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Semiparametric generalized additive models are a powerful tool in quantita-
tive econometricsWith responseY, covariatesX, T, the considered model is
E(Y|X;T) = G{X"8 + a + my(Ty) + --- + my(Ty)}. Herg G is a known link o
and B are unknown parameterandmg,..., my are unknown(smooth functions

of possibly higher dimensional covariatés..., Tq. Estimates ofmy,...,mq, a,
andp are presentedand asymptotic distributions are given for both the nonpara-
metric and the parametric paiithe main focus of the paper is application of boot-
strap methoddt is shown how bootstrap can be used for bias correctigpothesis
testing (e.g., component-wise analygisand the construction of uniform confi-
dence bandd~urther bootstrap tests for model specification and parametrization
are given in particular for testing additivity and link function specificatiofhe
practical performance of the methods is illustrated in a simulation study

1. INTRODUCTION

Many problems in econometrics and other fields require estimating and analyz-
ing the conditional meam(X, T) of a random respons¥ given covariatex
andT. A traditional estimation approach fon(x,t) assumes thah belongs to
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a known finite-dimensional parametric familgften motivated by economic
theory identifiability conditions or practical reasanBarameters can be esti-
mated withOp(1/+/n) rate of convergenceClearly, the estimation results are
misleading ifm(x;t) is misspecifiedMisspecifications may be avoided by non-

or semiparametric approachétowever the nonparametric rate of convergence
decreases rapidly as the dimension of the covariates incréseses.g., Stone
1985, and high-dimensional nonparametric functions are difficult to interpret
A natural compromise between typical parametric and purely nonparametric
models is a model of the form

E(YIX=xT=t)=G(x"B+m(t)) =G(X"B+ a+ myt]) + --- + my(ty)),
1)

called a generalized additive partial linear modal this paper we study the
case when the link functio is known or has to be tested and coefficieats
and B and the nonparametric functioms,,...,my of possibly higher dimen-
sional covariatedy,..., Ty are unknown It is well known that those models
can be estimated at a rate typical for the lower dimensional explanatory vari-
ablesT; (Stong 1985.

The special case of generalized partially linear modeish d = 1) is well
studied (see e.g., Ai, 1997 Mammen and van de Geet997 Severini and
Staniswalis 1994). We will extend the latter approagche., the iterative appli-
cation of smoothed local and unsmoothed global likelihodtie related model
E[Y|X,T]=G{B™X + m(T )} is studied by CarrojIFan Gijbels and Wand
(1997). Their aim is dimension reduction of the variableby projection but
the fitted nonparametric transformatiomis quite difficult to interpret

Additive and generalized additive models play an important role in eco-
nomic theory(see e.g., Leontief 1947 Goldberger1964 Deaton and Muell-
bauey 1980. Apart from their statistical advantages they allow for the analysis
of subsets of regressors and permit decentralization in optimization and deci-
sion making Projection smoothers using backfitting techniques are considered
in Hastie and Tibshiranil990, but asymptotic theory for this technique is rather
complicated(see MammepLinton, and Nielsen1999 Opsomer and Ruppert
1999. An alternative approach that allows a detailed asymptotic analysis uses
approximations by linear spacée.g., of regression splingswith increasing
dimension(see HansgrHuang Kooperberg Stone and Truong 2002. Horo-
witz (2001 proposes estimates of additive components based on partial deriv-
atives of the full-dimensional regression functidfis approach also allows an
unknown link function Further Tjgstheim and Auestad1994) and Linton and
Nielsen(1995 introduce the marginal integration approadfarginal integra-
tion is applied to generalized additive models by Linton and H&TRO6. We
will use the approach of Severini and Staniswali994 and combine it with
marginal integrationThis is done for practical and theoretical reasdngar-
ticular, this approach will allow for a detailed asymptotic distribution theory
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The main subject of this paper is the introduction of bootstrap procedures for
(1). Nonparametric bootstrap tests for generalized partially linear models can
be found in HardleMammen and Miiller(1998. In our more complex case
the integration estimate of an additive component has bias terms that depend
on the shape of the other additive componeitss complicates the data ana-
lytic interpretation of nonparametric fit$Ve will show how bootstrap can be
used to correct for these ternBootstrap tests will be considered also for vari-
able selectionparametric specificationsand testing additivityWe will argue
that bootstrap is a natural method for these probléiternative methods could
be based on asymptotic expansions to get bias approximations or normal approx-
imations respectivelyand to use plug-in estimates our setup these expan-
sions are rather complex and may lead only to crude approximat@msve
expect that the structure of the model will be better mimicked by the bootstrap

The paper is organized as followsa the next section we introduce estimates
for the parameters and the nonparametric components of nibdedection 3
presents several applications of bootstrap for analyzing the nonparametric com-
ponents starting with bias corrections for the nonparametric estimatdsat
follows are bootstrap tests for different null hypotheses about the components
In the last part procedures and theory for uniform confidence bands are given
In Section 4 the presented methodology is studied in simulatAssimptions
asymptotic theory for the estimatoend proofs are postponed to the Appendix

2. QUASI-LIKELIHOOD ESTIMATION IN GENERALIZED
ADDITIVE MODELS

In this section we will discuss our approach for generalized additive models
Our estimation procedure starts with the iterative algorithm of Severini and
Staniswalis(1994), and in a second step the additive components are fitted by
marginal integrationFor a better understanding we first discuss the special case
of binary response modelBor the general case of generalized additive models
our approach will be introduced in Section22For a discussion of binary
response models see also Horow{1®98. A detailed introduction to quasi-
likelihood can be found in McCullagh and Neldg989.

2.1. Additive Binary Response Models

In an additive binary response model independent and identically distributed
(i.i.d.) tuples(Y;, X;, T;) are observedi = 1,...,n), whereT; = (T, 4,..., T, q)

is a random variable with componerig, in R%, X; is in RP, andY; € {0,1}.
Conditionally given(X;,T;) the variableY; is distributed as a Bernoulli vari-
able with parameteG{X{'B8 + a + my(T;1) + --- + Mmy(Ti.4)} WhereG is

a known (link) function, 8 an unknown parameter ifRP, @ an unknown
scalarandm;: R% — R unknown smooth functiong-or identifiability we set
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E w(Ti,1)m;(T; 1) = 0 Oj for some weight functionsy;. Given (X;,T;), the
likelihood of Y; is

Q(ui3Y) = Yilogu; + (1= Y;)log(1 — p;), (2)
whereu; = G{X{'B + @ + m(Ti1) + --- + my(T; 4)}. The likelihood function
is given by

L(m*,B) = %Q(Mi?Yi), 3)

wherem™(t) is the additive functiony + my(t;) + -+ + my(ty).

We now discuss how the additive nonparametric components can be esti-
mated Without loss of generalitywe will do this for the first component;.
We writer = g3, S= @, + --- + gq and define the smoothed likelihood

L3(m*,B) = f 2:1 Kn(t; = T Lot — Ti,—l)Q[G{XiT,B +m*()}Y ]dt

(4)

where the vectofl; = (T 1,..., T 4) is a random variable with componenis;
in RY%. For a vectoru = (uy,...,Uy) with componentsy; in R% we denote
(Uz,...,Uq)T by u_q; similarly, we write T, 1 = (T ,..., T;.q)". For a kernel
function L defined onIR® put Ly(v) = (g;-----gs) *L(gs *vy,..., 0s *vs) and
for simplicity assume thalt is a product kernel = HJ-SZILJ-. Similarly, define
Kn(v) = h™K(h~ ) for v € IR" and bandwidth vecton € IR" with product
kernelK = H,—r:lKj. The bandwidth vectog is related to smoothing in direc-
tion of the “nuisance” covariate¥he relative speed of the elementsgab the
elements oh and the choice of these bandwidths will be discussed subsequently
Following Severini and Staniswali$994, we base our estimates on an iter-
ative application of smoothed local and unsmoothed global likelihood func-
tions We define forg € B

m(t) = arg nla)(; Kn(ty = T Lg(ty — -ri,—l)Q[G{XiTB + Y1, (%)

B = arg max’(mg, B), (6)
BEB

= . (7)

Equation(5) may be written agh; = arg max, £3(m, 8). The resulthis a multi-
variate kernel estimate ah* that does not use the additive structurenof.
This m will be used in an additional step to obtain estimateg,,..., My of
the additive components, m,, ..., my. The final additive estimate afi*(t) will
then be given by + rmy(t)) + -+ + my(ty).
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For the estimation of the nonparametric compomanthe marginal integra-
tion method is appliedt is motivated by the fact thatup to a constanim(t;)
is equal to

{le(v) dv}1 fW—l(U) m*(ty,v) dv

or

n -1 n
{(Un) 2:1 Wl(Ti,l)} (1/n) 2:1 w_(Ti —1) m* (ty, Ti-1)

for a weight functionw_;. Note that this method does not use iterations so that
the explicit definition allows a detailed asymptotic analygisveight function
w_; is used for two reason# may be useful to avoid problems at the bound-
ary, and it can be chosen to minimize the variaficempare FanHardlg and
Mammen 1998. So we define

