2

{
1 + κ2Re2

τ

9
(1 − η2)2(1 + 2η2)2(1 − exp[(|η| − 1)Reτ /A])2

}0.5

− ν

2
,

(2.2b)

with η = ( y − h)/h. Including the eddy viscosity term in (2.2a) is not a necessity. Using
only a forcing term would leave the coupled system as statistically ‘exact’ if the forcing
was set to be identical to a set of known statistics generated by the nonlinear term. That
being said, the covariance of the nonlinear term has been demonstrated to not possess sign
definiteness (Zare et al. 2017), which significantly complicates the modelling procedure
(for example, Zare et al. 2017). The advantage of using the eddy viscosity modified
operator lies in the relaxation of this complication with a physical model, although its
use does not necessarily enforce the energy neutrality of the nonlinear term. By doing so,
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the forcing input can be kept as white in time, whereas the overall model for the nonlinear
term will be coloured in time through the eddy viscosity. It has been demonstrated that
this eddy viscosity term phenomenologically mimics some features of the nonlinear term,
including the removal of energy across all integral length scales (Symon, Illingworth &
Marusic 2021), as well as the modelling of the wall-attached footprints of large scales in
the velocity spectra of the wall-parallel components (Symon et al. 2022; Holford et al.
2023). The same eddy viscosity is also used as a closure in determining the mean velocity
profile with

− u′v′ = νt
dU
dy

, (2.3)

upon which solving (2.1a) gives the robust law of the wall. Following this closure for the
mean profile, the eddy viscosity parameters are set with κ = 0.426 and A = 25.4, obtained
by the best least squares fitting of the mean profile obtained by integrating (2.1a) with (2.3)
and the DNS mean profile at Reτ ≈ 2000 (del Álamo & Jiménez 2006). The crude physical
argument for using the same eddy viscosity profile in the mean and fluctuating velocity
component equates to both velocity fields experiencing the same background turbulence.
Although this physical assumption is used mainly for simplicity, the inclusion of an eddy
viscosity diffusion operator has been shown to be beneficial in many previous studies (see,
for example, Pujals et al. 2009; Zare et al. 2017; Illingworth et al. 2018; Morra et al.
2019; Symon et al. 2021). Notably, the inclusion of the eddy-viscosity-based diffusion
enables one to describe the inner-scaling behaviour of the near-wall-attached region of
the outer-scale structures observed in full DNS, in terms of the modes associated with
transient growth, resolvent analysis and the stochastic response of the linearised fluctuation
equations (Hwang & Cossu 2010; Hwang 2016).

In the present study, the forcing is first considered to be white in time and decorrelated in
the wall-normal direction for the purpose of utilising the framework of the stochastic linear
dynamical system (Farrell & Ioannou 1992; Jovanović & Bamieh 2005; Hwang & Cossu
2010). Given the homogeneous nature of the wall-parallel directions, it is convenient to
consider the Fourier transform along those directions

f̂ ′(t, y; kx, kz) =
∫ ∞

−∞

∫ ∞

−∞
f ′(t, x, y, z) exp(i(kxx + kzz)) dx dz, (2.4)

giving the wall-normal forcing profiles at a given pair of streamwise and spanwise length
scales λx = 2π/kx and λz = 2π/kz, where (kx, kz) is the considered wavenumber pair.
Analogous definitions of the Fourier transform are used for the other flow states. The
spectral covariance matrix for the forcing is then considered to be

E[ f̂ ′( y, t; kx, kz) f̂ ′H( y′, t′; kx, kz)]

=
⎡⎣Wu(kx, kz) 0 0

0 Wv(kx, kz) 0
0 0 Ww(kx, kz)

⎤⎦ δ( y − y′)δ(t − t′), (2.5)

where (·)H denotes complex conjugate transpose, E[·] is the expectation operator over
different stochastic realisations and Wr, with r = {u, v, w}, are componentwise weights
to be determined. Here, the forcing amplitude is considered to vary componentwise, and
this is to model the anisotropic nature of the velocity statistics and spectra in channel flow
more flexibly.
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Reτ Ny Nkx Nkz γ ‖u′v′ − E[u′v′]‖2
Q ‖u′v′ − E[u′v′]‖2

L2

500 128 172 126 1.0 × 10−4 4.91 × 10−4 3.03 × 10−5

1000 256 186 140 5.0 × 10−5 6.17 × 10−4 3.12 × 10−5

2000 256 200 154 9.0 × 10−5 7.30 × 10−4 3.54 × 10−5

5200 384 219 173 2.0 × 10−4 7.92 × 10−4 3.24 × 10−5

10 000 512 232 186 1.0 × 10−4 7.98 × 10−4 3.12 × 10−5

20 000 768 246 200 7.5 × 10−4 7.83 × 10−4 2.97 × 10−5

50 000 1024 264 218 1.5 × 10−4 8.53 × 10−4 3.82 × 10−5

100 000 1536 278 232 9.0 × 10−5 9.57 × 10−4 2.04 × 10−5

Table 1. Numerical and optimisation parameters used in the present study: Nkx , the number of streamwise
wavenumbers; Nkz , the number of spanwise wavenumbers; Ny, the number of wall-normal collocation points.

The resulting power- and cross-spectral densities of velocity fluctuations are obtained
from the following velocity spectral covariance matrix:

Φuu( y, y′; kx, kz) = E[û′( y, t; kx, kz)û′H( y′, t; kx, kz)]. (2.6a)

Given the linear relation between the velocity and forcing spectral covariance matrices
(Farrell & Ioannou 1992; Jovanović & Bamieh 2005; Hwang & Cossu 2010),
Φuu( y, y′; kx, kz) can further be decomposed into

Φuu( y, y′; kx, kz) =
∑

r=u,v,w

Wr(kx, kz)Φuu,r( y, y′; kx, kz), (2.6b)

where Φuu,r( y, y′; kx, kz) is the velocity spectral covariance matrix associated with each
component of the forcing with the unit amplitude: for example, Φuu,u is obtained by setting
the forcing spectral covariance to be

E[ f̂ ′( y, t; kx, kz) f̂ ′H( y′, t′; kx, kz)] =
⎡⎣δ( y − y′) 0 0

0 0 0
0 0 0

⎤⎦ δ(t − t′), (2.7)

and Φuu,v and Φuu,w are obtained in the same manner. In this study, Φuu,r for r =
{u, v, w} are obtained by solving the standard Lyapunov equation formulated with the
Orr–Sommerfeld–Squire system of equations. The equations are discretised using a
Chebyshev collocation method (Weideman & Reddy 2000) with the wall-normal grid
points reported in table 1. For the details of the solution method, the reader may refer to
previous studies (Hwang & Cossu 2010; Holford et al. 2023). The domain of streamwise
and spanwise wavelengths are considered as (λx, λz) ∈ [10δν, 10δν] × [100h, 10h] (δν =
ν/uτ , where uτ is the friction velocity) to cover a range of length scales including near-wall
motions, as well as very large-scale motions in the outer region.

2.2. Simplifications
The forcing covariance considered in (2.5) may be a starting point of the proposed
quasi-linear approximation. However, a white-in-time, uniform forcing in the wall-normal
direction at each kx and kz is non-physical. In particular, a uniform wall-normal forcing
variance profile yields an undesirable, large energetic response near the channel centreline
(see figures 5 and 6 in Hwang & Eckhardt 2020). It was previously shown that considering
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some of the leading proper orthogonal decomposition (POD) modes from the response to
this forcing offers an effective means to filter out these unwanted features, with respect
to modelling the primary energy-containing motions at integral length scales (Hwang &
Eckhardt 2020). That is not to say the less energetic POD modes are not useful – they
may be useful in the modelling of other features of turbulence (e.g. small-scale spectra
associated with energy cascade). This ansatz also exacerbates the anisotropy of the velocity
fluctuations of the quasilinear models (see figure 5 in Hwang & Eckhardt 2020), although
this is a necessary step to overcome the arbitrary assumption of a spatially white forcing
input.

