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Semiparametric generalized additive models are a powerful tool in quantita-
tive econometrics+ With responseY, covariatesX,T, the considered model is
E~Y6X;T ! 5 G$XTb 1 a 1 m1~T1! 1 {{{ 1 md~Td!% + Here, G is a known link, a
andb are unknown parameters, andm1, + + + ,md are unknown~smooth! functions
of possibly higher dimensional covariatesT1, + + + ,Td+ Estimates ofm1, + + + ,md, a,
andb are presented, and asymptotic distributions are given for both the nonpara-
metric and the parametric part+ The main focus of the paper is application of boot-
strap methods+ It is shown how bootstrap can be used for bias correction, hypothesis
testing ~e+g+, component-wise analysis!, and the construction of uniform confi-
dence bands+ Further, bootstrap tests for model specification and parametrization
are given, in particular for testing additivity and link function specification+ The
practical performance of the methods is illustrated in a simulation study+

1. INTRODUCTION

Many problems in econometrics and other fields require estimating and analyz-
ing the conditional meanm~X,T ! of a random responseY given covariatesX
andT+ A traditional estimation approach form~x, t ! assumes thatm belongs to
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a known finite-dimensional parametric family, often motivated by economic
theory, identifiability conditions or practical reasons+ Parameters can be esti-
mated withOP~10Mn! rate of convergence+ Clearly, the estimation results are
misleading ifm~x; t ! is misspecified+ Misspecifications may be avoided by non-
or semiparametric approaches+ However the nonparametric rate of convergence
decreases rapidly as the dimension of the covariates increases~see, e+g+, Stone,
1985!, and high-dimensional nonparametric functions are difficult to interpret+
A natural compromise between typical parametric and purely nonparametric
models is a model of the form

E~Y6X 5 x;T 5 t ! 5 G~xTb 1 m~t !! 5 G~xTb 1 a 1 m1~t1! 1 {{{ 1 md~td !!,

(1)

called a generalized additive partial linear model+ In this paper we study the
case when the link functionG is known or has to be tested and coefficientsa
and b and the nonparametric functionsm1, + + + ,md of possibly higher dimen-
sional covariatesT1, + + + ,Td are unknown+ It is well known that those models
can be estimated at a rate typical for the lower dimensional explanatory vari-
ablesTj ~Stone, 1985!+

The special case of generalized partially linear models~with d 5 1! is well
studied ~see, e+g+, Ai , 1997; Mammen and van de Geer, 1997; Severini and
Staniswalis, 1994!+ We will extend the latter approach, i+e+, the iterative appli-
cation of smoothed local and unsmoothed global likelihoods+ The related model
E @Y6X,T # 5 G$bTX 1 m~T Ta!% is studied by Carroll, Fan, Gijbels, and Wand
~1997!+ Their aim is dimension reduction of the variableT by projection, but
the fitted nonparametric transformationm is quite difficult to interpret+

Additive and generalized additive models play an important role in eco-
nomic theory~see, e+g+, Leontief, 1947; Goldberger, 1964; Deaton and Muell-
bauer, 1980!+ Apart from their statistical advantages they allow for the analysis
of subsets of regressors and permit decentralization in optimization and deci-
sion making+ Projection smoothers using backfitting techniques are considered
in Hastie and Tibshirani~1990!, but asymptotic theory for this technique is rather
complicated~see Mammen, Linton, and Nielsen, 1999; Opsomer and Ruppert,
1999!+ An alternative approach that allows a detailed asymptotic analysis uses
approximations by linear spaces~e+g+, of regression splines! with increasing
dimension~see Hansen, Huang, Kooperberg, Stone, and Truong, 2002!+ Horo-
witz ~2001! proposes estimates of additive components based on partial deriv-
atives of the full-dimensional regression function+ His approach also allows an
unknown link function+ Further, Tjøstheim and Auestadt~1994! and Linton and
Nielsen~1995! introduce the marginal integration approach+ Marginal integra-
tion is applied to generalized additive models by Linton and Härdle~1996!+We
will use the approach of Severini and Staniswalis~1994! and combine it with
marginal integration+ This is done for practical and theoretical reasons+ In par-
ticular, this approach will allow for a detailed asymptotic distribution theory+

266 WOLFGANG HÄRDLE ET AL.

https://doi.org/10.1017/S026646660420202X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660420202X


The main subject of this paper is the introduction of bootstrap procedures for
~1!+ Nonparametric bootstrap tests for generalized partially linear models can
be found in Härdle, Mammen, and Müller ~1998!+ In our more complex case,
the integration estimate of an additive component has bias terms that depend
on the shape of the other additive components+ This complicates the data ana-
lytic interpretation of nonparametric fits+ We will show how bootstrap can be
used to correct for these terms+ Bootstrap tests will be considered also for vari-
able selection, parametric specifications, and testing additivity+ We will argue
that bootstrap is a natural method for these problems+ Alternative methods could
be based on asymptotic expansions to get bias approximations or normal approx-
imations, respectively, and to use plug-in estimates+ In our setup these expan-
sions are rather complex and may lead only to crude approximations+ So we
expect that the structure of the model will be better mimicked by the bootstrap+

The paper is organized as follows+ In the next section we introduce estimates
for the parameters and the nonparametric components of model~1!+ Section 3
presents several applications of bootstrap for analyzing the nonparametric com-
ponents, starting with bias corrections for the nonparametric estimates+ What
follows are bootstrap tests for different null hypotheses about the components+
In the last part procedures and theory for uniform confidence bands are given+
In Section 4 the presented methodology is studied in simulations+ Assumptions,
asymptotic theory for the estimators, and proofs are postponed to the Appendix+

2. QUASI-LIKELIHOOD ESTIMATION IN GENERALIZED
ADDITIVE MODELS

In this section we will discuss our approach for generalized additive models+
Our estimation procedure starts with the iterative algorithm of Severini and
Staniswalis~1994!, and in a second step the additive components are fitted by
marginal integration+ For a better understanding we first discuss the special case
of binary response models+ For the general case of generalized additive models
our approach will be introduced in Section 2+2+ For a discussion of binary
response models see also Horowitz~1998!+ A detailed introduction to quasi-
likelihood can be found in McCullagh and Nelder~1989!+

2.1. Additive Binary Response Models

In an additive binary response model independent and identically distributed
~i+i+d+! tuples~Yi ,Xi ,Ti ! are observed~i 5 1, + + + , n!, whereTi 5 ~Ti,1, + + + ,Ti,d!
is a random variable with componentsTi, j in IRqj , Xi is in IRp, andYi [ $0,1% +
Conditionally given~Xi ,Ti ! the variableYi is distributed as a Bernoulli vari-
able with parameterG$Xi

T b 1 a 1 m1~Ti,1! 1 {{{ 1 md~Ti,d!% where G is
a known ~link! function, b an unknown parameter inIR p, a an unknown
scalar, andmj : IRqj r IR unknown smooth functions+ For identifiability we set
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E wj ~Ti ,1!mj ~Ti ,1! 5 0 ∀j for some weight functionswj + Given ~Xi ,Ti !, the
likelihood of Yi is

Q~m i ;Yi ! 5 Yi log m i 1 ~12 Yi ! log~12 m i !, (2)

wherem i 5 G$Xi
Tb 1 a 1 m1~Ti,1! 1 {{{ 1 md~Ti,d!% + The likelihood function

is given by

L~m1,b! 5 (
i51

n

Q~m i ;Yi !, (3)

wherem1~t ! is the additive functiona 1 m1~t1! 1 {{{ 1 md~td!+
We now discuss how the additive nonparametric components can be esti-

mated+ Without loss of generality, we will do this for the first componentm1+
We write r 5 q1, s 5 q2 1 {{{ 1 qd and define the smoothed likelihood

LS~m1,b! 5E(
i51

n

Kh~t1 2 Ti,1!Lg~t21 2 Ti,21!Q@G$Xi
Tb 1 m1~t !%;Yi # dt,

(4)

where the vectorTi 5 ~Ti,1, + + + ,Ti,d! is a random variable with componentsTi, j

in IRqj + For a vectoru 5 ~u1, + + + ,ud! with componentsuj in IRqj we denote
~u2, + + + ,ud!T by u21; similarly, we write Ti,21 5 ~Ti,2, + + + ,Ti,d!T+ For a kernel
function L defined onIRs put Lg~v! 5 ~g1{{{{{gs!

21L~g1
21v1, + + + , gs

21vs! and
for simplicity assume thatL is a product kernelL 5 ) j51

s Lj + Similarly, define
Kh~v! 5 h21K~h21v! for v [ IRr and bandwidth vectorh [ IRr with product
kernelK 5 ) j51

r Kj + The bandwidth vectorg is related to smoothing in direc-
tion of the “nuisance” covariates+ The relative speed of the elements ofg to the
elements ofh and the choice of these bandwidths will be discussed subsequently+

Following Severini and Staniswalis~1994!, we base our estimates on an iter-
ative application of smoothed local and unsmoothed global likelihood func-
tions+ We define forb [ B

[mb~t ! 5 arg max
h

(
i51

n

Kh~t1 2 Ti,1!Lg~t21 2 Ti,21!Q@G$Xi
Tb 1 h%;Yi # , (5)

Zb 5 arg max
b[B

L~ [mb ,b!, (6)

[m 5 [m Zb + (7)

Equation~5! may be written as[mb 5 arg maxmLS~m,b!+ The result [m is a multi-
variate kernel estimate ofm1 that does not use the additive structure ofm1+
This [m will be used in an additional step to obtain estimates[a, [m1, + + + , [md of
the additive componentsa,m1, + + + ,md+ The final additive estimate ofm1~t ! will
then be given by [a 1 [m1~t1! 1 {{{ 1 [md~td!+
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For the estimation of the nonparametric componentm1 the marginal integra-
tion method is applied+ It is motivated by the fact that, up to a constant, m1~t1!
is equal to

H E w21~v! dvJ21 E w21~v! m1~t1, v! dv

or

H~10n! (
i51

n

w21~Ti,21!J21

~10n! (
i51

n

w21~Ti,21! m1~t1,Ti,21!

for a weight functionw21+ Note that this method does not use iterations so that
the explicit definition allows a detailed asymptotic analysis+ A weight function
w21 is used for two reasons: it may be useful to avoid problems at the bound-
ary, and it can be chosen to minimize the variance~compare Fan, Härdle, and
Mammen, 1998!+ So we define

Um1~t1! 5

1

n (
i51

n

w21~Ti,21! [m~t1,Ti,21!

1

n (
i51

n

w21~Ti,21!

, (8)

which estimates the functionm1 up to a constant+ An estimate of the function
m1 is given by norming~with a weight functionw1!

