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Small trees in supercritical random forests

Tao Lei

Abstract. We study the scaling limit of a random forest with prescribed degree sequence in the regime
that the largest tree consists of all but a vanishing fraction of nodes. We give a description of the limit
of the forest consisting of the small trees, by relating a plane forest to a marked cyclic forest and its
corresponding skip-free walk.

1 Introduction

A plane tree is a finite rooted tree in which the children of each node are ordered. A
plane forest is a finite sequence of plane trees.

Fix a plane tree T and a plane forest F = (T1 , . . . , Tc). �e node set of F is v(F) =
⊔i≤c v(Ti), where v(Ti) is the node set of Ti and where ⊔ denotes disjoint union.
For a node v ∈ v(T), by the degree of v , we mean the number of children of v in T.
We denote this quantity kT(v). �e degree of v ∈ v(F), denoted kF(v), is its degree
in its tree, so if v ∈ v(Ti), then kF(v) = kTi

(v). For F, we let F↓ be the sequence of
reordering {T1 , . . . , Tc} in decreasing order of number of nodes, breaking ties by the
original order of appearance in F.

For i ≥ 0, let s i(T) = #{v ∈ v(T) ∶ kT(v) = i} and define s i(F) accordingly, so
s i(F) = ∑ j≤c s

i(Tj). �e degree sequences of T and of F are s(T) = (s i(T), i ≥ 0)
and s(F) = (s i(F), i ≥ 0), respectively. Any sequence s = (s i , i ≥ 0) of non-negative
integers with∑i≥0 s

i < ∞ and with∑i≥0 is
i < ∑i≥0 s

i is the degree sequence of some
tree or forest. More precisely, writing c(s) ∶= ∑i≥0(1 − i)s i > 0, then any forest with
degree sequence s consists of exactly c(s) trees.

�e goal of this paper is to study the asymptotic structure of large random
forests with a given degree sequence, in the supercritical finite variance regime. �e
supercritical regime is defined by cn = o(√n), where cn and n are the the number
of tree components and vertices of the n-th forest, respectively. In this setting, the
limiting forest typically consists of a single large tree containing all but a vanishing
fraction of the nodes. �e existence of this giant tree is the reason we call this
regime supercritical. �e scaling limit of this tree is T, the Brownian Continuum
Random Tree (CRT) introduced by Aldous in [2–4]. �e remaining nodes form
another random forest, which can be expected to have its own scaling limit (with
an appropriate rescaling, which should be different from that of the large tree). �e
contributions of this paper confirm that the above picture is correct and yield a
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pleasingly straightforward description, which we now provide, for the joint scaling
limit of the large tree and the small trees.

Let B = (B(t), t ≥ 0) be a linear Brownian motion. For t ≥ 0, let R(t) = B(t) −
inf(B(s), s ≤ t); the process R = (R(t), t ≥ 0) is Brownian motion reflected at its
running minimum. Let Z = {t ≥ 0 ∶ R(t) = 0} be the zero set of R. By definition, this
is also the set of times at which B is equal to its running minimum.

Now let τ(x) = inf(t ∶ B(t) ≤ −x) for x ≥ 0, and let Z(x) = Z ∩ [0, τ(x)]. For σ >
0, the relative complement [0, τ( 1

σ
)] ∖ Z( 1

σ
) is almost surely a countable collection

of intervals with distinct lengths, and with total length τ( 1
σ
). List these intervals in

decreasing order of length as ((g i , d i), i ≥ 1).
For i ≥ 1, let Ti be the continuum random tree coded by 2B i , where

B i = (B(g i + t) − B(g i), 0 ≤ t ≤ d i − g i) = (R(g i + t) − R(g i), 0 ≤ t ≤ d i − g i);
this construction is described in more detail and generality in Section 1.1. �en the
scaling limit of the small trees has the law of the sequence F = (T↓i , i ≥ 1), which is a
decreasing reordering of (Ti , i ≥ 1) according to (d i − g i , i ≥ 1).

For any probability distribution q = (q(i) , i ≥ 0) on N, we let σ 2(q) = ∑i≥0 i
2q(i).

�eorem 1.1 Fix a sequence p = (pi , i ≥ 0) with ∑i≥0 p
i = 1 = ∑i≥0 ip

i and with
σ 2 ∶= σ 2(p) ∈ (0,∞). For each n ≥ 1, let sn = (s in , i ≥ 0) be a degree sequence with

∑i≥0 s
i
n = n and write pn = (pin , i ≥ 0) = (s in/n, i ≥ 0) and cn = c(sn).

Let Fn be a uniformly random plane forest with degree sequence sn . Let F̂n =(T↓n , i , 2 ≤ i ≤ cn) be the decreasing reordering of Fn , excluding the largest tree T↓n ,1.

Suppose that pn → p in L2 and cn = o(n1/2); then
⎛⎝σ(pn)T

↓
n ,1

n1/2 ,
σ(pn)F̂n

cn
,
n − ∣T↓n ,1∣

c2n

⎞⎠ dÐ→ (T,F, τ( 1
σ
)),

where the first coordinate of the joint convergence is in the GHP sense, the second
coordinate is in the sense of coordinatewise GHP convergence, and T and F are
independent.

Remarks

• �e condition that ∑i≥0 s
i
n = n in �eorem 1.1 is for notational convenience; all

proofs carry through with only cosmetic changes provided that ∣sn ∣ = ∑i≥0 s
i
n →∞

as n →∞, that ∣sn ∣−1 ⋅ sn → p in L2 and that cn = o(∣sn ∣1/2).
• Fix a critical, finite variance offspring distribution ν, and let Fn be a forest of cn
independent Galton–Watson (ν) trees with offspring distribution ν, conditioned to
have total progeny n. It is not hard to check, as in [6], that with high probability the
degree sequence of Fn satisfies the conditions of �eorem 1.1, so the distributional
convergence of the theorem also applies to Fn . �e convergence of the third
coordinate, in the Galton–Watson setting, appears as [15, �eorem 2.1.5], and
provides a newproof and different perspective on that result; the convergence of the
second coordinate strengthens and generalizes and removes a moment assumption
from [7, �eorem 1.7].

https://doi.org/10.4153/S0008439520000685 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000685


Small trees in supercritical random forests 607

�e field of scaling limits of large random structures is motivated by the seminal
papers [2–4] byAldous, where he introduced the concept of the BrownianContinuum
Random Tree and showed that a critical Galton–Watson tree conditioned on its size
has the CRT as its limiting object. To be more specific, our work here is a natural
generalization of [6] where it is shown that under natural hypotheses on the degree
sequences, a�er suitable normalization, uniformly random trees with given degree
sequence converge to CRT as sizes of trees tend to infinity. Let n be the number of
nodes of the forest. In this paper, we work on uniformly random forests where the
number of trees is o(n1/2); a previous paper [12] addressed the asymptotic behaviour
of such forests in the regime where the number of trees is of order n1/2.