Given these previous experiences from Hwang & Eckhardt (2020), the forcing statistics
in this study are also implicitly modified to drive leading POD modes that contain
significant energetic content of the overall response (Hwang & Cossu 2010). Consequently,
for a given wavenumber pair, the velocity spectral covariance matrix for each forcing
component (i.e. Φuu,r) is further approximated in terms of the leading-order POD modes,
such that

ΦNPOD
uu,r ( y, y′; kx, kz) =

NPOD∑
i=1

σiûi,r,POD( y; kx, kz)ûH
i,r,POD( y′; kx, kz), (2.8a)

where NPOD is the number of POD modes, and σi and ûi,r,POD( y′; kx, kz) are the
eigenvalues and eigenfunctions of the original velocity spectral covariance matrix with
white-in-time and spatially decorrelated forcing, denoted by ΦW

uu∫ 2h

0
ΦW

uu( y, y′; kx, kz)ûi,POD( y′; kx, kz)dy′ = σiûi,POD( y; kx, kz), (2.8b)

with σi ≥ σi+1. Considering the previous observation in Hwang & Eckhardt (2020),
NPOD = 2 is chosen here, retaining the most energetic structure when accounting for the
geometrical symmetry in channel flow about y = h.

In addition to this, the weighting along the streamwise wavenumber axis is implemented
considering the self-similarity of the forcing structure with respect to the spanwise
wavenumber (Hwang & Cossu 2010; Holford et al. 2023), as expected from the attached
eddy hypothesis of Townsend (Townsend 1976; Hwang 2015) (see § 2.3 for further details).
Consequently, the weight of each component is decomposed into a part that retains the
self-similar structure Wr,kx(kx/kz) along the streamwise wavenumber axis and a part that
determines its amplitude Wkz(kz) for each spanwise wavenumber, such that

Wr(kx, kz) = Wr,kx(kx/kz)Wkz(kz), (2.9)

giving the final form of velocity spectra covariance matrix for the quasi-linear
approximation in this study

Φuu( y, y′; kx, kz) = Wkz(kz)
∑

r=u,v,w

Wr,kx(kx/kz)Φ
NPOD
uu,r ( y, y′; kx, kz). (2.10)

The weights are determined by solving the optimisation problems proposed in the
following two subsections.

2.3. Data-driven determination of streamwise weighting
To first determine the self-similar weight Wr,kx(kx/kz) along the streamwise wavenumber
axis, for each kz, an optimisation problem is considered such that (2.10) best matches
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A data-driven quasi-linear approximation for turbulent channel flow

the two-dimensional velocity spectra and Reynolds shear stress cospectra of DNS at
Reτ ≈ 5200 (Lee & Moser 2015), denoted by ΦDNS

uu ( y; kx, kz). This problem has recently
been solved with the addition of a wall-normal variation in the forcing term in Holford
et al. (2023), and the reader is referred to it for a more complete discussion on the
modelling rationale. The present study leverages the main findings from Holford et al.
(2023). However, a more straightforward problem is solved for the weight, with the use
of the POD modes implicitly varying the wall-normal profile of the forcing term so that
the modelling efforts can be extrapolated to other Reynolds numbers without using any
further DNS data at different Reynolds numbers.

To determine the weight, two main observations are highlighted. The first is the
self-similar nature of the velocity spectra from DNS with respect to the spanwise length
scale (Hwang 2015; Holford et al. 2023). In particular, the self-similarity occurs at
wavenumbers which contribute significantly to the turbulence intensity profiles, i.e. main
energy-containing features of the spectra. The second is that the eddy viscosity modified
linearised Navier–Stokes equations also generate an approximately self-similar response
with respect to the spanwise length scale (Hwang & Cossu 2010; Hwang & Eckhardt
2020). Note that this second observation is primarily due to the eddy viscosity. The
key feature of the eddy viscosity is νt ∼ y, responsible for the re-scaling property of
the linear operator with respect to the spanwise wavenumber in the logarithmic region
(Hwang & Cossu 2010). Combining these two observations, an optimisation problem that
weights a self-similar linear response to an approximately self-similar set of DNS spectra
is considered. It is then expected that the weights themselves would be self-similar, at least
to the same degree as the DNS velocity spectra. A weighting is now determined to match
the two-dimensional velocity spectra from DNS at a given spanwise length scale through
the following optimisation problem:

min
Wr,kx

∑
s

‖ΦDNS
s − Φs(Wr,kx)‖Q

‖ΦDNS
s ‖Q

+
∑

r

γ J[Wr,kx], (2.11a)

subject to
Wr,kx(kx, y; kz) ≥ 0, (2.11b)

where r = {u, v, w}, s = {uu, vv, ww, uv} and γ is a parameter controlling the relative
importance of the regularisation. Here, J is a regularisation functional to penalise the
roughness of the forcing intensity, to ensure smooth velocity spectra and to partially
denoise the DNS spectra (Holford et al. 2023), chosen to be

J[Wr,kx] =
∥∥∥∥(∂2Wr,kx

∂ ln kx
2

)∥∥∥∥
Q

, (2.11c)

where ‖·‖Q is a norm defined as ‖·‖2
Q = ∫ 2h

0

∫∞
−∞(·)2kxQ( y) d ln kx dy with weight Q( y) =

χ−1, where χ = 1 − |η| is the distance from the wall, to place equal emphasis on points
following a logarithmic scaling with distance from the wall. Note that the logarithmic
coordinates are also used along the kx-axis to focus the problem on the modelling of
the self-similar energy-containing part, placing less significance on the non-self-similar
part originating from energy cascade (see Holford et al. 2023, for a further discussion).
In particular, the purpose of this weighting along the streamwise wavenumber axis is
to provide a self-similar weight for use across all wavenumber pairs and all Reynolds
numbers.

The convex optimisation problem (2.11) was solved by discretising the spectral
velocity state onto Ny = 512 grid points with the Chebyshev collocation method.
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Figure 1. Premultiplied streamwise Fourier mode weights in self-similar coordinates for kzh = 14, 30, 50, 76,
126 (λz/h = 0.45, 0.21, 0.13, 0.08, 0.05 or λ+z = 2327, 1086, 651, 429, 259): (a) streamwise, (b) spanwise and
(c) wall-normal velocity components. Here, the (̃·) denotes the weights normalised such that their premultiplied
maximum value is one.

Discretisation along the streamwise wavenumber axis was carried out with logarithmic
spacing to maintain Δ(ln kx) ≤ 0.05 or otherwise to align with the DNS streamwise
wavenumbers for the smaller values of kxh, resulting in 132 streamwise Fourier
modes being used, and integration performed using the trapezoidal rule along the
streamwise wavenumber axis. The optimisation problem was then converted to a standard
second-order cone problem and solved with the MOSEK solver (MOSEK ApS 2022). The
trend in the optimisation errors, defined by the first term in (2.11a), upon increasing the
regularisation parameter, was found to increase monotonically with γ (see figure 14 in
Appendix A). Hence, γ was set upon inspection of the velocity spectra and smoothness
of the weights. An approximate value of γ = 0.5 was used and changed upon trial
and inspection, giving values ranging from 0.3–1.2 across the considered spanwise
wavenumbers.