[m1~t1! 5 Um1~t1! 2

1

n (
i51

n

w1~Ti,1! Um1~Ti,1!

1

n (
i51

n

w1~Ti,1!

+ (9)

The additive constanta can be estimated by

[a 5

1

n (
i51

n

w0~Ti !@ [m~Ti ! 2 [m1~Ti,1! 2 {{{ 2 [md~Ti,d !#

1

n (
i51

n

w0~Ti !

+ (10)

Again, the weight functionsw0 andw1 may be useful to avoid problems at the
boundary+After having estimated the remaining nonparametric components anal-
ogously, the final estimate ofm is

[m1~t ! 5 [a 1 [m1~t1! 1 {{{ 1 [md~td !+ (11)
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2.2. Semiparametric Generalized Additive Models

We now come to the discussion of estimation in semiparametric generalized
additive models+ Suppose that we observe an independent sample~Y1,X1,T1!,
+ + + , ~Yn,Xn,Tn! with E @Yi 6Xi ,Ti # 5 G$Xi

Tb 1 m~Ti !% + Additional assumptions
on the conditional distribution ofYi will be given subsequently+ For a positive
function V the quasi-likelihood~QL! function is defined as

Q~m; y! 5E
m

y ~s2 y!

V~s!
ds, (12)

wherem is the ~conditional! expectation ofY, i+e+, m 5 G$XTb 1 m~T !% + The
QL function has been introduced for the case that the conditional variance ofY
is equal tos2V~m! wheres2 is an unknown scale parameter+ The functionQ
can be motivated by the following two considerations: clearly, Q~m; y! is equal
to 2 1

2
_~m 2 y!2v21 wherev21 is a weighted average of 10V~s! for s betweenm

andy+ Consequently, maximum QL estimates can be interpreted as a modifica-
tion of weighted least squares+ Another motivation comes from the fact that for
exponential families the maximum QL estimate coincides with the maximum
likelihood estimate+ Note that the maximum likelihood estimateZu, based on an
i+i+d+ sampleY1, + + + ,Yn from an exponential family with meanm~u! and vari-
anceV$m~u!% , is given by

(
i51

n ]

]u
Q~m~u!;Yi ! 5 0+

We consider three models+

Model A+ ~Y1,X1,T1!, + + + , ~Yn,Xn,Tn! is an i+i+d+ sample withE @Yi 6Xi ,Ti # 5
G$Xi

Tb 1 m~Ti !% +

Model B+ Model A holds, and the conditional variance ofYi is equal to
Var@Yi 6Xi ,Ti # 5 s2V~m i ! wherem i 5 G$Xi

Tb 1 m~Ti !% and wheres2 is an
unknown scale parameter+

Model C+ Model A holds, and the conditional distribution ofYi belongs to
an exponential family with meanm i and varianceV~m i ! with m i as in Model B+

The QL function is well motivated for Models B and C+ The more general
Model A is included for discussion of robustness issues, i+e+, to discuss the case
of a wrongly specified conditional variance in Models B and C+ If not stated
otherwise, all the following remarks and results treat the most general Model A+
The QL function and the smoothed QL function are now defined as in~3! and
~4! with ~2! replaced by~12!+ The estimates[mb, Zb, [m, Um1, [m1, [m1, and [a are
defined as in~5!–~10!+ Asymptotics for [m1 are presented in Section A+2 of the
Appendix+ In particular, Lemma A2+1 shows that

Mnh$ [m1~t1! 2 m1~t1! 2 dn
1~t1!%

270 WOLFGANG HÄRDLE ET AL.

https://doi.org/10.1017/S026646660420202X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660420202X


converges to a centered Gaussian variable where the biasdn
1~t1! is of the form

Ah1
2 1 Bg1

2 1 oP~h1
2 1 g1

2 !, whereh1 5 max1#j#r hj and g1 5 max1#j#sgj +
For a definition of the termsAh1

2 andBg1
2 see Lemma A2+1+ This lemma does

not require thatg1 is of smaller order thanh1, an assumption that has been
made in previous papers+ Clearly, then the bias termBg1

2 would be asymptoti-
cally negligible, and therefore asymptotics suggests the choiceg1 5 o~h1!+
However, stochastic and numerical stability of the preestimator[m demand that
h1 3{{{3 hr{g1 3{{{3 gs is large+ Otherwise too few observations would lie
in the local support of the multidimensional kernel+ Often, in practice even larger
values forgj than for hl are needed for a satisfactory performance of[m+ The
constantA in the bias depends on the value ofm1

' and m1
'' at t1, whereas the

constantB depends on averages of powers ofmj
'~tj ! andmj

''~tj ! over tj and over
j Þ 1+ Typically the averaging leads to small values ofB+ For more discussion,
especially on optimal rates and efficiency, we refer to Härdle, Huet, Mammen,
and Sperlich~1998!+

The remaining additive componentsmj for j 5 2, + + + ,d are estimated in anal-
ogy to m1+ It can be checked that the estimates[m1~t1!, + + + , [md~td! are asymp-
totically independent+ The variance of the estimate[m1~t1! can be consistently
estimated~see Section A+2 of the Appendix!+ Consistency and asymptotic
normality of b are shown in Lemma A2+2+ It turns out that for asymptotic
unbiasedness with rateMn no undersmoothing is required in the nonparamet-
ric estimation+ Further, an explicit expression for the asymptotic variance is
given that, however, depends on unknown terms as, e+g+, on the functionm~{!+

3. BOOTSTRAP APPLICATIONS IN GENERALIZED ADDITIVE MODELS

Three versions of bootstrap will be considered here+ The first version is wild
bootstrap, which is related to proposals of Wu~1986!, Beran~1986!, and Mam-
men~1992! and was first proposed by Härdle and Mammen~1993! in nonpara-
metric settings+ Note that in Model A the conditional distribution ofY is not
specified besides the conditional mean+ The wild bootstrap procedure works as
follows+

Step 1+ Calculate residuals[«i 5 Yi 2 [m i +
Step 2+ Generaten i+i+d+ random variables«1

*, + + + ,«n
* with mean 0 and variance 1 and

that fulfill for a constantC that 6«i
* 6 # C ~a+s+! for i 5 1, + + + , n+

Step 3+ Put Yi
* 5 [m i 1 [«i «i

* for i 5 1, + + + , n, where

[m i 5 G$Xi
T Zb 1 [a 1 [m1~Ti,1! 1 [m2~Ti,2! 1 {{{ 1 [md~Ti,d !%+

For Model B we propose a resampling scheme that takes care of the specifi-
cation of the conditional variance ofY+ For this reason, we modify Step 3 by
putting Yi

* 5 [m i 1 [sV$ [m i %
102«i

* for i 5 1, + + + , n+ Here [s2 is a consistent esti-
mate ofs2+ In this case the condition that6«i

* 6 is bounded can be weakened to
the assumption that«i

* has subexponential tails; i+e+, for a constantC it holds
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that E~exp$@6«i
* 60C#%! # C for i 5 1, + + + , n ~compare Assumption~A2! in the

Appendix!+
In the special situation of Model C~semiparametric generalized linear model!,

Q~ y;m! is the log-likelihood+ Then the conditional distribution ofYi is speci-
fied by m i 5 G$Xi

Tb 1 m1~T !% + In this model we generaten independent
Y1
*, + + + ,Yn

* with distributions defined by [m i , respectively+ In the binary response
example that we considered in Section 2, Yi is a Bernoulli variable with param-
eterm i 5 G@Xi

Tb 1 m1~T !# + Hence, here we resample from a Bernoulli distri-
bution with parameter[m i +

3.1. Bias Correction

Lemma A2+1 in the Appendix shows that if the elements of the bandwidth vec-
tors h andg are of the same order, the bias of [m1~t1! depends on the shape of
the other additive componentsm2, + + + ,md+ This may lead to wrong interpreta-
tions of the estimate[m1+ Bootstrap bias estimates will help to judge such effects+

In all three resampling schemes, one uses the data~X1,T1,Y1
*!, + + + ,

~Xn,Tn,Yn
*! to calculate the estimate[m1

*+ This is done with the same bandwidth
h for the componentt1 and with the sameg for the otherd 2 1 components+
The bootstrap estimate of the mean of[m1~t1! is given byE* [m1

*~t1!, whereE*

denotes the conditional expectation given the sample~X1,T1,Y1!, + + + , ~Xn,Tn,Yn!+
The bias corrected estimate ofm1~t1! is defined by

[m1
B~t1! 5 [m1~t1! 2 Zdn

1~t1!, where Zdn
1~t1! 5 E* [m1

*~t1! 2 [m1~t1!+

The theorem shows that the bias terms of orderg1
2 are removed by this

construction+

THEOREM 3+1+ Assume that Model A, Model B, or Model C holds and
that the corresponding version of bootstrap is used. Suppose further that
Assumptions (A1)–(A11) in the Appendix apply and that assumptions analo-
gous to (A3) and (A4) hold for the estimation of the other additive compo-
nents mj for j 5 2, + + + ,d (h being always the bandwidth used for the estimated
component mj and g the bandwidth for the nuisance components). Further-
more, suppose that the elements of h and g tend to zero and that
nh1{{{{{hr g1

2{{{{{gs
2~ log n!22 tends to infinity. Then it holds that

[m1
B~t1! 2 m1~t1! 5 Op$h1

4 1 g1
4 1 ~nh1{{{{{hr !2102%, (13)

where again h1 5 max1#j#r hj and g1 5 max1#j#sgj.