Outline of the Section In the remainder of this section, we first briefly introduce the
concepts required to understand the statement of �eorem 1.1 rigorously. In Section
1.2, we describe the key ingredients of the proof of our main theorem. In Section 1.3,
we explain how to deduce �eorem 1.1 from the results of Section 1.2 and outline the
remaining sections of the article.

1.1 Concepts

Real Trees We briefly recall the concepts of real trees and real trees coded by
continuous functions, which are necessary for understanding the construction of F.
A more lengthy presentation about the probabilistic aspects of real trees can be found
in [10, 11].

Definition 1.2 A compact metric space (T , d) is a real tree if the following hold for
every a, b ∈ T :
(i) �ere is a unique isometric map fa ,b ∶ [0, d(a, b)]→ T such that fa ,b(0) = a

and fa ,b(d(a, b)) = b.
(ii) If q is a continuous injective map from [0, 1] into T, such that q(0) = a and

q(1) = b, we have q([0, 1]) = fa ,b([0, d(a, b)]).
Now we show a way of constructing real trees from continuous functions. Let

g ∶ [0,∞)→ [0,∞) be a continuous function with compact support and such that
g(0) = 0. For every s, t ≥ 0, let

d○g(s, t) = g(s) + g(t) − 2mg(s, t),
where

mg(s, t) = min
s∧t≤r≤s∨t

g(r).
�e function d○g is a pseudometric on [0,∞). Define an equivalence relation ∼ on[0,∞) by setting s ∼ t if and only if d○g(s, t) = 0.�en let Tg = [0,∞)/ ∼ and let dg be
the induced distance on Tg . �en (Tg , dg) is a real tree (see, e.g., [11, �eorem 2.2]).
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608 T. Lei

GHP convergence Let (X , d) and (X′ , d′) be compact metric spaces. �en the
Gromov-Hausdorff distance between (X , d) and (X′ , d′) is given by

dGH((X , d), (X′ , d′)) = inf
ϕ ,ϕ′ ,Z

dZ
H(ϕ(X), ϕ′(X′)),

where the infimum is taken over all isometric embeddings ϕ ∶ X ↪ Z and ϕ′ ∶ X′ ↪
Z into some common Polish metric space (Z , dZ) and dZ

H denotes the Hausdorff
distance between compact subsets of Z, that is,

dZ
H(A, B) = inf{ε > 0 ∶ A ⊂ Bε , B ⊂ Aε},

where Aε is the ε-enlargement of A:

Aε = {z ∈ Z ∶ inf
y∈A

dZ(y, z) < ε}.
Note that strictly speaking dGH is not a distance since different compact metric

spaces can have GH distance zero.
Ameasured metric space X = (X , d , µ) is a metric space (X , d) with a finite Borel

measure µ. Let X = (X , d , µ) and X′ = (X′ , d′ , µ′) be two compact measured metric
spaces. �ey are GHP-isometric if there exists an isometric one-to-one map Φ ∶ X →
X′ such that Φ∗µ = µ′ where Φ∗µ is the push forward of measure µ to (X′ , d′),
that is, Φ∗µ(A) = µ(Φ−1(A)) for A ∈ B(X′). In this case, call Φ a GHP-isometry.
Suppose bothX andX′ are compact; then define the Gromov–Hausdorff–Prokhorov
distance as:

dGHP(X,X′) = inf
Φ,Φ′ ,Z

(dZ
H(Φ(X), Φ′(X′)) + dZ

P (Φ∗µ, Φ′∗µ′)),
where the infimum is taken over all GHP-isometric embeddings Φ ∶ X ↪ Z and
Φ′ ∶ X′ ↪ Z into some common Polish metric space (Z , dZ), and dZ

P denotes the
Prokhorov distance between finite Borel measures on Z, that is,

dZ
P (µ, ν) = inf{ε > 0 ∶ µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε for any closed set A}.
Let K denote the set of GHP-isometry classes of compact measured metric spaces

and we identify X with its GHP-isometry class.

�eorem 1.3 ([1, �eorem 2.5]) �e function dGHP defines a metric on K and the
space (K, dGHP) is a Polish metric space.

Wenext define coordinatewise GHP convergence of sequences ofmeasuredmetric
spaces. ForXn = (Xn , j , j ≥ 1),X = (X j , j ≥ 1) inKN, we say thatXn converges toX in
coordinatewise GHP sense if for every j ∈ N,

sup
1≤l≤ j

dGHP(Xn , l ,Xl)→ 0 as n →∞.

Now to understand the statement of �eorem 1.1 in the rigorous way, we are
viewing T↓n ,1 and each tree component of F̂n as measured metric space where the
distance is rescaled graph distance and the measure is the uniform measure putting
mass 1/n on each node of T↓n ,1 and F̂n .
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1.2 Functional Convergence and Proof of Theorem 1.1

Given a degree sequence s = (s i , i ≥ 0) with ∣s∣ = n, we let d(s) ∈ Zn≥0 be the vector
whose entries are weakly increasing and with s i entries equal to i, for each i ≥ 0.
For example, if s = (3, 2, 0, 1, 0, 0, . . . )with s i = 0 for i ≥ 4, then d(s) = (0, 0, 0, 1, 1, 3).
Suppose we have a sequence of degree sequences (sn)n∈N, with sn = (s in , i ≥ 0), ∣sn ∣ =
n, cn ∶= c(sn) = o(n1/2), and n−1 ⋅ sn → p in L2 for some distribution p = (pi , i ≥ 0)
with mean 1 and finite variance σ 2 on N. Let Cn ,1 , . . . ,Cn ,n be a uniformly random

permutation of d(sn). For 1 ≤ k ≤ n, let Xn ,k = Cn ,k − 1, and set Sn ,k = ∑k
j=1 Xn , j . �e

sequence (Sn ,k)k is called Lukasiewicz path in the literature (e.g., [11]). Our proof
makes use of the following functional convergence theorem.

�eorem 1.4 We have the following convergence of processes:

( 1

cn
Sn ,⌊tc2n⌋ , t ≥ 0) dÐ→ (σB(t), t ≥ 0)(1.1)

where (B(t), t ≥ 0) is standard Brownian Motion.