Sl

S Wfl(Ti,fl)m(tl’Ti,fl)
Myt =~ : ®
H 2 w_1(Ti —1)

i=1

which estimates the functiom,; up to a constantAn estimate of the function
m, is given by normingwith a weight functionw,)

1 n
n > wy (T 1) My (T 1)
i=1
ml(tl) = ml(tl) - 10 (9)
- wi(Ti 1)
ni=;
The additive constant can be estimated by
1 n
- zwo(ﬂ)[m(ﬂ) = My(Tiy) = -+ = My(Ti o)]
&= — . (10)

1 n
= > Wo(T)
ni=
Again, the weight functionsv, andw; may be useful to avoid problems at the

boundaryAfter having estimated the remaining nonparametric components anal-
ogously the final estimate ofn is

mH(t) = &+ my(ty) + --- + My(ty). (11)
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2.2. Semiparametric Generalized Additive Models

We now come to the discussion of estimation in semiparametric generalized
additive modelsSuppose that we observe an independent safleX;, Ty),

., (Yn, X, Tn) with E[Y;| X, ;] = G{XB + m(T;)}. Additional assumptions
on the conditional distribution of; will be given subsequentlyFor a positive
functionV the quasi-likelihood QL) function is defined as

y _
Qlw;y) = f (f/(sil) ds (12)

whereu is the (conditiona) expectation ofY, i.e., u = G{X"8 + m(T)}. The
QL function has been introduced for the case that the conditional variante of
is equal too2V( ) whereo? is an unknown scale paramet&he functionQ
can be motivated by the following two consideratiodearly Q(u;Yy) is equal
—3(u —y)?v~* wherev ! is a weighted average of¥((s) for s betweenu
andy. Consequentlymaximum QL estimates can be interpreted as a modifica-
tion of weighted least squaresnother motivation comes from the fact that for
exponential families the maximum QL estimate coincides with the maximum
likelihood estimateNote that the maximum likelihood estimadebased on an
i.i.d. sampleY,...,Y, from an exponential family with meapn(#) and vari-
anceV{u(6)}, is given by

n o
2 2 @ Q(u();Y;) =0

We consider three models

Model A. (Y1, X1, T1),...,(Yy, Xn, Tn) is an ii.d. sample withE[Y;|X;,T;] =
G{XB + m(T))}.

Model B. Model A holds and the conditional variance of, is equal to
varlY;| X, Ti] = o?V(ui) whereu; = G{X'8 + m(T;)} and whereo? is an
unknown scale parameter

Model C. Model A holds and the conditional distribution of; belongs to
an exponential family with mean; and varianc&/( u;) with w; as in Model B

The QL function is well motivated for Models B and CThe more general
Model Ais included for discussion of robustness isslies to discuss the case
of a wrongly specified conditional variance in Models B andliOnot stated
otherwise all the following remarks and results treat the most general Model A
The QL function and the smoothed QL function are now defined d8)iand
(4) with (2) replaced by(12). The estimatesng, B, M, My, My, M*, andé are
defined as in(5)—(10). Asymptotics forrh, are presented in Section2\of the
Appendix In particulay Lemma A21 shows that

Vnh{rhy(t;) — my(ty) — 8a(ty)}
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converges to a centered Gaussian variable where theshigs is of the form
AhZ + BgZ + op(h? + g3), whereh, = max—j-, h; andg, = max—jsg;.
For a definition of the term&h2 andBg? see Lemma AZ. This lemma does
not require thag, is of smaller order tham ., an assumption that has been
made in previous paper€learly then the bias ternBg2 would be asymptoti-
cally negligible and therefore asymptotics suggests the chgice= o(h.).
However stochastic and numerical stability of the preestimaibademand that
hy X .-« X h,-g; X --- X gs is large Otherwise too few observations would lie
in the local support of the multidimensional kern@ften in practice even larger
values forg; than forh, are needed for a satisfactory performanceiofThe
constantA in the bias depends on the valuerof andmf at t;, whereas the
constanB depends on averages of powerswft;) andm/(t;) overt; and over

j # 1. Typically the averaging leads to small valuesBofFor more discussign
especially on optimal rates and efficiengye refer to HardleHuet Mammen
and Sperlich(1998.

The remaining additive components for j = 2,...,d are estimated in anal-
ogy tom,. It can be checked that the estimatagt,),..., My(ty) are asymp-
totically independentThe variance of the estimati,(t;) can be consistently
estimated(see Section &£ of the Appendix Consistency and asymptotic
normality of 8 are shown in Lemma A2. It turns out that for asymptotic
unbiasedness with ratén no undersmoothing is required in the nonparamet-
ric estimation Further an explicit expression for the asymptotic variance is
given that however depends on unknown terms, &5., on the functionrm(-).

3. BOOTSTRAP APPLICATIONS IN GENERALIZED ADDITIVE MODELS

Three versions of bootstrap will be considered hditge first version is wild
bootstrapwhich is related to proposals of W%986), Beran(1986, and Mam-
men(1992 and was first proposed by Hardle and Mamni&893 in nonpara-
metric settingsNote that in Model A the conditional distribution &f is not
specified besides the conditional medhe wild bootstrap procedure works as
follows.

Step 1 Calculate residual§; = Y; — 4.

Step 2 Generaten i.i.d. random variablesy, ..., e} with mean 0 and variance 1 and
that fulfill for a constantC that|e| = C (as.) fori =1,...,n.

Step 3 PutY* = 4; + & &' fori =1,...,n, where

i = G{XiTé +a+ m1(Ti,1) + mz(Ti,z) +oeeet md(Ti,d)}-

For Model B we propose a resampling scheme that takes care of the specifi-
cation of the conditional variance &t For this reasonwe modify Step 3 by
putting Y;* = 4; + 6V{a;}¥?%e* fori = 1,...,n. Here4?2 is a consistent esti-
mate ofo 2. In this case the condition that*| is bounded can be weakened to
the assumption that has subexponential tajls.e., for a constanC it holds
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that E(exp{[|&|/C]}) = Cfori =1,...,n (compare AssumptioA2) in the
Appendix.

In the special situation of Model Gemiparametric generalized linear model
Q(y; ) is the log-likelihood Then the conditional distribution of; is speci-
fied by u; = G{X'B8 + m"(T)}. In this model we generata independent
Y, ..., Y with distributions defined bya;, respectivelyln the binary response
example that we considered in Sectiany2is a Bernoulli variable with param-
eteru; = G[XB8 + m"(T)]. Hence here we resample from a Bernoulli distri-
bution with parametefi;.

3.1. Bias Correction

Lemma A21 in the Appendix shows that if the elements of the bandwidth vec-

torsh andg are of the same ordethe bias offh,(t;) depends on the shape of

the other additive components,,..., my. This may lead to wrong interpreta-

tions of the estimaté,. Bootstrap bias estimates will help to judge such effects
In all three resampling scheme®ne uses the datdX,,T;,Y;),...,

(X,, T, Y5) to calculate the estimat@;. This is done with the same bandwidth

h for the component; and with the samg for the otherd — 1 components

The bootstrap estimate of the meanrifit,) is given byE*mj(t,), whereE*

denotes the conditional expectation given the sargleT,, Y1), ..., (Xn, Tn, Vo).

The bias corrected estimate wf(t,) is defined by

mlB(tl) = ml(tl) - Sr}(tl)’ whereSr}(tl) = E*mi(tl) - ml(tl)-

The theorem shows that the bias terms of ordérare removed by this
construction

THEOREM 31. Assume that Model A, Model B, or Model C holds and
that the corresponding version of bootstrap is used. Suppose further that
Assumptions (A1)—(A11) in the Appendix apply and that assumptions analo-
gous to (A3) and (A4) hold for the estimation of the other additive compo-
nents mforj = 2,...,d (h being always the bandwidth used for the estimated
component mand g the bandwidth for the nuisance components). Further-
more, suppose that the elements of h and g tend to zero and that
nh-----h,g?-----g2(logn)~2 tends to infinity. Then it holds that

mE(ty) — my(ty) = Op{ht + g + (nhy-----h )72}, (13)
where again h = max =, h; and g. = max—;=<0;.

Bootstrap applications in nonparametric regression often use resampling from
a modified estimate of the regression functi®@upposege.g., that in the third
step of the bootstrap algorithi; is replaced byG{X'8 + a + mP(Ti,) +
Mo(Tio) + -+ + My(T, q)}, wherem? is defined asth; but with bandwidth
vectorh® instead oth. Then if hjo/h+ — o0 (1= =r) one can show that the
left-hand side of13) is of orderO,{(h?)* + g} + (nhP---h?)~Y2}, whereh?
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is the maximal element oh®. For appropriate choices dfi°, e.g., for
h© with (h?)* and (nhP-.-h®) Y2 of the same asymptotic ordethis is of
smaller order than the right-hand side(@B) with resampling fronth;.