Bootstrap applications in nonparametric regression often use resampling from
a modified estimate of the regression function+ Suppose, e+g+, that in the third
step of the bootstrap algorithm[m i is replaced byG$Xi

T Zb 1 [a 1 [m1
O~Ti,1! 1

[m2~Ti,2! 1 {{{ 1 [md~Ti,d!% , where [m1
O is defined as [m1 but with bandwidth

vectorhO instead ofh+ Then if hj
O0h1 r ` ~1 # j # r ! one can show that the

left-hand side of~13! is of orderOp$~h1
O!4 1 g1

4 1 ~nh1
O{{{hr

O!2102% , whereh1
O
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is the maximal element ofhO+ For appropriate choices ofhO, e+g+, for
hO with ~h1

O!4 and ~nh1
O{{{hr

O!2102 of the same asymptotic order, this is of
smaller order than the right-hand side of~13! with resampling from [m1+

3.2. Componentwise Hypothesis Testing

Interesting shape characteristics may be visible in plots of estimates of the addi-
tive components+ The complicated nature of the model, though, makes it diffi-
cult to judge the statistical significance of such findings+ Hypothesis tests in
addition to uniform confidence bands are useful tools to analyze and interpret
fitted components+ We now discuss tests of the hypothesis that one component
is linear:

H0 :m1~t1! 5 g1t1 for all t1 and a scalarg1+ (14)

Extensions to variable selection problems~H0 :m1 [ 0! or tests of polynomial
forms are straightforward; see also the discussion that follows+

Our test is a modification of a general approach by Hastie and Tibshirani
~1990!+ In semiparametric setups they propose to apply likelihood ratio tests
and to usex2 approximations for the calculation of critical values+ Approxi-
mate degrees of freedom are heuristically derived by calculating the expecta-
tion of asymptotic expansions of the test statistic under the null hypothesis+
Here we propose more accurate distributional approximations+ Furthermore, in
the definition of the test statistic we correct for the bias of the nonparametric
estimate+ Our test statistic is asymptotically normal, but the convergence to the
normal limit is very slow as mathematical arguments and simulations indicate+
Therefore we propose the bootstrap for the calculation of critical values+ Bias
correction will be used in the test because otherwise it will have a nonnegligi-
ble effect on the power+ For this reason, [m1~t1! is compared with a bootstrap
estimate of its expectation under the hypothesis+

First, we calculate semiparametric estimates for the hypothetic model

E~Yi 6Xi ,Ti ! 5 G$Xi
Tb 1 a 1 g1Ti,1 1 m2~Ti,2! 1 {{{ 1 md~Ti,d !%+

Note that thea occurring in the preceding equation can be different from thea
defined in Section 2+1 becauseXi is replaced by~Xi ,Ti,1!+ Estimation of the
parametric componentsb, a, andg1 and of nonparametric componentsm2, + + + ,md

can be done as in Section 2+1+ This defines estimatesDb, Ja, Jg1, Km2, + + + , Kmd+ Set

Im i 5 G$Xi
T Db 1 Ja 1 Jg1Ti,1 1 Km2~T2, i ! 1 {{{ 1 Kmd~Ti,d !%+

Second, for the bootstrap we proceed as follows: generate independent samples
~Y1
*, + + + ,Yn

*! ~compare Section 3! but now withm i replaced by Im i + Then, using
the data~X1,T1,Y1

*!, + + + , ~Xn,Tn,Yn
*! calculate the estimate[m1

*+ The bootstrap
estimate of the mean of[m1~t1! is given byE* [m1

*~t1!, whereE* denotes the
conditional expectation given the sample~X1,T1,Y1!, + + + , ~Xn,Tn,Yn!+ Third, we
define the test statistic
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R 5 (
i51

n

w~Ti !
@G'$Xi

T Zb 1 [m1~Ti !%#
2

V~G$Xi
T Zb 1 [m1~Ti !%!

$ [m1~Ti,1! 2 E* [m1
*~Ti,1!%2 (15)

with [m1~t ! 5 [a 1 [m1~t1! 1 {{{ 1 [md~td!+ The weights@G'$ + + + %# 20V~G$ + + + %! in
the summation of the test statistic are motivated by likelihood considerations
~see Härdle et al+, 1998! but could be replaced by some other weights+ The test
statisticR has an asymptotic normal distribution~see Lemma A3+1 in the Appen-
dix!+ Mean and variance can be consistently estimated, and thus critical values
for the test could be calculated using the normal approximation+ But as men-
tioned before this approximation does not perform well+ Again we recommend
using bootstrap approximations+ The bootstrap estimate of the distribution ofR
is given by the conditional distribution of the test statisticR*, defined by

R* 5 (
i51

n

w~Ti !
@G'$Xi

T Zb 1 [m1~Ti !%#
2

V$Xi
T Zb 1 [m1~Ti !%

$ [m1
*~Ti,1! 2 E* [m1

*~Ti,1!%2+ (16)

The conditional distributionL*~R*! ~given the original data~X1,T1,Y1!, + + + ,
~Xn,Tn,Yn!! is our bootstrap estimate ofL~R! ~on the hypotheses~14!!+ Here,
L~R! denotes the distribution ofR+ The following theorem states consistency
of the bootstrap+

THEOREM 3+2+ Assume that Model A, Model B, or Model C holds and that
the corresponding version of bootstrap is used. Furthermore suppose that
assumptions (A1)–(A11) in the Appendix hold with Xi replaced by~Xi ,Ti,1!.
Then, if additionally, n102h1{{{{{hr g1

2{{{{{gs
2~ log n!21 r ` and if all elements

of h and g are of order o~n2108!, on the hypotheses (14), it holds that

dK $L*~R* !,L~R!%
P
&& 0,

where dK denotes the Kolmogorov distance, which is defined for two probabil-
ity measuresm and n (on the real line) as dK~m,n! 5 supt[IR6m~X # t ! 2
n~X # t !6.

With similar arguments as in Härdle and Mammen~1993! one shows that
the testR has nontrivial asymptotic power for deviations from the linear hypoth-
esis of ordern2102~h1{{{{{hr !

2104+ This means that the test does not reject alter-
natives that have a distance of ordern2102+ However, the test also detects local
deviations~of order n2102~h1{{{{{hr !

2104! that are concentrated on shrinking
intervals with length of orderh+ The test may be compared with overall tests
that achieve nontrivial power for deviations of ordern2102+ Typically, such
tests have poorer power performance for deviations that are concentrated
on shrinking intervals+ For our test, the choice of the bandwidth determines
how sensitively the test reacts on local deviations; i+e+, for smallerh the test
detects deviations that are more locally concentrated but at the cost of a poorer
power performance for more global deviations+ In particular, as an extreme
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case one can consider the case of a constant bandwidthh+ This case is not
covered by our theory+ It can be shown that in that caseR is ann2102-consistent
overall test+

Finally we want to emphasize that the same procedure works for any other
linearly parameterized hypothesis

H0 :m1~t1! 5 u1 f1~t1! 1 {{{ 1 uq fq~t1!,

whereu1, + + + ,uq are unknown parameters butf1, + + + , fq are given+ Moreover, the
results of this section can be extended to tests of other parametric hypotheses
on m1:

H0 :m1~t1! 5 mu~t1! for all t1 and a parameteru, (17)

where$mu : u [ Q% is a parametric family+ This can be done similarly as in Här-
dle and Mammen~1993!+ However, this requires an asymptotic study of para-
metric estimates in the model~1! with parametric specification~17! for m1+

Using an approach similar to the approach described earlier, one can con-
struct F-type tests on the coefficientsb+ For testingH0 :Hb 5 c versusH1 :
Hb Þ c ~with a k 3 p matrix H of rank k # p and a constantc [ IRk

for a k $ 1! a natural test statistic is defined asRb 5 ~H Zb 2 c!T 3
~H ZI 21H T!21~H Zb 2 c!, where ZI is a consistent estimate of the matrixI, defined
in Lemma A2+2+ A natural estimate ofI would be the bootstrap estimate+ Accord-
ing to Lemma A2+2, on the hypothesisRb has a centralx2 distribution+ This
asymptotic result could be used for the approximate calculation of critical val-
ues+ As before we recommend applying bootstrap+ ThenRb will be compared
with its bootstrap analogRb

* 5 ~H Zb* 2 c!T~H ZI 21H T!21~H Zb* 2 c!+ For sim-
plicity, the same~bootstrap! covariance estimate has been used in the calcula-
tion of Rb andRb

*+

3.3. Testing Separability and Interactions

First note that our estimate ofm1 is robust against nonadditivity of the other
components+ In fact, in the construction of the estimate it is only used thatm~x; t !
is of the form

G$xTb 1 a 1 m1~T1! 1 m2, + + + ,d~T2, + + + ,Td !% (18)

for an arbitrary functionm2, + + + ,d+ It is not assumed that the functionm2, + + + ,d is
additive, i+e+, m2, + + + ,d~T2, + + + ,Td! 5 m2~T2! 1 {{{ 1 md~Td!+ Also in the case that
m~x; t ! is not of the form~18!, the estimate [m1 makes sense because then it
estimates the average~or marginal! effect ofT1+ Nevertheless the hypothesis of
additivity is of interest in its own right and an important step in a model choice
procedure+ Following the idea of Sperlich, Tjøstheim, and Yang~2002!, we con-

BOOTSTRAP INFERENCE IN GENERALIZED ADDITIVE MODELS 275

https://doi.org/10.1017/S026646660420202X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660420202X


sider a split of the first covariateT1 into two componentsT1:1 andT1:2 and con-
sider the hypothesis

H0 :m1~t1! 5 m1:1~t1:1! 1 m1:2~t1:2!+ (19)

For other approaches to test additivity, see also Gozalo and Linton~2001!+
Estimates ofm1:1 andm1:2 are constructed by marginal integration:

[m1:1~t1:1! 5
1

n (
i51

n

[m1~t1:1,Ti,1:2!w~Ti,1:2!,

[m1:2~t1:2! 5
1

n (
i51

n

[m1~Ti,1:1, t1:2!w~Ti,1:1!

so that [m1:1,2~t1! 5 [m1~t1! 2 [m1:1~t1:1! 2 [m1:2~t1:2! is an estimate for the first-
order interaction ofT1:1 andT1:2+

For testing hypothesis~19! we proceed similarly as in Section 3+2+We define

Rinter 5 (
i51

n

w~Ti !
@G'$Xi

T Zb 1 [m1~Ti !%#
2

V~G$Xi
T Zb 1 [m1~Ti !%!

3 $ [m1:1,2~Ti,1:1,Ti,1:2! 2 E* [m1:1,2
* ~Ti,1:1,Ti,1:2!%2,

wherem1:1,2
* is an estimate based on a bootstrap sample+ Bootstrap samples are

generated as in Section 3+2 but now with Im i replaced by

G$Xi
T Zb 1 [a 1 [m1:1~Ti,1:1! 1 [m1:2~Ti,1:2! 1 [m2~Ti,2! 1 {{{ 1 [md~Ti,d !%+

The test statisticRinter has an asymptotic normal distribution~see Lemma A3+2
in the Appendix!+ The bootstrap estimate of the distribution ofRinter is given by
the conditional distribution of the test statisticRinter

* , with

Rinter
* 5 (

i51

n

w~Ti !
@G'$Xi

T Zb 1 [m1~Ti !%#
2

V$Xi
T Zb 1 [m1~Ti !%

3 $ [m1:1,2
* ~Ti,1:1,Ti,1:2! 2 E* [m1:1,2

* ~Ti,1:1,Ti,1:2!%2, (20)

where [m1:1,2
* is defined as [m1:1,2 but now from a bootstrap sample instead of

the original sample+

THEOREM 3+3+ Under the assumptions of Theorem 3.2, on the hypotheses
(19), it holds that

dK $L*~Rinter
* !,L~Rinter !%

P
&& 0+
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3.4. Testing the Link Function

Härdle, Mammen, and Proenca~2001! introduce a bootstrap test for the null
hypothesis of a parametric generalized linear versus a single index model+ We
extend here their approach to test

H0 :E @Y6X,T # 5 G$v~T,X,b!% versus (21)

H1 :E @Y6X,T # 5 H$v~T,X,b!% whereH~{! is an unknown function (22)

with v~T,X,b! 5 bTX 1 a 1 m1~T1! 1 {{{ 1 md~Td!+ We recommend a test
statistic of the form

hL
102 (

i51

n

w~ [vi !
(
jÞi

n

@Yj 2 G~ [vj !#K~$ [vj 2 [vi %0hL !

