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We describe the long-term dynamics of sustained stratified shear flows in the
laboratory. The stratified inclined duct (SID) experiment sets up a two-layer exchange
flow in an inclined duct connecting two reservoirs containing salt solutions of different
densities. This flow is primarily characterised by two non-dimensional parameters: the
tilt angle of the duct with respect to the horizontal, θ (a few degrees at most), and
the Reynolds number Re, an input parameter based on the density difference driving
the flow. The flow can be sustained with constant forcing over arbitrarily long times
and exhibits a wealth of dynamical behaviours representative of geophysically relevant
sustained stratified shear flows. Varying θ and Re leads to four qualitatively different
regimes: laminar flow; mostly laminar flow with finite-amplitude, travelling Holmboe
waves; spatio-temporally intermittent turbulence with substantial interfacial mixing;
and sustained, vigorous interfacial turbulence (Meyer & Linden, J. Fluid Mech.,
vol. 753, 2014, pp. 242–253). We seek to explain the scaling of the transitions
between flow regimes in the two-dimensional plane of input parameters (θ, Re). We
improve upon previous studies of this problem by providing a firm physical basis
and non-dimensional scaling laws that are mutually consistent and in good agreement
with the empirical transition curves we inferred from 360 experiments spanning
θ ∈ [−1◦, 6◦] and Re∈ [300, 5000]. To do so, we employ state-of-the-art simultaneous
volumetric measurements of the density field and the three-component velocity field,
and analyse these experimental data using time- and volume-averaged potential and
kinetic energy budgets. We show that regime transitions are caused by an increase in
the non-dimensional time- and volume-averaged kinetic energy dissipation within the
duct, which scales with θRe at high enough angles. As the power input scaling with
θRe is increased above zero, the two-dimensional, parallel-flow dissipation (power
output) increases to close the budget through an increase in the magnitude of the
exchange flow, incidentally triggering Holmboe waves above a certain threshold in
interfacial shear. However, once the hydraulic limit of two-layer exchange flows is
reached, two-dimensional dissipation plateaus and three-dimensional dissipation at
small scales (turbulence) takes over, at first intermittently, and then steadily, in order
to close the budget and follow the θRe scaling. This general understanding of regime
transitions and energetics in the SID experiment may serve as a basis for the study
of more complex sustained stratified shear flows found in the natural environment.
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1. Introduction

Turbulence is still an ‘unsolved problem’, and the stabilising buoyancy forces that
characterise stratified turbulence add further complexity. The range of spatio-temporal
scales involved in the physics of (stratified) turbulent flows make them difficult to
simulate with our current computational capabilities. Stably stratified shear flows
are a class of flows particularly relevant to the environment. Many of these flows
are sustained over long periods of time through quasi-steady forcing: for example,
exchange flows in straits (Armi & Farmer 1988), estuaries (Geyer et al. 2010), coastal
inlets (Farmer & Armi 1999), deep ocean overflows (van Haren et al. 2014), the
wind-driven equatorial undercurrent (Gregg et al. 1985) and the atmospheric boundary
layer (Mahrt 2014). In this paper, we address these general and geophysically relevant
sustained stratified shear flows using a simple laboratory experiment.

The stratified inclined duct experiment (hereafter abbreviated SID), sketched in
figure 1, consists of two reservoirs initially filled with aqueous salt solutions of
different densities ρ0±1ρ/2, connected by a long rectangular duct that can be tilted
at a small angle θ from the horizontal. At the start of the experiment, the duct is
opened, initiating a brief transient gravity current followed by a two-layer exchange
flow in the duct that is sustained for long periods of time. This sustained stratified
shear flow is the focus of this paper.

Previous studies of this experiment highlighted the fact that the flow exhibits
qualitatively different regimes depending on the input parameters θ and 1ρ. In this
paper, we adopt the nomenclature of Meyer & Linden (2014) who described the four
following regimes based on simple shadowgraph observations (see their figure 3):

L : laminar steady flow, with a thin, flat density interface between the two counter-
flowing layers;

H : mostly laminar flow, with finite-amplitude Holmboe waves propagating on the
interface;

I : spatio-temporally intermittent turbulence with small-scale structures and mixing;
T : steadily sustained turbulence with significant small-scale structures and a thick

interfacial mixing layer.
Stratified turbulence research has traditionally focused on the modelling of the

‘small-scale’ (inaccessible) physics of mixing using the ‘large-scale’ (accessible)
properties of the flows. A much-pursued goal is the ability to predict the regime
of any given flow (e.g. laminar, intermittently turbulent, fully turbulent), its rate
of energy dissipation and its mixing efficiency (so-called ‘output’ variables) using
only a small number of ‘input’ non-dimensional parameters characterising the flow
(for four decades of reviews on mixing efficiency, see e.g. Linden (1979), Fernando
(1991), Ivey, Winters & Koseff (2008), Gregg et al. (2018)). To achieve this goal,
scaling laws obtained from a physical model (based on the Navier–Stokes equations)
are usually required to extrapolate empirical relationships obtained under controlled
laboratory conditions to the geophysical scales of ultimate interest.

This paper follows this tradition of research and elaborates on ideas developed
in previous studies – in particular Meyer & Linden (2014) – to tackle the non-
dimensional scaling laws describing transitions between flow regimes. In this paper,
we revisit these ideas in order to provide a more physical and quantitative explanation
of regime transitions in the SID experiment. To achieve this aim, we use (i)
newly available volumetric measurements of the three-dimensional density field and
three-component velocity field, and (ii) a volume-averaged energetics model suited to
the analysis of these measurements.
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FIGURE 1. Schematics of the stratified inclined duct (SID) experiment. The measurement
volume inset shows the coordinate system and the notation used in this paper (in
dimensional units). Note that the x axis is aligned along the duct, resulting in gravity
pointing at an angle θ from the −z direction. Here, by definition, the duct is inclined
at a positive angle θ > 0◦, resulting in a positive forcing of the flow by the streamwise
projection of gravity g sin θ > 0.

The rest of the paper is organised as follows. In § 2 we provide the background
for the non-dimensional study of the SID experiment and discuss previous studies
together with new data on regime transitions in order to motivate the need to revisit
this problem. In § 3 we introduce our new volumetric measurements and use them to
visualise and further characterise all four flow regimes. In § 4 we derive from first
principles a framework of energy budgets suited to our volumetric measurements.
In § 5, we validate the framework and its predictions for regime transitions with
experimental data. In § 6, we further develop this framework and the analysis of
experimental data to study the relation between flow regimes and three-dimensionality.
Finally, we summarise our findings and discuss open questions in § 7.

2. Background
In this section, we introduce our notation in § 2.1, and discuss in § 2.2 the scaling

of streamwise velocities important for the non-dimensionalisation of the problem in
§ 2.3. We then discuss the scaling laws for the regime transitions proposed by previous
studies in § 2.4, before presenting new data to motivate the paper in § 2.5.

2.1. Notation
Our notation is shown in the measurement volume inset in figure 1 and largely follows
that of Lefauve et al. (2018) (hereafter LPZCDL18). The duct considered in this paper
has length L= 1350 mm and a square cross-section of height and width H = 45 mm
(the same dimensions as LPZCDL18 but smaller than ML14). The streamwise x axis
is aligned along the duct and the spanwise y axis across the duct, making the z axis
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tilted at an angle θ from the vertical (resulting in a non-zero streamwise projection
of gravity g sin θ ). All coordinates are centred in the middle of the duct, such that
−L/2 6 x 6 L/2 and −H/2 6 y, z 6 H/2. The velocity vector field has components
u(x, y, z, t)= (u, v,w) along x, y, z, and we denote the density field by ρ(x, y, z, t).

The parameters believed to play important roles are the geometrical parameters:
L, H, θ and the dynamical parameters: the reduced gravity g′ ≡ g1ρ/ρ0 (under the
Boussinesq approximation of small density differences 0<1ρ/ρ0� 1), the kinematic
viscosity of water ν = 1.05 × 10−6 m2 s−1 and the molecular diffusivity of salt
κs = 1.50× 10−9 m2 s−1. The last important parameter is the scale of the streamwise
velocity 1U, but it is not independent from the previous six parameters as we discuss
in § 2.2. From these seven parameters having two dimensions (of length and time),
we construct five independent non-dimensional parameters in § 2.3.

2.2. Scaling of the velocity
Meyer & Linden (2014) recognised that the two-layer exchange flow in the SID
is maximal because it is hydraulically controlled at both ends of the duct where it
meets the reservoirs through a sharp change in geometry (an idea already present
in Wilkinson (1986)). In other words, the flow is subcritical with respect to long
interfacial waves inside the duct (information propagates in both directions), and
critical at either end, preventing the propagation of information (in particular of the
exchange flow rate) from the exterior into the interior of the duct. The resulting flow
is therefore said to be controlled by the interior and maximal in the sense that it has
the largest exchange flow rate of any realisable flow (for more details, see ML14,
Lefauve et al. 2018, § 3, and Lefauve 2018, § 1.3.2). This maximal exchange flow is
sustained in a quasi-steady state until the controls are ‘flooded’ by the accumulation
of fluid of a different density coming from the other reservoir. With each reservoir
holding approximately 100 litres of fluid in our current set-up, a typical experiment
can last several minutes, which represents many duct transit times (streamwise
advection time along the length of the duct).

As a consequence, the velocity scale 1U is not an independent parameter; it is set
by the phase speed of long interfacial gravity waves. To understand this, we follow the
literature (see e.g. Armi (1986), Lawrence (1990)) and consider the composite Froude
number of this two-layer flow as

G2(x)≡ F2
1(x)+ F2

2(x), where F2
i (x)≡

〈u2
i (x)〉y,zi

g′hi(x)
(2.1)

is the Froude number of layer i, 〈·〉y,zi denotes spanwise and vertical averaging over
the depth hi of each layer and the symbol ≡ denotes a definition. In the idealised case
of frictionless, horizontal ducts (θ = 0◦), the flow is streamwise invariant and G takes
everywhere the value at the centre of the duct

G(x)=G(0)= 2
〈|u|〉y,z
√

g′H
, (2.2)

where 〈·〉y,z denotes averaging over the whole duct cross-section. The second equality
results from (2.1) and the symmetry of the flow at x = 0 guaranteed by the
Boussinesq approximation (〈|u1|〉y,z = 〈|u2|〉y,z and h1 = h2 = H/2). Note that here
and in the remainder of the paper, we assume that the exchange flow has zero net
(or ‘barotropic’) flow rate 〈u〉y,z = 0, which is a good approximation in the present
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set-up. Hydraulic control requires that G2
= 1 (Armi 1986), which gives the following

layer-averaged velocity

〈|u|〉y,z =
√

g′H
2

, (2.3)

as previously recognised by ML14. With the addition of viscous friction and/or of a
non-zero tilt angle, the flow is no longer streamwise invariant: G(x) is maximal at
the ends (x=±L/2) and minimal in the centre (x= 0). Since the criticality condition
G2
= 1 is imposed at the ends where the controls occur G(±L/2) = 1 > G(0), the

velocity scale 〈|u|〉y,z = (
√

g′H/2)G(0) is lower than the inviscid upper bound (2.3)
that we call the ‘hydraulic limit’ (see Gu & Lawrence (2005) for more details). As
first observed in ML14 (see their figure 7) and as we shall substantiate in § 4.3.1,
this hydraulic limit is however generally achieved when a positive tilt angle θ > 0◦ is
added to counterbalance the dissipative effects of viscosity.

Due to the moderate Reynolds numbers and the long duct investigated in the
present set-up, the velocity profiles are usually significantly affected by viscosity in
the sense that viscous boundary layers at the walls and interface are partially or
fully developed. Generally, we find that the peak velocities in each layer are at most
around twice the layer-averaged values corresponding to the hydraulic limit (2.3),
i.e. maxy,z |u| ≈ 2〈|u|〉y,z≈

√
g′H. We therefore choose to non-dimensionalise velocities

by this characteristic ‘peak’ value, i.e. half the total (peak-to-peak) velocity jump
(shown in the inset in figure 1):

1U
2
≡
√

g′H. (2.4)

2.3. Non-dimensionalisation
Based on the above, we define the non-dimensional velocity vector as ũ≡ u/(1U/2)
such that in general −1. ũ.1 (noting that the streamwise velocity is dominant in this
flow, i.e. |ũ|� |ṽ|, |w̃|). For consistency, we choose H/2 as the length scale, defining
the non-dimensional position vector as x̃≡ x/(H/2) such that −16 ỹ, z̃6 1, and −A6
x̃ 6 A, where the aspect ratio of the duct is

A≡
L
H
. (2.5)

Consequently, we non-dimensionalise time by the advective time unit H/1U =
1/(2
√

g′/H): t̃ ≡ 2
√

g′/Ht (hereafter abbreviated ATU). The dimensionless density
field is defined as ρ̃ ≡ (ρ − ρ0)/(1ρ/2), such that −1 6 ρ̃ 6 1.