3.2. Componentwise Hypothesis Testing

Interesting shape characteristics may be visible in plots of estimates of the addi-
tive componentsThe complicated nature of the mod&éiough makes it diffi-

cult to judge the statistical significance of such findingypothesis tests in
addition to uniform confidence bands are useful tools to analyze and interpret
fitted componentsWe now discuss tests of the hypothesis that one component
is linear

Ho:my(t,) = y,t; forallt; and a scalay,. (14)

Extensions to variable selection problefité,: m; = 0) or tests of polynomial
forms are straightforwatdsee also the discussion that follaws

Our test is a modification of a general approach by Hastie and Tibshirani
(1990. In semiparametric setups they propose to apply likelihood ratio tests
and to usey? approximations for the calculation of critical valuésgpproxi-
mate degrees of freedom are heuristically derived by calculating the expecta-
tion of asymptotic expansions of the test statistic under the null hypothesis
Here we propose more accurate distributional approximatmgthermorein
the definition of the test statistic we correct for the bias of the nonparametric
estimate Our test statistic is asymptotically normalt the convergence to the
normal limit is very slow as mathematical arguments and simulations indicate
Therefore we propose the bootstrap for the calculation of critical vaBies
correction will be used in the test because otherwise it will have a nonnegligi-
ble effect on the poweiFor this reasonm;(t;) is compared with a bootstrap
estimate of its expectation under the hypothesis

First, we calculate semiparametric estimates for the hypothetic model

ECYIX,T) =G{XB+a+y T+ my(T )+ - +mg(T o)k

Note that thex occurring in the preceding equation can be different fromdathe
defined in Section 4 becauseX; is replaced by(X;,T; ;). Estimation of the
parametric componenfs «, andy,; and of nonparametric components, ..., My
can be done as in Section12This defines estimate8, @, 7,, My, ..., My. Set

fi = GIXTB+a+y, T+ mMy(Ty;) + - + My(T o))

Secondfor the bootstrap we proceed as follavgenerate independent samples
(Y7, ..., Ys) (compare Section)dut now with u; replaced byg;. Then using
the data(Xy, Ty, Yy),...,(X,, T, Ys) calculate the estimat&;. The bootstrap
estimate of the mean ah,(t,) is given by E*m;(t;), whereE* denotes the
conditional expectation given the samgb€;, T, Y1), ..., (Xpn, Tn, Yn). Third, we
define the test statistic

https://doi.org/10.1017/5026646660420202X Published online by Cambridge University Press


https://doi.org/10.1017/S026646660420202X

274 WOLFGANG HARDLE ET AL.

n G'{X B + m"(T)}]?
R= ZW(Ti)[ g rm {My(Ti0) — By (T; )} (15)

4 V(G{XTB + m*(T)})

with m™(t) = & + my(ty) + --- + My(ty). The weightdG'{...}]%V(G{...}) in

the summation of the test statistic are motivated by likelihood considerations
(see Hardle et al1998 but could be replaced by some other weigfise test
statisticR has an asymptotic normal distributi¢ggee Lemma A3 in the Appen-

dix). Mean and variance can be consistently estimaied thus critical values

for the test could be calculated using the normal approximaBo as men-
tioned before this approximation does not perform w&glain we recommend
using bootstrap approximatioriBhe bootstrap estimate of the distributionRf

is given by the conditional distribution of the test statigtit defined by

[G{XTB + " (T))}]?
VX B + ¥ (T))}

R* = 2> w(T) {mi(T 1) — E"mi(Ti )} (16)

The conditional distributionC*(R*) (given the original daté&Xi, T, Y1),...,
(Xn, T, Ya)) is our bootstrap estimate @f(R) (on the hypothese&l4)). Herg
L(R) denotes the distribution dR The following theorem states consistency
of the bootstrap

THEOREM 32. Assume that Model A, Model B, or Model C holds and that
the corresponding version of bootstrap is used. Furthermore suppose that
assumptions (A1)—(A1l) in the Appendix hold withréplaced by(X;, T 1).
Then, if additionally, #?h;-----h,g?-----g2(logn) ! — oo and if all elements
of h and g are of order n~%#8), on the hypotheses (14), it holds that

de {£*(R*), L(R)} =5 0,

where ¢ denotes the Kolmogorov distance, which is defined for two probabil-
ity measuresw and v (on the real line) as @d(w,rv) = SUper|u(X = t) —
v(X=1).

With similar arguments as in Hardle and Mamm@®93 one shows that
the testR has nontrivial asymptotic power for deviations from the linear hypoth-
esis of orden~Y2(h;----- h,)~Y4. This means that the test does not reject alter-
natives that have a distance of oraer’2. However the test also detects local
deviations(of ordern™%?(h;----- h,)~Y4) that are concentrated on shrinking
intervals with length of ordeh. The test may be compared with overall tests
that achieve nontrivial power for deviations of order?. Typically, such
tests have poorer power performance for deviations that are concentrated
on shrinking intervalsFor our test the choice of the bandwidth determines
how sensitively the test reacts on local deviattona, for smallerh the test
detects deviations that are more locally concentrated but at the cost of a poorer
power performance for more global deviatiohs particular as an extreme
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case one can consider the case of a constant bandWwidihis case is not
covered by our theoryt can be shown that in that caBds ann~¥2-consistent
overall test

Finally we want to emphasize that the same procedure works for any other
linearly parameterized hypothesis

Ho:my(ty) = 0, fi(ty) + -+ + 044 (ty),

whered, ..., 0, are unknown parameters blf. .., f, are given Moreover the
results of this section can be extended to tests of other parametric hypotheses
onmy:

Ho:my(t;) = my(ty) forall t; and a paramete, (17)

where{m,: 6 € O} is a parametric familyThis can be done similarly as in Har-
dle and Mammer{1993. However this requires an asymptotic study of para-
metric estimates in the modél) with parametric specificatiofiL7) for m;.

Using an approach similar to the approach described eaolier can con-
struct F-type tests on the coefficienf8. For testingHy: H3 = ¢ versusH;:
HB # c (with a k X p matrix H of rank k = p and a constant € RR¥
for a k = 1) a natural test statistic is defined & = (HB — ¢)T x
(HI"*HT)"X(HB — c), wherel is a consistent estimate of the mattjdefined
in Lemma A22. A natural estimate of would be the bootstrap estimatecord-
ing to Lemma A22, on the hypothesi&; has a central? distribution This
asymptotic result could be used for the approximate calculation of critical val-
ues As before we recommend applying bootstrdpen R, will be compared
with its bootstrap analogR; = (HB* — ¢)"(HI"*HT)"*(HB* — c). For sim-
plicity, the samgbootstrap covariance estimate has been used in the calcula-
tion of Rz andRj.

3.3. Testing Separability and Interactions

First note that our estimate of, is robust against nonadditivity of the other
componentsln fact, in the construction of the estimate it is only used timék; t)
is of the form

d(Taso, T} (18)

.....

..........

additive i.e., my,
m(x;t) is not of the form(18), the estimateh; makes sense because then it
estimates the averager marginal effect of T,. Nevertheless the hypothesis of
additivity is of interest in its own right and an important step in a model choice
procedureFollowing the idea of SperlighTjgstheim and Yang(2002, we con-
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sider a split of the first covariat€, into two component3;., andT,., and con-
sider the hypothesis

Ho:my(ty) = my(ty.q) + myo(tys). (19)

For other approaches to test additiyisee also Gozalo and Lintoi2002.
Estimates ofn,.; andm;., are constructed by marginal integration

1 n
My.(ty) = H > Myt T W(T 120),
=

1 n
H 2 ml(Ti,l:l’ t1:2)W(Ti,1:1)
i=1

Myo(tyo) =
so thaty.q »(t;) = My(ty) — Mya(ty) — Mea(ts,) is an estimate for the first-
order interaction offy.; and T;.,.