(
jÞi

n

K~$ [vj 2 [vi %0hL !

@Yi 2 G~ [vi !# , (23)

wherehL is an additional bandwidth and where[vi 5 ZbTXi 1 [a 1 [m1~Ti,1! 1
{{{ 1 [md~Ti,d!+ For further details see also Section 4+

3.5. Uniform Bootstrap Confidence Bands

To construct uniform confidence bands we first define

S5 sup
t1

w1~t1!6 [m1~t1! 2 m1~t1! 2 dn
1~t1!6 [s1

21~t1!,

where [s1
2~t1! is the estimate of the variance of[m1~t1!, defined in equation~A+2!

in the Appendix+ In the simulation study in Section 4 we also use a bootstrap
estimate ofs1~t1!+ The distribution ofS can be estimated by bootstrap as in-
troduced in the beginning of Section 3+ This defines the statisticS* 5
supt w1~t1!6 [m1

*~t1! 2 E* [m1
*~t1!6 [s1

21~t1!+ In the definition of S* the norming
[s~t1! could be replaced by [s1

*~t1!+ We write S** 5 supt w1~t1!6 [m1
*~t1! 2

E* [m1
*~t1!6@ [s1

*#21~t1!+ Here [s1
*~t1! is an estimate of the variance of[m1

*~t1!, that
is defined similarly as [s1~t1! but that is calculated with a bootstrap resample
instead of with the original sample+ The first norming helps to save computation
time; for the second choice bootstrap theory from other setups suggests higher
order accuracy of bootstrap+ Nevertheless, both bootstrap procedures can be used
to construct valid uniform confidence bands:

THEOREM 3+4+ Assume that Model A, Model B, or Model C holds and that
the corresponding version of bootstrap is used. Furthermore suppose that
assumptions (A1)–(A11) apply, that all elements of h and g are of order o~n2108!,
and that nh1{{{{{hr g1

2{{{{{gs
2~ log n!22 r `. Then it holds that

dK $L*~S* !,L~S!%
P
&& 0, dK $L*~S** !,L~S!%

P
&& 0+
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This gives uniform confidence intervals form1~t1! 2 dn
1~t1!+ For confidence

bands ofm1 one needs a consistent estimate ofdn
1~t1!+ This could be done by

plug-in or by bootstrap+ Both approaches require oversmoothing, i+e+, choice of
a bandwidth vectorhO with hj

O0h1 r `; see also the discussion after Theo-
rem 3+1+ For related discussions in nonparametric estimation see Eubank and
Speckman~1993! and Neumann and Polzehl~1998!+

4. A SIMULATION STUDY

We now illustrate the performance of our methods in small samples+ Simula-
tion results are given for different tests and for confidence bands+ Level accu-
racy is checked for testing linearity of an additive component and for testing
the specification of the link function+ For the first test problem power functions
also are calculated+ Furthermore, coverage probabilities of our bootstrap confi-
dence bands are checked+

Binary response data are generated from

E~Y6X 5 x,T 5 t ! 5 P~Y5 16X 5 x,T 5 t ! 5 G$bTx 1 m1~t !%, (24)

whereG is the logit distribution function andm1~t ! 5 a 1 (j51
2 mj ~tj !+ The

explanatory variablesX1, X2, T1, and T2 are independent, X1 and X2 are stan-
dard normal, andT1 andT2 have a uniform distribution on@22,2# +We generate
n 5 250 data points withb 5 ~0+3,20+7!T, m1~t1! 5 2 sin~22t1!, m2~t2! 5 t2

2 2
E @T2

2# , anda 5 0+ For all computations the quartic kernel is used+ In this sec-
tion h1 denotes the bandwidth that is used for the estimation ofb+ In the sim-
ulations we set all weight functionsw21, w0, andw1 equal to 1; i+e+, we applied
no trimming and no optimal weighting+

First, we consider the test problem~14! H0 :m1~t1! is linear+ It can be seen
from Figure 1 that the normal approximation of Lemma A3+1 is quite inaccu-

Figure 1. Standardized density estimate of the test statistic~thin line! and convoluted
standard normal density~thick line!+
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rate+ In this plot a density estimate for the test statisticR, based on 500 Monte
Carlo replications, is plotted together with its limiting normal density+ The param-
eters are chosen on the null hypothesis, with m1~t1! 5 t1 andb, m2, anda as
before+ The density estimate forR is a kernel estimate with bandwidth accord-
ing to Silverman’s rule of thumb, i+e+, 1+06{2+62{n2105 times the empirical stan-
dard deviation+ For better comparison, the normal density is convoluted with
the quartic kernel using the same bandwidth+

In a simulation~500 runs! the level of the bootstrap test is estimated forB 5
249 bootstrap repetitions+ We get a relative number of rejections of 0+03 for
theoretical level 0+05 and 0+06 for theoretical level 0+1; i+e+, the bootstrap test
keeps its level but is conservative for such a small sample+ The power is inves-
tigated for the alternativesm1~t1! 5 ~12 v!t1 1 v$2 sin~22t1!%, 0 # v # 1+ The
other parameters are chosen as before+ For comparison, we perform the same
simulations for a parametric likelihood ratio test testing the hypothesisg1 5
g2 5 0 in the parametric model

P~Y 5 16X 5 x,T 5 t ! 5 G@bTx 1 ~12 g1!t1 1 g2$2 sin~22t1!%

1 g3m2~t2! 1 g4# +

Clearly, this comparison is far away from being fair because for the parametric
test the alternative and alsom2 are assumed to be known+ Figure 2 plots the
power of these tests at theoretical levels 0+05 and 0+1+ Note that the better per-
formance of the parametric test is partly due just to the fact that the testR is
conservative~see the preceding discussion!+ ~One could compare the power of
R in the right plot with the power of the likelihood ratio test in the left plot+!
We conclude that the bootstrap test performs quite well+

Second, for bootstrap confidence bands we investigate the following ques-
tions: What is the coverage accuracy in a small sample? How much does the
width of the band vary with the chosen coverage probability? Does it really mat-
ter how we estimates1

2~t1!? In the simulations we use two estimates ofs1
2~t1!:

[s1
2~t1! as defined in equation~A+2! ~see Section 3+5! and the empirical variance

Figure 2. Power functions for theoretical levels 0+05 ~left! and 0+1 ~right!, for the non-
parametric bootstrap test~thick line! and the likelihood ratio test~thin line!+
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of m1
*~t1! in the bootstrap resamples, denoted by Is1

2~t1!+ The simulated model
is again~24! with n, m1, m2, X1, andX2 as before+ But the variablesT are now
uniformly distributed on@21,1# + The confidence bands are only investigated for
m1+ Forh1 5 h5 g5 0+3 to 0+6 we obtain reasonable coverage accuracies; results
for h1 5 h 5 g 5 0+5 are given in Table 1+ The empirical coverage probabilities
are close to the theoretical ones for all levels and for both variance estimates+ It
is surprising how well the bootstrap fits the different coverage probabilities in
such small samples+ For smaller and larger bandwidths they are less accurate+
This is caused by poorer bootstrap bias correction+ In contrast, the variance of
the estimates is always well caught by the bootstrap+ In Figures 3 and 4 we com-
pare 95% and 85% confidence bands+ Despite their different levels the bands
hardly differ+

In our last simulation, we verify the performance of the test for the link func-
tion ~see Section 3+4!+ The data are generated as in the simulations on confi-
dence bands+ BandwidthhL ~see~23!! is set to 0+4{ [sI , where [sI is an estimate of
the standard deviationsI of the index; otherwise we seth1 5 h 5 g 5 0+35+ The
simulation results for level accuracy for the theoretical 1, 5, 10, and 15% levels
are 0+014, 0+046, 0+090, and 0+13+ Thus the accuracy is quite good+ We also
tried different bandwidths but found no major differences in the results+

Table 1. Coverage probabilities for bootstrap confidence
bands withh1 5 h 5 g 5 0+5+

Theoretical coverage 95% 90% 85% 80%

Using [s1
2~t1! 0+963 0+912 0+846 0+776

Using Is1
2~t1! 0+948 0+904 0+839 0+776

Figure 3. 95% and 85% confidence bands, using [s+ Dashed lines are the confidence
bands and corresponding estimates; solid lines are the data-generating functions+
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APPENDIX

A.1. Assumptions+ We now state the assumptions that are used in the results in Sec-
tions 2+1 and 2+2 and Section A+3 of this Appendix+ We use the notation

hmax 5 max$h1, + + + , hr , g1, + + + , gs%,

hprod 5 h1{{{{{hr g1{{{{{gs,

r1 5 hmax
2 1 ~nhprod!2102,

r2 5 hmax
2 1 ~ log n!102~nhprod!2102+

Furthermore, we put l i ~u! 5 Q$G~u!;Yi %, l~u! 5 Q$G~u!;Y% + With this notation we
have

l i
' ~u! 5

Yi 2 G~u!

V @G~u!#
G'~u!,

l i
''~u! 5 $Yi 2 G~u!%F G''~u!