Using the previously defined velocity and length scales, we construct the Reynolds
number

Re≡

1U
2

H
2

ν
=

√
g′HH
2ν

= 1.42× 104

√
1ρ

ρ0
, (2.6)

where the last equality shows that Re is a function of the driving density difference
1ρ/ρ0 alone (the prefactor only holds for aqueous salt solutions in the geometry
investigated here). In this paper, we present experiments in the range 1ρ/ρ0 ∈ [5 ×
10−4, 1.3× 10−1

], i.e. Re ∈ [300, 5000].
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The velocity scale 1U leads to the definition of an overall bulk Richardson number
RiB, expressed as the non-dimensional product of the density, length and inverse square
velocity scales, and which here takes a constant value

RiB ≡

g
ρ0

1ρ

2
H
2(

1U
2

)2 =
1
4
, (2.7)

by criticality of the exchange flow and our definition of 1U in (2.4).
Our last non-dimensional parameter is the Schmidt number, the ratio of the

momentum to salt diffusivity

Sc≡
ν

κs
. (2.8)

In summary, we have a total of four free independent non-dimensional input
parameters: θ , A, Re, Sc, and one imposed parameter RiB. For the apparatus
considered, we have A = 30, Sc = 700, RiB = 1/4, and we have the freedom to
vary θ and Re (by varying 1ρ/ρ0), allowing us to access all flow regimes.

Henceforth, we drop the tildes and, unless explicitly stated otherwise, use
non-dimensional variables throughout.

2.4. Previous studies
Meyer & Linden (2014) (ML14) mapped the distribution of the four regimes described
in § 1 in the θ −1ρ/(2ρ0) plane for 93 experiments (see their figure 5). They sought
an equation for the transition curves by arguing that, because of the presence of
hydraulic controls (§ 2.2), the kinetic energy in the flow was bounded by the scaling
(1U)2∼ g′H (see (2.3) and (2.4)) and thus it could not increase even in the presence
of gravitational forcing when θ > 0◦. The dimensional ‘excess kinetic energy’ g′L sin θ ,
gained by conversion from potential energy by the fluid travelling a distance L along
the duct in the streamwise field of gravity g′ sin θ > 0, thus has to be dissipated by
increased wave activity or turbulence. They non-dimensionalised this excess kinetic
energy by (ν/H)2, thus forming the following Grashof number

Gr≡
g′L sin θ
(ν/H)2

= 4A sin θRe2, (2.9)

where the first equality is their definition and the second equality uses our notation.
They found reasonable agreement between this scaling in sin θRe2 (using two different
aspect ratios A= 15, 30) and suggested the empirical equation Gr = 4× 107 for the
I→ T transition curve (see their figure 8). The limitations of this proposed Gr scaling
will be discussed in § 2.5.

Macagno & Rouse (1961) (MR61) is the first study of the SID we are aware
of. They mapped the same four regimes independently rediscovered by ML14 in
a two-dimensional space (see their figure 8), but instead of using the two natural
input parameters θ and Re emerging from the above dimensional analysis, they used
a Froude number and a Reynolds number based on measured values of the actual
(output) 1U and of the vertical distance between the two maxima of |u| (depth of
the shear layer). They varied θ in non-trivial ways, sometimes during an experiment,
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in order to obtain target values of 1U and therefore better control their Reynolds
number, and did not appear to realise the presence and importance of hydraulic
controls (in fact, they may have disturbed them by their use of splitter plates at
the ends of the duct). The main limitation of MR61 is that they did not recognise
the importance of θ in the regime transitions, and were thus unable to propose a
convincing physical model to substantiate them.

Kiel (1991) (K91) proposed a heuristic scaling based on a ‘geometric Richardson
number’ RiG, whose inverse (using our notation)

Ri−1
G ≡ 4A tan θ + 16

9 (2.10)

can be interpreted as the non-dimensionalisation of the ‘excess kinetic energy’
g′L sin θ of ML14 by the actual kinetic energy of the hydraulically controlled flow
(1U)2 = g′H, i.e. Ri−1

G ∼ g′L sin θ/(g′H)= A sin θ (disregarding constants). He argued
that transition to turbulence occurs when the excess energy to be dissipated becomes
large compared to the maximum kinetic energy of the flow (high Ri−1

G ). The main
limitation of K91 in the context of the present study is that he intentionally focused
on large Re and assumed that viscous effects could be ignored. Although K91 did
use large Re (of order 104) using ducts of dimensions similar to that of ML14, the
observations of ML14 at similar Re highlight the importance of Re in the scaling,
which we substantiate in this paper. Consequently, this RiG criterion is not sufficient
to explain regime transitions.

2.5. Observed regime transitions and motivation
To further motivate the need to revisit the problem of regime transitions, we
reproduced the regime diagram of ML14 in a slightly different duct geometry in
figure 2. The duct used in this paper had a smaller cross-section than that used by
ML14 (H = 45 mm versus 100 mm), but had the same aspect ratio A = 30 as that
used by ML14 to obtain most of their data. We visually identified the four regimes
L, H, I, T for a total of 360 experiments corresponding to different (θ, Re) couples.
Out of these, 312 data points come from shadowgraph observations (as in ML14),
35 come from the volumetric measurements of density and velocity described in
§ 3 and 13 come from simpler planar measurements that were carried out before
the volumetric system was operational (these measurements are not discussed in this
paper).

We observe that the regimes largely occupy distinct regions of the θ − Re plane
with clear boundaries that are simple open curves, which we refer to as the L→ H,
H→ I, and I→ T transitions. To fix ideas, we may formally define a ‘regime function’
reg taking arbitrary but increasing values such as

reg≡ 1 for L, 2 for H, 3 for I, 4 for T. (2.11a−d)

Finding the scaling of regime transitions is equivalent to finding the functional
dependence of reg(θ, Re), with ‘transition curves’ being described, for example, by
the equations reg= 1.5, 2.5, 3.5. Although sufficiently far from the transition curves,
the flow regime is repeatable for a given (θ,Re), we observe a slight overlap between
regimes near the transitions which could be explained by two potential reasons:

(i) the flow regime may not be a reproducible characteristic of the experiment (and
of the underlying dynamical system) near the transitions due to its sensitivity to flow
parameters, and/or to initial conditions (the initial transients resulting from the way
the experiment is started, which cannot be controlled accurately);
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FIGURE 2. (Colour online) Regime diagram in the (θ, Re) plane of non-dimensional
input parameters totalling 360 data points (most were determined from shadowgraph
observations). In dashed, the I → T transition curve inferred by ML14 from their
experiments in a larger duct.

(ii) the qualitative (visual) identification of flow regimes, i.e. the very definition of
‘flow regime’, is not appropriate near the transitions (i.e. not fine or consistent enough)
to classify the flow into the four discrete categories of ML14.

Note that throughout this paper, we use the term transition to refer to the change
in the qualitative long-term (asymptotic) dynamics of the flow caused by changes in
the input parameters. Although mathematically such behaviour is typically referred to
as a bifurcation, we chose to avoid this term in this paper since we do not prove nor
imply that the underlying dynamical system indeed exhibits strict bifurcations. This
question is interesting but outside the scope of this paper.

The I→ T transition curve proposed by ML14 (see § 2.4) is reproduced in dashed
black in figure 2 to highlight the fact that the agreement in our geometry (smaller
duct) is less convincing. The ML14 curve lies entirely in the T region (i.e. it is ‘too
high’) and the discrepancy is particularly apparent at higher angles θ &4◦ (which were
not considered by ML14), suggesting that their proposed Gr ∼ sin θRe2 scaling may
not be universal.

To summarise, we have seen that regime transitions in the SID depend on at least
two input parameters: θ and Re. The first two attempts to understand the transitions
(MR61 and K91) each ignored one of them, proposing heuristic scalings based on
(respectively) either Re or θ . More recently, ML14 correctly identified the θ − Re
dependence, understood the role of hydraulic controls and proposed a transition
scaling following Gr ∼ sin θRe2

= const. (see (2.9)). This scaling was based on
physical arguments of excess kinetic energy, which, as we will show in this paper,
are essentially correct but will be made more specific. However, the first limitation
of this Gr criterion is that the non-dimensionalisation of the excess kinetic energy by
the square velocity scale (ν/H)2 leading to the Grashof number Gr is not justifiable
by physical principles, and subsequently nor is the value Gr= 4× 107 for the I→ T
transition. The second limitation of the Gr criterion is that it does not appear to agree
with our more recent and comprehensive data obtained in a smaller duct (figure 2).

We believe that these limitations motivate the need for a revised scaling of regime
transitions of the form reg(θ, Re) = const. verified by quantitative experimental data
and based on sound physical principles.
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In the next two sections we introduce the experimental measurements (§ 3) and
physical model (§ 4) employed to achieve this aim.

3. Measurements and visualisations
In this section, we describe our volumetric measurements of the three-dimensional

density field and three-component velocity field in § 3.1. We then use these
measurements for quantitative flow visualisations in each of the four regimes in
§ 3.2 to highlight their key features and build intuition.

3.1. Three-dimensional, three-component (3D-3C) measurements
To provide a quantitative basis to the qualitative shadowgraph observations and
subsequent categorisation into flow regimes, we investigate in this paper the
detailed energetics underpinning each regime. To do so, we employed simultaneous
measurements of the density field and three-dimensional, three-component (3D-3C)
velocity field in a volume, as sketched in the inset of figure 1.

These measurements relied on a novel technique introduced by Partridge, Lefauve &
Dalziel (2019) in which a thin, pulsed vertical laser sheet (in the x–z plane) is scanned
rapidly back and forth in the spanwise direction (along y) to span a duct sub-volume
of non-dimensional cross-section 2×2 and non-dimensional length ` (typically a small
fraction of full duct length `� 2A). Simultaneous stereo particle image velocimetry
(sPIV) and planar laser induced fluorescence (PLIF) are employed to obtain the
three-dimensional, three-component velocity and density fields (u, v, w, ρ)(x, yi, z, ti)
in successive x–z planes at spanwise locations y = yi and respective times t = ti.
Three-dimensional volumes containing ny planes (i.e. i = 1, 2, . . . , ny) are then
reconstructed from these plane measurements. These volumetric 3D-3C measurements
are only near instantaneous in the sense that each plane (x, yi, z, ti) is separated from
the previous one by a small time increment δt ≡ ti − ti−1, resulting in each volume
being constructed over a non-dimensional time 1t ≡ nyδt. The experimental protocol
and details to obtain the measurements used in this paper are identical to those
discussed in LPZCDL18 §§ 3.3–3.4, who first used this novel technique to investigate
the structure of Holmboe waves found in the H regime.

This technique provides high-resolution measurements of (u, v,w, ρ)(x, y, z, t) with
a typical number of data points in each coordinate (nx, ny, nz, nt)≈ (500, 30, 100, 300)
per experiment (after processing 150 GB of raw data). The details of the volume
location x̄, length `, duration of an experiment τ , and resolution (1x, 1y, 1z, 1t)≡
(`/nx,2/ny,2/nz, τ/nt) for all 3D-3C experiments discussed in this paper will be given
in § 5 (table 2). We discuss the physical constraints setting bounds on all of the above
resolutions in appendix A.

Finally, we enforced incompressibility in all 3D-3C velocity fields by imposing
∇ · u = 0 for each of the nt volumes. We employed the recent weighted divergence
correction scheme of Wang et al. (2017), which constitutes an improved and
much faster variant of the general algorithm of de Silva, Philip & Marusic (2013).
Encouragingly, we found that the level of correction needed (the volume-averaged
relative L2 distance between the original and corrected fields) was typically small (at
most a few per cent).

3.2. Visualisations
Using the measurements described above, we show visualisations of a flow
representative of each of the four regimes in figure 3 (L and H regimes) and figure 4
(I and T regimes). We compare side-by-side the same three types of data:
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FIGURE 3. (Colour online) Comparative visualisations of a typical (a–f ) L flow (θ = 2◦,
Re = 398) and (g–l) H flow (θ = 1◦, Re = 1455). The I and T regimes are shown in
figure 4. The L and H data correspond respectively to experiments L1 and H1 listed in
table 2 (discussed later). For each experiment, we plot the density field ρ and streamwise
velocity field u in (a,c,g,i) the vertical mid-plane of the volume y= 0, and in (b,d,h,j) the
arbitrary cross-sectional plane x=−14, all for a single arbitrary temporal snapshot: t=150
in (a–d), and t= 261 in (g–j). Colour bars are identical for all plots showing density or
velocity and are thus not repeated. Dotted vertical lines in the y= 0 plane (a,c,g,i) indicate
the location of the x=−14 plane in (b,d,h,j) and conversely. White arrows indicate the
direction of the flow in each layer (in agreement with the notation of § 2.1 and figure 1).
In addition, we plot for each experiment: (e,k) the temporal evolution of the volume flux
Q(t) and mass flux Qm(t) (the dashed line is the hydraulic limit Q= 0.5); and ( f,l) the
mean vertical density, streamwise velocity and gradient Richardson number profiles (the
dot symbols indicate the vertical resolution of the data).
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FIGURE 4. (Colour online) Comparative visualisations of a typical (a–f ) I flow (θ = 6◦,
Re= 777) and (g–l) T flow (θ = 6◦, Re= 1256), corresponding respectively to experiments
I4 and T2 of table 2 (discussed later). The legend is identical to that of figure 3, except
for the temporal snapshots used here: t= 55 in (a–d) and t= 168 in (g–j).