For testing hypothesid 9) we proceed similarly as in Section23We define

2 [G{X"B + m* (T))}]?
o = 20 V(GIxTh + m (1))

X A1 (T2, Tigio) — E*Mg o(Ti00, Ti1:0))2

wheremy., , is an estimate based on a bootstrap sanfpd®tstrap samples are
generated as in Section23but now with; replaced by

GIXTB + &+ My (T 1.0) + Myp(Tiaio) + Ma(Tip) + oo + (T o)k

The test statisti®R ., has an asymptotic normal distributigeee Lemma A2
in the Appendix. The bootstrap estimate of the distributionRyf;., is given by
the conditional distribution of the test statisi,,, with

.U [G'{X'B +m" (T)H]?
Rinter_ |:21W(T|) V{XiTE"’ m+(_|_l)}

X {mi:l,Z(Ti,l:l’ Ti,l:2) - E*mizl,Z(Ti,lzl’Ti,LZ)}z’ (20)

wheremy,; , is defined aghy.; , but now from a bootstrap sample instead of
the original sample

THEOREM 33. Under the assumptions of Theorem 3.2, on the hypotheses
(19), it holds that

A L7 (Rivier) £(Ringer )} — 0.
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3.4. Testing the Link Function

Hardle Mammen and Proenc42002) introduce a bootstrap test for the null
hypothesis of a parametric generalized linear versus a single index nvaelel
extend here their approach to test

Ho: E[Y|X T] = G{v(T, X, 8)} versus (21)
H:E[Y|X T] = H{v(T, X, 8)} whereH(-) is an unknown function (22)

with o(T, X,8) = B™X + a + my(Ty) + --- + my(Ty). We recommend a test
statistic of the form

n 2 [Yj - G(ﬁj )]K({ﬁj =9 }/hL)
j#i

h/2 S, w(s;) -~ [Y, — G(8,)], (23)
) S KB, — #}/hy)

i=1
j#i

whereh, is an additional bandwidth and whebe= BTX; + & + my(Ti 1) +
-+« + My(T; ). For further details see also Section 4

3.5. Uniform Bootstrap Confidence Bands

To construct uniform confidence bands we first define
S= Stupwl(tl)‘ My (ty) — my(ty) — oa(ty)] 7 H(ty),

whereg£(t,) is the estimate of the variance 19 (t,), defined in equatioiiA.2)

in the Appendix In the simulation study in Section 4 we also use a bootstrap
estimate ofoy(t;). The distribution ofS can be estimated by bootstrap as in-
troduced in the beginning of Section Fhis defines the statistiS* =

sup w; (ty)|mi(ty) — E*mi(ty)| 61 X(ty). In the definition of S* the norming

4 (t1) could be replaced by (t;). We write S* = supw,(ty)|mi(t)) —
E*mi(ty)|[45] 1(ty). Hered;(t,) is an estimate of the variance @ (t,), that

is defined similarly asy(t;) but that is calculated with a bootstrap resample
instead of with the original sampl&he first norming helps to save computation
time; for the second choice bootstrap theory from other setups suggests higher
order accuracy of bootstraeverthelesshoth bootstrap procedures can be used
to construct valid uniform confidence bands

THEOREM 34. Assume that Model A, Model B, or Model C holds and that
the corresponding version of bootstrap is used. Furthermore suppose that
assumptions (A1)—(A11) apply, that all elements of h and g are of ofaer'&),
and that nh-----h, g?.----g2(logn) 2 — co. Then it holds that

A {L7(S), L 0,  de{L*(S™),L(S)} > 0.
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This gives uniform confidence intervals far(t;) — §1(t;). For confidence
bands ofm, one needs a consistent estimatedpft;). This could be done by
plug-in or by bootstrapBoth approaches require oversmoothing., choice of
a bandwidth vectoh® with h°/h, — oo; see also the discussion after Theo-
rem 31. For related discussions in nonparametric estimation see Eubank and
Speckman(1993 and Neumann and Polzetl998.

4. A SIMULATION STUDY

We now illustrate the performance of our methods in small sam@8igsula-
tion results are given for different tests and for confidence babelsel accu-
racy is checked for testing linearity of an additive component and for testing
the specification of the link functiariFor the first test problem power functions
also are calculatedrurthermorecoverage probabilities of our bootstrap confi-
dence bands are checked

Binary response data are generated from

E(YIX=xT=1t)=P(Y=1X=xT=1)=G{B™x+ m"(t)}, (24)

whereG is the logit distribution function anth*(t) = o + ij=lmj (t). The
explanatory variableX;, X,, T,, and T, are independeniX; and X, are stan-
dard normalandT, andT, have a uniform distribution of-2,2]. We generate
n = 250 data points witl8 = (0.3,—0.7)T, m,(t;) = 2 sin(—2t;), my(t,) = t2 —
E[T2], anda = 0. For all computations the quartic kernel is uskdthis sec-
tion h; denotes the bandwidth that is used for the estimatiof.dh the sim-
ulations we set all weight functiong_,, wy, andw, equal to 1i.e., we applied
no trimming and no optimal weighting

First, we consider the test probleti4) Hy: my(t;) is linear. It can be seen
from Figure 1 that the normal approximation of Lemma. A% quite inaccu-

Density Estimate

densities
I S IS
W I W

o
g

o
=

O,‘ . . . +
-2 0 2 4 6

FiGcure 1. Standardized density estimate of the test statihin line) and convoluted
standard normal densiiyhick line).
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rate In this plot a density estimate for the test statiftjdased on 500 Monte
Carlo replicationgis plotted together with its limiting normal densityhe param-
eters are chosen on the null hypothesigh m;(t;) = t; andB, m,, anda as
before The density estimate fdR is a kernel estimate with bandwidth accord-
ing to Silverman’s rule of thumh.e., 1.06-2.62-n~° times the empirical stan-
dard deviation For better comparisqrthe normal density is convoluted with
the quartic kernel using the same bandwidth

In a simulation(500 rung the level of the bootstrap test is estimated Bor
249 bootstrap repetitiondVe get a relative number of rejections o8 for
theoretical level M5 and 006 for theoretical level ; i.e., the bootstrap test
keeps its level but is conservative for such a small sanifile power is inves-
tigated for the alternativesy(t;) = (1 — v)t; + v{2sin(—2t;)}, 0 =v =1. The
other parameters are chosen as befBmr comparisonwe perform the same
simulations for a parametric likelihood ratio test testing the hypothegsis
v, = 0 in the parametric model

P(Y=1X=xT=t)=G[BTx+ (1— y)t, + 7,2 sin(—2t,)}
+ y3My(ty) + 4]

Clearly, this comparison is far away from being fair because for the parametric
test the alternative and also, are assumed to be knowRigure 2 plots the
power of these tests at theoretical level@®and 01. Note that the better per-
formance of the parametric test is partly due just to the fact that theRtest
conservativegsee the preceding discussjofOne could compare the power of
R in the right plot with the power of the likelihood ratio test in the left plot
We conclude that the bootstrap test performs quite.well

Second for bootstrap confidence bands we investigate the following ques-
tions What is the coverage accuracy in a small sample? How much does the
width of the band vary with the chosen coverage probability? Does it really mat-
ter how we estimate-?(t;)? In the simulations we use two estimatesrgft,):
G62(t)) as defined in equatiofA.2) (see Section.3) and the empirical variance

Power function: 5% level Power function: 10% level
100 r 1001
oy o}
% 50 % 50
=% a.
0 r 01 r
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
v v

FiGURE 2. Power functions for theoretical levels0® (left) and Q1 (right), for the non-
parametric bootstrap teghick line) and the likelihood ratio tedthin line).
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TaBLE 1. Coverage probabilities for bootstrap confidence
bands withh, = h =g = 0.5.

Theoretical coverage 95% 90% 85% 80%

Using ¢:2(t,) 0963 Q912 Q846 Q776
Using 6-2(t,) 0948 Q904 0839 Q776

of mi(t;) in the bootstrap resamplegenoted bys2(t;). The simulated model
is again(24) with n, m;, m,, X;, andX, as beforeBut the variables are now
uniformly distributed of—1,1]. The confidence bands are only investigated for
m,. Forh, = h=g= 0.3 to 06 we obtain reasonable coverage accuracesilts
for h, = h=g= 0.5 are given in Table IThe empirical coverage probabilities
are close to the theoretical ones for all levels and for both variance estirftates
is surprising how well the bootstrap fits the different coverage probabilities in
such small sampledor smaller and larger bandwidths they are less accurate
This is caused by poorer bootstrap bias correctinrcontrast the variance of
the estimates is always well caught by the bootstiapigures 3 and 4 we com-
pare 95% and 85% confidence banBespite their different levels the bands
hardly differ

In our last simulationwe verify the performance of the test for the link func-
tion (see Section .d). The data are generated as in the simulations on confi-
dence bandsBandwidthh, (see(23)) is set to ®4-§, where$§ is an estimate of
the standard deviatiog of the index otherwise we selt; = h=g= 0.35. The
simulation results for level accuracy for the theoreticeh,110, and 15% levels
are 0014, 0.046 0.09Q0 and Q13. Thus the accuracy is quite good/e also
tried different bandwidths but found no major differences in the results

5% Conf. Bands 15% Conf. Bands

FiGuUrE 3. 95% and 85% confidence bandssing ¢. Dashed lines are the confidence
bands and corresponding estimateslid lines are the data-generating functions

https://doi.org/10.1017/5026646660420202X Published online by Cambridge University Press


https://doi.org/10.1017/S026646660420202X

BOOTSTRAP INFERENCE IN GENERALIZED ADDITIVE MODELS 281

5% Conf. Bands 15% Conf. Bands

FIGURE 4. 95% and 85% confidence bandssing ¢. Dashed lines are the confidence
bands and corresponding estimateslid lines are the data-generating functions
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APPENDIX

A.1. AssumptionsWe now state the assumptions that are used in the results in Sec-
tions 21 and 22 and Section /3 of this AppendixWe use the notation

hmax = max{hy,...,h, s, ..., 9sh
hprod =hyeee-- h gy~ Os»
P1= hr%wax"_ (nhprod)71/27

P2 = hﬁwax+ (|Og n)l/z(nhprod)il/z-

Furthermorewe putA;(u) = Q{G(u);Y;}, A(u) = Q{G(u);Y}. With this notation we
have

Y — G(u)

T Vsl

G'(u),

" ’ ’ 2 ’ 2
G"(w)  V'(G(u) G'(u) ] G'(u) A1)

A (u) = 1Y, — G(u)}[V[G(u)] V[G(u)]? - V[GW)]

For our asymptotic expansions we use the following assumptions
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(AL) (Xq, Ty, Y1),...,(Xs, Tn, Yy) are ii.d. tuples The expressiod; = (Ti1,..., Ti.a)
is a vector with component§ ; in R%, X; is RP valued and; is IR valued We write
r=qands=qg,+ -+ + Qq.