V @G~u!#
2

V '~G~u!! G'~u!2

V @G~u!# 2 G2
G'~u!2

V @G~u!#
+ (A.1)

For our asymptotic expansions we use the following assumptions+

282 WOLFGANG HÄRDLE ET AL.

https://doi.org/10.1017/S026646660420202X Published online by Cambridge University Press

https://doi.org/10.1017/S026646660420202X


(A1) ~X1,T1,Y1!, + + + , ~Xn,Tn,Yn! are i+i+d+ tuples+ The expressionTi 5 ~Ti,1, + + + ,Ti,d!
is a vector with componentsTi, j in IRqj,Xi is IRp valued, andYi is IR valued+ We write
r 5 q1 ands 5 q2 1 {{{ 1 qd+

(A2) E~Y6X,T ! 5 G$XTb 1 m1~T !% with b [ IRp+ Herem1 denotes the function
m1~t ! 5 a 1 m1~t1! 1 {{{ 1 md~td!, with E mj ~Ti, j ! 5 0 for j 5 1, + + + ,d+ The conditional
variance Var~Yi 6Ti 5 t ! has a bounded second derivative+ Furthermore the Laplace trans-
form E expt 6Yi 6 is finite for t . 0 small enough+

(A3) Xi and Ti have compact supportSX,ST + The supportST is of the formST,1 3
ST,21 with ST,1 , IRr and ST,21 , IRs+ Here T has a twice continuously differentiable
densityfT with inf t[ST

fT~t ! . 0+

(A4) For compact setsB , IRp andH , IR we define

Zb 5 arg max
b[B

L~ [mb ,b!,

where, as before,

L~h,b! 5 (
i51

n

Q$G~Xi
Tb 1 h~Ti !!;Yi %+

The term [mb~t ! is defined as

[mb~t ! 5 arg max
h[H

(
i51

n

Kh~t1 2 Ti,1!Lg~t21 2 Ti,21!Q@G$Xi
Tb 1 h%;Yi # +

For b [ B we put

mb~t ! 5 arg max
h[H

E @l~XTb 1 h!6T 5 t # +

We assume thatmb~t ! lies in the interior ofH for all t [ ST andb [ B+ This implies
E$l'~bTX 1 mb~t !!6T 5 t % 5 0+ We assume also thatE @l''$bTX 1 mb~T !%6T 5 t # Þ 0
for all t [ ST andb [ B and that for all« . 0 there exists ad . 0 such that for all
h [ H, t [ ST ,b [ B

6E @l'~XTb 1 h!6T 5 t #6# d

implies that

6h 2 mb~t !6 # «+

(A5) There exists ad . 0 such thatG~k!~u!, k 5 1, + + + ,3, andG'~u!21 are bounded
on u [ S1 5 $xTb 1 h 1 k : x [ SX,b [ B andh [ H,k [ IR with 6k6 # d% + Further-
moreV21, V ' , andV '' are bounded onG~Sd!+

(A6) m1, + + + ,md are twice continuously differentiable functions fromIRqj to IR+ The
weight functionsw, w21, andw1 are positive and twice continuously differentiable+ To
avoid problems on the boundary, we assume that for ad . 0 we have thatw21~t ! 5 0,
w1~t ! 5 0, andw~t ! 5 0 for t [ ST,21

2 5 $s: there exists au Ó ST,21 with 7s2 u7 # d%,
t [ ST,1

2 5 $s: there exists au Ó ST,1 with 7s2 u7 # d% , andt [ ST
2 5 $s: there exists a
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u Ó ST with 7s 2 u7 # d% , respectively+ Furthermore, the weight functionw1 is such
that *ST,1

w1~t1!m1~t1! fT1
~t1! dt1 5 0, wherefT1

denotes the density ofT1+

(A7) The kernelsK andL are product kernelsK~v! 5 K1~v1!{{{{{Kr ~vr ! andL~v! 5
L1~v1!{{{{{Ls~vs!+ The kernelsKi andLj are symmetric probability densities with com-
pact support~ @21,1# , say!+

(A8) E @l1
'' $X1

Tb0 1 m1~T1!%6T1 5 t # andE @l1
'' $X1

Tb0 1 m1~T1!%X16T1 5 t # are twice
continuously differentiable functions fort [ ST +

(A9) The matrixE Z2 FX FXT is strictly positive definite+ The random vectorsZ and FX
are defined in Lemmas A2+1 and A2+2 in Section A+2 of this Appendix, respectively+

This assumption implies thatX does not contain an intercept+ Note that if the first
element ofX were constant, a+s+, e+g+, Xi1 [ 1, then FXi1 [ 0+

(A10) m1, + + + ,md are four times continuously differentiable onIR+

(A11) The kernelsKi andLj are twice continuously differentiable+

Assumptions~A1!–~A3! and~A5! and~A6! contain boundedness conditions on covari-
ates and standard smoothness conditions on regression functions, design densities, link
function, and variance function+ Condition ~A4! contains a slightly modified definition
of our estimates+ We now assume that in the definition of the parametric and nonpara-
metric estimates the minimization of the QL only runs over a bounded set~denoted byB
or H, respectively!+ This assumption together with~A8! and the other assumptions of
~A4! enables us to prove consistency of the parametric and nonparametric estimates and
to derive a stochastic expansion of these estimates+ Condition~A7! is a standard assump-
tion on the kernelsK andL+ Condition ~A8! guarantees that the Fisher information of
the parametric estimate is positive definite+ Conditions~A10! and ~A11! are used for
second-order bounds on expansions of bias terms+

A.2. Asymptotic Theory for Estimation+ This section contains asymptotic results on
the marginal integration estimates[mj and the parametric estimateZb+

LEMMA A2 +1+ Suppose that Assumptions (A1)–(A9) apply. If the elements of h and
g tend to zero and nh1{{{{{hr g1

2{{{{{gs
2~ log n!22 tends to infinity, then

Mnh$ [m1~t1! 2 m1~t1! 2 dn
1~t1!%

converges to a centered Gaussian variable with variance

s1
2~t1! 5EK 2~u! du

f1~t1!

$Ew21~T21!%2 EF Z1

Z2
*T1 5 t1G ,

where fT21
and fT are the densities of T21 or T 5 ~T1,T21!, respectively. (For a vector

~v1, + + + , vd! with vj [ IRqj we denote thevector ~v1, + + + , vj21, vj11, + + + , vd! by v2j .) The
terms Z1 and Z2 are defined in the following way:
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Z1 5 w1
2~T21!

Z2

V @G$XTb 1 m1~T !%#
fT21

2 ~T21!Var~Y6X,T !,

Z2 5 E @Z2 6T1 5 t1,T21# 2fT
2~t1,T21!,

Z2 5
G'~XTb 1 m1~T !!2

V @G$XTb 1 m1~T !%#
+

For the asymptotic biasdn
1~t1!, one has

dn
1~t1! 5 dn

1~t1! 2Edn
1~v1!w1~v1! fT1

~v1! dv1YEw1~v1! fT1
~v1! dv1 1 oP~h1

2 1 g1
2 !,

where

dn
1~t1! 5 g1

2E
IRd21

EFa1~X, t1,u! (
j52

d

sL, j
2 bj ~X, t1,u!*T 5 ~t1,u!G fT21

~u! du

1 h1
2 E

IRd21
E @a1~X, t1,u! sK

2b1~X, t1,u!6T 5 ~t1,u!# fT21
~u! du+

Here fT1
denotes the density of T1. We write fTj

' ~v! 5 ~]0]vj ! fT~v!. Furthermore,sL, j
2 5

*s2 dLj , sK
2 5 *s2 dK, and

a1~x, v! 5
w21~v21!G'~xTb 1 m1~v!!

E @w21~T21!# E @Z2 6T 5 v# fT~v!V @G~xTb 1 m1~v!!#
,

bj ~x, v! 5
1

2
@G''~xTb 1 m1~v!!mj

'~vj !THj
2mj
'~vj !

1 G'~xTb 1 m1~v!!trace@mj
''~vj !Hj

2##

3 fT~v! 1 G'~xTb 1 m1~v!!mj
'~vj !THj

2 fTj
' ~v!,

where H1 is a diagonal matrix with diagonal elements

h10h1 , + + + , hq1
0h1

and where for j5 2, + + + ,d the matrix Hj is a diagonal matrix with diagonal elements

gq21{{{1qj21
0g1 , + + + , gq21{{{1qj

0g1 +

Under the additional assumption of (A10) the rest term oP~h1
2 1 g1

2 ! in the expansion
of dn

1~t1! can be replaced by OP~h1
4 1 g1

4 !.

The estimation of the other additive componentsmj for j 5 2, + + + ,d can be done in the
same way as the estimation ofm1 in Lemma A2+1+ If assumptions analogous to~A1!–
~A10! hold for the other components, then the corresponding limit theorems apply for
their estimates+ ~In the assumptionsh always denotes the bandwidth of the estimated
component, andg is chosen as bandwidth of the other components+! Then under these
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conditions the estimates[m1~t1!, + + + , [md~td! are asymptotically independent+ This leads
to a multidimensional result+ The random vector

Mnh1
[m1~t1! 2 m1~t1! 2 dn

1~t1!

I

[md~td ! 2 md~td ! 2 dn
d~td !

2 nr`
D

&& N10; 3
s1~t1! 0 + + + 0

I L I

0 J 0 sd~td !
42 +

The variances1
2~t1! of ~ [m1~t1! 2 E [m1~t1!! can be estimated by

[s1
2~t1! 5 (

i51

n

[ti
2, (A.2)

where

[ti 5 F(
j51

n

w21~Tj,21!G21 1

n (
j51

n

w21~Tj,21!ki ~t1,Tj,21!

3 F 1

n (
l51

n G'~Xl
T Zb 1 [m1~Tl !!

2

V @G$Xl
T Zb 1 [m1~Tl !%#

kl ~t1,Tj,21!G21 G'~Xi
T Zb 1 [m1~t1,Tj,21!!

V @G$Xi
T Zb 1 [m1~t1,Tj,21!%#

[si ,

ki ~t ! 5
Kh~t1 2 Ti,1!Lg~t21 2 Ti,21!

1

n (
j51

n

Kh~t1 2 Tj,1!Lg~t21 2 Tj,21!