(i) an instantaneous snapshot of the density field ρ and streamwise velocity field u
in the vertical mid-plane y= 0 of the measurement volume (panels a,c,g,i), and
in the arbitrary cross-sectional plane x=−14 (panels b,d,h,j);

(ii) the averaged vertical density profile 〈ρ〉x,y,t(z), velocity profile 〈u〉x,y,t(z), and
corresponding gradient Richardson number (panels f,l) defined as

Rig(z)≡−RiB
∂z〈ρ〉x,y,t

(∂z〈u〉x,y,t)2
; (3.1)
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(iii) the time series of the volume flux Q(t) and mass flux Qm(t) (panels e,k) defined
respectively as the exchange volume flow rate

Q(t)≡ 〈|u|〉x,y,z, (3.2)

and the exchange mass flow rate

Qm(t)≡ 〈ρu〉x,y,z. (3.3)

Note that Qm =Q in the absence of mixing (since in this case ρ = sgn(u)), but in
general 0< Qm < Q in the presence of mixing. The non-dimensional hydraulic limit
for the volume flux set by the maximal exchange flow condition is Q = 0.5, such
that in general 0<Qm 6 Q 6 0.5 (the first two inequalities always hold by definition
whereas the last inequality is the hydraulic limit that does not precisely hold in the
experiments).

We observe that the L and H flows have a sharp density interface with a tanh-like
vertical profile (figure 3a,b, f,g,h,l), while the I and T flows have a mixing layer
(figure 4a,b, f,g,h,l), i.e. a central layer in which the vertical density gradient is
smaller than the values immediately above and below it as a result of turbulent
mixing across the interface. As a result, in L and H flows, the gradient Richardson
number (figure 3l) exhibits a local maximum at the density interface and two minima
on either side of order Rig ≈ 0.25 (L flow) and Rig ≈ 0.15 − 0.20 (H flow). In the I
flow, the local maximum at the interface largely disappears (figure 4l), where Rig is
relatively constant across the shear layer and Rig ≈ 0.05− 0.30. In the T flow, Rig is
very nearly constant throughout the shear layer at Rig≈ 0.15, in good agreement with
the self-adjusting arguments of an ‘equilibrium Richardson number’ (Turner 1973,
§ 10.2) and of ‘marginal instability’ (Thorpe & Liu 2009; Smyth & Moum 2013).

In the L and H regimes, the streamwise velocity profile has a sine-like vertical
structure (figure 3f,l) indicative of fully developed velocity boundary layers (expected
when Re. 50A= 1500, the criterion for overlapping of the interfacial, top and bottom
wall 99 % boundary layers at x= 0). By contrast, in the I and T regimes, interfacial
turbulence creates a region of approximately constant velocity gradient across the
mixing layer and ‘pointier’ velocity maxima that are pushed closer to the top and
bottom walls (figure 4f,l) especially when turbulence is more intense and sustained
in the T flow. In all regimes, these velocity maxima ∂z〈u〉x,y,t = 0 at |z| ≈ 0.5 − 0.7
caused by the no-slip condition at z=±1 and the influence of viscosity account for
the two symmetric peaks of Rig.

We also note that the L flow is largely (i) parallel, i.e. independent of the streamwise
direction x, except for a very slight downward slope of the interface typical of such
flows (discussed later in § 4.3.1); (ii) steady in time; (iii) symmetric about the
y = 0 and z = 0 planes. By contrast, the H flow breaks the x- and t-invariance with
a set of travelling, symmetric Holmboe waves distorting the density and velocity
interfaces in a characteristic ‘cusp’-like pattern and in a quasi-periodic fashion (these
‘confined Holmboe waves’ were the focus of LPZCDL18). In addition, complex
three-dimensional wave motions in the velocity field start breaking the y = 0 and
z= 0 symmetries (figure 3i,j).

In the I and T flows, the departure from both the x, t invariances and the y, z= 0
symmetries at any instant in time is even greater, owing to large, three-dimensional
turbulent fluctuations (figure 4). Based on the amplitude and spatial scales of the
fluctuations in the position of the density and velocity interfaces, and the amplitude of
the temporal fluctuations in the Q(t) and Qm(t) time series, it is tempting to classify
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L H I T

Invariance in x, t X ∼ × ×

Symmetry about y, z= 0 X ∼ × ×

Large Q,Qm ≈ 0.5 × × X X
Interfacial mixing × × X X
Small spatial scales × ∼ X X
Constant interfacial Rig × × ∼ X
Laminar-turbulent periodicity × × X ×

TABLE 1. Basic characteristics of flow regimes inferred from figures 3–4. Symbol ∼
indicates a relatively small effect.

the L and H flows in one group based on their similarity, and the I and T regimes in a
different group. The L−H flows have lower volume and mass flux, which are equal in
the absence of mixing (Qm ≈Q≈ 0.2− 0.3), while the I− T flows have higher fluxes
and significant mixing (Qm ≈ 0.4− 0.5<Q≈ 0.5− 0.6, close to the hydraulic limit).

Large temporal fluctuations in both Q and Qm are observed in the I and T regimes,
but I flows tend to exhibit a component with longer pseudo-period associated with
oscillations between laminar and turbulent events (sometimes in a quasi-periodic
fashion with period O(100 ATU)). This is visible in the I flow here (figure 4e):
the start of a turbulent event (shown here in the snapshots figure 4a–d at t = 55)
follows the instability of an accelerating, largely laminar, three-layer flow. A peak in
the volume flux at t ≈ 10 triggered large-amplitude waves at both density interfaces
which started overturning at t ≈ 40 and initiated a turbulent event slowing down the
flow (decreasing Q and Qm). Relaminarisation followed at t≈ 130 (increasing Q and
Qm), and another cycle started (note that only one cycle was recorded here).

The basic characteristics of flow regimes described above are summarised in table 1.
In the next section, we introduce the mathematical framework suited to analyse the

above 3D-3C measurements and understand the energetics of SID flows.

4. Energetics model

In this section, we start by deriving the time evolution equations for the kinetic
energy and potential energy, first as local quantities in § 4.1, and then averaged in a
control volume in § 4.2. To jump to the result of this section, see (4.10) and (4.13) and
figure 5. We then estimate the transfer terms between kinetic and potential energies
and simplify the budgets in § 4.3. Finally, we focus on one particular simplified budget
in order to formulate an hypothesis regarding the regime transitions in § 4.4.

4.1. Local energy budgets
The governing equations on which all subsequent analyses are based are the
incompressible Navier–Stokes equation under the Boussinesq approximation coupled
to the advection–diffusion of density. Under the notation and conventions adopted in
§§ 2.1–2.3, they take the following non-dimensional form:

∇ · u= 0, (4.1a)

∂tu+ u · ∇u=−∇p+ RiB (− cos θ ẑ+ sin θ x̂)ρ +
1

Re
∇

2u, (4.1b)
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∂tρ + u · ∇ρ =
1

Re Sc
∇

2ρ, (4.1c)

where we recall that RiB = 1/4 and Sc= 700.

4.1.1. Kinetic energy
We first consider the kinetic energy field K, defined as

K(x, t)≡ 1
2 uiui, (4.2)

where, here and in the following, we adopt the summation convention over repeated
indices. The evolution of K is obtained by the dot product of the momentum equation
(4.1b) with u. Using incompressibility (4.1a) and standard manipulations, we obtain

∂K
∂t
= φadv

K + φ
pre
K + φ

vis
K +Bx −Bz − ε, (4.3)

where the boundary fluxes due to advection φadv
K , pressure work φ

pre
K , viscous work

φvis
K are

φadv
K ≡

∂

∂xi
(−uiK), φ

pre
K ≡

∂

∂xi
(−uip), φvis

K ≡
2

Re
∂

∂xj
(uisij), (4.4a−c)

and where the volumetric horizontal buoyancy fluxes Bx, vertical buoyancy flux Bz
and viscous dissipation ε are

Bx ≡ RiB sin θ ρu, Bz ≡ RiB cos θ ρw, ε ≡
2

Re
sijsij. (4.5a−c)

The symmetric strain rate tensor is sij ≡ (∂xiuj + ∂xjui)/2, and the dissipation rate is
positive definite ε > 0.

4.1.2. Potential energy
Next, we consider the potential energy field P , defined as

P(x, t)≡ RiB (z cos θ − x sin θ)ρ, (4.6)

since the duct (x, y, z) coordinate system is tilted at angle θ with respect to the
direction of gravity. The evolution of P is obtained by standard manipulations of the
density conservation equation (4.1c) as

∂P
∂t
= φadv

P + φ
dif
P + φ

int
P −Bx +Bz, (4.7)

where we recover the buoyancy fluxes Bx,Bz defined in (4.5), and where the boundary
fluxes of P due to advection φadv

P , diffusion φ
dif
P and conversion of internal energy

(heat) φint
P are

φadv
P ≡

∂

∂xi
(−uiP),

φ
dif
P ≡

RiB

Re Sc
∂

∂xi

{
(z cos θ − x sin θ)

∂ρ

∂xi

}
,

φint
P ≡

RiB

Re Sc

{
cos θ

∂ρ

∂z
− sin θ

∂ρ

∂x

}
.


(4.8)
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4.2. Volume-averaged energy budgets
We now consider the control volume V , a rectangular parallelepiped bounded by the
four duct cross-sectional walls at y, z = ±1 of arbitrary non-dimensional length ` ∈
[0, 2A] centred around x̄, i.e. V = (x, y, z) ∈ [x̄ − `/2, x̄ + `/2] × [−1, 1] × [−1, 1]
(V has a volume equal to ` × 2 × 2 = 4`). When applied to our 3D-3C data, the
control volume V will be the measurement volume shown in figure 1.

4.2.1. Kinetic energy
We define the volume-averaged kinetic energy K as

K(t)≡ 〈K〉x,y,z ≡
1
4`

∫
V
K dV =

1
4`

∫ 1

−1

∫ 1

−1

∫ x̄+`/2

x̄−`/2
K dx dy dz, (4.9)

where, here and henceforth, 〈·〉x,y,z denotes averaging over the control volume V .
We obtain the evolution equation of K by volume averaging (4.3). The volume-

averaged boundary fluxes 〈Φadv
K 〉x,y,z, 〈Φ

pre
K 〉x,y,z, 〈Φvis

K 〉x,y,z are simplified by the
divergence theorem and the use of the no-slip boundary conditions ui = 0 on the
four solid duct boundaries y, z = ±1. All mean gradients along y and z therefore
cancel, and the mean gradients along x take the general form (1/`)〈·〉y,z|L−R, where
·|L−R denotes the difference between the value of · on the left boundary of the volume
(‘L’, x = x̄ − `/2) and its value on right boundary of the volume (‘R’, x = x̄ + `/2).
We are left with

dK
dt
=Φadv

K +Φ
pre
K +Φ

vis
K + Bx − Bz −D, (4.10)

where the boundary fluxes of K, the volume-averaged buoyancy fluxes and dissipation
are, respectively,

Φadv
K ≡

1
`
〈uK〉y,z|L−R, Φ

pre
K ≡

1
`
〈up〉y,z|L−R, Φvis

K ≡−
1
`

2
Re
〈uisi1〉y,z|L−R,

Bx ≡ 〈Bx〉x,y,z, Bz ≡ 〈Bz〉x,y,z, D≡ 〈ε〉x,y,z.

 (4.11)

4.2.2. Potential energy
We define the volume-averaged potential energy P by analogy with K as

P(t)≡ 〈P〉x,y,z ≡
1
4`

∫
V
P dV =

1
4`

∫ 1

−1

∫ 1

−1

∫ x̄+`/2

x̄−`/2
P dx dy dz. (4.12)

By volume averaging (4.7) and using the no-slip boundary condition for velocity and
no-flux boundary condition for density, we write the evolution of P as

dP
dt
=Φadv

P +Φ
dif
P +Φ

int
P − Bx + Bz, (4.13)

where the boundary fluxes of P are

Φadv
P ≡ RiB

1
`
(cos θ 〈zρu〉y,z|L−R − sin θ 〈xρu〉y,z|L−R), (4.14a)

Φ
dif
P ≡

RiB

Re Sc
1
`

(
sin θ

〈
x
∂ρ

∂x

〉
y,z

∣∣∣∣∣
L−R

− cos θ
〈

z
∂ρ

∂x

〉
y,z

∣∣∣∣∣
L−R

)
, (4.14b)
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Φ int
P ≡

RiB

Re Sc

(
−

1
`

sin θ〈ρ〉y,z|L−R +
1
2

cos θ〈ρ〉x,y|B−T

)
, (4.14c)

where by analogy with ·|L−R, we denote by ·|B−T the difference between the value of
· at the bottom (‘B’, z=−1) and at the top (‘T’, z= 1).

4.2.3. Summary and schematics
The evolution equations – or ‘budgets’ – for the volume-averaged kinetic energy K

(see (4.10) and (4.11)) and potential energy P (see (4.13) and (4.14)) are summarised
schematically in figure 5.

In addition to the kinetic energy K and potential energy P reservoirs, the fluid
contained in the volume V has an internal energy (heat) reservoir I that we have
hitherto not explicitly considered. As we shall see in § 4.3.2, we do not need to do
so since the evolution of I is (to a very good approximation) slaved to that of K and
does not feed back on either K or P.

These three reservoirs exchange energy via internal fluxes: K and P exchange
energy with one another via a priori reversible (i.e. sign-indefinite) buoyancy fluxes
Bx, Bz; K is irreversibly dissipated at a positive-definite rate D > 0 to I; and I is
irreversibly converted by molecular diffusion at a positive-definite rate Φ int

P > 0 to P
(this conversion does not necessitate macroscopic fluid motions). In addition, K, P and
I also exchange energy via a number of boundary fluxes with the exterior (denoted
by E). These boundary fluxes are all a priori reversible (i.e. sign indefinite). (Note
that the boundary flux of I was not explicitly considered in the above discussion but
it is necessary to close the I budget.)

