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Sustained friction drag reduction and heat transfer augmentation are simultaneously
achieved in a fully developed channel flow where the averaged transport equations
and wall boundary conditions for momentum and heat have identical form. Zero-net-
mass-flux wall blowing and suction is assumed as a control input and its spatio-
temporal distribution is determined based on optimal control theory. When the root-
mean-square value of the control input is 5 % of the bulk mean velocity, the friction
drag is decreased by 24 % from the uncontrolled value, whereas the heat transfer is
more than doubled. Optimizations with different amplitudes of the control input and
different Reynolds numbers reveal that the optimal control inputs commonly exhibit
the property of a downstream travelling wave, whose wavelength is ∼250 in wall
units and phase velocity is ∼30 % of the bulk mean velocity. Detailed analyses of the
controlled velocity and thermal fields show that the travelling wave input contributes
to dissimilar heat transfer enhancement through two distinct mechanisms, i.e. direct
modification of the coherent velocity and thermal fields and an indirect effect on
the random fields. The present results show that the divergence-free velocity vector
and the conservative scalar are essentially different, and this is a key to achieving
dissimilar heat transfer enhancement in turbulent shear flows.

Key words: control theory, drag reduction, mixing enhancement

1. Introduction
Considering that modern society is built on the interconversion between heat and

mechanical/electric energy, smart handling of heat and fluid flow is a key technology
toward realizing a future sustainable society. For example, the performance of heat
exchangers has significant impact on the overall efficiency of heat engines such
as regenerative gas turbines, whereas turbine blade cooling technology is crucial
for increasing the turbine inlet temperature. Recently, heat transfer enhancement
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techniques have also attracted much attention in the efficient use of low/medium-
temperature heat sources such as exhaust heat of internal combustion engines and
power plants as well as geothermal energy.

In order to drive fluid through a flow passage in energy devices, a pressure gradient
is generally imposed along the streamwise direction so as to overcome the drag acting
at fluid–solid boundaries. The applied pumping power has to be minimized, since it
is eventually converted to heat by the fluid viscosity, and therefore causes entropy
generation.

In real applications, the objectives in designing heat exchangers are quite broad,
namely minimizing weight, volume, heat transfer surface, and frontal area to name a
few. In addition, there often exist a number of different constraints such as required
overall heat transfer, maximum pressure drop, maximum height, width or length of
a heat exchanger. Consequently, the relative cost and merit of the pressure drop and
heat transfer strongly depend on the specific application. For instance, in recovering
exhaust heat from internal engines, a significant challenge is to reduce the total weight
and volume of a heat exchanger. In such a case, enhancement of heat transfer might
be more important than suppression of the pressure drop. Among various requirements
mentioned above, enhancing heat transfer with diminishing pressure loss is one of the
ultimate goals in heat transfer technology. However, achieving such dissimilar heat
transfer enhancement could be a difficult task owing to the similarity between the
transport equations of momentum and heat.

The so-called Reynolds analogy (Reynolds 1874) between momentum and scalar
transfer is one of the most widely used concepts in predicting heat and mass
transfer in engineering flows (see e.g. Keys, Crawford & Weigand 2005). However,
its success implies a fundamental difficulty in achieving heat transfer enhancement
with the friction drag reduced or not increased as much as the heat transfer. In fact,
existing heat transfer enhancement techniques such as the offset strip fin (Manglik &
Bergles 1995), corrugated duct (Stasiek et al. 1996), vortex generator (Eiamsa-ard &
Promvonge 2011) and transverse rib (Nagano, Hattori & Houra 2004) are accompanied
by a significant pressure loss, the rate of increase of which is usually larger than that
of the heat transfer. As a result, none of those techniques improves on a flat surface
in terms of heat transfer per unit pumping power. Therefore, a further breakthrough
has to be made in order to establish a strategy for achieving dissimilar heat transfer
enhancement.

Recently, Kasagi et al. (2012) re-examined the governing equations and wall
boundary conditions for momentum and heat transfer in a fully developed turbulent
channel flow in order to clarify possible scenarios of dissimilar control. Among these
scenarios, the dissimilarity caused by a fundamental difference between the divergence-
free velocity vector and the conservative scalar appears to be most promising for
establishing a universal control strategy. In an incompressible fluid, the pressure field
responds instantaneously so that the velocity field is projected on to the divergence-
free space. Therefore, the three components of the velocity vector are coupled through
the continuity constraint. On the other hand, there is no such restriction on a scalar
quantity.

This inherent difference is successfully exploited by Hasegawa & Kasagi (2011)
to achieve significant dissimilar heat transfer enhancement even in flows where the
averaged momentum and energy transport equations have an identical form. They
applied a suboptimal control theory (Lee, Kim & Choi 1998) to determine zero-net-
mass-flux wall blowing and suction in a fully developed turbulent channel flow. The
resultant heat transfer is enhanced by a factor of roughly three from that of the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

43
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.436
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uncontrolled flow, while the pressure drop is only doubled, when the root-mean-square
(r.m.s.) value of the control input is 5 % of the bulk mean velocity. In addition, the
obtained control input exhibits a travelling-wave-like property. Dissimilarity caused by
such a coherent control input is of great interest, since it opens up the possibility of
achieving dissimilar control with a simple open-loop strategy, which does not require
sensing of the velocity and thermal fields.

In suboptimal control theory, the instantaneous spatial distribution of a control input
is determined so as to minimize a prescribed cost function at the next computational
time step by taking into account only short-term dynamics, i.e. linear processes. Hence,
the obtained control input is not necessarily optimal for a long time horizon. Indeed,
the travelling-wave-like control input and the resultant control performance reported
in Hasegawa & Kasagi (2011) significantly depend on the size of the computational
domain. In the present study, the control input is optimized by taking into account
turbulent dynamics within a finite time horizon based on optimal control theory
(Abergel & Temam 1990; Bewley, Moin & Temam 2001). Such a control input
generally results in much better control performance than the suboptimal control input
assuming a vanishingly small time horizon. Specifically, simultaneous achievement of
heat transfer augmentation and drag reduction is first demonstrated in the present
study. In addition, the present control input is characterized by a travelling-wave-
like control input in analogy to that obtained in Hasegawa & Kasagi (2011), but
almost independent of the dimension of the computational domain. This allows us to
discuss the scaling of the optimal travelling-wave mode for dissimilar heat transfer
enhancement.

We will proceed as follows: in § 2, the numerical conditions and the optimization
procedures are described. The control results are shown in § 3, and then the
detailed mechanisms of dissimilarity are discussed in § 4. The scaling of the optimal
travelling wave for dissimilar control is addressed in § 5. Finally, the present study is
summarized in § 6.

2. Calculation conditions and mathematical formulation

2.1. Governing equations and boundary conditions

In order to derive a general control strategy, we consider one of the most canonical
flow systems, namely a fully developed turbulent channel flow as shown in figure 1.
The streamwise, wall-normal and spanwise directions are denoted by x1, x2 and x3,
respectively. A periodic boundary condition is employed for the x1 and x3 directions.
The origin of x2 is located at the centre of the channel, so that the location of the
bottom and top walls correspond to x2 = −1 and 1, respectively. The total volume of
the computational domain is VΩ , whereas the domain boundary is expressed by Γ , the
subscript of which represents the normal direction.

Typically, the temperature difference between the wall and the fluid is around 5–10
K in a heat exchanger. This indicates that the bulk Richardson number Rib is of
order 10−3 for typical working fluids such as air and water. According to previous
direct numerical simulations (DNS) (e.g. Iida & Kasagi 1997; Iida, Kasagi & Nagano
2002), the buoyancy starts to affect the friction coefficient and the Nusselt number
when Rib > 10−1. Hence, in the present study, the temperature is treated as a passive
scalar so that no buoyancy effects arise. In addition, the fluid properties are assumed
constant. In this case, the velocity and scalar fields are governed by the following
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FIGURE 1. Computational domain, its boundaries and coordinate system.

Navier–Stokes, continuity and energy transport equations:

∂ui

∂t
+ ∂ujui

∂xj
=− ∂p

∂xi
+ 1

Re

∂2ui

∂xj
2
, (2.1)

∂ui

∂xi
= 0, (2.2)

∂θ

∂t
+ ∂ujθ

∂xj
= 1

PrRe

∂2θ

∂x2
j

+ Q, (2.3)

where ui, p and θ are the ith velocity component, the static pressure and the
temperature, respectively. Throughout this paper, all quantities are normalized by the
bulk mean velocity U∗b , the channel half-width δ∗, and the temperature difference
between the bulk fluid and the wall, Θ∗b − Θ∗w, while a quantity with an asterisk
represents a dimensional quantity. The Reynolds number is defined as Re = U∗bδ

∗/ν∗,
where ν∗ is the kinematic viscosity of fluid. The Prandtl number is the ratio of ν∗ and
the thermal diffusivity α∗, i.e. Pr = ν∗/α∗. The last term on the right-hand side of (2.3)
represents heat source Q, which is generally a function of space and time.