Figure 1 shows solutions to (2.11) for spanwise length scales associated with the
logarithmic region, varying from kzh = 14 (λz/h ≈ 0.45) up to kzh = 126 (λ+z ≈ 259).
Here, the premultiplied weighting is plotted, as this is more physically representative of the
forcing spectral density in logarithmic coordinates, as opposed to a weighting correction
applied to the velocity spectra. A similar qualitative trend is seen across all components:
an approximate self-similarity at relatively large wavelengths (λx � λz) in the weighting,
with a spanwise-wavelength-dependent weighting at small wavelengths (λx � λz). This
trend qualitatively agrees well with the recent finding in Holford et al. (2023), where
the forcing spectra, obtained for the same linear model, were found to be approximately
self-similar at the integral length scale (i.e. λx ∼ λz ∼ y), while they are not for λx � λz
at which the corresponding DNS spectra are associated with energy cascade. In particular,
the forcing spectra for λx � λz were also found to grow with λz due to the increased
separation of local integral and dissipation length scales, consistent with the behaviours of
the weights in figure 1. However, it is important to note that this scale-dependent weighting
for λx � λz is of little significance in the modelling of the spectra (Holford et al. 2023).
At the smaller streamwise length scales of λx � λz, large forcing input is required to
drive relatively inconsequential features of the velocity spectra associated with the energy
cascade (Holford et al. 2023) (see the discussion below and figure 2b). The contributions
of these features to turbulent kinetic energy are small, and they have often been ignored in
classical attached eddy models (Townsend 1976; Hwang, Hutchins & Marusic 2022). In
a similar context, no attempt is made here to correct or modify the weighting at different
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Figure 2. Premultiplied two-dimensional spectra in self-similar coordinates for kzh = 14, k+
z = 0.0027 (λz =

0.45h, λ+z = 2333) of (a,b) streamwise velocity spectra and (c,d) Reynolds shear stress cospectra determined
from (a,c) DNS and (b,d) DQLA. The contour levels are separated by 0.25 times the maximum value for each
spectra.

length scales. This observation is further confirmed by assuming the weights given from
solutions of (2.11) at different λz as self-similar and determining the errors between the
normalised spectra at different spanwise length scales (see figure 15d in Appendix A for
the sensitivity to weights). It is shown that the scale-dependent features in the weight of
Wr,kx(kx/kz) have only a small effect on the structure of the velocity spectra, with the total
errors being largely independent of the weight obtained for different kz in figure 1.

To demonstrate what kind of two-dimensional velocity spectra in the kx–y plane (2.11)
determines, figure 2 compares the streamwise velocity spectra (figure 2a,b) and Reynolds
shear stress cospectra (figure 2c,d) of the DNS, to the optimally weighted velocity spectra
at kzh = 14. In the streamwise component of the optimally weighted spectra (figure 2b), an
energetic response is seen for 1 � λx/h � 10, consistent with the DNS streamwise velocity
spectra (figure 2a). However, the DNS streamwise velocity spectra also have energetic
content for λx/h � 1 away from the wall (y/h � 0.02). This part of the spectra has been
understood to be associated with the physical processes that would not be modelled well
by the linearised model (2.1b) with (2.2a), as discussed in detail in the previous studies
(Hwang 2015; de Giovanetti et al. 2017; Holford et al. 2023). The weighted linear response
of leading POD modes appears to neglect a majority of these features. The other qualitative
difference between the spectra is the extent to which the primary peak extends towards
the wall, with the primary peak from the linear response extending close towards the
wall. The observed differences between the DNS streamwise velocity spectra and the
optimally weighted leading POD modes indicate some critical limitations in the current
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modelling approach. It may be overcome by taking the recent approaches designed to
fully reconstruct the spectra using the given linear model at a given Reynolds number
(Abootorabi & Zare 2023). However, such approaches do not easily enable us to use the
modelled spectra for extrapolation to other Reynolds numbers without additional DNS
data. For this purpose, a simple approach is taken, and the spectra not directly associated
with the linear processes of the flow are ignored. As discussed above, this is similar to
the original attached eddy model of Townsend (Townsend 1976), which ignored all the
motions related to energy cascade and dissipation (i.e. small-scale detached eddies).

A more substantial qualitative match is found comparing the Reynolds shear stress
cospectra (figure 2c,d). The weighted linear response provides a good agreement for the
streamwise wavelength of the primary peak and is overall energetic for a majority of
the corresponding DNS spectra. However, the overall amplitude of the Reynolds shear
stress generated by the optimally weighted leading POD modes is relatively weak. For
the standard L2-norm over the entire wall-normal distance and considered streamwise
wavenumbers (i.e. the root mean square velocities), the ratio of the norms of Reynolds
shear stress between the linear model and DNS is approximately 0.4. In contrast, the
streamwise response is approximately 0.9, indicating a relatively low Reynolds shear
stress. This level of anisotropy is expected to carry through results, an intrinsic limitation
in this modelling approach, and it originates from the spatially decorrelated nature of
the forcing considered initially (see also Holford et al. 2023, for a further discussion).
Given that the weight shown in figure 1 is approximately self-similar for λx/λz � 1 and
the non-self-similar parts for λx/λz � 1 do not generate a strong response for the resulting
spectra in figure 2, the weight from kzh = 30 shall be used as a self-similar weight for
all wavenumber pairs throughout this study. Note that the choice of the weight does not
significantly change the resulting quasi-linear approximation (see Appendix A for the
sensitivity to weight choice on results of the entire DQLA procedure at Reτ ≈ 5200).

2.4. Self-consistent determination of spanwise weighting
With the self-similar weighting set Wr,kx(kx/kz) along the streamwise axis determined,
an optimisation problem to determine the spanwise dependent weighting Wkz(kz) is now
considered. As the Reynolds shear stress generated by the fluctuating velocity field must
be identical to that required for the mean profile (see also Hwang & Eckhardt 2020, for
further details), the following optimisation problem for Wkz(kz) is further formulated:

min
Wkz

⎡⎢⎢⎣
∫ 2h

0
(u′v′( y) − E[u′v′]( y))2Q( y) dy∫ 2h

0
(u′v′( y))2Q( y) dy

⎤⎥⎥⎦
0.5

+ γ

⎡⎣∫ ∞

0

(
d2Wkz(kz)

d ln kz 2

)2

Ruv(kz) dkz

⎤⎦0.5

,

(2.12a)
subject to

Wkz(kz) ≥ 0, (2.12b)

and the values of the weight at the smallest and largest considered spanwise lengths are
also constrained to be zero with Wkz(λ

+
z = 10) = Wkz(λz = 10h) = 0. Here, the Reynolds

shear stress u′v′( y) is given by (2.3) with the assumption that the mean velocity profile is
empirically known (e.g. from (2.2b) and (2.3)), while the Reynolds shear stress generated
by the fluctuation equation (2.1b) with the nonlinear term model (2.2a) is denoted by
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Figure 3. Outputs of quasi-linear approximation optimisation: (a) the normalised spanwise weighting of
Fourier modes; (b) the wall-normal Reynolds shear stress profiles determined from the mean profile (dashed)
and the fluctuating components (solid).

E[u′v′]( y) with the definition of

E[u′v′]( y) = 1
4π2

∫ 2h

0

∫ ∞

−∞

∫ ∞

−∞
Wkz(kz)

×
∑

r=u,v,w

Wr,kx(kx/kz)Φ
NPOD
uv,r ( y, y′; kx, kz)δ( y′ − y) dkx dkz dy′. (2.12c)

The optimisation problem in (2.12) is weighted in logarithmic coordinates, such that
equal emphasis is placed on logarithmic distance from the wall. The constraint in (2.12b)
ensures that the velocity covariance operators remain positive definite. Lastly, similar
to the determination of the weighting along the streamwise wavenumber axis, a global
regularisation term is considered to ensure that the weighting remains smooth, giving
a physically reasonable set of velocity spectra. The smoothness regularisation is also
weighted by Ruv(kz), where

Ruv(kz) = 1
2π

∫ 2h

h

∫ ∞

−∞

∑
r=u,v,w

Wr,kx(kx/kz)Φ
NPOD
uv,r ( y, y′; kx, kz)δ( y′ − y) dkx dy′.