The steady character of the sustained forcing in the SID experiment ensures that,
when averaged over a sufficiently long time period, each energy reservoir must be in
steady state. In other words, the time-averaged budgets are ‘closed’, in the sense that
they all cancel, 〈

dK
dt

〉
t

≈

〈
dP
dt

〉
t

≈

〈
dI
dt

〉
t

≈ 0, (4.15)

where 〈·〉t ≡ (1/τ)
∫ τ

0 · dt denotes averaging over the recorded data (or ‘duration of an
experiment’) τ . We expect this steady state (4.15) to be a very good approximation,
certainly over periods of O(102

− 103 ATU) (the typical duration of an experiment),
and presumably even over smaller periods of O(10 ATU) in the relatively steady L
and H regimes.

These budgets are related to other energetic analyses applied to numerical
simulations in the literature (see e.g. Winters et al. 1995, § 4), but have a number of
features that make them unique to SID experiments: (i) the presence of a tilt angle
θ > 0◦ introducing the crucial horizontal buoyancy flux Bx; (ii) the presence of solid
boundaries at y, z=±1 cancelling the boundary fluxes along y and z; (iii) the absence
of a periodic boundary condition in the x direction introducing non-zero boundary
fluxes along x (contrary to most numerical simulations); and (iv) the asymptotic
steadiness of all reservoirs due to the sustained forcing discussed above.

In the remainder of the paper, we make the approximation that

cos θ ≈ 1 and sin θ ≈ θ, (4.16a,b)

which is accurate to better than 0.5 % for the angles considered in this paper (θ 6 6◦).
Unless explicitly specified otherwise, θ will now be expressed in radians.
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V

E
exterior

K
kinetic

P
potential

I
internal

D

ÏK
adv ÏP

difÏP
adv

ÏP
int

Bx Bz

ÏK
pre ÏK

vis

FIGURE 5. Schematics of the complete energy budgets in a control volume V . The V-
averaged kinetic K(t), potential P(t) and internal I(t) energy reservoirs exchange energy
with one another via internal fluxes and with the exterior E via boundary fluxes. Solid
arrows indicate irreversible (i.e. sign-definite) transfer, and dashed arrows indicate a priori
reversible (i.e. sign-indefinite) transfer, until proven otherwise later. The a priori reversible
transfer between E and I is acknowledged but was not explicitly derived in the text since
it is not central to the discussion.

4.3. Estimations and simplified budgets

In this section we give physical interpretation of each of the fluxes relevant to SID
flows in order to determine their sign, relative magnitude and, eventually, build a
simplified picture of the time- and volume-averaged energetics of SID flows.

4.3.1. The two-layer hydraulic model
Consider the two-layer hydraulic model sketched in figure 6. The left (‘L’) boundary

of the volume V (shaded in grey) has a lower layer velocity u1L > 0, an upper layer
velocity u2L < 0, and the right (‘R’) boundary of V has a lower layer velocity u1R > 0,
and an upper layer velocity u2R < 0. The position of the interface η(x) (black solid
curve) defined positive above the midplane z = 0 (black dashed line) takes the
respective values of ηL and ηR at each boundary. In agreement with hydraulic theory,
and to make the following calculations easier, we further assume a steady streamwise
velocity profile uniform in each layer (i.e. depending only on x), and a hydrostatic
pressure distribution where the reference pressure is 0 all along the interface p(x, z=
η(x))= 0 (after subtracting the hydrostatic streamwise pressure gradient due to θ 6= 0).
The local hydrostatic gradient is thus ∂zp = RiB ρ = (1/4)ρ (where in the lower
layer ρ1 = 1, in the upper layer ρ2 = −1), giving a pressure distribution p(x, z) =
(1/4){η(x)− z} (shown as thin black solid lines).

This flow has two distinct forcing mechanisms: (i) a horizontal hydrostatic pressure
gradient of opposite sign in each layer, resulting from each end of the duct sitting
in reservoirs containing fluids of different densities, which is present even when
the duct is horizontal (i.e. when θ = 0◦); (ii) the gravitational acceleration of the
buoyant layer to the left and the dense layer to the right at positive tilt angles θ > 0◦.
To understand the relative importance of these forcing mechanisms, consider the
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η(x)

V

pL(z) pR(z)

z

x

u2L u2R

˙L

˙R

u1L u1R

œ
g

x-

A

¶

FIGURE 6. Schematics and notation used for the evaluation of boundary fluxes under
hydraulic assumptions. The control volume V , centred on x̄ and of length `, is shaded
in grey, and as before, 1 (respectively 2) denotes the lower (respectively upper) layer,
and L (respectively R) denotes the left (respectively right) boundary of V . The interface
has position η(x) (solid curve) with respect to the neutral level z= 0 (dashed). Note the
hydrostatic pressure distributions pL(z) and pR(z) at the L and R boundaries (thin solid
lines), with p= 0 along the interface.

corresponding streamwise momentum equation (including viscous effects),

4u · ∇u=−η′(x)︸ ︷︷ ︸
hydrostatic

forcing

+ θ ρ︸︷︷︸
gravitational

forcing

+
4

Re
∇

2u, (4.17)

where ρ(x, z)= sgn(η(x)− z)=±1 by definition of η(x). Since each layer convectively
accelerates (and thus becomes thinner) in the direction in which is it flowing, the
interface position η must be a monotonically decreasing function of x: η′(x) < 0 for
all x. Since in addition η ∈ [−1, 1], the average slope on the scale of the whole duct
(taking ` = 2A) must be smaller than 2/2A = α, where we define the inverse aspect
ratio of the duct as

α ≡ A−1. (4.18)

We therefore have 〈|η′(x)|〉x < α, i.e. an upper bound on the magnitude of the
average slope and, therefore, on the magnitude of the horizontal pressure gradient
in (4.17). This bound holds for any sufficiently large volume V not centred in
the immediate vicinity of the ends of the duct (where |η′| may be large and the
hydrostatic assumption may break down). Consequently, in such a control volume, a
sufficient condition ensuring that the contribution of the gravitational forcing in (4.17)
is always greater than the contribution of the hydrostatic forcing is that the tilt angle
θ is ‘large’, which, in this paper, is understood relative to the ‘geometrical’ angle of
the duct α, i.e.

θ > α. (4.19)

For the duct discussed in this paper α = 1/30≈ 2◦. (Note that because of the length
of the duct considered in this paper, a large tilt angle θ > 2◦ is still compatible with
our approximation (4.16).)
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Sustained stratified shear flows 675

A more accurate way to analyse the relative importance of the various terms in
(4.17), including the viscous friction in ∇2u, is through the framework of frictional
two-layer hydraulic theory. Originally proposed by Schijf & Schönfled (1953), and
later formalised by Gu (2001), Gu & Lawrence (2005), this theory combines the
hydraulic description of two-layer flows (see e.g. Armi (1986)) with frictional stresses
at solid boundaries and at the interface created by the inevitable (y, z) dependence
of the underlying velocity profiles. By parameterising the local loss of streamwise
momentum due to these stresses by the local uniform model velocities u1(x), u2(x)
using a small number of non-dimensional friction parameters, an expression for the
local slope of the interface η(x) can be derived. An adaptation of this theory for
non-zero tilt angles θ 6= 0 can be found in L18, Chap. 5 but falls outside the scope of
this paper. Here we limit ourselves to discussing the simple result that at the middle
point (x= 0) of a tilted duct the interfacial slope is proportional to

η′(0)∝ θ − F, (4.20)

where F is the so-called ‘friction slope’, a complicated expression combining wall and
interfacial stress parameters. The above equation can be interpreted as follows: the
viscous frictional stresses acting at the walls and at the interface parameterised in F
tend to make the interface slope downwards (momentum sink), whereas the positive
gravitational forcing θ > 0 tends to make the interface slope upwards (momentum
source). It follows that:

(i) When 0 < θ � F, viscous friction in the duct makes the interface slope
downwards, but as discussed above, with a magnitude that cannot exceed
the duct geometrical slope: F < α. The friction F is largely independent of
θ , which does not play a significant dynamical role. We call such flows lazy
flows (figure 7a).

(ii) As θ is increased, the gravitational forcing makes the interface become
increasingly horizontal (i.e. parallel to x) until it becomes nearly horizontal
(η′(0) . 0) as θ approaches F from below. As θ is further increased above
this initial value of F, the friction F must increase to follow θ very closely
to enforce the necessary condition that the interface slopes downwards. This
qualitative change in the behaviour of the friction F, now directly dependent
on θ , must occur when θ > α (since initially F < α), yet it generally occurs
for smaller θ (depending on the initial, unknown, value of F). In this situation,
F & θ and the interface is relatively flat throughout the duct (η′(x). 0 for all x).
We call such flows forced flows (figure 7b).

We believe that our distinction between lazy and forced flows is an important
modelling result for the study of two-layer exchange flows forced by a positive angle
θ > 0. In the next section, we build on this distinction to derive a much-simplified
budget.

4.3.2. Simplified budgets
Based on the simplified two-layer hydraulic model introduced above, we derived

estimations of each term of the full energy budget (4.11), (4.14) in appendix B.
A first level of simplification of the full budget presented in figure 5 consists in

neglecting the boundary fluxes Φpre
K , Φvis

K , Φdif
P and Φ int

P for the Re and Sc considered
in this paper (as argued in appendix B). The resulting simplified budget for lazy
flows is sketched in figure 8(a), in which all the energy in V is supplied by the
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z
œ

(a) (b)

g

x

Lazy flows: 0 < θ ≪ å

0 < θ ≪ F

Q ≪ 0.5

Forced flows: θ  > å

Q £ 0.5 

F >¡ œ

FIGURE 7. Qualitative distinction based on frictional hydraulic theory between (a) ‘lazy’
flows (at small tilt angles θ ), in which viscous effects in F dominate over the gravitational
forcing by θ ; and (b) ‘forced’ flows (at large tilt angles θ ) in which both effects are in
balance, leading to a relatively flat interface throughout the duct and Q≈ 0.5.

(a) (b)

K

V

E

P

I

D

K

V

E

P

I

D

ÏK
adv ÏP

adv ÏP
adv 

Bx Bx

Bz Bz

Lazy flows Forced flows

FIGURE 8. Schematics of two simplified energy budgets. The energy fluxes in the general
budget of figure 5 were estimated in appendix B using the two-layer hydraulic model of
figure 6, and led to two levels of simplifications for (a) lazy flows and (b) forced flows.

positive advective flux of P (Φadv
P > 0) composed of hydrostatic and gravitational

contributions (represented by a double arrow). This energy is transferred to K by the
horizontal buoyancy flux (Bx > 0), equal to the gravitational contribution of Φadv

P . We
previously argued that the vertical buoyancy flux Bz was, in general, sign indefinite,
depending on the level of vertical motions in the flow. However it now becomes
clear that, in order to close the budgets of lazy flows over sufficiently long times,
Bz must be a sink to P and a source to K (Bz < 0), and it must equal the hydrostatic
contribution of Φadv

P in magnitude. To balance these two distinct sources, K has two
distinct sinks: the advective flux Φadv

K < 0, and the viscous dissipation −D < 0. The
internal energy reservoir I has an energy source D > 0, which in steady state, is
balanced by a negative advective boundary flux to E.

A second level of simplification is possible in the special case of forced flows,
as sketched in figure 8(b). We show in appendix B that in a ‘periodic’ volume V
(expected when θ > α) the hydrostatic contribution of the source term Φadv

P and
the advective flux Φadv

K both cancel. The budget becomes very simple: to a good
approximation, the main source of P is Φadv

P = (Qm/4)θ , which corresponds exactly
to its main sink (and therefore the main source of K) Bx=Φ

adv
P = (Qm/4)θ . Therefore,

although Bz is truly sign indefinite in this case and may be responsible for unsteady
reversible energy transfers on short time scales, its temporal average must cancel
and become irrelevant in steady state over the duration of an experiment (hence we
represent it by a grey dashed arrow). We thus conclude that for forced flows in steady
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Sustained stratified shear flows 677

state P, K (and I) all have only a single source and a single sink, which must all be
equal in magnitude,

〈Φadv
P 〉t = 〈Bx〉t = 〈D〉t = 1

4 〈Qm〉tθ. (4.21)

This is one of the main modelling results of this paper. It states that the time- and
volume-averaged energetics of forced flows in any control volume of the SID is
reducible to a single flux which depends only on the magnitude of the mass flux
exchanged between the two reservoirs 〈Qm〉t, and the tilt angle of the duct θ .

Another very attractive feature of forced flows is that the energy budgets we derived
are valid in any control volume V in the duct regardless of its location x̄ and length `.
This is true as long as V is not located in the immediate vicinity of the ends of the
duct (x=±A) where the hydrostatic approximation is questionable and as long as V is
sufficiently long (say `� 1) for the volume-averaging to make sense. Thus, by virtue
of the x-periodicity of forced flows, the volume-averaged energetics of the whole duct
are equal to that of any of its sub-volume and, in particular, of any sensible 3D-3C
measurement volume.