,

[si
2 5 5

@Yi 2 [m i #
2 in the case of Model A,

[s2V~ [m i ! in the case of Model B,

V~ [m i ! in the case of Model C

(A.3)

with

[s2 5
1

n (
i51

n @Yi 2 [m i #
2

V~ [m i !
and [m i 5 G$Xi

T Zb 1 [a 1 [m1~Ti,1! 1 {{{ 1 [md~Ti,d !%+

The estimation of the nonparametric components also yields an estimate of the param-
eterb+We show that under certain conditions a rate of orderOP~n2102! can be achieved+
This is a consequence of the iterative application of smoothed local and unsmoothed
global likelihood function in the definition of Zb+ Our conditions imply thats 1 r # 3+
This constraint can be weakened by assumption of higher order smoothness ofm1, + + + ,md

and by the use of higher order kernels+

LEMMA A2 +2+ Suppose that Assumptions (A1)–(A9) apply. Then, if hgd21 3
n102~ log n!21 tends to infinity and h and g5 o~n2108!, it holds that

n102$ Zb 2 b% nr`

D
&& N~0; I 21!,
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where Z2 is defined as in Lemma A2.1 and

I 5 EZ2 FX FXT with FX 5 X 2 $E~Z2 6T !%21E~Z2X6T !+

Our estimate ofb achieves the efficiency bound in the partial linear modelm~x; t ! 5
G$xTb 1 a 1 m~T1, + + + ,Td!% ~see Mammen and van de Geer, 1997!+ An estimate that
takes care of additivity is given by

Zb 5 arg max
b[B

L~ [mb
1 ,b!,

where [mb
1~t ! is defined as [m1~t ! with [m replaced by [mb in equation~8!+We expect that

this estimate achieves higher efficiency+ However this estimate has two drawbacks+ Cal-
culation of this estimate would need several nested iterative algorithms and is therefore
computationally unattractive for large data sets+ Moreover, such an estimator is not robust
against deviations from additivity+

Compared to Zb root-n consistency of [a requires additional conditions+ The estimate
[a inherits by construction the biases of the nonparametric estimates[m, [m1, + + + , [md+ These

biases are only of ordero~n2102! if the elements ofh andg are of ordero~n2104!+ Note
that this is not necessary forZb+ On the other hand it can be checked that[a has, as does
Zb, asymptotic variance of orderO~n21! + Clearly, this is not essential as for most appli-

cations the parametera has no direct interpretation+

A.3. Proofs+ For simplicity of notation we give all proofs only for the caseq1 5 {{{ 5
qd 5 1+ Then r 5 1 ands 5 d 2 1+ Furthermore we suppose thatg1 5 {{{ 5 gd21 and
denote this bandwidth byg+ The bandwidthh1 is denoted byh+

Proof of Lemma A2.1. We start by showing consistency of the estimateZb:

Zb 5 b0 1 oP~1!+ (A.4)

For the proof of~A+4! we show first that

sup
t,b
6 [mb~t ! 2 mb~t !6 5 op~1!+ (A.5)

Proof of (A.5). For the proof of claim~A+5! we show first that

sup
h, t,b
6D~mb~t !, t,b!6 5 Op~r2!, (A.6)

where the following notation has been used:

D~h, t,b! 5 D1~h, t,b! 2 D2~h, t,b!,

D1~h, t,b! 5
1

n (
i

l i
' ~Xi

Tb 1 h!ki ~t !,

D2~h, t,b! 5 E @l'~XTb 1 h!6T 5 t # ,

ki ~t ! 5
Kh~t1 2 Ti,1!Lg~t21 2 Ti,21!

1

n (
j51

n

Kh~t1 2 Tj,1!Lg~t21 2 Tj,21!

+ (A.7)
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For the proof of~A+6! we remark first that

ED~h, t,b! 5 O~h2 1 g2!+

This can be seen by standard smoothing arguments+ Furthermore, D1~h, t,b! is a sum of
i+i+d+ random variables with bounded Laplace transform~see Assumption~A2!!+ By stan-
dard application of exponential inequalities we get for everyn1 . 0 that for C ' large
enough

P$6D~h, t,b!6 . C 'r2% 5 o~n2n1 !+ (A.8)

We consider the partial derivatives of the summands ofD~h, t,b! with respect toh, t,
andb+ They are bounded byC ''nn2 for C '' andn2 large enough+ Together with~A+8!,
following the same argument as in Härdle and Mammen~1993!, we obtain~A+6!+

For the proof of~A+5!, one can conclude from~A+6! that, with probability tending to
one, [mb~t ! lies in the interior ofH ~see Assumption~A4!!+ This gives

D1~ [mb~t !, t,b! 5 0+ (A.9)

With ~A+6! we obtain

sup
t,b
6D2~ [mb~t !, t,b!6 5 Op~r2!+

With Assumption~A4! this yields~A+5!+ n

We use~A+5! to prove~A+4! ~consistency of Zb!+

Proof of (A.4). Let k~b! 5 E @Q$XTb 1 mb~T !;Y%# + We will show that

sup
b[B

* 1

n
L~ [mb ,b! 2 k~b!*r 0 ~ in probability!+ (A.10)

This implies claim~A+4! because

k''~b0! 5 EFl''$XTb0 1 m1~T !%HX 1
]mb

]b
~b0,T !JHX 1

]mb

]b
~b0,T !JTG

5 2E~Z2 FX FXT!

is strictly negative definite andk~b0! 5 supb[H k~b!+
It remains to prove~A+10!+ This follows from

sup
b[B

* 1

n
L~mb ,b! 2 k~b!*r 0 ~ in probability!, (A.11)

sup
b[B

* 1

n
L~ [mb ,b! 2

1

n
L~mb ,b!*r 0 ~ in probability!+ (A.12)
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Claim ~A+11! holds becauseL~mb,b!0n converges tok~b! by the law of large numbers
and because$L~mb,b!0n,b [ B% is tight+ For the proof of tightness note first that

* 1

n
L~mb1

,b1! 2
1

n
L~mb2

,b2!* # Tn,17b1 2 b271 Tn,2 sup
t
6mb1

~t ! 2 mb2
~t !6

# Tn,17b1 2 b271 Tn,2 sup
t,b
** ]

]b
mb~t !**7b1 2 b27,

where

Tn,1 5 sup
b,h

1

n (
i51

n

l'~Xi
Tb 1 h!7Xi 7,

Tn,2 5 sup
b,h

1

n (
i51

n

l'~Xi
Tb 1 h!+

Under our conditions, Tn,1 andTn,2 are bounded in probability+ To see that~]0]b!mb~t !
is uniformly bounded inb and t note that

]mb

]b
~b, t ! 5 2

E @l''$bTX 1 mb~T !%X6T 5 t #

E @l''$bTX 1 mb~t !%6T 5 t #
+ (A.13)

Equation~A+13! follows by differentiation ofE$l'~bTX1 mb~t !!6T5 t % 5 0+ This shows
~A+11!+ Claim ~A+12! follows from

sup
b
* 1

n
L~ [mb ,b! 2

1

n
L~mb ,b!* # sup

b,h
6l'~XTb 1 h!6 sup

t,b
6 [mb~t ! 2 mb~t !6+

Thus finally ~A+4! is shown+ n

Next, we establish uniform stochastic expansions ofZb and [m~t !+

Zb 5 b 1 $E~Z2 FX FXT!%21
1

n (
i51

n

FXi l i
' $Xi

Tb 1 m1~Ti !% 1 Op~r2
2!, (A.14)

sup
t[ST

*
6D~t !6 5 Op~r2

2!, (A.15)

with

D~t ! 5 [m~t ! 2 H Um~t ! 1 $E~Z2 6T 5 t !%21E~Z2XT 6T 5 t !$E~Z2 FX FXT!%21

3
1

n (
i51

n

FXi l i
' $Xi

Tb 1 m1~Ti !%J , (A.16)
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Um~t ! 5 m1~t ! 1 $E~Z2 6T 5 t !%21
1

n (
i51

n

ki ~t !l i
' $Xi

Tb 1 m1~t !%, (A.17)

ST
* 5 $t [ ST : t 1 h [ ST for all h with 6h16# g and6hj 6# h ~ j 5 2, + + + ,d!%,

FXi 5 Xi 2 $E @Zi
26Ti #%21E @Zi

2Xi 6Ti # , (A.18)

Zi
2 5

G'~Xi
Tb 1 m1~Ti !!

2

V @G~Xi
Tb 1 m1~Ti !!#

+ (A.19)

Equations~A+14! and~A+15! follow from a slight modification of Lemma A3+3 and Cor-
ollary A3+4 in Härdle et al+ ~1998!+ There it has been assumed that the likelihood is
maximized forb in a neighborhood ofb0 with radiusr1 ~see Härdle et al+, 1998,Assump-
tion ~A7!!+ In our setup we have that for a sequencedn

' with dn
' r 0 with probability

tending to one

Zb 5 arg max
b:7b2b07#dn

'
L~ [mb ,b!+

Using the same arguments as in Härdle et al+ ~1998!, one can show that

Zb 5 b 1 $E~Z2 FX FXT!%21
1

n (
i51

n

FXi l i
' $Xi

Tb 1 m1~Ti !% 1 Op~r2
2! 1 7 Zb 2 b72Op~1!+

This shows~A+14!+ Equation~A+15! can be shown similarly+
With the help of~A+15! we arrive at

Um1~t1! 5

(
i51

n

w21~Ti,21! Um~t1,Ti,21!

(
i51

n

w21~Ti,21!

1 OP~r2
2 1 n2102!

5 m1~t1! 1 R1 1 D1~t1! 1 OP~r2
2 1 n2102!, (A.20)

where

R1 5
1

(
i51

n

w21~Ti,21!
(
i51

n

w21~Ti,21!@m2~Ti,2! 1 {{{ 1 md~Ti,d !# ,

D1~t1! 5
1

(
i51

n

w21~Ti,21!

1

n (
i, j51

n w21~Ti,21!kj ~t1,Ti,21!

E~Zi
26Ti,1 5 t1,Ti,21!

l j
' $Xj

Tb 1 m1~t1,Ti,21!%,

wherel j
' , kj , and Zi are defined by equations~A+1!, ~A+3!, and ~A+19!, respectively+

GivenZn 5 ~~X1,T1,1, + + + ,T1,d!, + + + , ~Xn,Tn,1, + + + ,Tn,d!!, the termD1~t1! is a sum of inde-
pendent variables+ For the conditional variance the following convergence holds in
probability:
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nhVar~D1~t1!6Zn!

r EL2~u! du EF w2~T21!

$Ew21~T21!%2

E~Z2 6T1 5 t1!

E~Z2 6T1 5 t1,T21!2

fT21

2 ~T21!

fT
2~t1,T21!G +

For this convergence, one uses, e+g+,

* sup
t5~t1, t21![ST

2
n21 (

k51

n

Kh~t1 2 T1, k!Lg~t21 2 T21, k! 2 fT~t1, t21!* 5 oP~1!,

n21 (
k51

n

Kh~t1 2 T1, k! 2 fT1
~t1! 5 oP~1!+

Asymptotic normality ofD1~t1! 2 E~D1~t1!6Zn! follows from the convergence of the
conditional variance and from

P~dK ~L~D1~t1! 2 E~D1~t1!6Zn!!,N~0,Var~D1~t1!6Zn!!! . d! r 0 (A.21)

for all d . 0+ HeredK is the Kolmogorov distance, which is for two probability mea-
suresm andn ~on the real line! defined as

dK ~m,n! 5 sup
t[IR
6m~X # t ! 2 n~X # t !6+

For the proof of~A+21! one shows that a conditional Lindeberg condition holds with
probability tending to one+ It remains to study the conditional expectationE~D1~t1!6Zn!+
This can be done by showing first that

E~D1~t1!6Zn! 5
1

n (
i51

n EKh~t1 2 v1!Lg~Ti,21 2 v21!