Remark Technically Sn ,⌊tc2n⌋ is only defined for t ≤ n/c2n . One can think of the
process (Sn ,k , k ∈ N) in the theorem as the cumulative sum of

X
(0)
n ,1 , . . . , X

(0)
n ,n , X

(1)
n ,1 , . . . , X

(1)
n ,n , X

(2)
n ,1 , . . . , X

(2)
n ,n . . .

where for each j ∈ N, X( j)n ,1 , . . . , X
( j)
n ,n is an independent copy of Xn ,1 , . . . , Xn ,n . Here,

for the purpose of readability, we slightly abuse the notations. But this will not affect
the proof later as c2n = o(n).

�e proof of �eorem 1.4 will be given in Section 3. �eorem 1.4 will yield a
description of the asymptotic behaviour of the sizes of all but the largest tree of Fn .

Corollary 1.5 We have

⎛⎝
∣T↓n , i+1∣
c2n

, i ≥ 1⎞⎠ dÐ→ (g i − d i , i ≥ 1) in L1 ,

where ((g i , d i), i ≥ 1) are the excursion intervals of (R(t), t ≤ τ( 1
σ
)) in decreasing

order of length.

Corollary 1.5 is equivalent to the assertions that

1

c2n
∑
i≥2
∣T↓n , i ∣ dÐ→ τ( 1

σ
) = ∑

i≥1
(g i − d i),(1.2)

and that for any fixed j ∈ N,
⎛⎝∣T

↓
n ,2∣
c2n

,
∣T↓n ,3∣
c2n

, . . . ,
∣T↓n , j ∣
c2n

⎞⎠ dÐ→ (g1 − d1 , g2 − d2 , . . . , g j−1 − d j−1).(1.3)

https://doi.org/10.4153/S0008439520000685 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000685


610 T. Lei

We will prove this corollary in Section 3. To describe the limit structure of each
tree, we appeal to the following theorem in [6].

�eorem 1.6 Let {sn , n ≥ 1} be a sequence of degree sequences such that c(sn) =
1, ∣sn ∣ = n, and ∆n ∶=max{i ∶ s in ≠ 0} = o(n1/2) as n →∞. Suppose that there exists a
distribution p = (pi , i ≥ 0) on N with mean 1 such that pn = (s in/n, i ≥ 0) converges to
p coordinatewise and such that σ(pn)→ σ(p) ∈ (0,∞). Let Tn be the random plane
tree under Psn , the uniform measure on the set of plane trees with degree sequence sn
and let dTn be the graph distance in Tn . �en when n →∞,

(Tn , σ(pn)√
n

dTn) dÐ→ T
in the GHP sense.

To apply �eorem 1.6 to each T↓n , i , we also need to verify that the hypotheses of
�eorem 1.1 imply those of �eorem 1.6. For fixed integers i ≥ 0 and l ≥ 1, let

pin , l ∶= ∣{v ∈ T
↓
n , l ∶ k(v) = i}∣∣T↓

n , l ∣ and pn , l = (pin , l , i ≥ 0).
In Section 4, we prove the following assertions:

for any fixed i ≥ 0 and l ≥ 1, pin , l − pin pÐ→ 0, as n Ð→∞,(1.4)

and

for any l ≥ 1, σ 2(pn , l) − σ 2(pn) pÐ→ 0, as n Ð→∞.(1.5)

Note that once these two conditions are verified, it follows that for any fixed l ≥ 1,
max{i ∶ pin , l ≠ 0} = op(∣T↓n , l ∣1/2) as n →∞;

see, e.g., [12, Lemma A.1].

1.3 Proof of Theorem 1.1

Nowwe are ready to give the proof of�eorem 1.1, assuming the results of Section 1.2.

Proof It suffices to prove that for any fixed j ∈ N,

(σ(pn)T↓n ,1
n1/2 ,

⎛⎝
σ(pn)T↓n , l

cn
, 2 ≤ l ≤ j

⎞⎠, n − ∣T
↓
n ,1∣

c2n
) dÐ→ (T, (T↓1 , . . . ,T↓j−1), τ( 1σ )).

�e convergence of the third coordinate is simply (1.2). �is, in particular, implies

that
∣T↓n ,1 ∣
n

p→ 1. Since pn → p in L2, it straightforwardly follows that with probability

1 − o(1), (T↓n ,1 , n ≥ 1) satisfies the conditions of �eorem 1.6; this yields the conver-
gence of the first coordinate. With (1.4) and (1.5), we can also apply �eorem 1.6 to
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each T↓
n , l with l ≥ 2 and conclude that

σ(pn , l)∣T↓
n , l ∣1/2 T

↓
n , l

d→ T.
Since the trees (T↓

n , l , l ≥ 1) are conditionally independent given their degree
sequences, it follows that

⎛⎝σ(pn , l)∣T↓
n , l ∣1/2 T

↓
n , l , 2 ≤ l ≤ j

⎞⎠ dÐ→ (T̃l−1 , 2 ≤ l ≤ j ),
where (T̃l)l∈N are independent copies of T. Using (1.5) again, together with (1.3) and
Brownian scaling, the convergence of the second coordinate then follows. ∎

Outline of the Rest of the Paper In Section 2, we describe a combinatorial con-
struction that associates a marked cyclic forest with the concatenation of a sequence
of first passage bridges, followed by one skip-free bridge. �is construction is what
links �eorem 1.4 with random forests. In Section 3, we give the proof of �eorem
1.4 and Corollary 1.5. Finally in Section 4, we prove (1.4) and (1.5) using martingale
concentration inequalities.

2 Coding Marked Forests by Skip-free Walks

We call a sequence of integers b = (b(0), b(1), . . . , b(n)) a skip-free bridge if
b(0) = 0, b(n) = −1 and ∀0 ≤ i ≤ n − 1, b(i + 1) − b(i) ≥ −1.

If b is a skip-free bridge and min
i
{i ∶ b(i) = −1} = n, then we call b a first passage

bridge. Given a skip-free bridge b and a positive integer k ≤ n, we define a skip-
free bridge b(k) as follows. First, for 1 ≤ i ≤ n, let b(n + i) = b(n) + b(i) = −1 + b(i).
�en for 0 ≤ i ≤ n, let b(k)(i) = b(k + i) − b(k). Let [n] = {1, . . . , n}. We have the
following elementary lemma as a variant of the classical ballot theorem.

Lemma 2.1 ([16, Lemma 6.1]) Fix a skip-free bridge b = (b(i), 0 ≤ i ≤ n), and let
r = r(b) ∈ [n] be minimal so that b(r) =min(b(i), i ≤ n). �en b

(r) is a first passage
bridge, and r is the only such value in [n].