4.4. Implications: hypothesis for regime transitions
We now propose that the volume-averaged square norm of the (non-dimensional) strain
rate tensor S, defined as

S≡ 〈sijsij〉x,y,z =
Re
2

D, (4.22)

is a good candidate for a quantitative proxy of the flow regimes (as opposed to the
viscous dissipation D because of its Re/2 factor). In the remainder of the paper, we
primarily focus on S and refer to it as ‘viscous dissipation’ for simplicity (which is
the correct standard terminology with respect to the rescaled time coordinate t∗ ≡
t/(Re/2)). Since the hydraulic controls at both ends of the duct limit the mean value
of streamwise motions to |u|x,y,z = Q . 0.5 and vertical motion must realistically be
even smaller, we expect the range of spatial scales over which the strain rates act in
V to be the main variable of adjustment between flow regimes. We thus expect laminar
flows with gradients over lengths of O(1) to have S=O(1) and increasingly turbulent
flows with increasingly small-scale motions to have much larger gradients and S� 1.

It therefore appears natural to propose that the L, H, I, T regimes correspond to
increasingly large values of the time-averaged dissipation 〈S〉t. This intuitive idea
can be formalised using the regime function (see (2.11)) as the following simple
hypothesis:

reg= reg(〈S〉t), (4.23)

where reg is a monotonically increasing function of 〈S〉t only. This hypothesis is
general and does not assume that the flow is lazy or forced.

Our main modelling result (4.21) that the time- and volume-averaged dissipation
〈S〉t in forced flows can be predicted from the knowledge of θ, Re (input parameters)
and Qm (output parameter) can be rewritten as

〈S〉t =
Re
2
〈D〉t =

1
8
〈Qm〉t θRe. (4.24)
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Despite Qm being an output parameter, frictional hydraulic theory and extensive
empirical evidence (see ML14, L18 § 3.6 and figure 9 below) suggest that the
hydraulic limit of Qm ≈ 0.5 is usually a good approximation in forced flows, so long
as they are not excessively turbulent, since excessive turbulence and mixing acts to
reduce Qm for very high values of θ and Re (as will be shown in figure 9 below).

Therefore, the corollary of hypothesis (4.23) in the special case of forced flows is
that regime transitions follow the simple scaling

〈S〉t ≈ 1
16 θRe, (4.25)

and (4.23) can be recast in terms of input parameters only

reg= reg(θRe), (4.26)

where reg is a monotonically increasing function of θRe only.
In the next section, we discuss experimental data to examine the hypothesis (4.23)

and its corollary (4.26).

5. Experimental validation
In this section, we examine whether or not regime transitions:

(i) indeed scale with the non-dimensional group of parameters θRe (the forced flow
corollary of our physical hypothesis) using our regime data in § 5.1;

(ii) are indeed caused by increasing values of the time- and volume-averaged
dissipation 〈S〉t (our underlying physical hypothesis) using our 3D-3C data
in §§ 5.2–5.3.

5.1. Observed regime transitions scaling
To compare the scaling of the transitions in our experimental data with the model and
predictions of the previous sections, we plot in figure 9 four distinct types of data in
the θ–Re plane:

(i) The flow regime data of figure 2 using the same symbols (note that θ is
expressed in radians here using a log scale, restricting us to θ > 0 data).

(ii) Two families of thick lines indicating two distinct scaling: the dotted lines have
slope −1/2 and indicate a power law scaling of the form θRe2

= const. while
the dashed lines have slope −1 and indicate a power law scaling of the form
θRe= const. These were set manually in order to best fit the data.

(iii) A vertical grey shading at θ = α representing the upper bound for the expected
boundary between lazy flows and forced flows (see § 4.3.1).

(iv) Thin black contours showing a fit of 〈Qm〉t based on averaged mass flux
measurements that were carried out for a subset of experiments (161 in
total) using salt mass balances as in ML14 (note the equivalence between
our definition and their ‘Froude number’ F≡

√
2〈Qm〉t). For more details on the

salt mass balance method see Lefauve 2018, § 2.2. These data were then fitted
by least-squares assuming a quadratic form in the (log θ, log Re) plane.

We make the following observations:

(i) The mass flux data 〈Qm〉t are best fitted by a quadratic form describing
hyperbolas having a major axis of slope −0.67, i.e. an equation θRe3/2

= const.
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Re
θ Re2 = const.

θ Re = const.
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0.50.40.3

0.1
0

0.2

0.4

0.3

L
H
I
T

102
10-3 10-2

œ
10-1

103

104

Lazy å Forced
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FIGURE 9. (Colour online) Experimental data on the scaling of regime transitions. The
colour symbols are identical to figure 2, and are plotted in the same θ–Re plane, but
with θ in radians (also note the log–log scale, restricting us to θ > 0). The families of
thick dotted and dashed lines represent approximate regime transition lines with respective
scalings θ Re2

= const. and θRe= const. The vertical grey shading at θ =α is the boundary
between lazy and forced flows. The thin solid black contours are the quadratic form fitting
of 161 mass flux measurements of 〈Qm〉t. Six contours are shown in the range 0–0.5 and
they have been continued beyond the range covered by the data points used (note that no
0.6 contour exists here).

This empirical scaling, and more generally, the function 〈Qm〉t(θ, Re), are
not presently understood and fall outside the scope of the present study
(see L18, § 3.6 for more details). Here, we limit ourselves to the empirical
observations that: (i) for the ‘lazy’ data (θ < α), as θ and Re increases, 〈Qm〉t

increases from � 0.5 (L regime) to ≈0.5 (I and T regimes); (ii) for the ‘forced’
data (θ > α), 〈Qm〉t ≈ 0.5. These two observations, given the fact that Qm ≈ Q
(except for the most turbulent data), are consistent with the theoretical predictions
of § 4.3.1.

(ii) In lazy flows, the regime data follow a reg ∼ θ Re2 scaling (dotted lines).
The L → H, H → I, and I → T transitions curves are respectively θ Re2

=

6 × 103, 6 × 104, 2 × 105. This empirical ‘lazy flow scaling’ is not consistent
with the theoretical ‘forced flow scaling’ predicted by the corollary (4.26), which
is not surprising given the different energetics of lazy flows. This θRe2 scaling
is however consistent with the scaling proposed by ML14 (see § 2.4 and (2.9)),
but this may be a coincidence that is not presently understood.

(iii) In forced flows, the regime data follow a reg ∼ θ Re scaling (dashed lines).
The L→ H, H→ I, and I→ T transitions are respectively θ Re ≈ 20, 50, 100.
This empirical ‘forced flow scaling’ is consistent with the corollary (4.26) (and
inconsistent with ML14).

We have thus confirmed one of the features underlying the distinction between lazy
and forced flows (Q ≈ Qm < 0.5 versus ≈ 0.5, respectively), as well as the regime
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Name θ (deg.) Re θRe Volume properties Resolution of data
x̄ ` τ 1x, 1z 1y 1t

L1 2 398 14 −12.2 10.4 936 0.026 0.061 3.75

H1 1 1455 25 −12.2 10.4 459 0.025 0.053 2.29
H2 5 402 35 −11.9 10.8 302 0.025 0.074 1.03
H3 2 1059 37 −12.4 11.2 351 0.025 0.036 2.64
H4 5 438 38 −12.0 11.0 335 0.027 0.069 1.08

I1 2 1466 51 −12.4 11.2 508 0.026 0.036 3.65
I2 2 1796 63 −12.4 11.1 456 0.025 0.061 2.90
I3 2 2024 71 −12.5 11.1 722 0.025 0.063 3.28
I4 6 777 81 −12.6 7.73 248 0.019 0.057 1.65
I5 5 956 83 −11.0 10.0 332 0.025 0.067 1.27
I6 6 798 83 −12.6 7.67 116 0.019 0.059 0.85
I7 3 1580 83 −14.0 7.49 223 0.018 0.056 1.68
I8 5 970 84 −11.9 11.8 250 0.026 0.054 1.69

T1 3 2331 122 −14.0 7.50 407 0.019 0.057 2.70
T2 6 1256 131 −12.5 7.66 203 0.019 0.057 1.34
T3 5 1516 132 −11.9 11.1 554 0.025 0.053 2.39

TABLE 2. List of the 16 3D-3C experiments used, showing the input parameters θ and
Re, volume properties and resolution of data. In the second column only, θ is expressed
in (deg.). Experiments are sorted by increasing θRe.

transitions scaling in forced flows reg= reg(θRe) (corollary (4.26)), but showed that
lazy flows followed a different (and still unexplained) scaling.

In order to confirm the hypothesis (4.23) underlying the corollary, and thus to
provide a physical basis for our understanding of regime transitions, we need to
validate the energetics framework of § 4, and in particular, we need direct evidence
that the energy budget of forced flows indeed follows the simplified model in
figure 8(b). This is the subject of the next section.

5.2. Experimental energy budgets
We turn our attention to the energy budgets of 16 3D-3C experiments, whose input
parameters, volume properties and resolution are detailed in table 2. They include one
experiment in the L regime (θ Re<20, named ‘L1’), four in the H regime (20<θ Re<
50, ‘H1’ to ‘H4’), eight in the I regime (50< θ Re< 100, ‘I1’ to ‘I8’) and three in
the T regime (θ Re> 100, ‘T1’to ‘T3’).

In figure 10, we plot the five main time-averaged energy fluxes of interest to
validate the energetics model of § 4 and figure 8: 〈Φadv

P 〉t (magenta triangles), 〈Φadv
K 〉t

(orange triangles), 〈Bx〉t (black line and squares), 〈Bz〉t (green lozenges) and 〈D〉t (blue
stars). In this plot, the vertical coordinate of each symbol represents the value of its
respective flux, and its horizontal coordinate represents the value of the horizontal
buoyancy flux 〈Bx〉t for this particular experiment. All fluxes are therefore effectively
plotted against 〈Bx〉t, whose definition 〈Bx〉t = (1/4)〈Qm〉tθ ≈ θ/8 (assuming Qm≈ 0.5)
makes it closest to being an input parameter. Note that this choice of horizontal
coordinate automatically groups the data by increasing values of θ (i.e. importantly
not by increasing θ Re, thus not by regime). Note that the θ = 2◦ group of data
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FIGURE 10. (Colour online) Experimental validation of the simple ‘forced flow’ energetics
model sketched in figure 8(b). Time-averaged energetics of the 16 3D-3C experiments in
table 2. Each flux retained in the general ‘lazy flow’ model of figure 8(a) was calculated
using (4.11) and (4.14) and is plotted against 〈Bx〉t (close to being the input parameter θ ),
showing that, as expected for forced flows, 〈Φadv

P 〉t ≈ 〈Bx〉t ≈ 〈D〉t and 〈Φadv
K 〉t ≈ 〈Bz〉t ≈ 0.

includes a mix of L, H and I flows, the θ = 5◦ group includes H, I and T flows and
the θ = 3◦ and θ = 6◦ groups include I and T flows.

We observe that 〈Φadv
P 〉t (main source of P) and 〈D〉t (main sink of K) closely follow

the buoyancy flux 〈Bx〉t (P→ K exchange) at all angles. The dissipation data show
the greatest discrepancy (i.e. the blue stars lie further away from the black line and
squares than the magenta triangles do) as we will explain in § 5.3. We also verify that
the advective flux of kinetic energy and the vertical buoyancy fluxes, which are only
expected to be relevant in lazy flows, are indeed close to zero: 〈Φadv

K 〉t, 〈Bz〉t ≈ 0 (see
dashed line).

In other words, the simplified budgets of figure 8(b) for forced flows and our main
prediction (4.21) that the energetics of SID flows are reducible to a single energy flux
(that we may refer to as ‘power throughput’) appear to be good approximations for
θ ∈ [1◦, 6◦], that is, even when the necessary condition for forced flows θ > α ≈ 2◦
does not hold.

Although we do not show the results, we verified that the experimental time-
averaged kinetic and potential energy budgets do indeed cancel to an excellent
approximation: 〈dP/dt〉t ≈ 〈dK/dt〉t ≈ 0 as hypothesised in (4.15) (the flow has
steady P and K reservoirs). However, it is clear from figure 10 that, for some
experiments, these budgets do not cancel to such a good approximation when
indirectly computed from the sum of experimentally determined fluxes (i.e. 〈dP/dt〉t=
〈Φadv

P 〉t − 〈Bx〉t + 〈Bz〉t and similarly 〈dK/dt〉t = 〈Φadv
K 〉t + 〈Bx〉t − 〈Bz〉t − 〈D〉t as per

figure 8). This is due to the greater experimental errors in determining boundary fluxes
and dissipation rates than in determining dK/dt and dP/dt directly, as expected from
the nature of the experimental data.

In figure 11, we re-plot the buoyancy flux and dissipation data of figure 10 (black
squares and blue stars) rescaled by Re/2. The dissipation 〈S〉t = (Re/2)〈D〉t is our
hypothetical proxy for the flow regimes and we test its dependence on the transition
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FIGURE 11. (Colour online) Dissipation and buoyancy flux data of figure 10 (same
symbols) rescaled by Re/2 and plotted against the input parameter θRe to test the corollary
(4.25) (black line).

parameter θRe expected from the corollary (4.26). Plotted against this horizontal axis,
the data are no longer grouped by angles (as was the case in figure 10); rather they
are grouped by increasing flow regimes (as shown by the coloured boxes at the top
of the figure).