(2.12d)

The Ruv(kz) tends to have large values at large spanwise wavelengths (or small kz), and
this is an outcome of the optimisation problem in (2.11). Since ΦDNS

uv contains large
energy at large spanwise wavelengths, the regularisation term is more heavily weighted
at such wavelengths. This weighting accounts for the rapid decay in the Reynolds shear
stress spectra observed in the previous studies (see Skouloudis & Hwang 2021, for a
further discussion). It prevents erroneous behaviour in the velocity spectra at larger scales,
encouraging a smoothly attached compact support at the large scales (figure 3a).

The optimisation problem in (2.12) is discretised and rearranged to a standard form of
a second-order cone program and solved with the MOSEK solver. Discretisation along
the spanwise wavenumber axis was carried out with logarithmic spacing to maintain
Δ(ln(kz)) ≤ 0.05, with integration performed with the trapezoidal rule. Table 1 shows
the number of wavenumbers, collocation points and errors in the Q and L2 norms of
the problem (2.12). Figure 3 shows the weight determined by solving (2.12) and the
associated Reynolds shear stress profile compared with −u′v′. An almost perfect match
exists between the two Reynolds shear stress profiles, with the weighting that determines
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the Reynolds shear stress cospectra to provide a self-consistent approximation. With this
procedure established, § 3 compares the results between the DQLA and a DNS (Lee &
Moser 2015). The predictive capabilities of the framework are also assessed by using the
selected self-similar streamwise weightings as a universal weighting across a range of
Reynolds numbers from Reτ = 103 to Reτ = 105 in § 4.

2.5. Summary
Thus far, a quasi-linear approximation has been formulated, augmented by DNS data at
Reτ � 5200, combined with the attached eddy hypothesis: i.e. a data-driven quasi-linear
approximation. Particular efforts are given such that the model retains a ‘predictive’ (or
‘extrapolative’) nature for some of the key turbulence statistics and spectra at any relevant
Reynolds numbers (see also §§ 3 and 4) with ‘minimal inputs’: i.e. a mean velocity profile
and a self-similar weight. However, in doing so, a few ad hoc assumptions have become
unavoidable for the DQLA to retain the ‘predictive’ nature. In this respect, it would be
worth documenting some of its expected characteristics originating from the construction
of the model.

(i) Predictability: the main feature of the DQLA is that it is predictable (or
extrapolatable) for turbulence statistics and spectra at different Reynolds numbers
only with two inputs: a mean profile and a self-similar weight. Note that the mean
profile is empirically well documented and commonly available (e.g. Cess 1958), and
the self-similar streamwise weight needs to be determined only once at a sufficiently
high Reynolds number. By doing so, the DQLA can approach any Reynolds
numbers without additional DNS data, as long as the flow remains fully turbulent.
Importantly, as is seen in § 4, most of the known Reynolds-number-dependent
scaling behaviours of turbulence statistics and spectra appear to be reproduced by the
present DQLA. Therefore, it may be a valuable tool for studying turbulence statistics
at extremely high Reynolds numbers, where an accurate data set is challenging to
obtain, as demonstrated by Skouloudis & Hwang (2021) and § 4.

(ii) Performance: in the DQLA, the first input, a mean profile, is assumed to be known at
a given Reynolds number and is determined by an eddy viscosity closure, giving the
law of the wall. Given the robustness of the law of the wall, this input should result in
reasonable approximations at extremely high Reynolds numbers. The second input
used here is the streamwise weighting. The DQLA leverages the self-similar nature
of the eddies in the attached eddy hypothesis, focusing on modelling the logarithmic
layer. Given the significance of the logarithmic layer grows with Reτ , the modelling
framework should perform best for the high Reynolds numbers, where the features
not modelled by this self-similar weight bear a minor significance: e.g. near-wall
motions.

(iii) Limitations: the extrapolation capability of the DQLA is, however, obtained at
the cost of the accuracy of the resulting turbulence statistics, especially compared
with the recent data-driven modelling efforts (Zare et al. 2017; Abootorabi & Zare
2023; Holford et al. 2023). In particular, the physical processes and the related
velocity spectra originating from the original nonlinear term in (2.1c) were ignored
entirely. However, this is a fundamental limitation of any modelling efforts of
turbulent fluctuations based on the linearised Navier–Stokes equations. Even if
highly accurate turbulence statistics are obtained with a more accurate forcing
incorporating the ignored part of the spectra, the model nonlinear term in (2.2a) or
any of its variants can only be phenomenological, and they do not have the dynamics
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of the original nonlinear term in (2.1c). Specifically, the velocity components in
the DQLA can only give feedback on each other through the one-way coupling
of the lift-up effect, i.e. wall-normal velocity, driving the wall-normal vorticity.
When considering the fully nonlinear system with time-dependent solutions, the
velocity components can interact in other ways: for example, any spanwise shear
in the mean velocity will couple the streamwise and spanwise fluctuations, with the
latter driving the former in the sense of the lift-up effect. Therefore, the DQLA is
a model primarily for turbulence statistics, leveraging the physical processes that
the linearised Navier–Stokes equations can depict. In this respect, the models that
describe a better turbulent ‘dynamics’ may be found from some of the recent studies
employing more sophisticated state decompositions of the velocity field (e.g. Farrell
& Ioannou 2012; Thomas et al. 2015; Farrell et al. 2016; Hernández et al. 2022a,b).
Lastly, the present DQLA employs a steady-state stochastic dynamical systems
framework, overlooking any time/frequency domain details. Although the presented
framework can be readily extended to encompass the frequency domain using
conventional resolvent analysis techniques (Skouloudis & Hwang 2021), introducing
this additional time–frequency dimension comes with the trade-off of increased
computational overhead or imposing additional constraints and assumptions within
the time–frequency domain.

3. Data-driven quasi-linear approximation at Reτ = 5200

3.1. One-point turbulence statistics
The DQLA is initially evaluated at Reτ = 5200 for comparison with DNS data, as
well as to compare the effects of including kx /= 0 Fourier modes in contrast to the
MQLA, which only considers kx = 0 Fourier modes. The MQLA has been re-evaluated
using the optimisation problem (2.12), with E[u′v′] determined for streamwise uniform
modes (kx = 0). Figure 4 plots the root mean square (r.m.s.) velocity fluctuations and
Reynolds shear stress profiles for the DNS, DQLA and MQLA. The Reynolds shear
stress profiles are almost identical in logarithmic coordinates (figure 4d; see also table 1),
indicating that the optimisation problem (2.12) has been successfully implemented for
the DQLA and MQLA. The models show the same qualitative features and compare
well with DNS, although the streamwise velocity profile lacks a well-defined plateau.
The DQLA r.m.s. velocity profiles show a greater degree of consistency with the
DNS profiles than the MQLA (figure 4a–c) in terms of anisotropy. For instance,
(u′

rms,max/w′
rms,max, u′

rms,max/v
′
rms,max) is approximately (1.82, 2.67), (1.84, 3.48) and

(5.78, 13.9) in the DNS, DQLA and MQLA, respectively, with a strong agreement between
the DNS and DQLA ratios for the wall-parallel velocity components, due to the inclusion
of kx /= 0 modes.