3 E @$G~XTb 1 m1~v!! 2 G~XTb 1 m1~t1,Ti,21!!%

3 a1~X, t1,Ti,21!6Ti,1 5 t1,Ti,21# fT~v! dv1 rn, (A.22)

where the functiona1 is defined in Lemma A2+1 andrn 5 OP~r2
2 1 n2102! 1 oP~h2 1

g2!+ Furthermore, rn 5 OP~r2
2 1 n2102 1 h4 1 g4! under the additional assumption

~A10!+ The proof of~A+22! follows by standard but tedious calculations+ The asymptotic
form of E~D1~t1!6Zn! can be easily calculated from~A+22!+ Note that the asymptotic
bias of [m1~t1! is asymptotically equal to

E~D1~t1!6Zn! 2EE~D1~v1!6Zn!w1~v1! fT1
~v1! dv1YEw1~v1! fT1

~v1! dv1

because we assumed that*w1~v1!m1~v1! fT1
~v1! dv1 5 0+ Furthermore, note that up to

first order, [m1~t1! and Km1~t1! have the same asymptotic variance+ n
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Proof of Lemma A2.2. The conditions onh andg imply r2
2 5 o~n2102!+ Therefore

the statement of Lemma A2+2 can be followed from~A+14!+ n

Proof of Theorem 3.1. The statement of the theorem follows from

2 [m1~t1! 2 E* [m1
*~t1! 2 m1~t1! 5 OP~h4 1 g4 1 ~nh!2102!+ (A.23)

Claim ~A+23! follows from

2 Um1~t1! 2 E* Um1
*~t1! 2 m1~t1! 5 R1 2 ZR1 1 OP~h4 1 g4 1 ~nh!2102!, (A.24)

1

n (
i51

n

w1~Ti,1!@2 Um1~Ti,1! 2 E* Um1
*~Ti,1! 2 m1~Ti,1!#

5 @R1 2 ZR1#
1

n (
i51

n

w1~Ti,1! 1 OP~h4 1 g4 1 ~nh!2102!, (A.25)

where

ZR1 5
1

(
i51

n

w21~Ti,21!
(
i51

n

w21~Ti,21!@ [m2~Ti,2! 1 {{{ 1 [md~Ti,d !#

and whereR1 has been defined after~A+20!+
We give only the proof of~A+24!+ Claim ~A+25! follows similarly+ By ~A+20! we

have that

Um1~t1! 5 m1~t1! 1 R1 1 D1~t1! 1 OP~h4 1 g4 1 ~nh!2102!,

where

D1~t1! 5
1

(
i51

n

w21~Ti,21!

1

n (
i, j51

n w21~Ti,21!kj ~t1,Ti,21!

E~Zi
26Ti,1 5 t1,Ti,21!

G'$Xj
Tb 1 m1~t1,Ti,21!%

V~G$Xj
Tb 1 m1~t1,Ti,21!%!

3 @G$Xj
Tb 1 m1~Tj !% 2 G$Xj

Tb 1 m1~t1,Ti,21!%# +

Similarly, one obtains

E* Um1
*~t1! 5 Um1~t1! 1 ZR1 1 ZD1~t1! 1 OP~h4 1 g4 1 ~nh!2102!,

where

ZD1~t1! 5
1

(
i51

n

w21~Ti,21!

1

n (
i, j51

n w21~Ti,21!kj ~t1,Ti,21!

E~Zi
26Ti,1 5 t1,Ti,21!

G'$Xj
T Zb 1 [m1~t1,Ti,21!%

V~G$Xj
T Zb 1 [m1~t1,Ti,21!%!

3 @G$Xj
T Zb 1 [m1~Tj !% 2 G$Xj

T Zb 1 [m1~t1,Ti,21!%# +
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For claim~A+24! it suffices to show

D1~t1! 2 ZD1~t1! 5 OP~h4 1 g4 1 ~nh!2102!+ (A.26)

This can be done by lengthy but straightforward calculations+We do not want to give all
details here+ In a first step one shows that

D1~t1! 2 ZD1~t1! 5 (
i, j51

n

Wi, j @G$Xj
Tb 1 m1~Tj !% 2 G$Xj

Tb 1 m1~t1,Ti,21!%

2 G$Xj
T Zb 1 [m1~Tj !% 1 G$Xj

T Zb 1 [m1~t1,Ti,21!%#

1 OP~h4 1 g4 1 ~nh!2102!, (A.27)

where

Wi, j 5
1

(
i51

n

w21~Ti,21!

1

n

w21~Ti,21!kj ~t1,Ti,21!

E~Zi
26Ti,1 5 t1,Ti,21!

G'$Xj
Tb 1 m1~t1,Ti,21!%

V~G$Xj
Tb 1 m1~t1,Ti,21!%!

+

The left-hand side of~A+27! can be treated by using Taylor expansions ofG and the
stochastic expansions of[mj given in ~A+20!+ Consider, e+g+, for k Þ 1

Ck~t1! 5 (
i, j51

n

Wi, j G
'$Xj

Tb 1 m1~Tj !%@mk~Tj, k! 2 mk~Ti, k!

2 [mk~Tj, k! 1 [mk~Ti, k!# +

Then by using the expansions of[mk given in ~A+20! and the expansion of the bias of[mk

~see Lemma A2+1! one sees that

Ck~t1! 5 Ck1~t1! 1 Ck2~t1! 1 OP~h4 1 g4 1 ~nh!2102!,

where

Ck1~t1! 5 (
i, j51

n

Wi, j G
'$Xj

Tb 1 m1~Tj !%@2dn
k~Tj, k! 1 dn

k~Ti, k!#

and where

Ck2~t1! 5
1

n (
i51

n

vi,n~Zn, t1!«i

with some uniformly bounded constantsvi, n~Zn, t1!:

sup
1#i#n

sup
t1[ST,1

2
vi,n~Zn, t1! 5 OP~1!+
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It can be easily seen thatCk1~t1! 5 OP~h4 1 g4 1 n2102! andCk2~t1! 5 OP~n2102!+ We
have discussed this term because it shows how the terms of orderg2 cancel in [m1

B~t1! 2
m1~t1!+ By similar calculations for the other terms one can show the theorem+ n

Proof of Theorem 3.2. For the proof we make use of the following lemma+

LEMMA A3 +1+ Under the assumptions of Theorem 3.2, it holds that

vn21~R2 en!
L
&& N~0,1!

with

en 5 ~h1{{{{{hr !21 )
j51

r EKj ~u!2 duE@AfT1
~T1!# ,

vn2 5 ~h1{{{{{hr !21 )
j51

r EKj
~2!~u!2 duE$E @A6T1# 2fT1

~T1!3%,

A 5
1

E @w21~T21!#

w21~T21!w~T !Z4fT21

2 ~T21!

E @Z2 6T # 2fT
2~T !

Var@Y6X,T #

V$XTb 1 m1~T !%
,

where Kj
~2!~u! 5 *Kj ~u 2 v!K~v! dv is the convolution of Kj with itself.

We now give a proof of Lemma A3+1+ Theorem 3+2 follows by replication of the
arguments for the “bootstrap world+”

We consider the statistic

U 5 (
i51

n

Wi $ [m1~Ti,1! 2 E* [m1
*~Ti,1!%2,

where

Wi 5 w~Ti !
@G'$Xi

Tb 1 m1~Ti !%#
2

V$Xi
Tb 1 m1~Ti !%

+

Note that

R 5 (
i51

n

ZWi $ [m1~Ti,1! 2 E* [m1
*~Ti,1!%2

with

ZWi 5 w~Ti !
@G'$Xi

T Zb 1 [m1~Ti !%#
2

V$Xi
T Zb 1 [m1~Ti !%

+
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We will show that

U 5 V 1 op~h2102!, (A.28)

R 5 U 1 op~h2102!, (A.29)

where

V 5 (
i51

n

Wi $ [m1
APPR1~Ti,1!%2,

[m1
APPR1~t1! 5

1

n (
i51

n

a1~Xi , t1,Ti,21! fT21
~Ti,21!Kh~t1 2 Ti,1!«i ,

«i 5 Yi 2 m~Xi ,Ti !,

m~x, t ! 5 G@xTb 1 a 1 g1 t1 1 m2~t2! 1 {{{ 1 md~td !# +

The functiona1 has been defined in the statement of Lemma A2+1+ Asymptotic normal-
ity of V can be shown as in Härdle and Mammen~1993!+ In particular, one gets~with
pairwise different indicesi, j, k, and l !

EV 5 E$Wi a1~Xj ,Ti,1,Tj,21! fT21
~Tj,21!2Kh

2~Ti,1 2 Tj,1!Var@Yj 6Xj ,Tj # %

1 O~n21h22!

5 en 1 O~h 1 n21h22!,

Var@V # 5 E$Wi Wl a
1~Xj ,Ti,1,Tj,21!a1~Xj ,Tl,1,Tj,21!a1~Xk,Ti,1,Tk,21!

3 a1~Xk,Tl,1,Tk,21! fT21

2 ~Tj,21! fT21

2 ~Tk,21!

3 Kh~Ti,1 2 Tj,1!Kh~Tl,1 2 Tj,1!Kh~Ti,1 2 Tk,1!

3 Kh~Tl,1 2 Tk,1!Var@Yj 6Xj ,Tj # Var@Yk6Xk,Tk# !%

1 O~n21h22!

5 vn2 1 O~h 1 n21h22!+

Becausevn2 is of orderh21 for the proof of the theorem it remains to show~A+28! and
~A+29!+

Proof of (A.28). Becauser2
2 5 o~n2102!, it follows from ~A+15! ~compare~A+20!!

that uniformly for t1 in ST,1
2

Um1~t1! 5 m1~t1! 1 R1 1 D1~t1! 1
E @w21~T21!M~t1,T21!#

E @w21~T21!#
Bn 1 oP~n2102!,
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where

M~t ! 5
1

E @Z2 6T 5 t #
E @Z2XT 6T 5 t #E @ FX FXT 6T 5 t #21,

Bn 5
1

n (
i51

n

FXi l i
' @Xj

Tb 1 m1~Tj !# +

Furthermore, for D1~t1! one can show the following uniform expansion:

D1~t1! 5
1

n (
i51

n

a1~Xi , t1,Ti,1!Kh~t1 2 Ti,1!@Yi 2 m~Xi , t1,Ti,21!# 1 oP~n2102!+

By similar expansions as in the proof of Lemma A2+1 one can show that this implies the
following uniform expansion of [m1:

[m1~t1! 5 g1 t1 1 [m1
APPR1~t1! 1 [m1

APPR2~t1! 1 dn
1~t1! 1 oP~n2102!, (A.30)

where

[m1
APPR2~t1! 5

1

n (
i51

n

vi,n,2~t1!«i

with some uniformly bounded functionsvi, n,2:

sup
1#i#n

sup
t1[ST,1

2
vi,n,2~t1! 5 O~1!+

The functiondn
1 has been defined in Lemma A2+1+

Furthermore, using similar arguments as in the proof of Theorem 3+1 one can show
that