Lemma 2.1 is illustrated by Figure 1(a) and (b). In Figure 1(a), we have a skip-free
bridge b = (0,−1,−1,−2,−1, 1, 0,−1). �e vertical dashed line shows the position of b
attaining its minimum for the first time, hence the unique position for the cyclic shi�
to transform b to a first passage bridge, as claimed by Lemma 2.1. �e resulting first
skip-free bridge, with steps b(3), is shown in Figure 1(b).

A plane tree is a rooted treeT inwhich the children of eachnode have a le�-to-right
order. Recall that for a plane tree T and a node v ∈ v(T), we write kT(v) to denote
the degree of v in T. We also write lex(T) = (kT(u1), . . . , kT(u∣T ∣))where (u i , 1 ≤ i ≤∣T ∣) = (u i(T), 1 ≤ i ≤ ∣T ∣) are nodes of T listed in lexicographic order, i.e., depth-first
search order on v(T).�is order is “lexicographic” in the sense that the plane tree can
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612 T. Lei

Figure 1: (a) A skip-free bridge; (b) the corresponding marked first-passage bridge; (c) the

corresponding marked tree.

be represented as a subset of ⋃∞n=0Nn , where N = {1, 2, . . . } and N0 = {∅}, as used
in [11].

For any sequence c = (c1 , . . . , cn) ∈ Rn , we write Wc( j) = ∑ j
i=1(c i − 1) for j ∈ [n],

letWc(0) = 0 andmakeWc a continuous function on [0, n] by linear interpolation. A
classical bijection between plane trees and first passage bridges associates to a tree T
its depth-first walk (Wlex(T)(i), 0 ≤ i ≤ n); see, e.g., [16, Chapter 6]. We build on this
bijection below.

For a plane tree T and v ∈ v(T), we call the pair (T , v) a marked tree and call v
the mark. �e bijection between first passage bridges and plane trees also leads to
a bijection between skip-free bridges and marked trees. �is bijection, depicted in
Figure 1, is specified as follows. For a skip-free bridge b, let r = r(b) as in Lemma 2.1,
let b′ = b(r) be the first passage bridge corresponding to b, and let T be the plane tree
with depth-first walk b′. �en the marked node is v = u∣T ∣−r+1(T), the (∣T ∣ − r + 1)st
node of T in lexicographic order. �e mark v is denoted by a red square in Figure 1.

Amarked forest is a pair (F , v) where F is a plane forest and v ∈ v(F). We refer to
v as the mark of (F , v). A marked cyclic forest is a marked forest with its mark in its
last tree; it is so named because we can equivalently view such a forest as having its
trees arranged around a cycle.

Fix an integer sequence W = (Wi ∶ 0 ≤ i ≤ n) with W0 = 0,Wn = −k, and Wi −

Wi−1 ≥ −1 for all 1 ≤ i ≤ n. �e bijections described above allow us to view W as a
marked cyclic forest (F , v) = (F(W), v(W)) consisting of k − 1 trees and onemarked
tree, as follows. For integer b < 0, let τ(b) = inf{t ∈ N ∶Wt ≤ b}. For 1 ≤ j ≤ k − 1, let
Tj be the tree whose depth-first walk is (Wi −Wτ(−( j−1)) ∶ τ(−( j − 1)) ≤ i ≤ τ(− j)).
Let (Tk , v) be the marked tree corresponding to skip-free bridge (Wi −Wτ(−(k−1)) ∶
τ(−(k − 1)) ≤ i ≤ n). �en (F(W), v(W)) = ((T1 , . . . , Tk), v). We call W the cod-
ing walk of the forest, and note that the coding is bijective: W can be recovered
from (F(W), v(W)) as the concatenation of the first-passage bridges which code
T1 , . . . , Tk−1 and the skip-free bridge that codes (Tk , v). �is bijection is illustrated in
Figures 2 and 3. In Figure 2, the whole sequence is decomposed into three segments

https://doi.org/10.4153/S0008439520000685 Published online by Cambridge University Press

https://doi.org/10.4153/S0008439520000685


Small trees in supercritical random forests 613

Figure 2: A skip-free walkW = (Wi ∶ 0 ≤ i ≤ 17).

Figure 3: �e marked forest (F(W), v(W)) = ((T1 , T2 , T3), v).

(divided by vertical dashed lines). �e first two segments are first passage bridges,
hence correspond to plane trees T1 , T2. �e last part is a skip-free bridge, and hence
corresponds to a marked tree (T3 , v) and the node v is again depicted by a square
mark. �ese trees are shown in Figure 3.

Given a degree sequence s = (s(i) , i ≥ 0) with ∑i≥0 s
i = n, recall from Section 1.2

that d(s) ∈ Zn≥0 is the vector whose entries are weakly increasing and with s(i) entries
equal to i, for each i ≥ 0. LetD(s) be the set of sequences d ∈ Zn≥0 that are permutations
of d(s) (there are n!/(∏i s

i !) of them). Let MCF(s) be the set of all marked cyclic
forests with degree sequence s. By the correspondence we developed previously, the
following lemma is immediate.

Lemma 2.2 Fix a degree sequence s = (s(i) , i ≥ 0) with ∑i≥0 s
i = n. Let π be a

uniformly random permutation of [n], and let W =Wπ(d(s)). �en the marked cyclic
forest (F(W), v(W)) coded by W is uniformly distributed on MCF(s).

In particular, we have the following corollary.

Corollary 2.3 Let s = (s(i) , i ≥ 0)with∑i≥0 s
i = n. Let (F , v) be a uniformly random

element of MCF(s), and let M be the total number of nodes in the non-marked trees
of (F , v). Let π be a uniformly random permutation of [n] and let W ∶ [0, n]→
R, W(t) =Wπ(d(s))(t). �en

M
d= inf {t ∶W(t) = −c(s) + 1}.(2.1)
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We will also need the following easy fact connecting linear forests with marked
cyclic forests.

Lemma 2.4 Fix a degree sequence s = (s(i) , i ≥ 0), and let F be a uniformly random
linear forest with degree sequence s, and let (F∗ , v) be the marked cyclic forest obtained
from F by marking a uniformly random node and applying the requisite cyclic shi� of
the trees of F. �en (F∗ , v) is a uniformly random element of MCF(s).
Proof Let F(s) be the set of all plane forests with degree sequence s. �e operation
of marking a node induces an n-to- c(s)map from F(s) to MCF(s), from which the
lemma is immediate. ∎

�e preceding lemma allows us to relate the random forest Fn from �eorem
1.1 with the skip-free walk Sn = (Sn ,k , 0 ≤ k ≤ n) from �eorem 1.4. Let (F∗n , vn) =((Tn ,k , 1 ≤ k ≤ cn), vn) be obtained from Fn by marking a uniformly random node
and applying the requisite cyclic shi� of the trees of Fn . �en we can couple Fn and
Sn so that Sn = (Sn , j , 0 ≤ j ≤ n) is the coding walk of (F∗n , vn). We work with such a
coupling for the remainder of the paper.