Although various thermal boundary conditions exist in real applications, we consider
an ideal case where the averaged transport equations for streamwise momentum and
heat become identical. Namely, we assume uniform heat generation in the fluid, i.e.
Q= const, and it is set to be identical to the mean pressure gradient driving the flow:

Q(x1, x2, x3, t)=− ∂p

∂x1
, (2.4)

where the overbar represents averaging over the homogeneous directions, i.e. x1 and x3,
and also time t. In addition, Pr is set to be unity throughout this paper. Consequently,
the averaged momentum and heat transport equations have identical forms:

− ∂p

∂x1
= ∂

∂x2

(
u′1u′2 −

1
Re

∂u1

∂x2

)
, (2.5)

Q=− ∂p

∂x1
= ∂

∂x2

(
θ ′u′2 −

1
Re

∂θ

∂x2

)
. (2.6)

We consider local wall blowing/suction with zero net mass flux as a control input.
For the tangential velocity components and the temperature, we impose the no-slip
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and constant-temperature conditions at the two walls. The resultant wall boundary
conditions are described as

ui|Γ2± = φni, (2.7)

θ |Γ2± = 0. (2.8)

Here, the control input, i.e. the wall-normal velocity component imposed at the wall,
is denoted by φ, the sign of which is defined to be positive when the applied control
input is directed towards the outer normal vector ni at the boundaries of the fluid
domain. Throughout this paper, φ is normalized by the bulk mean velocity.

It should be noted that the wall boundary conditions of the streamwise velocity
component and the temperature remain similar even in the controlled flow, i.e.
u1 = θ = 0 at the two walls. As is evident from (2.5) and (2.6), in order to have
dissimilar solutions of u1 and θ , dissimilarity between u′1u′2 and θ ′u′2 is mandatory.
Such an ideal flow condition is suitable for investigating the dissimilarity caused
by the continuity constraint on the velocity field, since the other possible sources
of dissimilarity are all removed (Kasagi et al. 2012). It can also be considered as
the most difficult situation in which to achieve dissimilar heat transfer enhancement
due to the strong similarity in the governing equations and boundary conditions for
momentum and heat.

The uniform heat generation considered in the present study is typified by Joule
heating of an electrolysis solution. Moreover, in order to mimic the velocity and
thermal conditions inside a heat exchanger, a constant-heat-flux condition is often
considered. In this case, the resultant dimensionless energy transport equation has
an apparent heat source term (see e.g. Kasagi, Kuroda & Tomita 1992), which
is proportional to the streamwise velocity component. Although it is not exactly
equivalent to the present thermal condition, the thermal field is found to be rather
insensitive to the profile of the heat source across the channel due to strong mixing
of turbulence as discussed in Kasagi et al. (2012). Hence, the present uniform heating
can be considered as the first-order approximation of a heat and fluid flow condition
inside a heat exchanger. In addition, the thermal conductivity of gas is generally much
smaller than those of liquid and solid, so that the overall heat transfer performance
is mostly limited by the gas-phase heat transfer in real applications. Given that the
Prandtl number of air is close to unity under the standard condition, the present
thermal condition is considered to be not only beneficial for fundamental investigation,
but also closely linked to practical problems.

Once the flow and thermal fields reach fully developed states, the wall friction
balances with the mean pressure gradient. Similarly, the wall heat flux matches the
heat source. Since the heat source is set to be identical to the mean pressure gradient
in the present condition (see (2.4)), the wall heat flux always follows the wall friction.
Meanwhile, the energy transport equation (2.3) and the thermal boundary conditions
(2.8) at the two walls are all linear in terms of θ . This means that any dimensionless
temperature statistics including the Stanton number defined below are independent
of the magnitude of the heat source, and thereby are not directly influenced by the
magnitude of the wall friction, but only through modification of turbulent transport
mechanisms. Indeed, in the present optimal control, it is demonstrated that the Stanton
number is significantly increased while the wall friction is kept smaller than the
uncontrolled value.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

43
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.436


194 A. Yamamoto, Y. Hasegawa and N. Kasagi

2.2. Control performance indices
Following Hasegawa & Kasagi (2011), the bulk veclocity U∗b and the bulk temperature
Θ∗b are respectively defined as the following cross-sectional averages of flow rate and
temperature:

U∗b =
1

V∗Ω

∫
Ω

u∗1 dV, (2.9)

Θ∗b =
1

V∗Ω

∫
Ω

θ∗ dV. (2.10)

As the indices of heat transfer and pressure loss, the following Stanton number St
and friction coefficient Cf are defined:

St = q∗w
ρ∗C∗pU∗b

(
Θ∗b −Θ∗w

) , (2.11)

Cf = τ ∗w
1
2ρ
∗U∗b

2 , (2.12)

where q∗w and τ ∗w are wall heat flux and skin friction, respectively. The fluid density is
denoted by ρ∗, while C∗p is the thermal capacity of the fluid.

If the profiles of the averaged streamwise velocity and temperature are similar, 2St is
exactly equal to Cf at Pr = 1. Therefore, we define an analogy factor as

A= 2St

Cf
. (2.13)

Physically, A represents heat transfer per unit pumping power. The main objective in
dissimilar control is to increase A from unity by manipulating turbulence.

In active control, additional power consumption is required for the control itself. In
the present study, however, the intensity of the control input is commonly kept small
(φrms 6 0.05), so that the ideal power consumption of actuators does not significantly
affect the overall control performance. Hence, we employ A defined in (2.13) as a
primary control performance index. The ideal power consumption of actuators and the
heat transfer enhancement per unit total power consumption in the present control are
summarized in appendix A.

2.3. Application of optimal control theory to dissimilar heat transfer enhancement
In the present study, optimal control theory, which was successfully applied to friction
drag reduction control by Bewley et al. (2001), is extended to dissimilar heat and
momentum transfer control. In this framework, a cost functional is first defined, and
then a control input is iteratively updated so as to minimize the cost function within
a prescribed time horizon. The correction of a control input in each iteration is
obtained by solving the adjoint velocity and thermal fields backward in time. Ideally,
the time horizon should be long enough to cover the whole lifetime of turbulence
dynamics, but it is not computationally trackable. Therefore, it is common to choose
an intermediate finite time horizon T as shown in figure 2. Once a control input
converges, the time horizon is advanced by Ta, and then a new optimization procedure
in the next time horizon starts. In the following, we define the cost functional, derive
the adjoint equations, and describe the optimization procedures without getting into the
mathematical details, which can be found in other literature such as Abergel & Temam
(1990) and Bewley et al. (2001).
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t
0

Physical field

Adjoint field

FIGURE 2. Schematic of optimization procedure. In each time horizon, the evolution of
velocity and thermal fields is solved for a preliminary control input as shown by the solid
arrows, which is followed by adjoint computation depicted by the reversed dashed arrows.
The adjoint field is solved backward in time, since its initial condition is given at the end
of the time horizon. Based on the results of the adjoint field, the control input is iteratively
updated. Once the control input converges, the time horizon is advanced by Ta and then a new
optimization procedure starts.

2.3.1. Defining the cost functional
We define a cost functional as follows:

J = κ
∫ T

0

∫
Γ2±

1
2
φ2 dS dt − A

≈ κ
∫ T

0

∫
Γ2±

1
2
φ2 dS dt −

∫ T

0

∫
Γ2±
−∂θ
∂n

dS dt∫ T

0

∫
Γ2±
−∂u

∂n
dS dt

, (2.14)

where t = 0 corresponds to the beginning of the time horizon and dS is infinitesimal
area of the boundary. The first term represents the cost of control, while the second
term is exactly the quantity we attempt to enhance, i.e. the analogy factor. Hence,
under this cost functional, the control input is optimized so as to maximize A with
the smallest intensity of wall blowing/suction. Ideally, A has to be determined by the
ratio of 2St and Cf integrated over a sufficiently long period. Since optimal control
theory takes into account only flow dynamics within a finite time horizon, however,
A is approximated by the integrals within the time horizon as shown in the second
line of (2.14). The weight coefficient κ corresponds to the relative cost of the control
input. In the present study, the intensity of the control input is changed by setting
different values of κ . The actual values of T and κ employed in the present study are
summarized in § 2.4.