These data generally support the physical hypothesis that each flow regime
corresponds to a well-defined range of 〈S〉t scaling with θRe. However, the agreement
with the simplified scaling (4.25) 〈S〉t≈ (1/16)θRe (black solid line) is not particularly
impressive (blue stars lying below the black line in all but two experiments), and
gets worse as the flow gets increasingly more turbulent. This discrepancy has two
causes: (i) the approximation 〈Qm〉t = 0.5 is an upper bound for most experiments
(black squares lying below the black line) as discussed in §§ 3.2 and 5.1; (ii) the
viscous dissipation is generally underestimated in experiments (blue stars lying below
the black squares). We discuss the latter next.

5.3. Experimental limitations in measuring the dissipation
The previous section showed that, despite measurements showing that the kinetic
energy reservoir was steady (Re/2)〈dK/dt〉t ≈ 0, its sink 〈S〉t was generally measured
to be smaller in magnitude than its source (Re/2)〈Bx〉t in the I and T regimes. This
is due to at least three experimental limitations specific to measurements of the
dissipation:

First, numerically, the dissipation is the only flux that requires computation of flow
field derivatives. Despite our use of a second-order accurate finite-difference scheme
to compute the components of the strain rate tensor, experimental errors are bound to
be amplified by differentiation especially in the I and T regimes where gradients are
computed over small length scales;

Second, dynamically, measurements of turbulent dissipation rates require a fine
enough spatial resolution, i.e. a grid size (1x, 1y, 1z) small enough to capture
the smallest dynamically active scale. It is generally acknowledged that the spectral
content of dissipation becomes negligible below the Kolmogorov length scale, which
is defined dimensionally as Lk ≡ (ν

3/〈ε〉x,y,z,t)
1/4 (where, here and here only, Lk and

ε are dimensional). Because we know that the kinetic energy budget is closed, we
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FIGURE 12. (Colour online) Effect of the spatio-temporal resolution of experiments on
the accuracy of dissipation measurements in the I and T experiments of table 2 and
figures 10–11. Measurements converge towards the expected value (〈D〉t = 〈Bx〉t, red line)
for increased (a,b) spatial resolution and (c) temporal resolutions (better ‘freezing’ of
volumes), with respect to the Kolmogorov length and time scale, respectively. Dashed line
represents the best linear fit. Note the different x-axis limits between the three panels.

use the estimated time- and volume-averaged dissipation of our corollary (4.25) to
estimate the non-dimensional Kolmogorov length scale as

Lk ≡
1

(H/2)

 ν3

2ν
g′H
(H/2)2

〈sijsij〉x,y,z,t


1/4

≈ 23/4(θRe3)−1/4. (5.1)

For each of the 11 experiments in the I and T regimes, we plot in figure 12(a,b) the
ratio 〈Bx〉t/〈D〉t against the spatial resolution normalised by the Kolmogorov length
scale (5.1): 1x/Lk =1z/Lk in panel (a) and 1y/Lk in panel (b). We observe that the
estimates of dissipation become more accurate (converging to the red horizontal line)
as the spatial resolution approaches the Kolmogorov length scale (the dashed line is
the best linear fit to the data and intercepts the red line at 1x, 1z ≈ Lk). In other
words, experiments featuring the largest discrepancy in figure 11 were the ones in
which the spatial resolution of experimental measurements was not sufficient given the
level of turbulence expected for their value of θRe. We note that this trend was not
observed when the data were plotted against 1x, 1y, 1z alone (i.e. the Kolmogorov
scale is important). This latter observation suggests that the lack of spatial resolution
dominates over the numerical inaccuracies associated with derivatives discussed in the
previous paragraph.

Third, accurate measurements of flow gradients require our 3D-3C measurements to
be as instantaneous as possible. As discussed in § 3.1 and appendix A, our scanning
technique sets a lower bound on the non-dimensional time resolution 1t over which
a volume is constructed. These non-instantaneous measurements inevitably distort
turbulent flow structures. Figure 12(c) quantifies this impact and demonstrates that
better temporal resolutions with respect to the non-dimensional Kolmogorov time
scale Tk ≡ 23/2(θRe)−1/2 (estimated similarly to (5.1)), in other words better ‘freezing’
of the volumes, result in better estimates of 〈S〉t (the fit intercepts the red line for
perfect freezing at 1t/Tk ≈ 0, as expected). The reason why such distortions lead to
under-estimations (as opposed to over-estimations) of velocity gradients is still poorly
understood.
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6. Regimes and three-dimensionality
In the previous section, we validated experimentally our hypothesis that regime

transitions correlate with an increase in the non-dimensional, volume-averaged strain
rate S (that we refer to as ‘dissipation’) and our corollary that they both scale with
θRe.

In this section, we investigate the link between flow energetics and three-
dimensionality. We start by analysing the energy budgets of forced flows in
more detail by subdividing the kinetic energy into a two-dimensional and a
three-dimensional part in § 6.1, before sketching them and discussing their implications
for regime transitions in § 6.2. We then validate this framework using experimental
data in § 6.3 and focus on spatial structures in § 6.4.

6.1. Two-dimensional and three-dimensional kinetic energy budgets
We start by defining, for any flow field φ, a decomposition into a streamwise-averaged
two-dimensional component φ2d and a complementary three-dimensional component
φ3d:

φ(x, y, z, t)= φ2d(y, z, t)+ φ3d(x, y, z, t), (6.1)

where

φ2d(y, z, t)≡ 〈φ〉x, (6.2a)
φ3d(x, y, z, t)≡ φ − 〈φ〉x. (6.2b)

This decomposition is inspired from similar decompositions applied to direct
numerical simulations (DNS) of stratified turbulence initiated by secondary instabilities
developing on Kelvin–Helmholtz (KH) billows (Caulfield & Peltier 2000; Peltier &
Caulfield 2003; Mashayek & Peltier 2012a,b; Mashayek, Caulfield & Peltier 2013;
Salehipour, Peltier & Mashayek 2015). These studies typically decomposed the kinetic
energy and associated fluxes into a one-dimensional part, corresponding to an initial
base flow varying along z, a two-dimensional (x, z) part corresponding to coherent
structures resulting from a primary KH instability and a three-dimensional (x, y, z)
part corresponding to inherently turbulent structures. Our decomposition is slightly
different in order to reflect the fact that, due to confinement by the duct boundaries,
the SID ‘base flow’ is an inherent two-dimensional function of y and z (for more
details see LPZCDL18 § 5.3).

Next, we define the volume-averaged two- and three-dimensional kinetic energies
based on the respective velocity fields:

K2d(t)≡ 〈K2d
〉y,z ≡

1
2 〈u

2d
i u2d

i 〉y,z, (6.3a)

K3d(t)≡ 〈K3d
〉x,y,z ≡

1
2 〈u

3d
i u3d

i 〉x,y,z. (6.3b)

Importantly, we verify that the total kinetic energy is the sum of both components:
K = K2d

+ K3d, since 〈K〉x = 〈K2d
〉x + 〈K3d

〉x + u2d
i 〈u

3d
i 〉x and 〈u3d

i 〉x = 0 by definition.
In order to write the evolution of K2d and K2d, we first x-average the momentum
equation, which involves a number of gradients and divergence terms of the form〈

∂φ

∂xi

〉
x

=

〈
∂φ

∂x

〉
x︸ ︷︷ ︸

mean gradient

+
∂〈φ〉x

∂xi
. (6.4)
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In this integration by parts, φ may represent uiuj (convective term), p (pressure
gradient) or ui (diffusive term). At this point, the assumption of periodic boundaries
in x, consistent with forced flows (see figure 7b), becomes essential in order to cancel
all mean gradients along x (the first term on the right-hand side) and make analytical
progress (by avoiding very lengthy expressions). Thus, under this essential periodic
assumption, we derive the following simple budgets:

dK2d

dt∗
=

Re
2

dK2d

dt
=

Re
2
(B2d

x − B2d
z )− S2d

− T, (6.5a)

dK3d

dt∗
=

Re
2

dK3d

dt
=

Re
2
(B3d

x − B3d
z )− S3d

+ T, (6.5b)

where the rescaled ‘fast’ time t∗ ≡ t/(Re/2), previously introduced in § 4.4, is now
used to facilitate general comparison between all experiments (making the horizontal
buoyancy flux scale with θRe and the rate of viscous dissipation be S instead of
D). We define the above two-dimensional and three-dimensional buoyancy fluxes,
dissipation, and the new transfer term T between K2d and K3d as

B2d
x ≡

θ

4
〈ρ2du2d

〉y,z, B2d
z ≡

1
4
〈ρ2dw2d

〉y,z, S2d
≡ 〈s2

2d〉y,z, (6.6a)

B3d
x ≡

θ

4
〈ρ3du3d

〉x,y,z, B3d
z ≡

1
4
〈ρ3dw3d

〉x,y,z, S3d
≡ 〈s2

3d〉x,y,z, (6.6b)

T ≡−
Re
2

〈
〈u3d

i u3d
j 〉x

∂u2d
i

∂xj

〉
y,z

≈−
Re
2

〈
〈u3dw3d

〉x
∂u2d

∂z

〉
y,z

. (6.6c)

Although the transfer term T is defined as the sum of six terms (product of i= 1, 2, 3
by j= 2, 3), the approximation in (6.6c) reflects our observations that the single term
i= 1, j= 3 represents over 90 % of the total in experiments (this is expected from the
fact that turbulence is most active in the vicinity of the interface where the dominant
shear is ∂zu2d).

6.2. Sketch and implications for regime transitions
A sketch of the time-averaged budgets in (6.3) is shown in figure 13 (using the fast
t∗ time scale), which improves on the sketch of figure 8(b). Note that we ignore the
vertical buoyancy fluxes B2d

z , B3d
z as well as the three-dimensional horizontal buoyancy

flux B3d
x since they have been experimentally verified to be negligible (as expected).

Panels (a) and (b) show fluxes of hypothetically different magnitudes under increasing
‘power throughput’ in the system (Re/2)〈Φadv

P 〉t = (1/8)〈Qm〉tθRe (represented by the
thickness of the E→P arrow). Assuming 〈Qm〉t≈ 0.5, the time- and volume-averaged
power throughput in the system is θRe/16, and we predict the following.

(i) For the lowest θ Re < 20, the power throughput is <20/16 = 1.25, and
〈S〉t = 〈S2d

〉t alone is sufficient to dissipate this power via the adjustment of the
streamwise velocity profile u(y, z) creating O(1) gradients |∂zu2d

| and |∂yu2d
|. This

situation corresponds to the L regime, which, as we have seen in § 3.2, is essentially
invariant in x.

(ii) For 20<θRe< 50, the power throughput is 1.25< 〈S〉t < 3.12, and corresponds
to the H regime, featuring the three-dimensional confined Holmboe waves (CHWs)
described in LPZCDL18. To understand the L → H transition, we formulate two
distinct hypotheses regarding the energetical importance of CHWs:

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.488


686 A. Lefauve, J. L. Partridge and P. F. Linden
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(1/8)¯Qm˘t œ Re

K3d
¯T˘t ¯T ˘t

¯S2d˘t ¯S2d˘t¯S3d˘t ¯S3d˘t

K3dK2d K2d

(1/8)¯Qm˘t œ Re

FIGURE 13. Energy budgets of forced flows using the K = K2d
+ K3d decomposition,

refining the budgets of figure 8(b). These budgets in (a) and (b) only differ in the
hypothetical magnitude of the fluxes (with respect to the rescaled time t∗), represented by
the thickness of the arrows: (a) at low θRe, the power throughput is small and dissipation
by 〈S2d

〉t is sufficient; (b) at high θRe, the power throughput is high and transfer to K3d

by 〈T〉t and dissipation by 〈S3d
〉t takes over.

(1) HYP-1: the distortion of the two-dimensional flow u2d to yield higher
∂zu2d, ∂yu2d and 〈S2d

〉t ‘incidentally’ renders the flow profile u2d, ρ2d susceptible
to the confined Holmboe instability (CHI) and triggers a transition to a weakly
three-dimensional flow state, whose dissipation 〈S3d

〉t is insignificant (panel a).
In other words additional dissipation is achieved primarily by u2d and not by
the three-dimensional CHWs, which are simply a by-product of the changes
in u2d.

(2) HYP-2: the distortion of u2d is no longer sufficient to reach the target
dissipation: no two-dimensional solutions exist with the required 〈S2d

〉t and
the flow must ‘bifurcate’ to a three-dimensional state with significant transfer
〈T〉t and additional dissipation 〈S〉t�〈S2d

〉t (panel b). In other words additional
dissipation is achieved by CHWs rather than by a continuing deformation of
u2d. This hypothesis was expressed in the last sentence of ‘future direction (ii)’
in LPZCDL18 (§ 7.2, p. 540) as a possible mechanism setting the amplitude
of Holmboe waves.

Experimental data in the next section will allow us to decide which hypothesis is
true.

(iii) For θRe > 50 (I regime), the power throughput becomes large >3.12 and we
expect the transfer 〈T〉t and three-dimensional dissipation 〈S3d

〉t to be important to
close the budgets (panel b). The H→ I transition may be explained by two hypotheses
which are respectively consistent with those above:

(1) HYP-1: if the CHW is energetically insignificant, its amplitude is presumably
not influenced by θRe. Since it is the two-dimensional flow u2d that responds
to θ Re, we expect the H→ I transition to be related to an instability of this
base flow.