3 Convergence of the Coding Processes

�e goal of this section is to prove�eorem 1.4 and Corollary 1.5. To achieve that, we

decompose the walk process into two random processes. To be precise, let dn ∶= n1/2

cn

and fix a sequence (tn)n∈N, such that tn = o(dn) and tn = ω(1). �is is possible, since
dn →∞ as n →∞ by our assumption that cn = o(n1/2). We consider the following
two processes. Let (Mn ,k , k ≤ n) be as follows: Mn ,0 = 0, and for k ≥ 1,

Mn ,k −Mn ,k−1 = Xn ,k1∣Xn ,k ∣<tn .

Similarly, let (Rn ,k , k ≤ n) be given by Rn ,0 = 0, and for k ≥ 1,
Rn ,k − Rn ,k−1 = Xn ,k1∣Xn ,k ∣≥tn .

�en clearly we have Sn ,k = Mn ,k + Rn ,k for all k ≤ n. Define the following quantity:
µ+n ∶= ∑

j≥tn+1
( j − 1) s jn

n
.

�eorem 1.4 is an immediate consequence of the following two results:

⎛⎝ 1

cn
(Mn ,⌊tc2n⌋ + µ

+
n⌊tc2n⌋), t ≥ 0⎞⎠ dÐ→ (σB(t), t ≥ 0),(3.1)

⎛⎝ 1

cn
(Rn ,⌊tc2n⌋ − µ

+
n⌊tc2n⌋), t ≥ 0⎞⎠ dÐ→ 0,(3.2)

where 0 denotes a processZ such thatP{Z(t) = 0, ∀t ≥ 0} = 1. For (3.1), we are going
to use the following theorem from [8].
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�eorem 3.1 ([8,�eorem 4]) Suppose an urn U contains n balls, each marked by an
element of a set S of cardinality c < n/2. Let HUk be the distribution of k draws made at
random without replacement from U, and let MUk be the distribution of k draws made
at random with replacement. �en the two probabilities on Sk satisfy

∥HUk −MUk∥ ≤ 2ck/n,
where ∥ ⋅ ∥ denotes the total variation distance.

Proof of (3.1) Let (X̃n ,k , k ≤ n) be i.i.d. with the law of Xn ,11∣Xn ,1 ∣<tn , set M̃n ,0 = 0
and for k ≥ 1, let

M̃n ,k =
k∑
j=1

X̃n , j .

Now apply�eorem 3.1 with urnU containing n balls, with s
j
n ballsmarked by j − 1

for 0 ≤ j ≤ tn , j ≠ 1, and s1n +∑ j>tn s
j
n balls marked by 0, with S = {−1, 0, 1, . . . , tn − 1},

and with k = k(n) = ⌊n/dn⌋. �is yields that

∥(Xn , j1∣Xn , j ∣<tn , j ≤ k) − (X̃n , j , j ≤ k)∥ ≤ 2(tn + 1)⌊n/dn)⌋
n

= 4 tn
dn

,

so for all Borel B ⊂ Rk ,

∣P{(Mn , j , j ≤ k(n)) ∈ B} − P{(M̃n , j , j ≤ k(n)) ∈ B} ∣ ≤ 4 tn
dn

.

Since tn = o(dn) and k(n) = ⌊n/dn⌋ > dn ⋅ c2n − 1 = ω(c2n), this implies that to estab-
lish (3.1) it suffices to prove that

⎛⎝ 1

cn
(M̃n ,⌊tc2n⌋ + µ

+
n⌊tc2n⌋), t ≥ 0⎞⎠ dÐ→ (σB(t), t ≥ 0).(3.3)

Note that

EX̃n ,1 = ∑
j≤tn
( j − 1) s jn

n
= 1

n
∑
j

( j − 1)s jn − ∑
j≥tn+1

( j − 1) s jn
n
= − cn

n
− µ+n .(3.4)

Define σ−n by setting

(σ−n )2 ∶= Var(X̃n ,1) = E [X̃2
n ,1] − E [X̃n ,1]2

= ∑
j≤tn
( j − 1)2 s jn

n
− ( − µ+n − cn

n
)2 .(3.5)

Applying Donsker’s theorem to the process (M̃n ,k + k(µ+n + cn
n
), k ≥ 0), we obtain

that

⎛⎝ 1a (M̃n ,⌊ta2⌋ + µ
+
n⌊ta2⌋) + cn⌊ta2⌋

na
, t ≥ 0⎞⎠ dÐ→ (σ−n B(t), t ≥ 0),(3.6)

as a →∞.
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Since∑ j≥0( j − 1)p j is convergent, for any prescribed δ > 0,we canfindL large such
that ∑ j>L( j − 1)p j < δ/2. By our assumption that n−1 ⋅ sn → p in L2, for this fixed L,

we can find n large such that ∑ j>L( j − 1) s jnn < δ. Since tn →∞, we must have µ+n ≤
∑ j>L( j − 1) s jnn < δ for n large enough, i.e.,

µ+n Ð→ 0 as n Ð→∞.(3.7)

Similarly, the assumption that n−1 ⋅ sn → p in L2 implies that

σ 2
n ∶= ∑

j

j( j − 1) s jn
n
Ð→ σ 2 <∞,

so

(σ+n )2 Ð→ 0 as n Ð→∞,(3.8)

where we let (σ+n )2 ∶= ∑ j≥tn+1 j( j − 1) s jnn . Using (3.4) and (3.5), we have

σ 2
n − (σ−n )2 = (σ+n )2 − (µ+n + cn

n
)(1 − µ+n − cn

n
).

Using (3.7), (3.8), and the fact that cn = o(√n), the last quantity
(σ+n )2 − (µ+n + cn

n
)(1 − µ+n − cn

n
)Ð→ 0 as n Ð→∞,

so σ−n → σ as n →∞. Taking a = cn in (3.6), then letting n →∞, now yields that

⎛⎝ 1

cn
(M̃n ,⌊tc2n⌋ + µ

+
n⌊tc2n⌋) + ⌊tc2n⌋n

, t ≥ 0⎞⎠ dÐ→ (σB(t), t ≥ 0).
Since c2n = o(n), (3.3) follows. ∎

To prove (3.2), we need the following result concerning dilation. Recall (or see, e.g.,
[5]) that given real random variables U ,V , we say U is a dilation of V if there exist
random variables Û , V̂ such that

Û
d= U , V̂

d= V , and E [Û ∣V̂] = V̂ .