This mismatch in the MQLA is evidently due to considering only kx = 0 Fourier modes.
For the kx = 0 case, the wall-normal derivative of wall-normal velocity fluctuations must
be balanced solely by the spanwise variation in the spanwise velocity spectra, given the
form of the continuity equation: i.e.

∂v̂′

∂y
+ ikzŵ′ = 0. (3.1)

Hence, the spanwise velocity can be determined directly from the wall-normal
velocity, itself determined solely from the Orr–Sommerfeld equation. Note that the
Orr–Sommerfeld equation for the wall-normal velocity is not coupled with the streamwise
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Figure 4. Comparison between DNS at Reτ = 5186 (solid), DQLA (dashed) and MQLA (dotted) at Reτ =
5200. (a) Streamwise, (b) wall-normal and (c) spanwise root mean square velocity and (d) Reynolds shear
stress profiles.

and spanwise velocity. Similarly, when kx = 0, the streamwise momentum equation is
only passively coupled with the other two momentum equations through the wall-normal
velocity: i.e.

∂ û′

∂t
+ v̂′ dU

dy
= dνT

dy
û′ + νTΔy,zû + f̂ ′

u, (3.2)

where Δy,z = ∂yy − k2
z . This momentum equation is the only one that contains the mean

shear, which is the source of energy production in the linearised fluctuation equations.
When only kx = 0 Fourier mode is considered for velocity fluctuations, as in the MQLA,
there is no way to transfer the energy produced by the mean shear at the streamwise
velocity component to the other two components. This leads to an overestimation of the
streamwise-to-spanwise/wall-normal r.m.s. velocity ratios in the MQLA. By allowing for
kx /= 0 modes in the DQLA, the streamwise momentum equation is now connected to
the equations for the other two components through continuity and pressure, significantly
reducing the odd anisotropy in the r.m.s. velocity profiles observed in the MQLA.
Although the ratio of the peaks of the wall-parallel components is quantitatively similar
between the DNS and the DQLA, the ratios in the streamwise and wall-normal components
are still overestimated in the DQLA. This is likely due to the simple model for the nonlinear
term in (2.2a) and the consideration of only two leading POD modes for the construction
of velocity spectra.
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Figure 5. Premultiplied spanwise wavenumber spectra from (a,d,g, j) DNS at Reτ = 5186, (b,e,h,k) the DQLA
and (c, f,i,l) the MQLA at Reτ = 5200: (a–c) streamwise velocity; (d– f ) wall-normal velocity; (g–i) spanwise
velocity; ( j–l) Reynold shear stress. The contours are normalised by 0.1 times the maximum value.

3.2. One-dimensional spectra
Figure 5 compares the spanwise one-dimensional velocity spectra from DNS with those
of the DQLA and MQLA. Both the MQLA and DQLA compare similarly with the DNS
spectra, with all components energetic on a single linear ridge (white dashed lines), as
linear ridge in which the energy sharply drops off. In general, the MQLA and DQLA are
more energetic closer to the wall. This is most noticeable in the spanwise velocity spectra
(figure 5d– f ), with similar trends in the other components. The DNS spanwise spectra
are energetic along y ≈ 0.14λz, as opposed to y ≈ 0.03λz in the MQLA. This is partially
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alleviated in the DQLA, which is energetic farther away from the wall (y ≈ 0.05λz), and,
at the larger length scales (λz/h ≈ 1), the DQLA spectra extend much closer to the channel
centreline, more in line with the DNS spectra. Moreover, the energy drops along y ≈ 0.2λz
in the DQLA, whereas in the MQLA, this occurs along y ≈ 0.1λz, which is below the
energy-containing ridge present in the DNS. The qualitative peak locations are also well
replicated by the MQLA and DQLA, with a bimodal structure in the streamwise and
Reynolds shear stress spectra and a near-wall peak in the spanwise spectra. However,
the relative strength of the outer peak in the MQLA and DQLA is consistent with the
lack of a well-defined plateau in the streamwise r.m.s. velocity profile. In the DQLA and
MQLA, the outer peak remains relatively strong for much of the linear ridge, penetrating
the logarithmic region. This leaves only a small region of separation for y/h ≈ 10−2,
compared with the DNS, which has a more diffuse outer peak and a better-defined plateau
in the spectra for y/h ≈ 0.01–0.05. The wall-normal velocity spectra of the MQLA and
DQLA contain peaks at much larger length scales than the DNS, at around y/h ≈ 0.1 and
y/h ≈ 0.02 for the DQLA and MQLA, respectively. Aside from the response along the
linear energetic ridges, both wall-parallel velocity spectra exhibit wall-attached features,
consistent with the attached eddy hypothesis. Both DQLA and MQLA wall-parallel
velocity spectra for λz/h � 0.1 penetrate the near-wall region to below y+ � 100, where
the wall-normal velocity spectra are not energetic due to the boundary condition. However,
these attached features in the DQLA and MQLA are relatively more energetic than their
DNS counterparts.

Overall, the MQLA and DQLA are qualitatively similar when comparing the overall
structure of the one-dimensional spanwise wavenumber velocity spectra. This reduces
down to the limitations/expectations of the model. Given both the DQLA and MQLA
use the same linearised system, they should accurately capture the linearised dynamics
present in the real flow, i.e. production. The production in reality (as observed in DNS)
consists largely of streaky elongated motions (kx/kz � 0.1; see also Lee & Moser 2019),
and the kx = 0 approximation employed in the MQLA is not completely unrealistic at least
for the production spectra. This is presumably why improvements in the DQLA extension
are relatively modest compared with the MQLA.

Figure 6 compares one-dimensional velocity and Reynolds shear stress spectra between
DNS and DQLA, excluding the MQLA due to the kx = 0 simplification. In figure 6(a,b),
the streamwise velocity spectra are compared. Good qualitative agreement is observed
for long streaky features along the y = 0.01λz linear ridge. Although the spectra from
the DNS suffer from the finite streamwise domain considered, the DQLA replicates
large-scale attached structures, albeit with more significant energetic content. The DQLA
shows a primary peak at slightly larger length scales (λ+x ≈ 2000) compared with DNS
(λ+x ≈ 1000). A distinct separation between the outer and inner peaks is lacking in DQLA,
resulting in a negligible plateau and the lack of a distinct outer peak in the streamwise
wavenumber spectra. The most significant difference lies above the y ≈ 0.1λx linear ridge,
where the DQLA’s energetic content drops to zero, while DNS exhibits another energetic
linear ridge (y = 0.35λx), strongly correlated with the wall-normal and spanwise velocity
fields (see also figure 6c,e) (for a detailed discussion, see Hwang 2015).