(2) HYP-2: if the CHW is energetically significant in providing three-dimensional
dissipation following θ Re, its amplitude must be set by θ Re and we thus
expect the H→ I transition to be related to a ‘secondary’ instability of this
wave state, perhaps due to a critical (nonlinear) amplitude.
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FIGURE 14. (Colour online) Experimental two-dimensional and three-dimensional kinetic
energy budgets in the 16 3D-3C experiments of table 2 and figures 10, 11. The axes, black
squares and solid blue stars are identical to those in figure 11. The empty blue stars and
the blue asterisks show the two-dimensional and three-dimensional decomposition. Green
triangles represent the rate of transfer of K2d to K3d. Orange circles represent the proxy
for 〈S3d

〉t and 〈T〉t (see (6.7)) and the dashed orange line represents its trend.

(iv) For θRe> 100 (power throughput >6.25) the transition to a sustained T regime
has a straightforward explanation: a fully turbulent flow that sustains high values of
S3d in time and space will achieve higher time and volume averages of 〈S3d

〉t than an
intermittently turbulent flow.

6.3. Experimental validation

We plot the time-averaged fluxes of the K2d, K3d budgets in our 16 3D-3C
experiments in figure 14. This figure is very similar to figure 11, but shows the
S2d
+ S3d decomposition and the transfer term T .

We observe that 〈S2d
〉t dominates in the L and H regimes. To mitigate our

underestimation of 〈S3d
〉t in the I and T regimes (owing to the computation of

small-scale velocity gradients, see § 5.3), we further consider and plot the following
proxy:

〈S3d
proxy〉t = 〈Tproxy〉t ≡

Re
2
〈Bx〉t − 〈S2d

〉t. (6.7)

This proxy for the three-dimensional energy dissipation and transfer is trustworthy
because it relies on the (verified) steadiness of the kinetic energy reservoirs and does
not involve computation of small-scale gradients.

We observe in figure 14 that this proxy for the three-dimensional dissipation
dramatically increases in an approximately linear fashion above a threshold θRe≈ 40,
shortly before the H→ I transition at θRe= 50 (see trend indicated by the dashed line).

This observation is a key experimental result of this paper and supports the
prediction of § 6.2 and figure 13 that the I and T regime correspond to marked increase
in three-dimensional dissipation that scales linearly with the power throughput θRe
due to the upper bound set on the two-dimensional dissipation by hydraulic controls.
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FIGURE 15. Spatial structure of the kinetic energy fluxes in the H regime, whose volume-
averaged energetics are sketched in figure 13(a). Two-dimensional (2-D) cross-sectional
structure of the t- and x-averaged (a) horizontal buoyancy flux; (b) two-dimensional
dissipation, (c) K2d

→K3d transfer; (d) three-dimensional (3-D) dissipation. Instantaneous
three-dimensional dissipation in (e) in the vertical mid-plane y = 0 and ( f ) in the
horizontal mid-plane z = 0. This is the same experiment H1 as in figure 3(a–f )
(instantaneous snapshots are taken at the same arbitrary time t= 261).

This observation also supports HYP-1 in § 6.2 that Holmboe waves are energetically
insignificant and caused by a linear instability triggered by the increased interfacial
shear |∂zu| reaching a threshold value when 〈S2d

〉t ≈ 20 at the L → H transition
(compare the mean profiles between panels f and l in figure 3). To further support
HYP-1, we confirmed that the two-dimensional mean flow in experiment L1
(〈u〉x,t(y, z) and 〈ρ〉x,y,t(z)) was indeed linearly stable to three-dimensional perturbations
of the form φ′ = φ̂(y, z) exp(ikx + σ t) (using the analysis described in LPZCDL18
§ 5.1, which they performed on experiment H4).

6.4. Spatial structure of energy dissipation
In this section, we examine the spatial distribution of energy fluxes to reveal
information hitherto hidden by volume averaging. In figures 15 and 16, we compare
and contrast, for the H1 and T2 experiments respectively, the cross-sectional
distribution of the buoyancy flux (panel a), two-dimensional dissipation (panel b),
transfer (panel c) and three-dimensional dissipation (panel d). The cross-sectional
average of the data in each panel respectively yields (Re/2)〈Bx〉t, 〈S2d

〉t, 〈T〉t, 〈S3d
〉t.
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FIGURE 16. Spatial structure of the kinetic energy fluxes in the T regime, whose volume-
averaged energetics are sketched in figure 13(b). Same panels and legend as figure 15 for
side-by-side comparison. This is the same experiment T2 as in figure 4(g–l) (instantaneous
snapshots are taken at the same arbitrary time t= 168).

We also plot instantaneous snapshots of three-dimensional dissipation in the vertical
mid-plane y= 0 (panel e) and horizontal mid-plane z= 0 (panel f ) at the same times
as the snapshots in figures 3(a–d) and 3(g–l). We recall that the volume-averaged
transfer and three-dimensional dissipation are underestimated in the T experiment, as
can be seen in figure 14 (next-to-rightmost data series). The proxy data in the latter
figure suggest that the (averaged) transfer in figure 16(c) should be 25 % larger, and
the (averaged) dissipation in figure 16(d–f ) should be 50 % larger. The time- and
volume-averaged power input (Re/2)〈Bx〉t (which should equal the total 〈S2d

〉t+〈S3d
〉t)

can be read on figure 14 as ≈1 (H1 experiment) and ≈7 (T2 experiment). Accordingly,
the colour bar in figures 15 and 16 (identical for the all panels of each figure) have
respective limits of 3 and 20, equal to about three times the average energy input,
allowing for side-by-side comparison of the relative importance of each flux in each
regime. Complementary visualisations of slices and averages of the density, velocity
and enstrophy fields of experiments H1 (same as in figure 15) and T3 (similar to
figure 16) are available in Partridge et al. (2019).

In both experiments, the power input (panels a) is relatively uniformly distributed
within each counter-flowing layer, and low around the sharp interface (H regime,
figure 15) and mixing layer (T regime, figure 16). In contrast, the two-dimensional
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dissipation (panels b) is highly localised at the four duct walls, as well as at the
interface in the H regime only (in the T regime the interfacial shear is comparatively
low). The transfer term (panels c) is also highly localised but in the ‘active core’
of the flow, i.e. at the interface (H) or within the mixing layer (T). This localised
power input of K3d is then dissipated by three-dimensional motions preferentially in
the interior (panels d) as well as a very close to the top and bottom walls in the T
regime. We also observe that the three-dimensional dissipation is more uniform than
the transfer in the cross-section. This suggests complex energy transfer pathways and
supports the general conclusion that all the kinetic energy fluxes have very different
cross-sectional structures, both in the H regime and in the T regime. Next, we
focus on the instantaneous snapshots of three-dimensional dissipation in panels (e, f ).
Beyond the observation that its volume-average S3d is only significant in the T
regime, we see, without surprise, that its spatial structure is highly heterogeneous.
‘Wispy’ regions with considerable three-dimensional structure feature much enhanced
dissipation, several times larger than their respective volume average, especially in
the T regime where it locally exceeds the limit of the colour bar.

6.5. Link with the buoyancy Reynolds number
The stratified turbulence literature highlights the importance of the buoyancy Reynolds
number, defined by scaling analysis of the momentum equations as Reb ≡ ReF2

h ,
where Fh is a horizontal Froude number (Brethouwer et al. 2007). Strongly stratified
turbulence, in which there is a significant range of scales not affected by viscosity,
requires Reb � 1. However, this definition of Reb requires the identification of a
horizontal length scale `h to construct Fh which is not obvious in the SID. ML14
estimated Reb≈Re(`h/`v)

2
≈ 104(10−1)2≈ 100 in their most turbulent SID experiments

at Re = O(104) using an estimation of the horizontal to vertical length scale ratio
of `h/`v ≈ 10, meant to characterise the elongated turbulent structures visible in
the shadowgraphs. Following this approach, we estimate Reb = O(10) in our most
turbulent 3D-3C experiment at Re=O(103).

A related definition of Reb is

Reb ≡
ε0

νN2
0
, (6.8)

where the quantities on the right-hand side are dimensional: ε0 is a ‘characteristic’ rate
of turbulent dissipation and N2

0 is a ‘characteristic’ value of the buoyancy frequency
N2
≡ −(g/ρ0)∂zρ. This definition is based on the assumption that ε0 ∼ q3/lh, where

q is a measure of the turbulence intensity. This parameter Reb is also referred to
as the ‘activity parameter’ and quantifies the separation between the Ozmidov and
Kolmogorov length scales (Gibson 1980; Smyth & Moum 2000). Consensus has
emerged that Reb & 20− 30 is required for the flow to have a wide enough range of
scales that are not significantly affected either by stratification or by viscosity and
hence exhibit the key characteristics of stratified turbulence (Bartello & Tobias 2013).
In our recent publication (Lefauve et al. 2018, §§ 2.3.2 and 3.2) we quantified Reb
in (6.8) using simple scaling arguments and proposed Reb ≈ θRe, remarking that the
H→ I and I→ T transitions occurred respectively at Reb ≈ 50 and 100.

However, the latter estimates were based on scaling laws which do not accurately
represent the quantitative relations involved. The results of this paper on the energetics
of SID flows now allow us to provide a more accurate estimate of Reb as

Reb ≈
2〈S3d
〉t

〈|∂zρ|〉x,y,z,t
≈ 2〈S3d

〉t. (6.9)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

48
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.488


Sustained stratified shear flows 691

The first approximation comes from our non-dimensionalisation of (6.8) and our
interpretation of ‘characteristic’ dissipation and buoyancy frequency as ‘time and
volume averaged’, and of ‘turbulent’ as ‘three-dimensional’. The second approximation
comes from 〈∂zρ〉x,y,z,t ≈ 1 since 〈|∂zρ|〉z = |ρ(z= 1)− ρ(z=−1)|/2= 1. As we have
seen in figure 14, S3d

proxy starts increasing shortly before the I→ T transition, and grows
approximately linearly in the I and T regime. Assuming two-dimensional dissipation
would plateau in very turbulent flows (far above the I→ T transition), our corollary
(4.25) yields

Reb→
1
8θRe for θRe� 100. (6.10)

The maximum value achieved in our T experiments is however well below this
asymptotic estimate: Reb≈2S3d

proxy≈6 (figure 14, experiment T3, θRe=132 6�100). We
note that this value depends on the choice of volume over which the three-dimensional
dissipation is averaged, which varies between studies in the literature. If instead of
choosing the whole measurement volume delimited by the four duct walls, as we do
in (6.9), we chose a smaller volume containing the ‘core’ of the mixing layer where
s2

3d is largest (e.g. |y|, |z|6 1/2), we would obtain an (perhaps more sensible) estimate
a factor of 2 to 4 higher, i.e. of magnitude Reb = O(10). This is about an order
of magnitude lower than the values claimed by ML14, because the spatio-temporal
resolution constraints of our 3D-3C experiments limit us to flows just above the I→ T
transition (at θRe=O(100), giving Reb =O(10)), whereas some of the shadowgraph
observations in ML14 were done much further away from this transition (at θRe =
O(103), giving Reb =O(100)).

7. Conclusions
7.1. Summary

In this paper, we investigated the transition in the long-term qualitative behaviour,
or flow regime, of geophysically relevant sustained stratified shear flows as two key
forcing parameters are varied. We performed laboratory experiments in the stratified
inclined duct (SID) set-up (figure 1) which features four qualitatively different
regimes: laminar (L), Holmboe waves (H), intermittently turbulent (I) and fully
turbulent (T), with increasing three-dimensionality and mixing intensity (figures 3–4
and table 1). These regimes occupy distinct regions in the two-dimensional space
of non-dimensional input parameters: duct tilt angle θ ∈ [−1◦, 6◦] and Reynolds
number Re ∈ [300, 5000] (figure 2). Although these regimes have been observed
since at least Macagno & Rouse (1961), we argued that previous attempts to explain
their transitions were unsuccessful. Although Meyer & Linden (2014) recognised
the importance of both θ or Re, their empirical scaling of iso-regime curves scaling
with the non-dimensional group θRe2 does not agree with our new regime diagram
obtained in a smaller duct (figure 2). This motivated our search for a scaling law
backed by quantitative experimental data and sound physical principles.

Therefore, we derived from first principles evolution equations for the volume-
averaged potential and kinetic energy in a control volume of arbitrary length, whose
cross-section is bounded by the four walls of our square duct (equations (4.10), (4.13),
sketched in figure 5). We then introduced a simplified two-layer frictional hydraulics
model (figure 6) to make modelling progress and simplify the energy budgets in SID
flows. We distinguished between, on one hand, ‘lazy flows’ at low |θ |. 2◦, in which
the forcing is primarily hydrostatic and dwarfed by viscous friction; and on the other
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hand, ‘forced flows’, at high θ & 2◦, in which the forcing is primarily gravitational
and is closely balanced by viscous friction (figure 7). We showed that these flows
have different energetics (figure 8) and that, in a statistically steady sense (averaged
over sufficiently long times), any control volume of a forced flow exhibits simple
energy budgets characterised by a single potential power input from the exterior, a
single potential-to-kinetic conversion power and a single kinetic dissipation power,
all equal in magnitude (equation (4.21) and figure 8b). This led us to propose the
physical hypothesis that regime transitions are caused by increasing values of the
suitably rescaled time- and volume-averaged rate of kinetic energy dissipation, or
square norm of the strain rate tensor 〈sijsij〉x,y,z,t (equations (4.22) and (4.23)), and to
deduce the ‘forced flow’ corollary that regime transitions should therefore scale like
θRe.