In addition to (2.14), different forms of cost functional are also considered. It is
found that the present cost functional results in the best control performance (see
appendix B). Hence, the present paper focuses on the results obtained under the cost
functional (2.14).
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2.3.2. Derivation of adjoint equations and gradient of cost functional
For ease of notation, the flow state ψ , the flow perturbation state ψ ′ and the adjoint

state ψ∗ are expressed as the following vector forms:

ψ =

p
ui

θ

 , ψ ′ =

p′

u′i
θ ′

 , ψ∗ =

p∗

ui
∗

θ∗

 . (2.15)

The governing equations (2.1)–(2.3) for the velocity and thermal fields can be written
in a functional form as

N(ψ)=



∂ui

∂xi

∂ui

∂t
+ ∂ujui

∂xj
− 1

Re

∂2ui

∂xj
2
+ ∂p

∂xi

∂θ

∂t
+ ∂ujθ

∂xj
− 1

RePr

∂2θ

∂x2
j

− Q

= 0. (2.16)

Then, we consider the perturbation field ψ ′ of the velocity and thermal fields induced
by a small change of a control input φ. Following Bewley et al. (2001), the
perturbation is defined by the Frechét differential of the original flow state ψ as

ψ ′ 1= lim
ε→0

ψ(φ + φ′ε)− ψ(φ)
ε

, (2.17)

where ε is an infinitesimal constant.
Since both the original and perturbed flow states satisfy (2.16), the following linear

equation for ψ ′ is obtained:

N ′(ψ ′)=



∂u′i
∂xi

∂u′i
∂t
+ ∂

∂xj

(
uju
′
i + u′jui

)− 1
Re

∂2u′i
∂xj

2
+ ∂p′

∂xi

∂θ ′

∂t
+ ∂

∂xj

(
ujθ
′ + u′jθ

)− 1
RePr

∂2θ ′

∂x2
j

= 0, (2.18)

where the wall boundary conditions are given by

u′i =−φ′ni, θ ′ = 0 on Γ±2, (2.19)

u′i = 0, θ ′ = 0 at t = 0. (2.20)

In (2.18), the products between perturbations are all neglected since the perturbation is
assumed to be sufficiently small. Although (2.18)–(2.20) indicate a linear relationship
between φ′ and ψ ′, it is not straightforward to derive the explicit relationship between
φ′ and the resultant change of the cost functional J′. In order to overcome this
difficulty, the adjoint velocity and thermal fields are introduced.

The flow optimization can generally be viewed as a minimization problem of a
cost functional J under the constraints on the flow states, i.e. the governing equations
and the boundary conditions of the flow and thermal fields. This is equivalent to
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minimizing the following Hamiltonian H:

H = J − 〈N(ψ),ψ∗〉, (2.21)

where the adjoint state ψ∗ corresponds to the Lagrangian multiplier.
The Frechét differential of (2.21) leads to

DH

Dφ
φ′ = J′ − 〈N ′(ψ ′),ψ∗〉

= J′ − 〈ψ ′,N∗(ψ∗)〉 − b, (2.22)

where N∗ is the adjoint operator of N ′. We impose the following relationship for the
adjoint field:

N∗(ψ∗)=


−∂u∗i
∂xi

−∂u∗i
∂t
− uj

(
∂u∗i
∂xj
+ ∂u∗j
∂xi

)
− 1

Re

∂2u∗i
∂xj

2
− ∂p∗

∂xi
− θ ∂θ

∗

∂xi

−∂θ
∗

∂t
− uj

∂θ∗

∂xj
− 1

RePr

∂2θ∗

∂x2
j

= 0, (2.23)

so that the second term on the right-hand side of (2.22) vanishes. The first term on the
right-hand side of (2.22) is the Frechét differential of the cost functional, and can be
written as

J′ = κ
∫ T

0

∫
Γ2±

φφ′ dS dt

+ A

TSΓ2±τw

∫ T

0

∫
Γ2±
−∂u′

∂n
dS dt − A

TSΓ2±qw

∫ T

0

∫
Γ2±
−∂θ

′

∂n
dS dt, (2.24)

where SΓ 2± represents the boundary area of Γ2±. The third term on the right-hand side
of (2.22) is called a boundary term, since it includes only boundary integrals as shown
below:

b=
∫
Ω

(u′ju
∗
j + θ ′θ∗)

∣∣∣∣t+=T

t+=0

dV

+
∫ T

0

∫
Γ2±

nj

[
p∗u′j + u∗j p′ + u∗i (uju

′
i + uiu

′
j)−

1
Re

(
u∗i
∂u′i
∂xj
− u′i

∂u∗i
∂xj

)
+ (u′jθ + ujθ

′)θ∗ − 1
RePr

(
θ∗
∂θ ′

∂xj
− θ ′ ∂θ

∗

∂xj

)]
dS dt. (2.25)

The terminal and boundary conditions for the adjoint state are given by

ψ∗|t=T = 0, (2.26)

u∗i |Γ2± = A
Re

TSΓ2±τw
δ1i, (2.27)

θ∗|Γ2± =−A
RePr

TSΓ2±qw
, (2.28)
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so that the integrand of (2.22) is eventually factorized by φ′ as follows:

DH

Dφ
φ′ = J′ − 〈ψ ′,N∗(ψ∗)〉 − b

= κ
∫ T

0

∫
Γ2±

φφ′ dS dt − A

τw

∫ T

0

∫
Γ2±

∂u′

∂n
dS dt + A

qw

∫ T

0

∫
Γ2±

∂θ ′

∂n
dS dt

−
∫ T

0

∫
Γ2±

[
p∗φ′ − A

τw

∂u′i
∂n
+ A

qw

∂θ ′

∂n

]
dS dt

=
∫ T

0

∫
Γ2±

(κφ − p∗) φ′ dS dt. (2.29)

The final form of (2.29) guarantees that correcting the control input by φ′ =
−(κφ − p∗) decreases H. Therefore, after solving the adjoint field, the control input is
updated as follows:

φn+1 = φn − β(κφn − p∗), (2.30)

where the superscript represents the number of iteration, while β is a relaxation
coefficient. In the present study, β is determined so that |φn+1 − φn|< 3.0× 10−3. This
increases β as the control input converges. Hence, β < 8 is also imposed throughout
the optimization procedure. In general, the simple gradient algorithm given by (2.30)
does not converge efficiently, so that a more sophisticated scheme such as a conjugate
gradient method is often employed. In the present study, however, the optimal control
input is dominated by a single sinusoidal wave travelling at a constant phase velocity,
so that (2.30) with around 10 iterations is sufficient to obtained a converged control
input. It is confirmed that further increase of iteration number does not significantly
change the control performance or the main features of the resultant travelling-wave-
like control input.

2.4. Numerical scheme and conditions
The governing equations (2.1)–(2.3) for the velocity and thermal fields are solved by
DNS with a second-order finite-volume method. For the temporal discretization, the
Crank–Nicolson method is used for the diffusion terms, while the third-order low-
storage Runge–Kutta method (Spalart, Moser & Rogers 1991) is used for nonlinear
terms. A fractional step method (Rai & Moin 1991) is used for decoupling the
velocity and pressure fields. The present DNS code is based on the code originally
developed by Satake & Kasagi (1996). It was validated through thorough comparisons
with existing databases and successfully applied to skin-friction-drag-reduction control
(Frohnapfel, Hasegawa & Kasagi 2010). All calculations are conducted under a
constant bulk mean velocity and the Reynolds number is usually set to be Re = 2284,
which corresponds to the friction Reynolds number of Reτ = u∗τδ

∗/ν∗ = 150 in the
uncontrolled flow. In order to investigate the Reynolds number effects, we also
consider two different lower and higher Reynolds numbers, i.e. Re = 1452 and 4980,
which are equivalent to Reτ = 100 and 300 in the uncontrolled flow, respectively. Due
to the similarity in the mathematical form of (2.16) and (2.23), essentially the same
numerical method is used for solving the adjoint field. Note that the adjoint equation is
solved backward in time from t = T to t = 0, as the terminal condition is given for the
adjoint field (see (2.26)).

Table 1 summarizes the present numerical conditions. In uncontrolled flow, it is
known that Cf obtained from existing databases can be well predicted by the so-called
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Dean’s formula given by Cf = αRe−1/4, where the promotional coefficient α is 0.59
for low Reynolds numbers (see e.g. Kim, Moin & Moser 1987). At Re = 2284, the
computation with the relatively coarse grid of case 1 overestimates Cf by around
6 %, whereas it converges to the value predicted by the Dean’s formula within an
error of 2 % in case 1F. Since the optimization of the control input requires a
number of iterations of each time horizon and huge memory capacity to store the
complete dataset of the velocity and thermal fields, the optimal control of turbulent
flows generally requires huge computational resource. Hence, our strategy is to extract
general features of the optimal control input for dissimilar heat transfer enhancement
through computations with a relatively small domain and coarse grid system. As will
be shown later, the effects of the grid spacing and the computational domain are found
to be minor. This could be explained by the fact that the optimal control input is
commonly characterized by a travelling wave which has relatively large wavelength,
and therefore the dissimilarity is mainly caused by large-scale velocity and thermal
fluctuations, which can be resolved by the present grid spacing. In § 5, the effects of
the wavelength of a travelling-wave-like control input on the control performance are
examined in detail with a finer grid system.

The intensity of the control input is systematically decreased by increasing κ from
0.004 to 0.04 in cases 1–3, so that the r.m.s. value of the control input changes from
2 % to 5 % of the bulk mean velocity (see table 1). For κ = 0.004, computations with
doubled grid points and doubled domain size (Cases 1F and 1W) are also conducted to
verify the present numerical condition.