Proposition 3.2 ([5, Proposition 20.6]) Suppose X1 , . . . , Xk and X∗1 , . . . , X
∗
k are

samples from the same finite population x1 , . . . , xn , without replacement and with

replacement, respectively. Let Sk = ∑k
i=1 X i , S

∗
k = ∑k

i=1 X
∗
i . �en S∗k is a dilation of Sk .

In particular, E [ϕ(S∗k )] ≥ E [ϕ(Sk)] for all continuous convex function ϕ ∶ R→ R.
Proof of (3.2) We prove that for all ε > 0, we have

lim sup
n→∞

P

⎧⎪⎪⎨⎪⎪⎩max
i≤c2n/ε

RRRRRRRRRRR
Rn , i − iµ

+
n

cn

RRRRRRRRRRR > ε
⎫⎪⎪⎬⎪⎪⎭ ≤ ε,

this immediately implies (3.2). Fix n and let c1 , . . . , cn be such that ∣{1 ≤ k ≤ n ∶ ck =
j}∣ = s jn . Let C1 , . . . ,Cn be a uniformly random permutation of c1 , . . . , cn . Fix tn ∈ N.
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Define (R i , 0 ≤ i ≤ n) as follows: let R0 = 0, and for i ≥ 0, let
R i+1 = { R i + C i − 1, if C i ≥ tn + 1;

R i , if C i ≤ tn .
For 0 ≤ i ≤ n, let Fi = σ(C1 , . . . ,C i). Since Rn = nµ+n and the process (R i , 0 ≤ i ≤ n)
has exchangeable increments,

E [R i+1 ∣ Fi] = R i +
nµ+n − R i

n − i
.(3.9)

Now let K i = E [R i+1 − R i ∣ Fi] = nµ+n−R i

n−i . �en using (3.9), we have

E [K i+1 ∣ Fi] = nµ+n − R i

n − (i + 1) − nµ+n − R i(n − i)(n − (i + 1)) = K i .

Hence, K i is an Fi−martingale.
Since for any 0 ≤ i ≤ s,

nµ+n − R i

n − i
= µ+n + iµ+n − R i

n − i
,

and µ+n is a constant, if we define K̃ i = i µ+n−R i

n−i , then K̃ i is also an Fi−martingale. It
follows that for any ε > 0,

P{ 1

cn
max
i≤s
∣iµ+n − R i ∣ > ε} ≤ n2

ε2c2n
E [(max

i≤s
∣iµ+n − R i ∣
n − i

)2]
≤ 4n2

E [(sµ+n − Rs)2]
ε2c2n(n − s)2 ,(3.10)

where in the first line we use Markov’s inequality, and in the last line we use the L2

maximal inequality for martingales (see, e.g., [9, �eorem 5.4.3]).
Since the process (Rs , 0 ≤ s ≤ n) has exchangeable increments, we have ERs =

sµ+n . Let R
∗
s = ∑

i≤s
J i where J1 , . . . , Js are i.i.d. random variables with J1

d= R1. �en

Proposition 3.2 gives

E [R2
s ] ≤ E [R∗s 2] = E [(J1 + ⋅ ⋅ ⋅ + Js)2] = sE [J21 ] + s(s − 1)(EJ1)2

= s(σ+n 2
− µ+n) + s(s − 1)µ+n 2 .

�erefore,

E [(sµ+n − Rs)2] = E [R2
s ] − s2µ+n 2 ≤ s(σ+n 2

− µ+n) − sµ+n 2 ≤ sσ+n 2
.

Now take s = s(n) = c2n/ε in (3.10). For n large, this is less than n/2, so (n − s)2 > n2/4,
and we obtain

P{ 1

cn
max
i≤c2n/ε

∣iµ+n − R i ∣ > ε} ≤ 16sσ+n
2

ε2c2n
= 16σ+n

2

ε3
≤ ε,

the last inequality holding for n large, since σ+n → 0 as n →∞. �is completes the
proof. ∎
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Recall that in Section 1, we let τ(x) = inf(t ∶ B(t) ≤ −x) for x ≥ 0. If we let τn =∑1≤i<cn ∣Tn , i ∣ = n − ∣Tn ,cn ∣ be the total size of non-marked trees of (F∗n , vn), then since
Sn is the coding process of (F∗n , vn) as argued in the last paragraph of Section 2, using
(2.1), we have

τn = inf {k ∶ Sn ,k = −(cn − 1)}.
From this, we immediately get the following corollary of �eorem 1.4.

Corollary 3.3 Given the assumptions in �eorem 1.1, we have

τn

c2n

dÐ→ τ( 1
σ
),(3.11)

where τ(x) = inf(t ∶ B(t) ≤ −x) for x ≥ 0 and (B(t), t ≥ 0) is standard Brownian
Motion.

Remark Note that the right-hand side of (3.11) has density 1
σ
√
2π t3

exp (− 1
2tσ 2 ) dt ;

see, e.g., [17, �eorem 6.9].
�e corollary above in fact tells us something about the size of the largest tree T↓n ,1.

Corollary 3.4 For amarked cyclic forest (F , v), let MT(F , v) denote the marked tree,
i.e., the tree of F containing v. �en

P{MT(F∗n , vn) = T↓n ,1} Ð→ 1

as n →∞.

Proof It is clear that

P{MT(F∗n , vn) ≠ T↓n ,1} ≤ P{∣MT(F∗n , vn)∣ < n/2}
= P{τn > n/2} = P{ τn

c2n
> n

2c2n
} Ð→ 0,

where in the last line, the first equation is by Lemma 2.4, and the final convergence is
by Corollary 3.3 and the assumption c2n = o(n). ∎

Now we are ready to prove Corollary 1.5.

Proof of Corollary 1.5 As noted, it suffices to prove (1.2) and (1.3). Corollary 3.3
and Corollary 3.4 together imply (1.2).

For (1.3), first note that by Lemma 2.2, the process Sn = (Sn ,k , 0 ≤ k ≤ n) has the
same law as the coding walkW(Fn) of Fn . Applying Corollary 3.4 then yields that the
law of (∣T↓n ,2∣, . . . , ∣T↓n , j ∣) is asymptotically equivalent to the law of (gn1 − dn

1 , . . . , g
n
j−1 −

dn
j−1), the first j − 1 ranked excursion lengths of Sn above its running minimum

before time τn . Using this equivalence, (1.3) now follows from �eorem 1.4 by the
Portmanteau�eorem ([14,�eorem 12.6] ), since the vector (g1 − d1 , . . . , g j−1 − d j−1)
has a density. ∎
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4 Empirical Degree Sequences of Trees

In this section, we aim to prove (1.4) and (1.5).
For i ≥ 0 and x ≤ n, let

Q i
n(x) ∶= ∣{1 ≤ j ≤ x ∶ Cn , j = i}∣,

where (Cn ,1 , . . . ,Cn ,n) is a uniformly random permutation of d(sn). Let Sn ,k =
∑k

j=1(Cn , j − 1). Let F j = σ(Cn ,1 , . . . ,Cn , j). Since Q i
n(n) = s in = npin and the process

(Q i
n( j), 0 ≤ j ≤ n) has exchangeable increments,

E [Q i
n( j + 1) ∣ F j] = Q i

n( j) + npin − Q
i
n( j)

n − j
.