We validated this theory in two ways. First, our experimental regime diagram
(figure 9) confirmed the θRe scaling predicted by the corollary. Second, we obtained
a comprehensive data set of unprecedented volumetric measurements of the density
and three-component velocity fields in 16 experiments spanning all four regimes
(table 2 and figures 10, 11). Our time- and volume-averaged measurements of all
energy fluxes confidently support our theoretical ‘forced flow’ energy budget model,
as well as the above physical hypothesis, despite the experimental challenges of
obtaining accurate kinetic energy dissipation rates (figure 12).

We delved deeper into the above hypothesis by deriving budgets for the two-
dimensional (streamwise-invariant) and three-dimensional components of kinetic
energy for forced flows (6.5). We further hypothesised that flows with low power
throughput and thus low dissipation power (low θRe, figure 13a) are able to dissipate
energy exclusively two-dimensionally by increasing the magnitude of the exchange
flow rate (volume flux) and their streamwise-invariant wall and interfacial shear (L
and H regimes). By contrast, flows with high power throughput (high θRe, figure 13b)
are not be able to dissipate enough energy two-dimensionally due to the upper limit
on the exchange flow rate set by hydraulic control, and thus have to transition
to intermittently and fully turbulent regimes with increasingly three-dimensional
dissipation scaling with θRe. We validated this hypothesis with our volumetric
experimental data set (figure 14) despite having to use indirect evidence (6.7) to
mitigate the experimental under-estimation of three-dimensional dissipation. Based
on further observations, we suggested that (i) the L→ H transition was caused by
a Holmboe instability triggered by the increasing interfacial shear resulting from
the two-dimensional dissipation scaling with θRe; (ii) the H→ I transition might be
triggered by another primary instability of the base flow rather than by ever-growing
Holmboe waves since the latter are energetically insignificant. We also showed
that energy transfers in the three-dimensional experimental volume were complex
and heterogeneous in space, particularly in the more turbulent regimes (figures 15
and 16). Finally, we provided a quantitative estimate of the buoyancy Reynolds
number (6.9)–(6.10) in the turbulent regime.

To conclude, we believe that we have achieved our initial aim, since our results
provide the first mutually consistent physical basis and quantitative experimental data
to explain the observed transitions in the different qualitative long-term dynamics of
SID flows. The generality of these results provides a useful basis for the study of a
broader range of sustained stratified shear flows found in nature.

7.2. Unanswered questions
Our results raise at least four unanswered questions:
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(i) What is the dynamical explanation for the I→ T transition? We proposed that
the L→ H and H→ I transitions were caused by stratified shear instabilities resulting
from modifications in the parallel base flow slaved to the energy throughput θRe.
We explained that, energetically, sustained turbulence in the T regime was able to
achieve higher time-averaged three-dimensional dissipation than intermittently in the
I regime. However, does this transition occur by a gradual lengthening of the period
of turbulent events with respect to laminar events or by a more abrupt bifurcation?
In other words, do ‘intermediate’ solutions exist with a range of turbulent/laminar
period ratios or a range of different dissipative structures? The dynamical details of
the transition between intermittency and sustained turbulence, and the quantitative
explanation for the transition occurring at θRe≈ 50 remain open questions.

(ii) How to explain flow regime transitions in horizontal ducts or duct inclined
at a slightly negative angle? We indeed observed Holmboe waves and intermittent
turbulence for θ = 0◦ (figure 2), yet our forced flow scaling of transitions with θRe
only applies for θ & α (we recall that α ≡ H/L is the inverse aspect ratio of the
duct, see (4.18)). Flows at |θ |. α have more complex energetics (figure 8a), and we
have seen that, in such flows, transitions appear to scale with θRe2 instead of θRe
(figure 9). Further work is needed to understand lazy flow dynamics and explain this
θRe2 scaling.

(iii) Why did ML14 observe a different transition scaling in a different duct
geometry? As evidenced by the dashed line in figure 2 and as discussed in § 2.5,
their experiments in a duct with a larger cross-section (H= 100 mm versus 45 mm in
this paper) suggested a θRe2 scaling (both for lazy and forced flows) in disagreement
with our theory. However, we note that the Reynolds numbers in ML14 are typically
larger than ours. At sufficiently large Re, wall boundary layers are not fully developed,
i.e. they do not span the whole cross-section of the duct, as was typically the case
in the data shown in this paper. Instead, wall boundary layers become sufficiently
thin that the volume-averaged contribution of wall dissipation is no longer of order 1
but scales with Re1/2. This apparently undermines our simple hypothesis (4.23) that
increasingly turbulent regimes correspond to increasing values of the volume-averaged
dissipation well above ‘laminar’ O(1) values, but more work is required to investigate
this question.

(iv) What is the role of mixing? In this paper, we focused on kinetic energy
dissipation to explain regime transitions and did not explicitly derive or represent
irreversible mixing in the energy budgets. Irreversible mixing is implicitly accounted
for in the mass flux Qm (3.3), to which the energy throughput of forced flows is
proportional (see (4.24)). Although the black contours in figure 9 show that the mass
flux has a complicated Qm(θ, Re) dependence (due primarily to the volume flux
Q(θ, Re) and secondarily to mixing), we made the reasonable assumption that, in
forced flows, Q≈Qm ≈ 0.5 (leading to (4.25)). We believe that neglecting mixing in
this fashion is acceptable for the work in this paper, but acknowledge that a better
understanding of the Q(θ, Re) and Qm(θ, Re) relations is desirable. More generally,
beyond the Qm/Q question and its (moderate) impact for the energy throughput in
forced flow, we believe that the study of mixing and mixing efficiency in sustained
stratified shear flows remains a major research objective. However we are currently
not able to measure mixing accurately in experiments; the Batchelor length scale
is typically Sc1/2

≈ 25 times smaller than the Kolmogorov scale, which is already
challenging to resolve (§ 5.3). For a more detailed discussion of mixing in the SID
experiment, see Lefauve (2018) § 6.7.
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Appendix A. Experimental constraints

The physical constraints currently limiting the resolution and temporal duration of
our experimental measurements are as follows:

(i) The streamwise and vertical resolutions 1x ≡ `/nx, 1z ≡ 2/nz (where nx, nz are
the number of sPIV vectors in each direction) are generally equal and limited by
the resolution of the cameras, by the size of the PIV particles (typically 50 µm)
and by their seeding density. Using 8 MPixel cameras, 31×31 Pixel interrogation
windows, a 75 % overlap, and volumes of length ` ≈ 11, we typically obtained
nx ≈ 500, nz ≈ 100, i.e. 1x ≈ 1z ≈ 0.02. Density data were obtained at higher
resolution because of the absence of interrogation windows in PLIF, but since
this higher resolution was not needed for the analysis in this paper, they were
smoothed before being interpolated onto the grid of the velocity data.

(ii) The spanwise resolution 1y ≡ 2/ny is limited by the finite thickness of our
laser sheet (required for sPIV measurements) estimated to be ≈1.5 mm≈H/30,
dictating ny ≈ 30 − 40 as a good compromise to avoid excessive redundancy
of overlapping laser sheets, and therefore a typical resolution 1y ≈ 0.05 − 0.07
(coarser than 1x, 1z).

(iii) The temporal resolution 1t ≡ nyδt of our measurements is primarily limited by
the previously set ny and the laser frequency of δt−1 (a maximum of 100 Hz
in dimensional units, i.e. 100 double pulses per second). This results in a
typical non-dimensional lower bound 1t & 30× 100−1

×1U/H= (1.2ν/H2)Re≈
Re/1600, making the near-instantaneous ‘freezing’ of volumes better (i.e. 1t
smaller) in low-Re flows than in high-Re flows (for a given H and ν). For the
flows considered in this paper, 1t≈ 1− 4 ATU (the lower bound 1t≈ Re/1600
was only rarely realised since the laser could only be set at its maximum
frequency for the fastest, highest-Re flows).

(iv) The duration of the recorded data, τ ≡ nt1t, and therefore the number of
successive volumes measured nt, is limited by the available RAM storage
memory (50 GB) dedicated to each camera (two cameras for sPIV and one
camera for PLIF). A total of 150 GB of raw data typically yielded ≈18 000
frames per camera, i.e. ≈9000 sPIV fields or nt = 9000/ny ≈ 300 volumes
spanning a duration τ ≈ 102

− 103 ATU (typically a few minutes). Although τ

is typically shorter than the maximum duration of an experiment (before the
flooding of the controls, determined by the size of the reservoirs), we refer to it
as the ‘duration of an experiment’ in this paper for simplicity.
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Appendix B. Estimation of energy fluxes
Based on the two-layer hydraulic model of figure 6, we use the definitions for the

energy fluxes in the K and P budgets (4.4), (4.5), (4.8) to estimate the following
(derivations can be found in L18, § 6.3.1):

(i) The advective boundary flux K is

Φadv
K =−

Q3

`

{
ηL

(1− η2
L)

2
−

ηR

(1− η2
R)

2

}
6 0 since ηL > ηR, (B 1)

it is thus always negative (it acts as a sink to K) since the interface must
slope down. In other words, the inflow of kinetic energy in V by the velocities
u1L, u2R is always smaller than the outflow by the velocities u2L, u1R. (Note
that even more negative Φadv

K would be obtained by relaxing the assumption
of uniform flow in each layer and taking into account the non-unitary velocity
distribution coefficient when evaluating 〈u3

〉y,z, which is typically greater for the
thin outflowing layers than for the thick inflowing layers).
Importantly, we note that Φadv

K = 0 if V is approximately periodic in x, i.e. if
velocities and interface position are identical at the left and right boundaries.
For any general V , this requires that the interface is flat everywhere η(x) = 0,
which as explained in § 4.3.1 corresponds to forced flows guaranteed at large
tilt angles θ > α.

(ii) The pressure boundary flux of K is

Φ
pre
K =

1
4`
〈u(η− z)〉y,z|L−R = 0, (B 2)

under the assumptions of no barotropic flow 〈u〉x,y,z= 0 and of hydrostatic flow
(in particular that u does not depend on z). We will therefore neglect this flux.

(iii) The viscous boundary flux of K is

Φvis
K =

8Q2

`Re

{
ηLη

′

L

(1− η2
L)

2
−

ηRη
′

R

(1− η2
R)

2

}
. (B 3)

We note that, similarly to the advective flux, Φvis
K = 0 in forced flows (i.e. if V

is periodic). However, for the large Re� 1 investigated here, this flux will be
neglected compared to the advective flux |Φvis

K | � |Φ
adv
K |.

(iv) The advective boundary flux of P is

Φadv
P =

1
4`

Qm

(
ηL

1− η2
L
−

ηR

1− η2
R

)
︸ ︷︷ ︸

hydrostatic
forcing >0

+
1
4

Qm θ︸ ︷︷ ︸
gravitational

forcing >0

> 0. (B 4)

We note that Φadv
P has two distinct positive components: hydrostatic forcing

and gravitational forcing, as already identified in (4.17). Consistently with the
discussion of § 4.3.1, we see here that for forced flows the hydrostatic term
cancels and only the gravitational forcing remains.

(v) The diffusive boundary flux of P

Φ
dif
P =

1
4`Re Sc

[
θ

{(
x̄+

`

2

)
η′R −

(
x̄−

`

2

)
η′L

}
+ (ηLη

′

L − ηRη
′

R)

]
, (B 5)

where again, Φdif
P = 0 for forced flows. Moreover, just like Φvis

K , we neglect this
flux for the large Re and Sc used here since |Φdif

P | � |Φ
adv
P |.
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(vi) The horizontal buoyancy flux

Bx =
1
4 〈ρu〉x,y,z θ = 1

4 Qm θ > 0, (B 6)

which is exactly equal to the gravitational component of Φadv
P (see (B 4)).

(vii) The vertical boundary flux

Bz =−Qm
ηL − ηR

4`
6 0, (B 7)

under the assumption that the centre of mass of a slab of dense (ρ = 1) fluid
drops by ηL − ηR over the length ` (i.e. it has a negative vertical velocity),
and conversely for a slab of buoyant (ρ = −1) fluid. In the absence of any
other vertical motion other than those consistent with hydraulic theory, it is
thus negative, meaning that it acts as a source term for K (where it appears
as −Bz, see (4.10)) and as a sink for P (where it appears as +Bz, see (4.13)).
We note that this flux also cancels for forced flows. However, if we relax the
hydraulic assumptions (as will be required to investigate the laboratory flows
in this paper), non-trivial vertical motions (turbulence) may render Bz sign
indefinite. We therefore consider this flux to be irreversible (negative definite)
in flows close to the hydraulic assumptions (L and H regimes) and potentially
reversible (sign indefinite) in flows where vertical motions may be large (I and
T regimes).

(viii) The conversion of I to P

Φ int
P =

1
4 Re Sc

−
ηL − ηR

`
θ︸ ︷︷ ︸

> 0 and�1

+1

≈
1

4 Re Sc
, (B 8)

since 〈ρ〉y,z = η, by definition of η, assuming collocation of the velocity and
density interfaces, and 〈ρ〉x,y|B−T = 1 − (−1) = 2. Given the large Re and Sc
investigated here, we neglect it.

(ix) The viscous dissipation: under the assumptions of hydraulic theory, D=0. When
relaxing these assumptions, D> 0 but is a priori unknown (though we show in
§ 4.3 that it can be deduced in the simplified budget of forced flows).
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