Instantaneous snapshots of the velocity and thermal fields are stored every t+ = 5
in the computation of the physical field. In the adjoint computation, the velocity
and thermal fields at a certain time step are obtained by linear interpolation of two
neighbouring snapshots. It is also possible to further increase the time interval between
two neighbouring snapshots if one can afford to conduct an additional DNS by using
the nearest snapshot as an initial condition in each adjoint computation.

Although there is tendency that larger T results in better control performance up to
T+ ≈ 100 of the uncontrolled flow, it is found that further increase of the time horizon
often makes the adjoint computation diverge. This could be attributed to the fact that
the mathematical derivation of the optimal control input is based on the linearized
perturbation equation (2.18), where the perturbation of a flow state induced by a small
change of a control input is assumed to remain sufficiently small during the time
horizon, so that all nonlinear terms can be neglected. However, it is well known that
a small disturbance grows very rapidly in turbulent flow due to its nonlinear nature.
This implies that (2.18) is invalid for a large time horizon. Hence, in the present study,
the time horizon is set to be T+ = 100. Note that this period is comparable with that
employed in Bewley et al. (2001), where the control input is successfully optimized
for skin-friction drag reduction at a low Reynolds number. Once the control input is
converged within a time horizon, the time horizon is advanced by T+a = T+/10 = 10
(see figure 2).

3. Control results
3.1. Control performance

In this section, we present the control results and also fundamental velocity and
temperature statistics of the controlled flows. For simplicity of description, x, y and z
are used instead of x1, x2 and x3 as the three coordinates hereafter. Accordingly, the
corresponding velocity components are denoted by u, v and w, respectively. First, the
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No control

Optimal control

FIGURE 3. Time traces of Cf and St with optimal control, for case 1.

time traces of Cf and 2St after the onset of control at t = 0 in case 1 are shown
in figure 3. The data of the uncontrolled flow are also plotted for comparison. It is
confirmed that the Reynolds analogy, i.e. 2St = Cf , holds quite well in the uncontrolled
flow. When the optimal control is applied, St is more than doubled after the transient
period of t ∼ 50, while Cf is suppressed. Hence, significant dissimilarity is observed.
All the statistics shown hereafter are obtained by integrating from t = 102 to 203 so as
to remove the effects of the initial transient.

In figure 4, the time-averaged Cf , St and the resultant A are plotted as a function
of the r.m.s. value of the control input for cases 1, 1F and 1W. The results of the
suboptimal control (Hasegawa & Kasagi 2011) are also plotted for comparison. Note
that Cf and St are both normalized by Cf 0 and St0, where the subscript of 0 represents
an uncontrolled value. The values of Cf and St in all cases are also listed in table 1.
It is found that Cf is commonly decreased from the uncontrolled value by 24 % when
φrms > 0.02. In contrast, St is monotonically enhanced with increasing φrms. More
specifically, St is more than doubled at φrms ≈ 0.05. Consequently, the analogy factor is
increased to as high as A= 2.7.

As shown in figure 4, the analogy factor achieved in the present optimal control
is larger than that obtained in the suboptimal control (Hasegawa & Kasagi 2011),
although A increases almost in proportion to φrms in both controls. This is because Cf

in the suboptimal control is significantly larger than that in the optimal control. In the
suboptimal control, Cf is enhanced, whereas drag reduction is achieved in the optimal
control. It should be noted that the drag reduction rate obtained in the present optimal
control is comparable to that achieved in a typical drag reduction scheme such as
opposition control (Choi, Moin & Kim 1994). However, Hasegawa & Kasagi (2011)
showed that applying opposition control does not cause dissimilarity: the heat transfer
is also decreased at almost the same rate. Indeed, the present control input is entirely
different from that in opposition control. To the authors’ knowledge, the simultaneous
achievement of heat transfer enhancement and drag reduction is demonstrated for the
first time.
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Optimal control
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Case 1W

Suboptimal control

FIGURE 4. Cf /Cf 0, St/St0 and analogy factor as a function of the r.m.s. value of a control
input. The data of φrms = 0 correspond to the uncontrolled values.

In figure 4, the results obtained with finer grids and larger computational domain
in cases 1F and 1W are also shown. In the present study, the intensity of the control
input is determined as a result of computation by setting different values of κ in
(2.14), so that it is difficult to compare the results at exactly the same value of φrms.
However, it is confirmed that the effects of the grid resolution and the domain size on
the control results are insignificant.

3.2. Fundamental statistics
Hereafter, we present velocity and temperature statistics in case 1 unless otherwise
stated, since the general trend is essentially the same in the other cases. In figure 5,
the mean velocity and temperature profiles in the uncontrolled and controlled flows
are plotted. In the uncontrolled flow, the profiles of u and θ are almost identical.
This is consistent with the fact that the Reynolds analogy, i.e. A = 1, holds well
in the uncontrolled flow. Taking a closer look, however, the profile of θ is slightly
more uniform than that of u around the channel centre, indicating that the mixing of
scalar is stronger than that of momentum even in the uncontrolled flow. As reported
in Hasegawa & Kasagi (2011), this small deviation still remains even for sufficiently
large integration time. In incompressible fluid, the streamwise velocity fluctuation is
redistributed to those of the other components via pressure strain effects, while such
a mechanism is absent for a scalar quantity. Indeed, we confirmed that the eddy
diffusivity for temperature is slightly larger than the eddy viscosity away from the wall
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FIGURE 5. Profiles of u and θ without control and with optimal control (case 1).

even in the uncontrolled flow. Similar dissimilarity is also observed in experimental
measurements of a turbulent boundary layer (e.g. Antonia & Krishnamoorthy 1988).
However, this causes little change of A from unity in the uncontrolled flow (see
table 1), since the turbulence contributions to St and Cf are quite small in the central
region of the channel as suggested by (4.5) and (4.6) below.

Once the control is applied, the temperature gradient at the wall becomes steeper
than the velocity gradient. This is consistent with the significant increase of A from
unity in the controlled flow. With increasing distance from the wall, both the velocity
and temperature are initially kept smaller than those of the uncontrolled flow, and then
become larger in the central region.

Since both the mean pressure gradient and the heat source are uniform within
the computational domain, the shear stress and the heat flux should be distributed
linearly in the y direction (see (2.5) and (2.6)). The shear stress is composed of
the viscous and Reynolds stresses, i.e. (1/Re)∂u/∂y and −u′v′, while the heat flux
is composed of the molecular and turbulent heat fluxes, i.e. (1/Re)∂θ/∂y and −θ ′v′.
These profiles in the uncontrolled and controlled flows are plotted in figures 6(a) and
6(b), respectively. The almost linear profiles of the total shear stress and heat flux
ensure that the velocity and thermal fields reach a fully developed state. We also
note that the total stress and heat flux at the wall are identical to Cf /2 and St in
the present normalization. In the uncontrolled flow, all distributions of momentum and
heat fluxes are almost identical, suggesting the strong similarity between them. In the
controlled flow, −θ ′v′ is significantly larger than −u′v′ throughout the channel. This
causes dissimilarity between the mean velocity and temperature profiles as indicated
by (2.5) and (2.6).

3.3. Control input
The time evolution of the distribution of the control input in case 1 is shown in
figure 7(a–c). The time interval of each figure is 1t = 2 and the left and right columns
show the control input on the top and bottom walls, respectively. Note that a positive
value of φ represents wall blowing at both walls. The optimal control input is found
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FIGURE 6. Shear stress and heat flux distributions for (a) uncontrolled and (b) controlled
flow in case 1.

to be characterized by a coherent streamwise wave which is almost uniform in the
spanwise direction. The wave appears to travel in the downstream direction at almost a
constant phase velocity. In addition, the control inputs on both walls are in a varicose
mode: wall blowing/suction occurs at the same streamwise location on both walls.

Figures 8(a) and 8(b) show the spatial spectra of the control input in the
streamwise and spanwise directions, respectively. The peaks of the spectra occur at
(kx, kz) = (3.2, 0), where kx and kz are wavenumbers in the streamwise and spanwise
directions. It is found that the single sinusoidal mode of (kx, kz) = (3.2, 0) contains
66 % of the total energy of the control input. In addition, the phase velocity Up of the
dominant sinusoidal mode of (kx, kz) = (3.2, 0) is almost constant and around 30 % of
the bulk mean velocity as shown in figure 9.
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FIGURE 7. Three successive snapshots of instantaneous control input at: (a) t = 198, (b)
t = 200 and (c) t = 202. The left and right columns show the distributions on the top and
bottom walls, respectively.
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FIGURE 8. Spatial spectra of control input in (a) the streamwise and (b) spanwise directions
in case 1.

4. Mechanisms of dissimilarity
4.1. Decomposition of coherent and random components

In optimal control theory, the control input is optimized by taking into account
complex turbulence dynamics within a prescribed time horizon, and therefore it
generally depends on the instantaneous flow state. In contrast, the optimal control
input shown in § 3.3 is characterized by superposition of a dominant coherent
travelling wave and weaker random fluctuation. Following the results, we decompose
the optimal control input into coherent and random components in order to investigate
their quantitative contributions to dissimilar heat transfer enhancement. We define the
coherent component of the optimal control input as a component causing dissimilarity
regardless of the instantaneous turbulence state. Finding such a coherent mode is key
for establishing a open-loop control strategy.
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FIGURE 9. Time traces of the phase velocity Up of the dominant sinusoidal mode
((kx, kz)= (3.2, 0)).