Figure 6(c,d) compares the wall-normal velocity spectra. There is a good qualitative
agreement between the spectra with respect to the energy-containing motions, with a
single linear ridge occurring in both at the same approximate length scale, y ∼ 0.35λx
and y ∼ 0.30λx in the DNS and DQLA, respectively. The main qualitative difference is
the DNS velocity spectra are more energetic above the linear ridge than the DQLA. In the
DNS spectra, the contour lines with low levels for y > 0.8λx do not follow any linear
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Figure 6. Premultiplied streamwise wavenumber spectra from (a,c,e,g) DNS at Reτ = 5186 and (b,d, f,h) the
DQLA at Reτ = 5200: (a,b) streamwise velocity spectra; (c,d) wall-normal velocity spectra; (e, f ) spanwise
velocity spectra; (g,h) Reynolds shear stress spectra. The contours are normalised by 0.1 times the maximum
value.
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scaling like y ∼ λx, and this part has previously been associated with energy cascade
developing a k−5/3

x spectrum (e.g. Agostini & Leschziner 2017). This is expected, given
the determination of the self-similar streamwise weighting effectively removed features
associated with the energy cascade, as well as the POD filtering process used. Similarly to
the spanwise one-dimensional velocity spectra, the primary peak in the DQLA occurs at
larger length scales than the DNS. The wall-normal velocity spectra in the DQLA also fall
off at a slower rate below this primary peak when compared with the DNS. The low-level
contours in the DQLA follow the linear ridge, extending to y+ ≈ 1 for λ+x ≈ 2, whereas the
DNS extends to y+ ≈ 1 for λ+x ≈ 100. This discrepancy in peak location and the DQLA
extending to the near-wall region for small streamwise length scales is presumably from
the use of a self-similar weighting across all length scales and is likely contributing to
the overprediction in the near-wall wall-normal velocity intensity profile and Reynolds
shear stress profile. The spanwise velocity spectra are compared in figure 6(e, f ), with the
DQLA spectra exhibiting similar characteristics to the streamwise velocity spectra from
the DQLA (figure 6b). The DQLA model predicts the location of the near-wall peak in
the streamwise direction, albeit at a slightly larger length scale (λ+x ∼ 500 in the DQLA
compared with λ+x ∼ 300). Most notably, the main energetic regions in the spectra are
much closer to the wall than in the DNS. The DNS velocity spectra indicate that the
main energy-containing regions are along y ∼ 0.27λx. In the DQLA, this appears to be
absent. The Reynolds shear stress spectra are compared in figure 6(g,h), with the main
observations consistent with the comparisons of the streamwise and wall-normal velocity
spectra. The Reynolds shear stress spectra generated by the DQLA are energetic closer to
the wall when compared with the DNS and, similar to the wall-normal velocity spectra,
extend along the linear ridge to smaller length scales when compared with DNS, leading
to a slight overprediction in the Reynolds stress profile (figure 4d).

3.3. Two-dimensional spectra
The two-dimensional streamwise velocity spectra and Reynolds shear stress cospectra for
a fixed wall-normal location in the near-wall and logarithmic layers are shown in figures 7
and 8, respectively. The attached footprints of the energy-containing eddies from the log
and outer regions are most clearly observed for the near-wall location (y+ ≈ 15 in figure 7).
Comparing the DNS and DQLA spectra in the near-wall region (figure 7), there is a strong
qualitative agreement, with the DQLA replicating all the features in the DNS. There is
a near-wall primary peak in all the spectra, with the inactive (i.e. Reynold shear stress
absent; Townsend 1976) footprints of the eddies present as an approximate linear ridge in
the streamwise spectra. Consistent with the previous discussion, the attached footprint is
more energetic than that present in the DNS, with the 0.30 contour describing the attached
footprint in the DQLA and only the 0.10 contour in the DNS spectra. Since these features
in the DQLA are modelled by the eddy viscosity diffusion operator (Hwang 2016; Symon
et al. 2022), this indicates a more accurate form of eddy viscosity profile in the fluctuating
velocity model is required to model these features more accurately. These two-dimensional
spectra also show why the peak in the streamwise r.m.s. velocity is overpredicted in the
DQLA (figure 4a) – the attached footprints of the energy-containing eddies from the log
and outer regions contribute relatively more to this integrated quantity over the kx–kz plane.

The two-dimensional streamwise velocity spectra and Reynolds shear stress cospectra
at a wall-normal location in the log layer are compared in figure 8. At this
wall-normal location, the DNS and DQLA spectra are in good agreement for the
main energy-containing features, with all of the spectra having a peak occurring at
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Figure 7. Premultiplied two-dimensional wavenumber spectra at y+ ≈ 15 from (a,c) DNS at Reτ = 5186 and
(b,d) the DQLA at Reτ = 5200: (a,b) streamwise velocity spectra; (c,d) Reynolds shear stress cospectra. The
contours are normalised by 0.1 times the maximum value.

approximately the same length scales. Here, the effects of neglecting energy cascade
features are most evident, with the black dashed lines on the DQLA spectra from the
linear cutoff lines on the one-dimensional spectra (see figures 5 and 6). Outside these
cutoff lines, there is negligible energetic content in the DQLA, whereas no simple linear
cutoff was present in the DNS (figures 5 and 6). The DNS spectra are more energetic for
the smaller length scales (λx � 3y, λz � 3y), which are associated with energy cascade
to small scales for dissipation. The contribution of these energy cascade features to the
turbulence intensities is expected to be reasonably small.

4. Scaling behaviour up to Reτ = 105

4.1. Spectra
The DQLA built from the DNS data at Reτ ≈ 5200 is now repeated for Reynolds numbers
ranging from Reτ = 103 to Reτ = 105, given its modelling scope to extrapolate to other
Reynolds numbers. Using the self-similar weight Wkx(kx/kz) constructed with the DNS
data at Reτ ≈ 5200, the weight is interpolated/extrapolated to the considered wavenumber
domain at other Reynolds numbers, for which the self-consistent determination of the
spanwise weight can be performed, solving (2.12). Firstly, the Reynolds scaling of the
one-dimensional spectra is compared between the DNS and DQLA for Reτ ≈ 1000, 2000,
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Figure 8. Premultiplied two-dimensional wavenumber spectra at y+ ≈ 400 (y/h ≈ 0.075) from (a,c) DNS at
Reτ = 5186 and (b,d) the DQLA at Reτ = 5200: (a,b) streamwise velocity spectra; (c,d) Reynolds shear stress
cospectra. The contours are normalised by 0.1 times the maximum value.

5200. The qualitative scaling behaviour in the DQLA is found to be identical to the
MQLA in the spanwise one-dimensional spectra and is not displayed here (see Hwang
& Eckhardt 2020; Skouloudis & Hwang 2021, for a more complete discussion). There
is a strong qualitative agreement between them, with the DQLA and DNS exhibiting
inner-scaling features for O(10) � λ+z � O(103) and outer-scaling behaviour for λz ≈
O(h). The attached footprints in the wall-parallel velocity spectra from the DQLA
importantly exhibit inner-scaling behaviour (Hwang 2016). Overall, the spanwise velocity
spectra are consistent with the attached eddy hypothesis, with qualitative corrections due
to the incorporation of viscous effects at a finite Reynolds number (Skouloudis & Hwang
2021).

The outer- and inner-scaled streamwise one-dimensional spectra are shown in figures 9
and 10, respectively. Note that, due to the peak in the wall-normal velocity spectra
occurring at logarithmic streamwise length scales in the DQLA, the contour levels
for the inner-scaled streamwise one-dimensional spectra for the wall-normal velocity
(figure 10d) are chosen to follow absolute values rather than normalised ones to exhibit the
inner-scaling behaviour. Despite the differences between the spectra at a single Reynolds
number, as described in § 3, the scaling behaviour in the DQLA compares very well with
the DNS. All the spectra are energetic, spanning from λ+x = O(102) up to λx/h = O(10).
Both the velocity and Reynolds shear stress spectra have an inner-scaling near-wall
peak, with the outer part of the spectra scaling well in outer units. Like the spanwise
one-dimensional spectra (Hwang & Eckhardt 2020; Skouloudis & Hwang 2021), the
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Figure 9. Outer-scaled streamwise one-dimensional spectra from (a,c,e,g) DNS (Lee & Moser 2015) and
(b,d, f,h) the DQLA: (a,b) streamwise velocity; (c,d) wall-normal velocity; (e, f ) spanwise velocity; (g,h)
Reynolds shear stress. Here Reτ � 5200, 2000, 1000 for the shaded, dashed, and solid line contours,
respectively. The contour levels are chosen to be 0.25, 0.50 and 0.75 times the maximum value for comparison,
except in (d) where all contours levels are given by 0.25, 0.50 and 0.75 times the maximum value of the
Reτ = 5200 spectra.
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Figure 10. Inner-scaled streamwise one-dimensional spectra from (a,c,e,g) DNS (Lee & Moser 2015) and
(b,d, f,h) the DQLA: (a,b) streamwise velocity; (c,d) wall-normal velocity; (e, f ) spanwise velocity; (g,h)
Reynolds shear stress. Here Reτ ≈ 5200, 2000, 1000 for the shaded, dashed and solid line contours,
respectively. The contour levels are chosen to be 0.25, 0.50 and 0.75 times the maximum value for comparison,
except in (d) where all contours levels are given by 0.25, 0.50 and 0.75 times the maximum value of the
Reτ = 5200 spectra.
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Figure 11. Streamwise turbulence intensity profiles from (a,c) DNS (Lee & Moser 2015) and (b,d) the DQLA
in (a,b) outer-scaled coordinates and (c,d) inner-scaled coordinates. Here, Reτ = 550, 1000, 1994, 5185 for
DNS and Reτ = 500, 1000, 2000, 5200, 10 000, 20 000, 50 000, 100 000 for the DQLA.