(A2) E(Y|X,T) = G{X"8 + m™(T)} with 8 € RP. Herem™ denotes the function
m*(t) = a + my(ty) + .-+ + my(tq), with Emy(T; ;) = 0 forj = 1,...,d. The conditional
variance VatY;|T; = t) has a bounded second derivatifFarthermore the Laplace trans-
form E expt|Y;| is finite for t > 0 small enough

(A3) X; and T, have compact suppof, Sr. The supportSr is of the formSr; X
Sr—1 with Sr; C R" andSr—; C IR®. HereT has a twice continuously differentiable
densityfr with inf,cs fr(t) > 0.

(A4) For compact setB C IRP andH C IR we define

B = arg maxL(ihg, B),
BEB
where as before
L(n,B) = ZIQ{G(XFB +1(T)); Y1
The termrig(t) is defined as
m(t) = arg T&?‘—cle Kn(ty = Ty ) Lg(t_y — Ti,—l)Q[G{XiTB +nhYi].

For B8 € B we put

M(t) = arg MaxE[A(XTB +m)|T =t].

We assume thatg(t) lies in the interior ofH for all t € Sy andB € B. This implies
E{N(BTX + mg(1)|T =t} = 0. We assume also th&[A"{BTX + mg(T)}T=1t]# 0
forallt € Sy andB € B and that for alle > 0 there exists & > 0 such that for all
nEHtES,BEB

[E[N(XTB+n)[T=1t]|=é
implies that
= my(t) = e.

(A5) There exists & > 0 such thalG™®(u), k = 1,...,3, andG’(u)~* are bounded
onue ST={xTb+n+ k:XE S,b € Bandn € H,k € Rwith || = §}. Further-
moreV % V', andV"” are bounded oG (S?).

(AB6) my,...,my are twice continuously differentiable functions frdRf to IR. The
weight functionsw, w_;, andw; are positive and twice continuously differentiable
avoid problems on the boundamye assume that for & > 0 we have thaw_4(t) = 0,
wy(t) = 0, andw(t) = 0 fort € S;_; = {s:there exists & & Sy, with |s — u| = 6},

t € S;, = {s:there exists a & Sr; with ||s— u| = 8}, andt € S; = {s: there exists a
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u & S with |s — u| = &}, respectively Furthermorethe weight functionw; is such
that [, wi(t;)my(ty) 7, (ty) dt; = O, wherefy, denotes the density Gf.

(A7) The kernelK andL are product kernel& (v) = Ky(vq)----- K;(v;) andL(v) =
Li(vq)----- Ls(vs). The kernel; andL; are symmetric probability densities with com-
pact support[—1,1], say.

(A8) E[N{X{Bo+ m"(T}|Ty = t]andE[A{X]Bo + m*(T1)}X4| Ty = t] are twice
continuously differentiable functions fare Sy.

(A9) The matrixE Z2XXT is strictly positive definite The random vectorg and X
are defined in Lemmas A2 and A22 in Section A2 of this Appendix respectively

This assumption implies that does not contain an interceptiote that if the first
element ofX were constantas, e.g., Xi; = 1, thenX;; = 0.

(A10) my,..., mq are four times continuously differentiable @

(A11) The kernelK; andL; are twice continuously differentiable

AssumptiongAl)—(A3) and(A5) and(A6) contain boundedness conditions on covari-
ates and standard smoothness conditions on regression funcésign densitiedink
function, and variance functianCondition(A4) contains a slightly modified definition
of our estimatesWe now assume that in the definition of the parametric and nonpara-
metric estimates the minimization of the QL only runs over a bounde(@lsebted byB
or H, respectively. This assumption together wittA8) and the other assumptions of
(A4) enables us to prove consistency of the parametric and nonparametric estimates and
to derive a stochastic expansion of these estim&erdition(A7) is a standard assump-
tion on the kernel¥ andL. Condition (A8) guarantees that the Fisher information of
the parametric estimate is positive defini@onditions(A10) and (A1l) are used for
second-order bounds on expansions of bias terms

A.2. Asymptotic Theory for Estimatiofhis section contains asymptotic results on
the marginal integration estimatés and the parametric estimage

LEMMA A2 .1. Suppose that Assumptions (A1)-(A9) apply. If the elements of h and
g tend to zero and nf----h, g?-----gZ(logn) 2 tends to infinity, then

Anh{my(ty) — my(ty) — 82(t,)}

converges to a centered Gaussian variable with variance

Tl: t1:|’

where §  and f are the densities of T, or T = (T, T_,), respectively. (For a vector
(v1,...,0q) With v; € RY we denote theector (v4,...,0j-1,0j41,...,v4) Dy v_;.) The
terms 2 and Z are defined in the following way:

o2(ty) = f K2(u) du ft) E[Zl

(Ew_ (T2 | Z,
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2

VIG{XTB + m*(T)}]

Z,= E[ZZ|T1 = tlval]szz(tb T1),

Z, = wi(T_,) sz,l(Tfl)Var(Y|X’T)’

, G (X"B+m"(T)?
CVIGIXTB+mt (T

For the asymptotic biag(t,), one has
8a(ty) = da(ty) _fdr}(vl)wl(vl) fr,(vy) dvl/fwl(vl) fr,(vy) dvg + op(h% +9%),

where

d
di(t,) = gﬁf E[al(x, ty,u) ) 02 b (X, ty,u) | T = (ty, u)} fr_(u)du
RY-L j=2

+ht f E[a* (X, t;,u) 0i2by (X, ty,u)| T = (ty,u)] fr_,(u) du.
|Rd71
Here f, denotes the density of TWe write §;(v) = (3/dv;) fr(v). Furthermore,aﬁj =
[s?dL, o = [s?dK, and

w4 (v_y)G' (X8 +m"(v)
Elw_o(T-)I E[Z?|T = v]fr(0)V[G(XTB + m* ()]’

al(x,v) =

1

b (x,0) = > [G"(XTB + m* (v))m (v;) "HZ M/ (v;)

+ G/ (xTB + m* (v))tracd m’ (v; ) H?1]

X fr(v) + G'(XTB + m* (v))mj (v)) "HF f;(v),
where H is a diagonal matrix with diagonal elements
hy/hy,....hg, /N,
and where for j= 2,...,d the matrix H is a diagonal matrix with diagonal elements
oo+ 1/Grevr Gy /G-

Under the additional assumption of (A10) the rest terpihd + g2) in the expansion
of 81(t,) can be replaced by Gh? + g4).

The estimation of the other additive componemfdor j = 2,...,d can be done in the
same way as the estimation of, in Lemma A21. If assumptions analogous {&1)—
(A10) hold for the other componentthen the corresponding limit theorems apply for
their estimates(In the assumptionf always denotes the bandwidth of the estimated
componentandg is chosen as bandwidth of the other compongriteen under these
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conditions the estimate®;(t;),..., My(ty) are asymptotically independerithis leads
to a multidimensional resulThe random vector

y(ty) — my(ty) — 8a(ty) o,(ty) 0 ... 0
\/nh : D SN 0; .

n—oco

My(ty) — My(ty) — 83(ty) 0 o 00 oy(ty)

The variancer?(t;) of (rhy(ty) — Eriy(ty)) can be estimated by
Gty = 2 u (A-2)
where

n -1 10
7= [ (T —1)] E E W—l(Tj,—:L)Ki (tl,Tj,—l)
i j=1

L[ GO+ m(T))? G (B M (t, T )
“| 2 viexg s mmn O | Ve T on
Koty — Ti)Lg(t 1 — T )
Ki(t)=1nhl RVAT AL -1 ,
E E Kp(ty — Tj,l)l—g(t—l - Tj,—l)
j=1

[Y; — ;1> inthe case of Model A

82 =1 82V(i;) in the case of Model B (A.3)
V(@) in the case of Model C
with
1 i la‘l] A ThH A
E; Vi) and ;= G{X'B + &+ my(T; 1) + -+ + My(T; o)}

The estimation of the nonparametric components also yields an estimate of the param-
eterB. We show that under certain conditions a rate of o@em~*/2) can be achieved

This is a consequence of the iterative application of smoothed local and unsmoothed
global likelihood function in the definition of. Our conditions imply thas + r < 3.