3.0

2.5

2.0

1.5

1.0
200150100500

t

Original optimal control

Optimal control applied
to a different initial field:

All modes 
Only (3.2, 0) mode

Open-loop control

FIGURE 10. Time trace of analogy factor when limited Fourier modes in the optimal control
input are applied.

In order to extract the coherent component from the optimal control input, we
conduct an ideal computation, where the time series of the control input optimized
for a certain initial flow condition is applied to an uncorrelated different initial field.
The results are shown in figure 10. As expected, A is reduced from the original value
of A = 2.7. However, it should be emphasized that the resultant A is still significantly
larger than unity, i.e. A ≈ 1.55. The obtained A is even larger than that achieved
by the suboptimal control (Hasegawa & Kasagi 2011) at the same r.m.s. value of
the control input. This indicates that the optimal control input contains a coherent
component which causes dissimilarity regardless of the instantaneous flow state. Next,
we systematically remove Fourier components possessing less energy from the original
optimal control input. It is found that A is kept almost unchanged even when all
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FIGURE 11. Coherent components obtained in the suboptimal and optimal control theories.

φrms Cf /Cf 0 St/St0 A

Optimal control 0.051 0.757 2.02 2.72
Suboptimal control (Hasegawa & Kasagi 2011) 0.050 2.03 3.05 1.51

Open-loop control based on optimal control 0.043 2.01 3.06 1.55
Open-loop based on suboptimal control 0.043 2.58 3.53 1.38

TABLE 2. Comparison of results obtained by optimal, suboptimal and open-loop controls.

the modes except for the most dominant sinusoidal mode of (kx, kz) = (3.2, 0.0) are
removed. (see figure 10). The phase velocity and amplitude of the dominant sinusoidal
mode are slightly modulated in time around their mean value as shown in figure 9.
Hence, we also fix the phase velocity and amplitude of the dominant sinusoidal
mode to their mean values. Again, A is not changed. The above series of numerical
experiments indicates that the dominant single sinusoidal wave travelling at a constant
phase velocity is the coherent component causing dissimilarity. Hereafter, a control
applying a single sinusoidal wave of wall blowing and suction with constant amplitude
and phase velocity is referred to as an open-loop control.

In Hasegawa & Kasagi (2011), a similar travelling-wave-like control input is
obtained through suboptimal control theory. In their case, the coherent input is not
a single sinusoidal wave, but is characterized by strong blowing from a narrower
spanwise band and weaker suction quite uniformly distributed upstream of the
blowing region. They extracted a coherent component by using a conditional averaging
technique, and demonstrated that the dissimilarity is achieved by an open-loop control
using the extracted coherent input. The coherent components obtained from the
suboptimal and optimal control inputs are compared in figure 11, where both the
profiles are normalized by their r.m.s. values. Note that the horizontal axis ξ represents
the streamwise coordinate and it is appropriately shifted so that ξ = 0 corresponds to
the location where the wall blowing becomes maximum.

The control performances achieved in the suboptimal, optimal and open-loop
controls are summarized in table 2. The friction coefficient and the Stanton number
are respectively normalized by Cf 0 and St0. We note that φrms of the open-loop control
is slightly smaller than those in the optimal and suboptimal controls due to the
absence of the random component. It is found that the open-loop control based on the
present optimal control achieved a higher control performance than that obtained in the
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previous suboptimal control at the same r.m.s. value of the control input. Considering
that the suboptimal control input is determined based on the complete information of
the velocity and thermal fields at every time step, we can conclude that the present
open-loop control results in significant dissimilar heat transfer enhancement in spite
of its simple control strategy. We also note that the present results in the open-loop
control are consistent with the previous ones reported in Min et al. (2006), where
downstream travelling waves of wall blowing and suction are found to increase Cf .
The reduction of Cf in the optimal control implies that the rest of the control input
except for a downstream travelling sinusoidal wave plays a critical role in skin-friction
drag reduction.

Before closing this subsection, we introduce a phase average with respect to the
travelling-wave control input. In Fourier space, the control input can generally be
expressed as

φ(x, z, t)=
∑

kz

∑
kx

φ̂(kx, kz, t) exp{i(kxx+ kzz)}. (4.1)

A variable with a hat represents a Fourier coefficient. The phase of the most dominant
sinusoidal wave is given by

α(t)= arctan
[

Im{φ(kd
x , 0, t)}

Re{φ(kd
x , 0, t)}

]
, (4.2)

where kd
x is the streamwise wavenumber of the dominant mode. We define the phase

averaging with respect to the travelling wave as follows:

〈f 〉 (ξ, y)= 1
TLz

∫ T

0

∫ Lz

0

N∑
n=1

1
N

f
(
ξ + xd + nλd

x , y, z, t
)

dz dt, (4.3)

where f is an arbitrary quantity in the computational domain, xd(t) = −α(t)/kd
x and

λd
x(= 2π/kd

x ), which is the wavelength of the travelling wave. The phase velocity
of the dominant wave is given by Up = (1/kd

x ) dα/dt. Accordingly, the instantaneous
value of f can be expressed as f (x, y, z, t) = 〈f 〉(ξ, y) + f ′′(x, y, z, t), where f ′′ is the
deviation from the phase average and referred to as a random component throughout
this paper. The phase average is further decomposed into the spatial mean and the
coherent fluctuation travelling at the same phase velocity: 〈f 〉(ξ, y) = f (y) + f̃ (ξ, y).
Consequently, the instantaneous flow quantity can generally be written as a sum of the
spatial mean, and the coherent and random fluctuations as follows

f (x, y, z, t)= f (y)+ f̃ (ξ, y)+ f ′′(x, y, z, t). (4.4)

4.2. Contributions of coherent and random components
Applying triple integration to the averaged momentum and energy transport equations
(2.5) and (2.6), the following mathematical relationships for Cf and 2St can be derived
(Fukagata, Iwamoto & Kasagi 2002; Hasegawa & Kasagi 2011):

Cf = 6
Re
+ 3

∫ 1

−1
yu′v′ dy

= 6
Re
+ 3

∫ 1

−1
yũṽ dy+ 3

∫ 1

−1
yu′′v′′ dy dt, (4.5)
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FIGURE 12. Contributions from coherent and random fluctuations to dissimilarity 2St − Cf .

2St = 6
Re
+ 3

∫ 1

−1
yθ ′v′ dy

= 6
Re
+ 3

∫ 1

−1
yθ̃ ṽ dy+ 3

∫ 1

−1
yθ ′′v′′ dy. (4.6)

In the above two equations, the first term on the right-hand side represents the laminar
contribution and is constant once the Reynolds number is fixed, whereas the second
and third terms correspond to the turbulence contributions. It is evident that the
dissimilarity between the Reynolds shear stress and the turbulent heat flux is necessary
to achieve dissimilar heat transfer enhancement, i.e. 2St − Cf > 0. We confirm that Cf

and St calculated from the above relationships agree quite well with those obtained
from DNS within a error of less than 1 % in all cases. This fact again supports that the
velocity and thermal fields reach a fully developed state.

According to (4.5) and (4.6), the difference between 2St and Cf can be related to the
difference in the weighted turbulent heat flux and Reynolds shear stress as

2St − Cf = 3
{∫ 1

−1
y
(
θ̃ ṽ − ũṽ

)
dy+

∫ 1

−1
y
(
θ ′′v′′ − u′′v′′

)
dy

}
. (4.7)

The first and second terms on the right correspond to the contributions from the
coherent and random fluctuations, respectively. They are plotted as a function of
φrms in figure 12. In the optimal control, the contributions of coherent and random
components are almost identical regardless of φrms. This trend is similar to that
observed in the suboptimal control (Hasegawa & Kasagi 2011). However, both the
coherent and random contributions are very much enhanced in the present optimal
control, and therefore higher dissimilarity is achieved. In the open-loop control, the
coherent contribution is almost the same as that in the optimal control at φrms = 0.05,
whilst the random contribution is suppressed, so that the overall control performance
deteriorates.

In order to clarify the spatial distributions of the coherent and random contributions,

the integrands of the coherent and random contributions in (4.7), i.e. y(θ̃ ṽ − ũṽ)
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FIGURE 13. The difference in the weighted turbulent heat flux and Reynolds shear stress
arising from coherent and random fluctuations.

and y(θ ′′v′′ − u′′v′′), in the optimal control of case 1 and the open-loop control are
plotted as a function of y in figure 13. The coherent contribution has a prominent peak
near the wall and most of the contribution occurs within 0.75 < |y| < 1.0, whereas
the contribution away from the wall remains small. Good agreement between the
coherent contributions in the optimal and open-loop controls implies that the presence
or absence of the random input has a minor effect on the coherent velocity and
thermal fields.