wall-parallel velocity spectra have an attached footprint, scaling well in outer and inner
units.

4.2. Turbulence intensity
The predictive capabilities of the DQLA are now used up to Reτ = 105, with the focus
on the streamwise turbulence intensity profiles. The other components are consistent
with the MQLA (Hwang & Eckhardt 2020), albeit with a reduced level of anisotropy,
as presented in § 3. The profiles are plotted in the inner- and outer-scaled coordinates in
figure 11. The scaling behaviour of the streamwise intensity profiles in DNS and DQLA
share the same key features: a near-wall peak at y+ ≈ 15 at relatively low Reynolds
numbers (Reτ � 5000) and an approximate logarithmic decay when scaled in outer units.
This behaviour is more evident in the DQLA for Reτ � 5200. For these larger Reynolds
numbers, the streamwise intensity profile is consistent with Hwang et al. (2022), in
which the spectrum-based attached eddy model of Perry et al. (1986) was extended for
finite Reynolds numbers with an experimental data of Samie et al. (2018). In the upper
logarithmic layer (or inertial sublayer) from y+ = 3.6Re0.5

τ up to y/h = 0.2, this model
yields the following form of streamwise turbulence intensity

u′u′

u2
τ

= −A(Reτ ) ln( y/h) + B(Reτ ), (4.1a)
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Figure 12. Premultiplied streamwise one-dimensional spectra at various wall-normal locations for Reτ =
20 000 in (a) outer-scaling coordinates λx/h and (b) logarithmic coordinates λx/y and (c) the streamwise
turbulence intensity profile (solid) with the attached eddy hypothesis approximation following Hwang et al.
(2022).

where
A(Reτ ) = A0 + A1(Reτ ). (4.1b)

Here, A(Reτ ) and B(Reτ ) are supposed to be constants in the limit of infinite Reτ , and they
vary slowly with Reτ at finite Reτ (Hwang et al. 2022).

An essential prerequisite of the model in Hwang et al. (2022) is the existence of y- and
h-scaling regions of one-dimensional spectra in the upper logarithmic layer. Figure 12(a,b)
shows that the DQLA successfully reproduces such spectra in the upper logarithmic layer
(compare with figure 3(a,b) in Hwang et al. 2022) like the experimental data of Samie
et al. (2018). Following Hwang et al. (2022), A(Reτ ) and B(Reτ ) in (4.1a) are subsequently
approximated from the spectra at all Reynolds numbers

A(Reτ ) =
[

ln
(

ax,u

y

)
− ln

(ax,l

h

)]−1 ∫ ln(ax,u/y)

ln(ax,l/h)

kxΦuu(kx, y/h)

u2
τ

d ln(kx), (4.2a)

B(Reτ ) = A(Reτ ) ln
(

ax,u

ax,l

)
. (4.2b)

Here, ax,u and ax,l are dimensionless constants associated with the upper and lower limits
of the integration of the streamwise spectra. However, they have to be chosen through
inspection of figure 12(a,b), they must be ‘constants’ for all Reynolds numbers. The
approximation (4.2) reduces down to using the mean-value theorem to approximate the
spectra across these upper and lower limits, with the mean value, or in this case, the
Townsend–Perry constant A(Reτ ), consisting of a universal component A0 and a viscous
correction A1(Reτ ). Hence, the upper and lower limits lie at values where the spectra
scale in outer (λx/h) and logarithmic (λx/y) coordinates, respectively. After trial and
improvement of the fitting procedure, the upper and lower limits are set with ax,u = π
and ax,l = 4π/3, with the comparison of the approximation and streamwise turbulence
intensity profile shown in figure 12(c).

Table 2 reports the values of A(Reτ ) and B(Reτ ) obtained. Consistent with the growing
trend of A(Reτ ) and B(Reτ ) observed in Hwang et al. (2022) with the experimental data
from Samie et al. (2018), their values obtained from the DQLA data also slowly grow.
Importantly, their growth rate tends to be smaller on increasing Reτ from table 2, indicating
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Reτ × 10−4 0.52 1 2 5 10

A(Reτ ) 2.12 2.21 2.31 2.41 2.47
B(Reτ ) 0.61 0.64 0.67 0.69 0.71

Table 2. The Reynolds-number-dependent model constants for the streamwise turbulence intensity
determined following Hwang et al. (2022).
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0
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1/U+
cl

u′
u′

/
u2 τ

(a) (b)

Figure 13. The Reynolds-scaling behaviour of the streamwise turbulence intensity based on (a) log Reτ and
(b) inner-scaled centreline velocity U+

cl . The wall-normal locations correspond to the peak (solid); y+ = 50
(dashed); y+ = 100 (dash-dotted). The coloured lines correspond to (a) u′u′/u2

τ = a1 + b1 ln(Reτ ) fitted in the
range Reτ = 1000–2000 and (b) u′u′/u2

τ = a2 + b2/U+
cl fitted in the range Reτ = 20 000–50 000.

that they would reach constant values. This trend is consistent with the theoretical model
of Hwang et al. (2022), which becomes identical to the classical attached eddy model in
the limit of Reτ → ∞ (Townsend 1976; Perry & Chong 1982; Perry et al. 1986).

Apart from the agreement between the near-wall peak and logarithmic decay, the DQLA
still does not have a clear plateau behaviour for y+ ≈ 200, although one starts to emerge for
Reτ � 20 000. This is likely due to the overly energetic response of the large-scale motions
present in the current model, as discussed in § 3. In the DQLA, the primary near-wall
peaks are much less distinct than those in the DNS, with the outer-scaling parts of the
spectra and their attached features remaining relatively more energetic in the spectra. One
possible improvement on the current DQLA framework to account for this plateau would
be an outer and inner correction to the streamwise wavenumber weighting. However, this
would detract from the predictability of the current framework, with the inner and outer
scaling of the corrections having to be prescribed as additional inputs. Another reason for
the lack of the plateau is likely due to the particular use of the eddy viscosity profile, with
the large-scale response being generally overly energetic. Given how the viscosity of the
eddy is used in modelling the attached large-scale features (Hwang 2016; Symon et al.
2022; Holford et al. 2023), the eddy viscosity profile could perhaps be tuned to replicate
these features more carefully, but this is beyond the scope of this study.