This constraint can be weakened by assumption of higher order smoothmaegs.of my

and by the use of higher order kernels

LEMMA A2.2. Suppose that Assumptions (A1)-(A9) apply. Then, # hg
nY2(logn)~* tends to infinity and h and g o(n~Y8), it holds that

nY2{B — B} == N(0;1 1),

n—oco
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where 2 is defined as in Lemma A2.1 and
| = EZ2XXT with X =X — {E(Z?|T)} *E(Z3X]|T).

Our estimate of3 achieves the efficiency bound in the partial linear madéx;t) =
G{X"B + a + m(Ty,...,Ty)} (see Mammen and van de Ge&897). An estimate that
takes care of additivity is given by

B = arg maxc(mj, B),
BEB

wherem; (t) is defined ash™(t) with mreplaced byh, in equation(8). We expect that
this estimate achieves higher efficientjowever this estimate has two drawbacksl-
culation of this estimate would need several nested iterative algorithms and is therefore
computationally unattractive for large data sédsreover such an estimator is not robust
against deviations from additivity

Compared tQ8 rootn consistency oft requires additional condition¥he estimate
a inherits by construction the biases of the nonparametric estiniatés, ..., hy. These
biases are only of order(n~*/2) if the elements of andg are of ordero(n~Y4). Note
that this is not necessary f@ On the other hand it can be checked thatas as does
B, asymptotic variance of ordé€(n~1). Clearly, this is not essential as for most appli-
cations the parameter has no direct interpretation

A.3. Proofs For simplicity of notation we give all proofs only for the cage= --- =
¢ = 1. Thenr = 1 ands = d — 1. Furthermore we suppose thgt= --- = g4 and
denote this bandwidth bg. The bandwidthh; is denoted byh.

Proof of Lemma A2.1. We start by showing consistency of the estimate
B = Bo+ 0p(1). (A.4)
For the proof of(A.4) we show first that
Ui M (1) — (1) = 0y(2) (A5)
Proof of (A.5). For the proof of claimA.5) we show first that
nSl{JgIA(m,;(t), t,8)| = Op(p2), (A.6)

where the following notation has been used

A, t,8) = A(m, 1, 8) — Ax(m, t,B),
1
Ay(n,t,B8) = - 2N (XTB + ki (1),

Az(’fl, t7ﬂ) = E[)\/(XTﬁ + U)\T: t]7
Kh(tl - Tll) Lg(t—l - Ti,—1)

Ki(t) = (A7)

P .
H E Kp(ty — Tj,l)l—g(t—l - Tj,—l)
j=1
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For the proof of(A.6) we remark first that

EA(n,t,8) = O(h? + g?).

This can be seen by standard smoothing argumé&nithermoreA;(n, t, ) is a sum of
i.i.d. random variables with bounded Laplace transfésae AssumptiofA2)). By stan-
dard application of exponential inequalities we get for every> 0 that forC’ large

enough

P{lA(m,t,B)[ > C'py} = o(n").

(A.8)

We consider the partial derivatives of the summanda @j, t, 3) with respect ton, t,
andg. They are bounded b n”2 for C” andv, large enoughTogether with(A.8),
following the same argument as in Hardle and Mamn(ik393, we obtain(A.6).

For the proof of(A.5), one can conclude frorfA.6) that with probability tending to

ong M,(t) lies in the interior ofH (see AssumptioltA4)). This gives
Ay(Mg(1),t,8) = 0.

With (A.6) we obtain

sup A,(Mg (1), 1, B)] = Op(py).

%]

With Assumption(A4) this yields(A.5).

We use(A.5) to prove(A.4) (consistency of3).

Proof of (A.4). Letk(B) = E[Q{X"B + mg(T);Y}]. We will show that

sup r_11 L(g, B) — k(ﬁ)‘ — 0 (in probability).
BEB

This implies claim(A.4) because

K" (Bo) = E[A”{XT + +(T)}{X+ a&( T)}{X+ %( T)}T]
BO - BO m aﬁ BO9 3,3 :303
= —E(Z2XXT)

is strictly negative definite ank(Bo) = sugen k(B).
It remains to proveA.10). This follows from

1
sup| = £L(mg,B) —k(B) ‘ — 0 (in probability),
peB| N

1 1
sup| = L(mg, B) — — L(mg, B) ‘ — 0 (in probability).
pes| N n
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Claim (A.11) holds becaus&(mg, 8)/n converges tdk(3) by the law of large numbers
and becausél(mg, 8)/n, B € B} is tight For the proof of tightness note first that

1 1
E C(mﬁl,ﬁl) - H ‘C(mﬁyBZ) =ToalB1— Bzl + Tz Sl;'ﬁ mgl(t) - mgz(t)‘

= ToalB1 = Boll + T, 2SUP mﬁ(t)H”,Bl Bal,

where

1 n
To1 = sup= 2 N (XTB + )X,
B Ni=1

1N
Toz = sup= > X(XTB + ).
B> i=1

Under our conditionsT, ; andT, , are bounded in probabilityfo see thatd/98)ms(t)
is uniformly bounded ir8 andt note that

amg E[A{BTX+ my(T)IX|T=t]

8 BV T T B X myiT =1

(A.13)

Equation(A.13) follows by differentiation ofE{A’ (87X + mg(t))|T = t} = 0. This shows
(A.11). Claim (A.12) follows from

1 1
sup| — L(g,B) — = L(mg,B) | = sup XN (XTB + m)|sup s (t) — mg(t)].
g 1N n B.m LB

Thus finally (A.4) is shown [ |

Next, we establish uniform stochastic expansiongdafndmt).
B =B+ {EZ2XXT)} = E X A{XTB + m* (T} + Op(p3), (A.14)
sup\A(t)l = Oy(p3), (A.15)
with
A(t) = m(t) — {m(t) +{E(Z2|T=t)} *E(Z3XT|T = t){E(Z3XX")} ¢
=
n

i NAXTB + m* (T, )}} (A.16)
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l n
m(t) = m*"(t) +{E(Z?|T=0)}* - 2 k(OB +m* (O}, (A.17)
i=1
St ={t€ S;:t+n € Sforallpwith |9, =gand|n|=h(j=2,...,d)},
%, = % —{E[Z2[T ]} E[Z2XIT], (A18)
,_ GOTB+m (T)?
bOVIGXTB A mt(T))]

(A.19)

EquationgA.14) and(A.15) follow from a slight modification of Lemma A3 and Cor-
ollary A3.4 in Hardle et al (1998. There it has been assumed that the likelihood is
maximized forg in a neighborhood o8, with radiusp, (see Hardle et 11998 Assump-
tion (A7)). In our setup we have that for a sequegewith 5/, — 0 with probability
tending to one

N

B=arg max L(mhgB).
B:lB—Bol=84
Using the same arguments as in Hardle e{#98, one can show that

. oo 18 .
B =B+ {E@ZRXT) - XK AUXTB + m* (T} + Oplp2) + 18— BIPO,(L).

This shows(A.14). Equation(A.15) can be shown similarly
With the help of(A.15) we arrive at

Z w_(T; —)m(ty, T 1)

my(ty) = o + Op(p2 +n~Y2)
2wy (T )
i1
=my(ty) + Ry + Ay(ty) + Op(ps + n~Y?), (A.20)
where
1 n
Ri= > W_y (T ) [Ma(Ti ) + - + my(T o)],
i—1
Swo(T o)’
i1
1 10 woo(Ti—)w(ty, T —p)
Aty) = ——— — : —— NAXTB+m*(t, T _)},
) N E@Tm T,y AT T

_:Elw—l(-ri,—l)

where )}, k;, and Z; are defined by equation@.1), (A.3), and (A.19), respectively
Given Z, = ((Xy, Tea,-- -5 Tod)s > (Xns Tnts -5 Tna)), the termAy(ty) is a sum of inde-
pendent variablesFor the conditional variance the following convergence holds in
probability:
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nhVar(A(t,)|Z,)

wA(T_,) E(Z?|T,=t,) sz,l(Tfl)
— fLZ(U) du E|: {EW,l(Tfl)}z E(22|T1 — t]_,T,l)z f-|—2(t1, Tfl) :| .

For this convergencene usese.g.,

n

sup n Kt — T bg(tog — Toq ) — fr(ty, toy)

t=(t,t_1)ESF k=1

= 0p(1),

n*t kzl Kn(ty — Ty i) — fr,(t) = 0p(D).