In contrast, the random contribution in the optimal control is distributed more evenly
throughout the channel. The profiles in the optimal and open-loop controls agree well
away from the wall. Approaching to the wall, however, the random contribution of the
open-loop control is rapidly suppressed and eventually changes its sign close to the
wall, i.e. |y|> 0.9. This could be attributed to the absence of the random control input,
and is consistent with the smaller random contribution shown in figure 12.

Considering the fact that the single sinusoidal wave of (kx, kz)= (3.2, 0) is dominant
in the present control input, it is rather surprising that the random contribution is
generally comparable with the coherent one. In particular, the significant random
contribution is maintained even in the open-loop control, where only the single
sinusoidal travelling wave is applied. This suggests that the travelling wave input
causes dissimilarity through not only the direct modification of the coherent field, but
also indirect effects on the random turbulent field. In §§ 4.3 and 4.4, we investigate the
mechanisms of dissimilarity in the coherent and random fields, respectively.

4.3. Dissimilarity in the coherent field

The phase average of the velocity and thermal fields is shown in figure 14. Note that
the corresponding control input at the bottom wall is shown in figure 11. It is found
that the distributions of 〈u〉 and 〈θ〉 are very different (see figure 14a,b). The iso-lines
of 〈u〉 are almost parallel near the wall, whereas the signature of wall blowing/suction
is clearly observed in the distribution of 〈θ〉. This essential difference is caused by
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FIGURE 14. Conditionally averaged quantities: (a) 〈u〉, (b) 〈θ〉, (c) 〈v〉 and (d) 〈p〉.

the coherent pressure fluctuation induced by the wall blowing/suction (see figure 14c,d
for 〈v〉 and 〈p〉, respectively). The positive and negative pressure regions are generated
upstream and downstream of the blowing region. (Note that ξ = 0 corresponds to the
location where the wall blowing is maximum.) They induce a favourable pressure
gradient over the blowing region that accelerates 〈u〉 so as to compensate the low
momentum convected from the near-wall region. Considering the fact that the pressure
field instantaneously responds to the control input in an incompressible fluid so that
the velocity field satisfies continuity, the lower sensitivity of 〈u〉 in comparison to 〈θ〉
is attributed to the continuity constraint on the velocity vector.

The above difference between the responses of ũ and θ̃ to the travelling wave of
wall blowing and suction significantly affects the coherent contribution to 2St − Cf , i.e.
y(θ̃ ṽ − ũṽ), as shown in figure 15. The positive peak of y(θ̃ ṽ − ũṽ) occurs above the
location of wall blowing, and it exceeds the negative contribution above the suction
region. Consequently, the prominent peak of the coherent contribution occurs in the
near-wall region as shown in figure 13.
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FIGURE 15. Contribution of coherent fluctuation to 2St − Cf , i.e. y(θ̃ ṽ − ũṽ).

4.4. Dissimilarity in the random field
In order to investigate the mechanism of dissimilarity in the random fields, we
introduce the eddy viscosity Ev and the eddy diffusivity Ec for heat:

Ev = −u′′v′′(
du

dy

) , Ec = −θ
′′v′′(

dθ
dy

) . (4.8)

As a result, the difference between θ ′′v′′ and u′′v′′ is expressed by

θ ′′v′′ − u′′v′′ = (Pr−1
t S− 1)u′′v′′. (4.9)

Here, S is the ratio of the mean temperature gradient and the mean velocity gradient,
i.e. S = (dθ/dy)/(du/dy). The turbulent Prandtl number is defined as Prt = Ev/Ec.
Equation (4.9) indicates that the dissimilarity between θ ′′v′′ and u′′v′′ is caused by
enhancement of either Pr−1

t or S. The profiles of Pr−1
t and S for the optimal and open-

loop controls are plotted in figure 16. The dotted line corresponds to Pr−1
t = S = 1.0.

It is found that Pr−1
t is dominant only in the near-wall region, i.e. |y| > 0.8, whereas

S is kept larger than unity away from the wall, i.e. |y| < 0.8, being distributed more
evenly in the central region of the channel. This indicates that there exist two distinct
mechanisms for the dissimilarity in the random field. Interestingly, the prominent peak
of Pr−1

t is not observed in the open-loop control, while S is kept larger than unity
away from the wall in both the controls. The difference between Pr−1

t in the optimal
and open-loop controls explains the significant suppression of the random contribution
to the dissimilarity in the near-wall region of |y|> 0.8 as shown in figure 13.

Considering that the only difference between the optimal and open-loop controls
is the presence or absence of the random component in the control input, we can
conclude that the apparent peak of Pr−1

t observed only in the optimal control is caused
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FIGURE 16. Distributions of Pr−1
t and S in the optimal and open-loop controls .

by the random control input through modification of turbulent transport mechanisms
near the wall. Consequently, the optimal control achieves higher control performance
than the open-loop control as summarized in figure 12.

In contrast, the enhancement of S away from the wall is commonly observed in both
the optimal and open-loop controls. As discussed in Hasegawa & Kasagi (2011), this
can be considered as the indirect effect of the travelling wave input on the random
field. As already shown in figures 14 and 15, the travelling wave of wall blowing
and suction significantly affects the coherent velocity and thermal fields. This causes
the dissimilarity between the mean velocity and temperature profiles, and therefore
indirectly affects the random field through S. The present results indicate that the
optimal travelling wave of wall blowing and suction is determined so as to maximize
the overall contribution to dissimilarity from the direct and indirect effects on the
coherent and random fields, respectively.

5. Scaling of coherent mode
So far, we have shown that the downstream travelling wave of wall blowing and

suction causes significant dissimilarity between momentum and heat transfer. One
interesting issue is the scaling of the wavelength and phase velocity of the optimal
travelling wave. In order to investigate this issue, we conduct DNS with the optimal
control at different amplitudes of the control input (cases 1–3), and also lower and
higher Reynolds numbers (cases 4 and 5) than the reference case as listed in table 1.

In all the cases, the resultant optimal control inputs are dominated by a single
sinusoidal wave travelling downstream, so that the coherent component of the optimal
control input can be easily extracted in accordance with the procedures described in
§ 4. The wavelength of the dominant sinusoidal mode is found to be around 250 in
the friction length scale of the controlled flow regardless of the intensity of the control
input and the Reynolds number. Similarly, the phase velocity of the optimal travelling
wave is commonly around 30 % of the bulk mean velocity, which corresponds to
U+p ≈ 5 in wall units. The ratio of the r.m.s. value of the coherent component and
that of the total control input, and the wavelength and phase velocity of the dominant
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Re φrms λd+ 〈φ〉rms/φrms Up(U+p ) Cf /Cf 0 St/St0 A Case

2284 0.05 256 0.84 0.30 (5.16) 0.76 2.02 2.72 Case1
2284 0.04 255 0.84 0.35 (6.15) 0.75 1.73 2.35 Case1F
2284 0.04 258 0.76 0.32 (5.81) 0.77 1.73 2.29 Case1W

1452 0.17 230 0.85 0.28 (4.53) 0.77 2.99 3.86 Case 4
4980 0.03 266 0.56 0.29 (4.80) 0.90 1.54 1.81 Case 5

TABLE 3. Results of optimal control for Re= 1452, 2284 and 4980.

Re Lx Lz (Nx,Ny,Nz) (1x,1y,1z)

1452 2.5π π (64, 129, 64) (12.3, 0.12–3.8, 4.9)
2284 2.5π π (128, 129, 128) (9.2, 0.18–5.7, 3.7)
4980 2.5π π (256, 193, 128) (9.2, 0.25–7.62, 7.4)

TABLE 4. Computational domain size, number of grid points, and grid spacings in the
open-loop control.

sinusoidal wave are summarized in table 3. It is observed that A achieved at Re= 4980
is smaller than those at lower Re. In the present optimal control, the intensity of the
control input is determined implicitly by the value of κ in (2.14), so that it is difficult
to fix φrms to a prescribed value. Indeed, φrms at Re = 4980 is relatively smaller than
those in the other cases. Hence, the lower value of A might be attributed simply to
the weaker control input at Re = 4980. The Reynolds number effect on the control
performance can be discussed more clearly in the following open-loop control case,
where the intensity of the control input is exactly fixed at different Re.

As already described in § 2, the optimal control input is determined by taking
into account flow dynamics within a finite time horizon T . Although the present
optimal control achieves much better control performance than the suboptimal control
employing a vanishingly small time horizon, there is no guarantee that the present
coherent control input is indeed optimal for an infinitely long time horizon. In order
to identify the long-term optimal travelling wave, we conduct a series of computations
with an open-loop control where the wavelength of a single sinusoidal mode is
systematically changed in the range 5/64π < λ < 5/2π, whereas the intensity of
the control input is kept constant at φrms = 0.043 and also the phase speed is fixed
to Up = 0.30 based on the results of the optimal control. The Reynolds number
is changed from 1452 to 4980 in accordance with those considered in the optimal
control.