Finally, figure 13 shows the scaling behaviour of the near-wall peak and two other
inner-scaling locations, y+ = 50, 100. Like the MQLA (Hwang & Eckhardt 2020;
Skouloudis & Hwang 2021) in figure 13(a), the DQLA shows the deviation of near-wall
intensities from the classical logarithmic scaling predicted by an extension of the original
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attached eddy model (Marusic & Kunkel 2003): i.e. u′u′/u2
τ ∼ ln Reτ . Instead, consistent

with the recent findings from a variant of the MQLA (Skouloudis & Hwang 2021), the
near-wall streamwise intensities are inversely proportional to the inner-scaled centreline
velocity, with the coloured lines given by fits of

u′u′

u2
τ

= C − D/U+
cl , (4.3)

favouring the prediction made by Monkewitz & Nagib (2015) for a turbulent boundary
layer using an asymptotic expansion of near-wall turbulence statistics. Notably, the MQLA
(Skouloudis & Hwang 2021) and DQLA provided the same scaling associated with
1/U+

cl . However, their construction is quite different, especially in that of the full velocity
spectra. This suggests that the scaling behaviour of (4.3) is inherently from the linearised
Navier–Stokes equations in (2.1b) with the model nonlinear term (2.2a) rather than a
peculiar feature emerging from the construction of the quasi-linear approximation. It
also strongly indicates that there must exist a mathematical structure underpinning (4.3).
Considering that the DQLA effectively reproduces the scaling behaviour of the streamwise
velocity in the upper logarithmic layer, this result warrants thoughtful consideration and
should not be underestimated. Importantly, there is growing evidence that the scaling of
u′u′/u2

τ ∼ ln Reτ from the classical attached eddy model may not be valid, as the original
attached eddy model is built by ignoring the viscous effect in the near-wall region. In this
respect, it is worth mentioning an alternative proposed by the recent work by Chen &
Sreenivasan (2021), where a scaling proportional to Re−1/4

τ was proposed instead of 1/U+
cl

scaling. Such scaling may fit well with the near-wall streamwise turbulence intensity of
DQLA. However, it was recently shown that, in practice, only a negligibly small difference
has been found between the 1/U+

cl and Re−1/4
τ scalings upon increasing the Reynolds

number (Nagib, Monkewitz & Sreenivasan 2022). To the best of the authors’ knowledge,
the correct scaling behaviour of the near-wall streamwise turbulence intensity is currently
an issue of debate. One of the authors of the present study (Hwang 2022) makes an ongoing
effort to address this issue thoroughly in the future.

5. Summary

The MQLA (Hwang & Eckhardt 2020) has been extended in the present study by including
streamwise variations of turbulence spectra. To extend the MQLA while still maintaining
its predictive nature, self-similarity was used to determine the statistical structure of the
forcing. By using the universal nature and growing significance of the logarithmic layer
on increasing Reynolds number, a set of self-similar weights was determined by matching
the two-dimensional spectra with respect to the streamwise wavenumber and wall-normal
location at a single spanwise wavenumber of the linearised Navier–Stokes equations to
those of a DNS performed at Reτ ≈ 5200. By reconstructing the velocity spectra from
the leading POD modes of the linearised Navier–Stokes equations, the two-dimensional
spectra generated reasonably well replicated the DNS spectra. In doing so, the energy
cascade-associated features in the spectra were neglected, in line with the attached eddy
hypothesis, for the model to be extrapolatable to other Reynolds numbers. From this
self-similar weighting with respect to the streamwise wavenumber, the self-consistent
determination of the Reynolds shear stress was implemented following Hwang & Eckhardt
(2020), completing the DQLA framework.

The DQLA allows complete determination of the two-dimensional velocity spectra and
all subsequent statistics, with results compared between the MQLA, DQLA, and DNS. It
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was shown that the DQLA offers significant quantitative improvements compared with the
MQLA with respect to the wall-normal and spanwise r.m.s. velocity profiles. In particular,
it significantly reduces the anisotropy in the turbulence intensities while providing the
streamwise wavenumber spectra, the scaling of which is consistent with that of DNS.
While the DQLA did improve turbulence statistics and spectra compared with the MQLA,
there were still some qualitative differences between the DQLA and DNS results. This
was demonstrated most clearly in the streamwise one-dimensional spectra, the intensity of
which was much stronger than that of the DNS in the region close to the wall while lacking
the energetic content at length scales associated with the nonlinear processes modelled in
this study (e.g., the streak instability (or transient growth) and energy cascade Schoppa &
Hussain 2002; de Giovanetti et al. 2017; Doohan et al. 2021; Lozano-Durán et al. 2021).
Aside from the qualitative differences in the spectra, the DQLA framework was shown to
retain the predictive capabilities of the MQLA with the scaling behaviour of turbulence
intensities and spectra in qualitative agreement with the DNS. In particular, it offers a
scaling behaviour consistent with the recent theoretical model of Hwang et al. (2022),
where the spectrum-based attached eddy model in Perry et al. (1986) was extended for
finite Reynolds numbers. Also, like the MQLA, the near-wall peak turbulence intensity
was inversely proportional to the inner-scaled centreline mean velocity, deviating from the
classical prediction based on the attached eddy model.
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Appendix A. Sensitivity of optimisation procedure

To select an appropriate value for γ , figure 14 shows a trade-off curve between the
regularisation parameter γ and the errors with respect to the Q−norm for each of the
spectra. As the errors in all of the components are approximately monotonic, the weights
were determined by setting γ = 0.5 and using trial and inspection in varying γ until the
streamwise weights and the velocity spectra are sufficiently smooth and in good qualitative
agreement with the DNS velocity spectra.

To check the sensitivity of the DQLA to the choice of self-similar streamwise weighting
Wkx(kx/kz), the DQLA was performed at Reτ ≈ 5200 with the different weights from
figure 1. The turbulence intensity profiles are shown in the figure 15(a–c). The streamwise
turbulence intensity (figure 15a) is relatively insensitive to the choice of the streamwise
self-similar weight, while both the wall-normal and spanwise intensities (figure 15b,c)
tend to decrease with kzh. The use of the kzh = 30 weight is justified considering here that
the wall-normal and spanwise turbulence intensity profiles are much less sensitive for the
kzh = 14–50 weight. Since these wavenumbers are mainly associated with the logarithmic
layer, where self-similarity is expected to hold, the different weights from solving (2.11a)
lead to similar results in a DQLA. The sensitivity to the choice of self-similar streamwise
weighting Wkx(kx/kz) is also examined in figure 15(d), where the total errors between the
normalised two-dimensional spectra for fixed spanwise length scales are examined using
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Figure 14. The trade-off curve between the componentwise errors in (2.11a), where εr =
‖ΦDNS

r − Φr‖Q/‖ΦDNS
r ‖Q for kzh = 14 for the streamwise (solid), wall-normal (chain), spanwise velocity

spectra (dotted) and Reynolds shear stress cospectra (dashed).
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Figure 15. The sensitivity of the DQLA to the choice of streamwise weighting for (a) streamwise,
(b) wall-normal, (c) spanwise turbulence intensities; and (d) total error in the two-dimensional normalised
spectra as defined in (2.11a) with the streamwise weighting applied at different kzh. Here, the colour
corresponds to the selected kzh result used for the self-similar streamwise weighting.
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the weights for different kzh in figure 1, i.e.∑
s

∥∥∥∥∥ ΦDNS
s

‖ΦDNS
s ‖Q

− Φ
DQLA
s (Wr,kx)

‖ΦDQLA
s ‖Q

∥∥∥∥∥
Q

, (A1)

for s = {uu, vv, ww, uv}. Figure 15(d) shows that all weights produce a qualitatively
similar trend. This justifies the use of the weights as self-similar weights at the other
kzh. The normalised spectra produce approximately the same total errors, giving the same
approximate statistical structure of the resulting spectra.
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