E* [m1
*~t1! 5 Jg1 t1 1 dn

1~t1! 1 [m1
APPR3~t1! 1 oP~n2102!

with

[m1
APPR3~t1! 5

1

n (
i51

n

vi,n,3~t1!«i

for some uniformly bounded functionsvi,n,3+ Together with~A+30! and a stochastic expan-
sion of Jg this gives that uniformly fort1 in ST,1

2

[m1~t1! 2 E* [m1
*~t1! 5 [m1

APPR1~t1! 1 [m1
APPR4~t1! 1 oP~n2102!

with

[m1
APPR4~t1! 5

1

n (
i51

n

vi,n,4~t1!«i

for some uniformly bounded functionsvi, n,4+
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Claim ~A+28! follows from

(
i51

n

Wi $ [m1
APPR4~Ti,1!%2 5 oP~h2102!,

(
i51

n

Wi [m1
APPR1~Ti,1! [m1

APPR4~Ti,1! 5 oP~h2102!,

(
i51

n

6Wi [m1
APPR4~Ti,1!6 5 oP~n102h2102!,

(
i51

n

6Wi [m1
APPR1~Ti,1!6 5 oP~n102h2102!+

These bounds can be shown by calculation of expectations of the terms on the left-hand
side+ n

Proof of (A.29). Because of Lemma A2+2, we have that Zb 2 b 5 OP~n2102! and
[a 2 a 5 OP~n2102!+ Moreover we can easily show that

sup
t1
*D1~t1! 2

1

n (
i

D1~Ti,1!* 5 OP~r2!+

It follows that

sup
1#i#n

6 ZWi 2 Wi 6 5 OP~r2 1 n2102!+

Now,

6U 2 R6 # sup
1#i#n

6 ZWi 2 Wi 6(
i51

n

$ [m1~Ti,1! 2 E* [m1
*~Ti,1!%2

5 OP~r2 1 n2102! OP~h21!

5 oP~h2102!+

This proves~A+29!+ nn

Proof of Theorem 3.3. The proof follows the lines of the proof of Theorem 3+2+ In a
first step one again shows asymptotic normality of the test statistic+

LEMMA A3 +2+ Under the assumptions of Theorem 3.3, it holds that

vn21~Rinter 2 en!
L
&& N~0,1!

with en and vn defined as in Lemma A3.1. n

Proof of Theorem 3.4. The proofs for Models A and B can be done as in Neumann
and Polzehl~1998!, where wild bootstrap of one-dimensional regression functions has
been considered+ In this paper it has been shown that the regression estimates in the
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bootstrap world and in the real world can be approximated by the same Gaussian pro-
cess+ For this purpose one shows that[m1~t1! 2 E @ [m1~t1!6Zn# and [m1

*~t1! 2 E* @ [m1
*~t1!#

have linear stochastic expansions+ In particular, using the expansions given in the proof
of Lemma A2+1, one shows that

sup
t1[ST,1

2 * [m1~t1! 2 E @ [m1~t1!6Zn# 2
1

n (
i51

n

a1~Xi , t1,Ti,21! fT21
~Ti,21!Kh~t1 2 Ti,1!«i*

5 OP~n2102M log n!+

Here, for d . 0 small enough we have putST,1
2 5 $s: there exists au Ó ST,1 with

6s 2 u6 # d% + ~Then, if d is small enough we have thatw1~t1! 5 0 for s Ó ST,1
2 +! Simi-

larly one can see that

sup
t1[ST,1

2 * [m1
*~t1! 2 E* @ [m1

*~t1!# 2
1

n (
i51

n

a1~Xi , t1,Ti,21! fT21
~Ti,21!Kh~t1 2 Ti,1!«i

**
5 OP~n2102M log n!+

By small modifications of the arguments of Neumann and Polzehl~1998! one can see
that their approach carries over to our estimates+

We now will give a sketch of the proof for Model C+ First note that
dK $L1~S!,L~S!% r 0 in probability whereL1 denotes the conditional distribution given
Zn 5 ~~X1,T1,1, + + + ,T1,d!, + + + , ~Xn,Tn,1, + + + ,Tn,d!!+ This can be seen as in Neumann and
Polzehl~1998!+ The proof of the theorem will be based on strong approximations+ For
this purpose we introduce random variablesY1

1 ,Y1
11 , + + + ,Y1

1 ,Y1
11 , + + + ,Yn

1 ,Yn
11 by the

following construction: choose an i+i+d+ sampleU1, + + + ,Un that is independent ofZn+
We putYi

1 5 Fi
21~Ui ! andYi

11 5 Gi
21~Ui !, whereFi andGi are the distribution func-

tions ofL1~Yi ! andL*~Yi
*!, respectively+ Then given the original data~X1,T1,Y1!, + + + ,

~Xn,Tn,Yn!, ~Y1
1 ,Y1

11!, + + + , ~Yn
1 ,Yn

11! are conditionally i+i+d+, L*~Yi
1! 5 L1~Yi ! and

L*~Yi
11! 5 L*~Yi

*!+ Furthermore we have that

max
1#i#n

E* 6Yi
11 2 Yi

1 6 5 OP~r2!+ (A.31)

Here E* denotes the conditional expectation given the original data~X1,T1,Y1!, + + + ,
~Xn, Tn,Yn!+ Note thatL*~Yi

1! andL*~Yi
11! belong to the same exponential family

with expectationm i or [m i , respectively+ Property~A+31! follows from

E* 6Yi
11 2 Yi

1 6 5E
0

1

6Fi
21~u! 2 Gi

21~u!6 du

5E
2`

`

6Fi ~v! 2 Gi ~v!6 dv

5 O~m i 2 [m i ! 5 OP~r2!+

Put «i
1 5 Yi

1 2 m i and«i
11 5 Yi

11 2 [m i + The estimate of the first component that is
based on the sampleY1

1 , + + + ,Yn
1 is denoted by [m1

1~t1!+ The estimate that is based on
Y1

11 , + + + ,Yn
11 is denoted by [m1

11~t1!+
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We argue now that fort . 0 small enough

max
1#i#n

sup
0#t#t

E* 6«i
11 2 «i

1 62$11 exp~t 6«i
1 6! 1 exp~t 6«i

11 6!% 5 OP~r2!+ (A.32)

This can be seen by straightforward calculations using~A+31! and the fact that the nat-
ural parameter ofL*~Yi

1! andL*~Yi
11! is bounded away from the boundary of the

natural parameter space of the exponential family~see Assumption~A2!!+
It can be shown that for a sequencecn 5 o~1! and for all an , bn with bn 2 an #

cn log n ~nh!2102 one has thatP~SÓ @an,bn# ! converges to 0+ This can be seen similarly
as for kernel smoothers in one-dimensional regression~see, e+g+, Neumann and Polzehl,
1998!+ The statements of Theorem 3+4 follow from

sup
t1[ST,1

2
6 [s1~t1! 2 s1~t1!6 5 oP~1!, (A.33)

sup
t1[ST,1

2
6 [s1
*~t1! 2 s1~t1!6 5 oP~ @ log n#21!, (A.34)

sup
t1[ST,1

2
6@ [m1

11~t1! 2 [m1~t1!# 2 @ [m1
1~t1! 2 m1~t1!#6 5 oP~~nh!2102 @ log n#2102!+ (A.35)

We give here only the proof of~A+35!+ One shows first that

sup
t1[ST,1

2 * [m1
1~t1! 2 m1~t1! 2

1

n (
i51

n

a1~Xi , t1,Ti,21!Kh~t1 2 Ti,1!«i
1*

5 oP~~nh!2102 @ log n#2102!,

sup
t1[ST,1

2 * [m1
11~t1! 2 [m1~t1! 2

1

n (
i51

n

a1~Xi , t1,Ti,21!Kh~t1 2 Ti,1!«i
11*

5 oP~~nh!2102 @ log n#2102!+

This can be done by using expansions of the type~A+15!+ Note that the bias of[m1
1~t1!

and [m1
11~t1! is of orderoP~~nh!2102@ log n#2102!+ So, for ~A+35! it remains to show

sup
t1[ST,1

2 * 1

n (
i51

n

a1~Xi , t1,Ti,21!Kh~t1 2 Ti,1!@«i
1 2 «i

11#*
5 oP~~nh!2102 @ log n#2102!+ (A.36)

For the proof of this claim we use a standard method that has been applied for calcula-
tion of the sup-norm of linear smoothers+ We show first that for all constantsC1 . 0
there exists a constantC2 such that

sup
t1[ST,1

2
P* H* 1

n (
i51

n

a1~Xi , t1,Ti,21!Kh~t1 2 Ti,1!@«i
1 2 «i

11#* . C2knJ
5 oP~n2C1 !, (A.37)
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wherekn@nh0r1#2102@ log n# 302 and whereP* denotes the conditional distribution given
the original data~X1,T1,Y1!, + + + , ~Xn,Tn,Yn!+ Note thatkn 5 o~~nh!2102@ log n#2102!+ Equa-
tion ~A+37! implies a modification of claim~A+36! where the supremum runs only over
a finite grid of O~nC1 ! elements+ The unmodified claim~A+36! follows by taking a
crude bound on

sup
t1[ST,1

2 * ]

]t1

1

n (
i51

n

a1~Xi , t1,Ti,21!Kh~t1 2 Ti,1!@«i
1 2 «i

11#*+
It remains to show~A+36!+ Note that

P* H 1

n (
i51

n

a1~Xi , t1,Ti,21!Kh~t1 2 Ti,1!@«i
1 2 «i

11# . C2knJ
# E* expFlog nkn

21
1

n (
i51

n

a1~Xi , t1,Ti,21!Kh~t1 2 Ti,1!@«i
1 2 «i

11#G
3 exp@ log nkn

21C2kn#

# n2C2 )
i51

n

E* expF log n

knn
a1~Xi , t1,Ti,21!Kh~t1 2 Ti,1!@«i

1 2 «i
11#G +

We use now the expansion exp@x# # 1 1 x 1 x202 $1 1 exp@x#% + Because ofE*«i
1 2

«i
11 5 0 and because of~A+32! this gives that the last term is bounded by

# n2C2 )
i51

n F11 C
~ log n!2

kn
2n2 a2~Xi , t1,Ti,21!Kh

2~t1 2 Ti,1!r2G ,
whereC is a constant+ We use now 11 x # exp@x# + This gives the bound

# n2C2 expF(
i51

n

C
~ log n!2

kn
2n2 a2~Xi , t1,Ti,21!Kh

2~t1 2 Ti,1!r2G +
With another constantC ' this can be bounded by

# n2C2 expFC '
~ log n!2

kn
2nh

r2G
# nC '2C2+

For C2 large enough, this is of ordero~nC1 !+ This shows~A+36!+
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