In the open-loop control, we employ a finer grid system than that used in the
optimal control. The number of grids points, grid spacing and domain size employed
in the open-loop control are listed in table 4. In order to obtain reliable Cf and St, the
grid systems employed in the open-loop control are finer than those used in cases 1
and 5 for the optimal control at Re = 2284 and 4980, respectively. We also note that
computations with a spectral method are also conducted for typical cases and good
agreement in Cf and St is confirmed between the present and spectral computations.

In figure 17, the obtained Cf and St are plotted as a function of λ. It is found
that both Cf and 2St are enhanced with increasing λ and their Reynolds number
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FIGURE 17. Cf , St in the open-loop control with systematically changing the wavelength λ.
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FIGURE 18. A with a single travelling wave.

dependence is not significant. 2St is usually larger than Cf , so that the dissimilar heat
transfer enhancement is achieved. The resultant A is shown in figure 18. It is found
that the maximum value of A ≈ 1.7 is achieved around λ+ = 200–250. This shows
good agreement with the wavelength of the dominant sinusoidal mode extracted from
the optimal control input listed in table 3. From these results, we can conclude that
the present optimization strategy, in spite of its limited time horizon, provides a good
estimate of the long-term optimal coherent input, and the downstream travelling wave
of wall blowing and suction is a robust and universal control strategy for achieving
dissimilar heat transfer enhancement.

6. Conclusions
The spatio-temporal distribution of zero-net-mass-flux wall blowing and suction is

determined based on optimal control theory for achieving dissimilar heat transfer
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enhancement in a fully developed channel flow at low Reynolds numbers. Although
various different thermal conditions are possible in real applications, we consider an
ideal system where the averaged momentum and heat transport equations are identical
in order to focus on the dissimilarity caused by the continuity constraint on the
velocity field. As a result, sustained skin-friction drag reduction and heat transfer
augmentation are simultaneously achieved for the first time. More specifically, the
skin-friction drag is decreased by 24 %, while the heat transfer is enhanced to more
than twice the uncontrolled value when the r.m.s. value of the control input is 5 %
of the bulk mean velocity. Consequently, the analogy factor is increased to as high
as A = 2.7, which is much larger than A = 1.5 achieved by the suboptimal control
(Hasegawa & Kasagi 2011) at the same intensity of the control input, i.e. φrms = 0.05.

Surprisingly, the optimal control input is characterized by the superposition of a
dominant downstream travelling sinusoidal wave and weaker random fluctuations.
Following this result, the optimal control input is decomposed into coherent and
random components in order to clarify their mechanisms and quantitative contributions
to dissimilar heat transfer enhancement. It is found that the coherent component of the
control input causes dissimilarity through direct modification of the coherent velocity
and thermal fields. This changes the ratio of the mean velocity and temperature
gradients, and therefore indirectly affects the random field as well. Hence, the optimal
coherent travelling wave is determined so as to maxmize the sum of these two effects.
Meanwhile, the random component of the control input contributes to dissimilarity by
changing the turbulent Prandtl number near the wall.

The coherent travelling wave extracted from the optimal control input is of particular
importance from the practical viewpoint, since it allows us to achieve dissimilar
heat transfer enhancement with a simple open-loop control strategy requiring no
information on an instantaneous flow state. Through a series of optimizations at
different intensities of the control input and also different Reynolds numbers, it is
revealed that the wavelength of the coherent travelling wave is commonly around 250
in the friction length scale, whereas its phase velocity is 30 % of the bulk mean
velocity. The Reynolds number effect on the control performance is found to be
rather minor within the range of Re considered in the present study. However, further
research is necessary to clarify this issue at higher Reynolds numbers.

In practice, the optimal control theory has to be applied within a finite time horizon
due to the limitations of computational resources, and therefore the resultant control
input is not necessarily long-term optimal. However, the present study shows that the
features of the control input optimized within a finite time horizon agree well with
those of the long-term optimal travelling wave. Although we have no clear reason
for this agreement, one possible explanation could be as follows: the travelling wave
is regarded to be steady when the reference frame moves with the phase speed,
and therefore so are the induced coherent velocity and thermal fields. Although the
time horizon for optimization is not long enough to cover an entire lifetime of
near-wall turbulent dynamics, the repeating advancement of the time horizon would
successively optimize the coherent travelling wave so as to achieve higher dissimilarity
in the induced coherent velocity and thermal fields. Indeed, a qualitatively similar
travelling wave was also obtained in the suboptimal control (Hasegawa & Kasagi
2011), where the vanishing small time horizon is employed, although the resultant
control performance is not as high as that achieved in the present optimal control.

Recently, various types of travelling-wave-like control input such as wall blowing
and suction (Min et al. 2006), spanwise wall forcing (Quadrio, Ricco & Viotti 2009)
and wall deformation (Nakanishi, Mamori & Fukagata 2012) have been proposed
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for skin-friction drag reduction. These control modes with periodic coherence have
been developed based on the investigators’ subjective insight into the flow physics,
and huge computational cost is required to seek the optimal design parameters such
as wave amplitude, wavelength and phase velocity. To the best of our knowledge,
the present study is the first example where an efficient open-loop control strategy
has been derived from optimal control theory. When the optimal control is applied
to turbulent flow in the original framework developed in Bewley et al. (2001), the
optimal control input is generally specific to the instantaneous flow field, so that it
does not always contain a coherent component. In order for the optimal control input
to have spatio-temporal coherence, it would be necessary to contrive ways to limit
the degree of freedom of the control input. Some simple methods, where the cost
of control is changed depending on the wavenumber, are proposed in Bewley et al.
(2001), but they remain to be validated.

While the present study focuses on an ideal situation, the properties of the optimal
travelling wave should generally depend on flow and thermal conditions: the varicose
mode of wall blowing and suction may not work in open flows. The streamwise
development of velocity and thermal fields has to be taken into account near the
inlet of a heat exchanger. The buoyancy effects neglected in the present study play
important roles in flows with non-marginal temperature difference. The Prandtl number
of the working fluid is not always close to unity in practice. For instance, the Prandtl
number of water is around 7 under standard conditions, whereas engine oils have
much larger values ranging from 102 to 104. It is of great interest to clarify how
different flow and thermal conditions affect the properties of the optimal control mode.

Although the present open-loop control significantly simplifies the original optimal
control, it is highly desirable to achieve a similar control performance with passive
means with a view to practical application. Optimal theory has been successfully
applied to the shape optimization of a solid–fluid interface for dissimilar heat transfer
enhancement in steady laminar flow (Morimoto, Suzuki & Kasagi 2010), while its
application to unsteady turbulent flows remains to be done in future work.

The present study focuses on maximizing the analogy factor, which has often
been used for evaluating the performance of heat exchangers. However, the
thermodynamical analysis of entropy generation in heat transfer processes indicates
that the relative cost and merit of pressure drop and heat transfer should be different in
each application (see e.g. Bejan 1978). Accordingly, a general form of a cost function
may be given by a weighted sum of Cf and St with different weighting coefficients
as considered in Hasegawa & Kasagi (2011). A similar discussion for drag reduction
control alone has been made in Frohnapfel, Hasegawa & Quadrio (2012), where the
optimization problem is formulated as a compromise between energy consumption and
convenience. It would be interesting to extend such an approach to seek a compromise
point between the heat transfer and the pressure drop.
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Case Cf Cf net Cf csv A Anet Acsv

Case 1 6.90× 10−3 4.50× 10−3 8.73× 10−3 2.72 4.17 2.15
Case 2 6.87× 10−3 5.62× 10−3 7.65× 10−3 2.12 2.59 1.90
Case 3 6.99× 10−3 6.32× 10−3 7.28× 10−3 1.68 1.86 1.61

TABLE 5. Control performance taking into account power consumption of actuators.

Appendix A. Heat transfer enhancement per unit total power input
As discussed in Hasegawa & Kasagi (2011), the ideal power consumption P∗c of

zero-net-mass-flux wall blowing/suction is given by

P∗c = p∗′φ∗′ + 1
2ρ
∗φ∗′3. (A 1)

Hence, we introduce the equivalent wall friction (τw)net based on the total power
consumption as

(τ ∗w)net =
P∗p + P∗c

u∗b
= τ ∗w +

1
u∗b

(
p∗′φ∗′ + 1

2ρ
∗φ∗′3

)
, (A 2)

where P∗p is the pumping power. By using (τw)net, the friction coefficient is defined
as Cf net = (τw)net/(ρ

∗U∗b
2/2). Accordingly, the analogy factor is also defined as

Anet = 2St/Cf net, which represents heat transfer per unit total power consumption.
It is known that travelling-wave-like wall blowing/suction often causes negative

power consumption (see e.g. Hasegawa & Kasagi 2011). Since energy recovery from
the flow system is unrealistic, we also introduce a more conservative estimate of Pc so
as to count only positive power consumption at each actuator location, as(

P∗c
)

csv
= S1p∗′φ∗′ + 1

2 S2ρ∗φ∗′
3
, (A 3)

where S1 and S2 are switching coefficients defined as

S1 =
{

1 (p∗′φ∗′ > 0)
0 (p∗′φ∗′ < 0),

S2 =
{

1 (φ∗′ > 0)
0 (φ∗′ < 0).