Asymptotic normality ofA(t;) — E(A4(t1)|Z,) follows from the convergence of the
conditional variance and from

P(dg (L£(A4(ty) — E(A1(t1)[Z,)),N(O, Var(A,(t;)| Z,))) > 86) —» 0 (A.21)

for all § > 0. Heredk is the Kolmogorov distangevhich is for two probability mea-
suresu andv (on the real ling defined as

de(p,v) = supu(X=1t) —v(X=t)|.
teR

For the proof of(A.21) one shows that a conditional Lindeberg condition holds with
probability tending to ondt remains to study the conditional expectati®(t;)| Z,).
This can be done by showing first that

1 n

E(A1(t1)|zn) = F] 2 Kp(t, — Ul)Lg(Ti,—l —v_y)
i=1

X E{G(XTB + m*(v)) = G(XTB + m*(t, T _1))}

x al(X, t, T )T =t, T ] (v) do + 1y, (A.22)
where the functiora® is defined in Lemma A2 andr, = Op(p2 + n™¥2) + 0p(h? +
g?). Furthermorer, = Op(p? + N~ Y2 + h* + g*) under the additional assumption
(A10). The proof of(A.22) follows by standard but tedious calculatioifie asymptotic

form of E(A.(t1)|Z,,) can be easily calculated froiA.22). Note that the asymptotic
bias ofmy(t;) is asymptotically equal to

E (840120 [ B8 001Z) e e o | [ oot

because we assumed thiaw, (v,)m, (v,) fr, (v,) dvy = 0. Furthermore note that up to
first order my(t;) andmy(t;) have the same asymptotic variance u
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Proof of Lemma A2.2. The conditions orh andg imply p2 = o(n~Y2). Therefore
the statement of Lemma A2 can be followed from{A.14). |

Proof of Theorem 3.1. The statement of the theorem follows from
2y (ty) — E*mi(ty) — my(ty) = Op(h* + g* + (nh)~%2). (A.23)

Claim (A.23) follows from

2my(ty) — E* mi(ty) — my(ty) = Ry — IQ1 + Op(h* + g* + (nh)"2), (A.24)
1
F] .:21W1(Ti,1)[2m1(Ti,1) —E* Mi(Ti 1) — my(T; 1]
= (R~ Ry] = 3 wy(T,y) + Onlh® +g* + () 2), (A.25)
i—1
where
. 1 n
Ri=———— 2 W—l(Ti,—l)[mz(Ti,z) toeee md(Ti,d)]
Swoho)
i—1

and whereR; has been defined aftéA.20).
We give only the proof of(A.24). Claim (A.25) follows similarly. By (A.20) we
have that

M, (t,) = my(ty) + R, + Dy(t;) + Op(h* + g* + (nh)~¥/2),
where

E n W—1(Ti,—1)Kj (t, Ti—1) G’{XjTB +mT(t, T )}
Nij=1 E(Zi2|Ti,1 = tlvTi,—l) V(G{X]-TB + m+(t17Ti,—1)})

D,(t) = —
i:Elwfl(Ti,fl)
X [G{XTB+m" (T} — G{XTB +m" (1, T~}

Similarly, one obtains

E*mi(ty) = My(ty) + Ry + Dy(t;) + Op(h* + g* + (nh)"2),

where

1 now (T ) (b, T ) G'{XjTﬁ+m+(t17-|-i,—1)}

Z1 E(Z3T,1=t,T 1) V(G{XjTﬁ§ + Mt (t, T _ )

I:A)l(t1) = n
_21 w_y(T; 1)

1
n i,j
X [GIXTB + M (T} — GIXTB + m* (t, T}
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For claim(A.24) it suffices to show
Di(ty) — Ds(ty) = Op(h* + g* + (nh)2). (A.26)

This can be done by lengthy but straightforward calculativvis do not want to give all
details hereln a first step one shows that

Di(ty) — I51(t1) = 2 W [G{XjTB + m+(Tj )= G{XjTB +mt(t, T —1)}

ij=1

— G{XTB + m* (T} + GIXTB + it (1, T, )}

+ Op(h* + g* + (nh)¥/2), (A.27)
where
1 1 Wfl(Ti,fl)Kj (tpTi,—l) G’{XjTB + m+(t1’Ti,*1)}
W= N E@Ma=tT ) VGXB+m (6T )
2 W—1(Ti,—1) b v : "
i=1

The left-hand side ofA.27) can be treated by using Taylor expansionsGoand the
stochastic expansions df; given in (A.20). Consideye.g., for k # 1

Cy(ty) = 2 W ; G'{ij,B + M (T)HM(T, ) — mi(Ti )
ih,j=1

- mk(Tj,k) + mk(Ti,k)]-

Then by using the expansions 1o given in(A.20) and the expansion of the bias 1o
(see Lemma A2) one sees that

Ck(tl) = Ckl(tl) + CkZ(tl) —+ Op(h4 + g4 + (nh)71/2)7

where

Calty) = E W G'{XB + m"(T, )}[_Srlfmk) + OK(T W]

i,j=1

and where
1 n
Co(ty) = = X 0 n(Z4, 1) s
ni=1
with some uniformly bounded constantg (2, t1):

SUp  suUp w; (2, 1) = Op(1).

1=i=n {4,E€Sr;
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It can be easily seen th@,(t;) = Op(h* + g% + N™%2) andC,»(t;) = Op(n~Y2). We
have discussed this term because it shows how the terms ofgtadancel inm(t;) —
ma(t;). By similar calculations for the other terms one can show the theorem MW

Proof of Theorem 3.2. For the proof we make use of the following lemma

LEMMA A3.1. Under the assumptions of Theorem 3.2, it holds that
vy '(R—e,) > N(O1)
with

€, = (hy----- h)* H ij(U)ZdUE[Ale(Tl)],
j=1

va = (hy-o-h) T | K2 (W2 duB{E[AI T, ]2H, (T)%),

j=1

A 1 W (T_)W(T)Z*4Z (T_1)  Var[Y[X,T]
CE[w (T )] E[Z?[TI2AT)  VIXB+m*(T)Y

where K (u) = [K;(u — v)K(v) dv is the convolution of Kwith itself.
We now give a proof of Lemma AB. Theorem 3 follows by replication of the

arguments for the “bootstrap world
We consider the statistic

U= évvu{ml(-ruﬂ - E*mi(-ri,l)}z’
i=1

where

[G'{X"B + m"(T)}]?

W= W) T XTe (T

Note that

R= W{ml(-n,l) - E*mi(-ri,l)}z

M-

with

UGB T
W= W) =B T ()
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We will show that

U=V+ op(h’l/z), (A.28)
R=U+ op(h‘l/z), (A.29)
where

V= S WP, )12

1 n
m/fppm(tl) = H 2 al(xi,tlvTi,—l) fT,l(Ti,—l)Kh(tl - Ti,1)8i,
i=1
g =Y — n(X,T),
w(x,1) = G[XTB + a + y,t; + my(ty) + -+ + my(ty)].

The functiona® has been defined in the statement of LemmalA&symptotic normal-
ity of V can be shown as in Hardle and Mamm@®93. In particular one getgwith
pairwise different indices, j, k, andl)

EV = E{Wa(X;,T 1, T ) fr (T _1)KE(T — T o)Var[Y [ X, T; 1}
+ 0(n"th2)
—e +0O(h+nth2),
Var[V] = E{WWa*(X;, T, 1, T;, - 1)a (X, T 1, T -1)a* (X, Ty 1, T 1)

X al(xkaTI,13Tk,fl)f'l'z,l(-rj,fl)f‘l'z,l(-rk,fl)
X Kn(Tix = T ) Ka(Tg = T ) Kn(Ti = Tiea)
X Kn(T 1 — T VarlY; [ X, T I Var[Yi| X, T D}

+ 0O(n"*h?)

=5+ 0(h+n*h2),

Becausey? is of orderh~* for the proof of the theorem it remains to shd#.28) and
(A.29).

Proof of (A.28). Becausep? = o(n~%2), it follows from (A.15) (compare(A.20))
that uniformly fort, in Sr;

E[w_y(T_)M(ty, T_1)]

my(ty) = my(ty) + Ry + Ag(ty) + Ew_(T_)]

Bn + OP(n71/2)9
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where

M(t) = E[Z2XT|T=t]E[XXT|T=1t]"}

1
E[Z?|T=1t]
l n
= 5 2 XNXTE + m (T,
Furthermorefor A;(t;) one can show the following uniform expansion

1 n
Ay(ty) = H Z al(xi:tlsTi,l)Kh(tl - Tll)[Yl - M(Xi,tu-ri,—l)] +0p(n"Y2).
i—1

By similar expansions as in the proof of Lemma.A®ne can show that this implies the
following uniform expansion ofh,:

My(ty) = yity + MEPPR(ty) + MEPPRR(y) + 87(ty) + op(n~Y2), (A.30)

where
1 n
mfppm(tl) = H E wi,n,z(tl)&‘i
i=1

with some uniformly bounded functiong  »:

SUp SUP ;52(t) = O(D).