Setting K j = np in−Q i
n( j)

n− j = E [Q i
n( j + 1) − Q i

n( j) ∣ F j] for 0 ≤ j ≤ n − 1, then

E [K j+1 ∣ F j] = npin − Q
i
n( j)

n − ( j + 1) −
npin − Q

i
n( j)(n − ( j + 1))(n − j) = K j ,

so K j is an F j−martingale. If we let K̃ j = j p in−Q i
n( j)

n− j , then K̃ j = K j − p
i
n , so K̃ j is also

an F j−martingale.
We now use the following martingale bound from [13]. Let {X j}nj=0 be a bounded

martingale adapted to a filtration {F j}nj=0. Let V = ∑n−1
j=0 var{X j+1 ∣ F j}, where

var{X j+1 ∣ F j} ∶= E [(X j+1 − X j)2 ∣ F j] = E [X2
j+1 ∣ F j] − X2

j .

Let

v = ess sup V and b = max
0≤ j≤n−1

ess sup(X j+1 − X j ∣ F j).
�eorem 4.1 ([13, �eorem 3.15]) For any t ≥ 0,

P{max
0≤ j≤n

X j ≥ t} ≤ exp⎛⎝ −
t2

2v(1 + bt/(3v))
⎞
⎠.

We will apply this theorem to bound the fluctuations of Q i
n(s).

Proposition 4.2 For any 0 < t < 1, we have
P{∃s > cn ∶ ∣pin − Q i

n(s)
s
∣ ≥ t} ≤ 2 exp ( − 3t2cn

5
).(4.1)

Proof It is not hard to show that for any 0 ≤ j ≤ n − 2,
var{K̃ j+1 ∣ F j} ≤ 1

4
⋅

1

(n − ( j + 1))2 ;
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see, e.g., [12, Lemma 3.2]. �us, for 1 ≤ x ≤ n − 2,
V = x−1∑

j=0
var{K̃ j+1 ∣ F j} ≤ 1

4

x−1∑
j=0

1

(n − ( j + 1))2
≤ 1

4
∫ n−1

n−x−1

1

m2
dm = x

4(n − 1)(n − x − 1) .
On the other hand, for 0 ≤ j ≤ x − 1, if Q i

n( j + 1) = Q i
n( j), then

∣K̃ j+1 − K̃ j ∣ = ∣ npin − Q
i
n( j)(n − ( j + 1))(n − j) ∣

= ∣npin − Q i
n( j)

n − j
∣ ⋅ ∣ 1

n − ( j + 1) ∣ ≤
1

n − x
,

where in the last inequality we use j ≤ x − 1 and the fact that
np in−Q i

n( j)
n− j is the

proportion of Cn , j+1 , . . . ,Cn ,n equalling to i (hence a value between 0 and 1). While if
Q i

n( j + 1) = Q i
n( j) + 1, then
∣K̃ j+1 − K̃ j ∣ =

RRRRRRRRRRR
npin − Q

i
n( j)(n − ( j + 1))(n − j) −

1

n − ( j + 1)
RRRRRRRRRRR ≤

1

n − x
.

Applying�eorem 4.1 to both {K̃ j}xj=0 and {−K̃ j}xj=0 with x = n − cn , we have
v ≤ n − cn

4(n − 1)(cn − 1) ≤
1

4(cn − 1) ≤
1

2cn
, b ≤ 1

cn
.

Hence, for t ≤ 1,
P

⎧⎪⎪⎨⎪⎪⎩ max
0≤ j≤n−cn

RRRRRRRRRRRp
i
n −

npin − Q
i
n( j)

n − j

RRRRRRRRRRR ≥ t
⎫⎪⎪⎬⎪⎪⎭ ≤ 2 exp

⎛
⎝ −

t2

1
cn
+

2t
3cn

⎞
⎠ ≤ 2 exp

⎛
⎝ −

3t2cn

5

⎞
⎠.

Using the exchangeability of Cn ,1 , . . . ,Cn ,n , it follows that

P{∃s > cn ∶ ∣pin − Q i
n(s)
s
∣ ≥ t} = P{ max

0≤ j≤n−cn
∣pin − npin − Q

i
n( j)

n − j
∣ ≥ t}

≤ 2 exp ( − 3t2cn

5
). ∎

We next give the proofs of (1.4) and (1.5). In both proofs we use the coupling
between Fn , (F∗n , vn) and Sn explained at the end of Section 2.

Proof of (1.4) Fix i ≥ 0 and l ≥ 2. By Corollary 3.4, with high probability T↓n ,1 =
Tn ,cn , i.e., T

↓

n ,1 is the last tree of (F∗n , vn), in which case T↓
n , l = Tn , j for some j < cn .

Recall that τn = ∑1≤k<cn ∣Tn ,k ∣.
Let 1 ≤ j < cn , and suppose ∣{v ∈ Tn , j ∶ k(v) = i}∣/∣Tn , j ∣ /∈ [pin − δ, pin + δ]. Sup-

pose that ∣Tn , j ∣ > δc2n > cn and τn < c3n . �en there must exist m > cn and 1 ≤ u ≤
τn −m such that RRRRRRRRRRR

∣{t ∈ [m] ∶ Cn ,u+t = i}∣
m

− pin

RRRRRRRRRRR > δ.
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By union bound and the exchangeability of (Cn ,1 , . . . ,Cn ,n), and by our
assumption τn < c3n , the probability of this is bounded above by

c3nP{∃m > cn ∶ ∣Q i
n(m)
m
− pin∣ > δ}. �us, for l ≥ 2, for n large enough that δc2n > cn ,

we have

P{t∣pin , l − pin ∣ > δ} ≤ P{τn > c3n} + P{∣T↓n , l ∣ < δc2n}
+ P{T↓n ,1 ≠ Tn ,cn} + c3nP{max

s>cn
∣pin − Q i

n(s)
s
∣ > δ} .