(A 4)

A equivalent wall friction based on (P∗c)csv is given by (τ ∗w)csv = {P∗p + (P∗c)csv}/u∗b,
so that the corresponding analogy factor is defined as Acsv = 2St/Cf csv, where
Cf csv = (τw)csv/(ρ

∗U∗b
2/2).

In table 5, the control performances taking into account actuator power consumption
are summarized for cases 1–3. It is found that Cf net is smaller than Cf . This indicates
that the net power consumption of the actuator is negative. As a result, Anet becomes
larger than A. When energy recovery from the flow is not allowed, Cf csv is larger than
Cf by definition, and therefore Acsv is reduced. However, Acsv remains larger than unity
even in such a conservative evaluation.

Appendix B. Effects of the form of the cost functional on the control
performance

Since the time horizon employed in optimal control theory always remains finite
due to computational costs, a control input optimized under a cost function directly
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FIGURE 19. Time trace of analogy factor A obtained by different cost functionals.

including an objective quantity is not necessarily long-term optimal. Indeed, Bewley
et al. (2001) reported that including the terminal kinetic energy in the cost functional
is more effective in drag reduction than including the drag itself. Hence, we tested
several different types of a cost functional in addition to (2.14).

First, we consider a cost functional including the terminal value of A instead of the
time integral of A within a time horizon, namely,

JT = κ
∫ T

0

∫
Γ2±

1
2
φ2 dS dt − A (T)T, (B 1)

where κ is a constant presenting the relative cost of the control input.
Considering that the dissimilarity between the weighted Reynolds shear stress and

heat flux is the direct cause of enhancement of A as shown in (4.7), another option is
to implement them in the cost functional as

JW = κ
∫ T

0

∫
Γ2±

1
2
φ2 dS dt − 3

∫ T

0

∫ 1

−1
y
(
θ ′v′ − u′v′

)
dy dt. (B 2)

The control results obtained under the above two cost functionals (B 1) and (B 2)
with κ = 4 × 10−3 and 9 × 10−3 respectively are compared with that obtained under
the cost functional (2.14) in figure 19. The values of κ are decided so as to make
the r.m.s. value of the control input similar in all the cases. It is found that the cost
functional (2.14) achieves highest A among those tested. Although various other types
of cost functional are possible in principle, there exists no systematic way to find a
better form. Examining other types of the cost functional remains for future work.

R E F E R E N C E S

ABERGEL, F. & TEMAM, R. 1990 On some control problems in fluid mechanics. Theor. Comput.
Fluid Dyn. 1, 303–325.

ANTONIA, R. A. & KRISHNAMOORTHY, L. V. 1988 Correlation between the longitudinal velocity
fluctuation and temperature fluctuation in the near-wall region of a turbulent boundary layer.
Intl J. Heat Mass Transfer 31, 723–730.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

43
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.436


220 A. Yamamoto, Y. Hasegawa and N. Kasagi

BEJAN, A. E. 1978 General criterion for rating heat-exchanger performance. Intl J. Heat Mass
Transfer 21, 655–658.

BEWLEY, T., MOIN, P. & TEMAM, R. 2001 DNS-based predictive control of turbulence: an optimal
benchmark for feedback algorithms. J. Fluid Mech. 447, 179–225.

CHOI, H., MOIN, P. & KIM, J. 1994 Active turbulence control for drag reduction in wall-bounded
flows. J. Fluid Mech. 262, 75–110.

EIAMSA-ARD, S. & PROMVONGE, P. 2011 Influence of double-sided delta-wing tape insert with
alternate-axes on flow and heat transfer characteristics in a heat exchanger tube. Chin. J.
Chem. Engng 19 (3), 410–423.

FROHNAPFEL, B., HASEGAWA, Y. & KASAGI, N. 2010 Friction drag reduction through damping of
the near-wall spanwise velocity fluctuation. Intl J. Heat Fluid Flow 31, 434–441.

FROHNAPFEL, B., HASEGAWA, Y. & QUADRIO, M. 2012 Money versus time: evaluation of flow
control in terms of energy consumption and convenience. J. Fluid Mech. 700, 406–418.

FUKAGATA, K., IWAMOTO, K. & KASAGI, N. 2002 Contribution of Reynolds stress distribution to
the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76.

HASEGAWA, Y. & KASAGI, N. 2011 Dissimilar control of momentum and heat transfer in a fully
developed turbulent channel flow. J. Fluid Mech. 683, 57–93.

IIDA, O. & KASAGI, N. 1997 Direct numerical simulation of unstably stratified turbulent channel
flow. Trans. ASME: J. Heat Transfer 119, 53–61.

IIDA, O., KASAGI, N. & NAGANO, Y. 2002 Direct numerical simulation of turbulent channel flow
under stable density stratification. Intl J. Heat Mass Transfer 45, 1693–1703.

KASAGI, N., HASEGAWA, Y., FUKAGATA, K. & IWAMOTO, K. 2012 Control of turbulent transport:
Less friction and more heat transfer. Trans. ASME: J. Heat Transfer 134, 031009.

KASAGI, N., KURODA, A. & TOMITA, Y. 1992 Direct numerical simulation of passive scalar field
in a turbulent channel flow. Trans. ASME: J. Heat Transfer 114, 598–606.

KEYS, W., CRAWFORD, M. E. & WEIGAND, B. 2005 Convective Heat and Mass Transfer, 4th edn.
McGraw-Hill.

KIM, J., MOIN, P. & MOSER, R. 1987 Turbulence statistics in fully developed channel flow at low
Reynolds number. J. Fluid Mech. 177, 133–166.

LEE, C., KIM, J. & CHOI, H. 1998 Suboptimal control of turbulent channel flow for drag reduction.
J. Fluid Mech. 358, 245–258.

MANGLIK, R. M. & BERGLES, A. E. 1995 Heat transfer and pressure drop correlations for the
rectangular offset strip fin compact heat exchanger. Exp. Therm. Fluid Sci. 10, 171–180.

MIN, T., KANG, S. M., SPEYER, J. L. & KIM, J. 2006 Sustained sub-laminar drag in a fully
developed channel flow. J. Fluid Mech. 558, 309–318.

MORIMOTO, K., SUZUKI, Y. & KASAGI, N. 2010 Optimal shoe design of compact heat exchangers
based on adjoint analysis of momentum and heat transfer. J. Therm. Sci. Tech. 5, 24–35.

NAGANO, Y., HATTORI, H. & HOURA, T. 2004 DNS of velocity and thermal fields in turbulent
channel flow with transverse-rib roughness. Intl J. Heat Fluid Flow 25, 393–403.

NAKANISHI, R., MAMORI, H. & FUKAGATA, K. 2012 Relaminarization of turbulent channel flow
using travelling wave-like wall deformation. Intl J. Heat Fluid Flow 35, 152–159.

QUADRIO, M., RICCO, P. & VIOTTI, C. 2009 Streamwise-travelling waves of spanwise wall velocity
for turbulent drag reduction. J. Fluid Mech. 627, 161–178.

RAI, M. & MOIN, K. 1991 Direct simulations of turbulent flow using finite-difference scheme.
J. Comput. Phys. 96, 15–53.

REYNOLDS, O. 1874 On the extent and action of the heating surface of steam boilers. Manchester
Lit. Phil. Soc. Mem. Proc. 14, 7–12.

SATAKE, S. & KASAGI, N. 1996 Turbulence control with wall-adjacent thin layer damping spanwise
velocity fluctuations. Intl J. Heat Fluid Flow 17, 343–352.

SPALART, P., MOSER, R. & ROGERS, M. 1991 Spectral methods for the Navier–Stokes equations
with one infinite and two periodic directions. J. Comput. Phys. 96, 297–324.

STASIEK, J., COLLINS, M. W., CIOFALO, M. & CHEW, P. E. 1996 Investigation of flow and heat
transfer in corrugated passages – l. Experimental results. Intl J. Heat Mass Transfer 39,
149–164.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

43
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.436

	Optimal control of dissimilar heat and momentum transfer in a fully developed turbulent channel flow
	Introduction
	Calculation conditions and mathematical formulation
	Governing equations and boundary conditions
	Control performance indices
	Application of optimal control theory to dissimilar heat transfer enhancement
	Defining the cost functional
	Derivation of adjoint equations and gradient of cost functional

	Numerical scheme and conditions

	Control results
	Control performance
	Fundamental statistics
	Control input

	Mechanisms of dissimilarity
	Decomposition of coherent and random components
	Contributions of coherent and random components
	Dissimilarity in the coherent field
	Dissimilarity in the random field

	Scaling of coherent mode
	Conclusions
	Acknowledgements
	Appendix A. Heat transfer enhancement per unit total power input
	Appendix B. Effects of the form of the cost functional on the control performance
	References