1=i=n {41E€S,
The functions} has been defined in Lemma A2

Furthermoreusing similar arguments as in the proof of Theorerh 8ne can show
that

E*mi(ty) = 91t + 85(ty) + MEPPR(t)) + op(n~1/?)
with

1 n
mfppm(tl) = H E wi,n,S(tl)Si
i=1

for some uniformly bounded functions , 3. Together with(A.30) and a stochastic expan-
sion of ¥ this gives that uniformly fot, in Sr;

my(ty) — E*mi(ty) = mEPPR(ty) + mEPPR(ty) + op(n~Y2)

with
1 n
mfppm(tl) = H 2 wi,n,4(t1) &
i=1

for some uniformly bounded functions; ,, 4.
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Claim (A.28) follows from

n
E\Ni{mfppm(-ri,l) 2=o0p(h7v2),
-1

n

E W, i PPRY(T, ) Ppm(Ti,l) = op(h™%3),

n
> W mPPR(T, )| = 0p(n¥/?h™Y/2),

i=1

n

E W mPPR(T, 1)| = 0p(n¥2h™Y2).

These bounds can be shown by calculation of expectations of the terms on the left-hand
side |

Proof of (A.29). Because of Lemma A2, we have that3 — 8 = Op(n~%2) and
& — a = Op(n~Y¥?). Moreover we can easily show that

1
sup| A (ty) — n Z Ay(Ti1) | = Op(p2).

ty
It follows that

sup W — W | = Op(p, + n~?).

1=i=n
Now,
lU-R|= lillifn\w W] E {my(T;.1) — E* Mi(T )}
= Op(p,+n"Y2) Op(h™?)
= 0p(h™%2).
This proves(A.29). [ ] |

Proof of Theorem 3.3. The proof follows the lines of the proof of Theoren23In a
first step one again shows asymptotic normality of the test statistic

LEMMA A3.2. Under the assumptions of Theorem 3.3, it holds that
_ L
Un l(Rinter - en) — N(O,l)

with e, and v, defined as in Lemma A3.1. |

Proof of Theorem 3.4. The proofs for Models A and B can be done as in Neumann
and Polzeh(1998, where wild bootstrap of one-dimensional regression functions has
been consideredn this paper it has been shown that the regression estimates in the
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bootstrap world and in the real world can be approximated by the same Gaussian pro-
cess For this purpose one shows thag(t;) — E[Mmy(ty)| Z,] andmi(t,) — E*[Mi(ty)]

have linear stochastic expansiofis particular using the expansions given in the proof

of Lemma A21, one shows that

n

1
My (ty) — E[Mmy(ty)|Z2,] - H E al(xi’thi,—l) fr (T —DKn(ty — T g

i=1

sup
{1 €Sy,

= Op(n~Y24/logn).
Here for 6 > 0 small enough we have p&; = {s:there exists a1 & Sr; with

|s — u| = 8}. (Then if & is small enough we have thak(t;) = 0 for s & Sr,.) Simi-
larly one can see that

n

P s 1 .
mi(ty) — E*[mi(ty)] — n > at(Xi, t, Ty — ) fr (T _)Ku(t — T e

i=1

sup
41 €Sy,

= Op(n~Y24/logn).

By small modifications of the arguments of Neumann and Polze®98 one can see
that their approach carries over to our estimates

We now will give a sketch of the proof for Model .CFirst note that
de{L£*(S), L(S)} — 0 in probability whereL* denotes the conditional distribution given
Zn=((Xe, Te1,--5 Tod)s- - (Xn, Tngs -5 Tna)). This can be seen as in Neumann and
Polzehl(1998. The proof of the theorem will be based on strong approximatibos
this purpose we introduce random variab¥s,Y; *,...,Y;", Y, 7, .Y, YT by the
following construction choose an.i.d. sampleUy,...,U, that is independent o£,.
We putY," = F1(U;) andY,** = G 1(U;), whereF;, andG; are the distribution func-
tions of £L*(Y;) and £*(Y;*), respectivelyThen given the original datéX;, T4, Y4),...,
(Xns Tns Vo), (V55,7 9), ., (Y, Y ) are conditionally ii.d., £*(Y,") = £*(Y;) and
L) = £*(Y). Furthermore we have that

max E*[Y;"" — ¥;"| = Op(py). (A.31)

1=i=n

Here E* denotes the conditional expectation given the original data T, Y1),...,
(Xn, T, Ya). Note that£*(Y;*) and £*(Y,*") belong to the same exponential family
with expectationu; or 4, respectivelyProperty(A.31) follows from

1
EXIY T =Y = f [F 1 (w) — G *(u)| du
(0]

- [T 1Fe) -G

= O(ui = 4i) = Op(p2).
Pute” = V" — u; andg™ = Y,*" — 4;. The estimate of the first component that is

based on the sampl4,...,Y, is denoted by (t;). The estimate that is based on
Y, LY is denoted byt (ty).
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We argue now that for > 0 small enough

max sup E*[&" — & [2{1+ exp(t|e"|) + exp(t|&i™" )} = Op(py). (A.32)

1=i=n o=t=r

This can be seen by straightforward calculations u$&@1) and the fact that the nat-
ural parameter ofL*(Y;*) and £*(Y;*") is bounded away from the boundary of the
natural parameter space of the exponential fartige AssumptioitA2)).

It can be shown that for a sequenge= o(1) and for alla, < b, with b, — a, =
chlogn (nh)™Y2 one has thaP(S & [a,, b,]) converges to OThis can be seen similarly
as for kernel smoothers in one-dimensional regres&@en e.g., Neumann and Polzehl
1998. The statements of Theorend3follow from

lSlfc,f—) |a1(ty) — o (ty)] = 0p(D), (A.33)
lSLgF) |64 (ty) — o (ty)| = 0p([logn] 1), (A.34)

sup [y (ty) — my(ty)] = [Mi (t) — my(ty)]] = op((nh)"*2[logn]~/2). (A.35)

HESHy

We give here only the proof dfA.35). One shows first that

1
sup |y (t) —my(ty) — = E at(X,t,T, —D)Kp(ty = Tie" ‘

€S i=1
= 0p((nh)"%?[logn]~%2),

n

1
sup | My (ty) — my(ty) — E 2 al(xi»tl,Ti,—l)Kh(tl —Te™

€S, i=1

= op((nh)"2[logn]~+/2).

This can be done by using expansions of the t#fd5). Note that the bias ofhy (t;)
andmi*(t,) is of orderop((nh)=%?[logn]~%?). Sq, for (A.35) it remains to show

1 n
sup E Z (Xi,tlyTi,—l)Kh(tl - Ti,l)[si+ —&]

4,ESH,

= 0p((nh)™¥2[logn]~1/2). (A.36)
For the proof of this claim we use a standard method that has been applied for calcula-

tion of the sup-norm of linear smootheM/e show first that for all constants; > 0
there exists a constafL such that

sup P*{
tESry

= 0p(n~), (A.37)

n

1
- Z al(xhtl’Ti,fl)Kh(tl - Ti,l)[si+ - 8i++]

> C2Kn}
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wherex,[nh/p1]~Y2[log n]¥? and whereP* denotes the conditional distribution given
the original datd Xy, T1, Y1), ..., (Xn, Tn, Ya). Note thatk, = o((nh)~¥?[logn]~%?). Equa-
tion (A.37) implies a modification of clain{A.36) where the supremum runs only over
a finite grid of O(n®t) elements The unmodified claim(A.36) follows by taking a
crude bound on

01
PR E al(xntl, i, ~)Kp(ty — |,1)[8iJr - 8i++] .

Su
Plo, n=

HESH

It remains to showA.36). Note that

l n
P { = 2 al(xi,tpTi,—l)Kh(tl - Ti,1)|:$i+ - 8i++] > Can}

ni=

1 n
=E* eXp[l()g Nk, H 2 a'(X, ty, T _ ) Kn(ty — Ti,l)[‘?i+ - 8i++]:|

X expllognk, 1C,k, ]

log
=n CZH E*exp[

n al(Xntb i, —l)Kh(tl |,1)|:8i+ - 8i++]:|'

n

We use now the expansion €xd = 1 + x + x%/2 {1 + exp[x]}. Because oE*g" —
& = 0 and because dfA.32) this gives that the last term is bounded by

n ( )2
=n%]] [1 C a%(X;, ty, T _)KE(ty — Ti1)p2
i=1

whereC is a constantWe use now H x = exp[x]. This gives the bound

(|09n)2
2(X|’t17 |71)Khz(tl I,l)pZ .

['n
=n Sexp 2

With another constant’ this can be bounded by

. (logn)?
xkZnh

=n Sexp P2

= nC’*CZ‘

For C, large enoughthis is of ordero(n®:). This shows(A.36).
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