For any ε > 0,P{τn > c3n} < ε/3 by Corollary 3.3 for n large enough, and

P{∣T↓
n , l ∣ < δc2n} < ε/3 by Corollary 1.5. �e second last probability tends to zero

by Corollary 3.4. And for the last probability, for n large enough,
√

5
3 c
−1/3
n < δ;

hence, Proposition 4.2 gives upper bound 2c3n exp(−c1/3n ), which tends to zero. �us,
P{∣pin , l − pin ∣ > δ} < ε for n large; this proves (1.4) for i ≥ 0 and l > 1.

Finally, since ∣T↓n ,1∣/n → 1, the fact that ∣pin ,1 − pin ∣→ 0 in probability for each i ≥ 0
is immediate. ∎

Proof of (1.5) Fix ε > 0. By Corollary 3.3, we can pickM > 0 large enough such that
for n large enough,

P{τn > Mc2n} < ε.(4.2)

By Corollary 3.4, we have that for n large enough,

P{Tn ,cn ≠ T↓n ,1} < ε .(4.3)

For fixed l ≥ 2 and for this ε > 0, there exists δ > 0 such that P{g l−1 − d l−1 ≤ δ} <
ε/2, so by Corollary 1.5, for n large,

P

⎧⎪⎪⎨⎪⎪⎩
∣T↓

n , l ∣
c2n
≤ δ
⎫⎪⎪⎬⎪⎪⎭ < ε.(4.4)

Next we fix t > 0 large enough such that

E [C2
n ,11Cn ,1≥t] < ε2δ

M
and ∑

i>t
i2pin < ε ;(4.5)

this is possible, since pn = (pin , i ≥ 0)→ p = (pi , i ≥ 0) in L2. For fixed l ≥ 2, we have
∣σ 2(pn , l) − σ 2(pn)∣ ≤ RRRRRRRRRRR∑i≤t i

2(pin , l − pin)RRRRRRRRRRR +∑i>t i
2pin +∑

i>t
i2pin , l

≤
RRRRRRRRRRR∑i≤t i

2(pin , l − pin)RRRRRRRRRRR + ε +∑i>t i
2pin , l ,(4.6)

where we use (4.5) in the second line.
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Let Ln = ∑ j≤Mc2n
C2
n , j1Cn , j≥t . If Tn ,cn = T↓n ,1 and τn ≤ Mc2n , then ∑i>t i

2pin , l ≤
Ln/∣T↓n , l ∣. Hence,

P{∣σ 2(pn , l) − σ 2(pn)∣ ≥ 3ε}
≤ P
⎧⎪⎪⎨⎪⎪⎩∣σ

2(pn , l) − σ 2(pn)∣ ≥ 3ε, τn ≤ Mc2n , Tn ,cn = T↓n ,1 , ∣T
↓

n , l ∣
c2n
> δ
⎫⎪⎪⎬⎪⎪⎭

+ P{τn > Mc2n} + P{Tn ,cn ≠ T↓n ,1} + P
⎧⎪⎪⎨⎪⎪⎩
∣T↓

n , l ∣
c2n
≤ δ
⎫⎪⎪⎬⎪⎪⎭

≤ P{∣∑
i≤t

i2(pin , l − pin)∣ ≥ ε} + P
⎧⎪⎪⎨⎪⎪⎩

Ln∣T↓
n , l ∣ > ε,

∣T↓
n , l ∣
c2n
> δ
⎫⎪⎪⎬⎪⎪⎭ + 3ε(4.7)

where we use (4.2), (4.3), (4.4), (4.6) and the aforementioned stochastic dominance
in the last line.

Since t is fixed, we can use (1.4) to conclude that the first summand of (4.7) can be
made arbitrarily small by taking n large enough. For the second summand, note that
by exchangeability and (4.5),

ELn = Mc2nE [C2
n ,11Cn ,1≥t] < c2nε2δ ,

so

P

⎧⎪⎪⎨⎪⎪⎩
Ln∣T↓
n , l ∣ > ε,

∣T↓
n , l ∣
c2n
> δ
⎫⎪⎪⎬⎪⎪⎭ ≤ P{

Ln

c2n
> εδ} ≤ E [ Ln

c2n
]

εδ
< ε.

�is completes the proof of (1.5) for l ≥ 2. Again since ∣T↓n ,1∣/n → 1, (1.5) is imme-
diate for the l = 1 case. ∎

Acknowledgement I am grateful for my supervisor Prof. Louigi Addario-Berry,
who suggested the project and gave numerous helpful insights and suggestions during
our discussions.

References

[1] R. Abraham, J.-F. Delmas, and P. Hoscheit, A note on the Gromov–Hausdorff–Prokhorov distance
between (locally) compact metric measure spaces. Electron. J. Probab. 18(2013), no. 14, 21.
http://dx.doi.org/10.1214/EJP.v18-2116

[2] D. Aldous,�e continuum random tree. I. Ann. Probab. 19(1991), 1–28.
[3] D. Aldous,�e continuum random tree. II. an overview. In: Stochastic analysis (Durham, 1990),

London Mathematical Society Lecture Note Series, 167, Cambridge University Press, Cambridge,
UK, 1991, pp. 23–70. http://dx.doi.org/10.1017/CB9780511662980.003

[4] D. Aldous,�e continuum random tree. III. Ann. Probab. 21(1993), 248–289.
[5] D. J. Aldous, Exchangeability and related topics. In: École d’été de probabilités de Saint-Flour,

XIII—1983, Lecture Notes in Mathematics, 1117, Springer, Berlin, Germany, 1985, pp. 1–198.
http://dx.doi.org/10.1007/BFb0099421

[6] N. Broutin and J.-F. Marckert, Asymptotics of trees with a prescribed degree sequence and
applications. Random Struct. Algor. 44(2014), 290–316. http://dx.doi.org/10.1002/rsa.20463

[7] I. A. Cheplyukova,�e emergence of a giant tree in a random forest. Discrete Math. Appl. 8(1998),
17–33. http://dx.doi.org/10.1515/dma.1998.8.1.17

https://doi.org/10.4153/S0008439520000685 Published online by Cambridge University Press

http://dx.doi.org/10.1214/EJP.v18-2116
http://dx.doi.org/10.1017/CB9780511662980.003
http://dx.doi.org/10.1007/BFb0099421
http://dx.doi.org/10.1002/rsa.20463
http://dx.doi.org/10.1515/dma.1998.8.1.17
https://doi.org/10.4153/S0008439520000685


Small trees in supercritical random forests 623

[8] P. Diaconis and D. Freedman, Finite exchangeable sequences. Ann. Probab. 8(1980), 745–764.
[9] R. Durrett, Probability: theory and examples. 4th ed., Cambridge Series in Statistical and

Probabilistic Mathematics, 31, Cambridge University Press, Cambridge, UK, 2010.
http://dx.doi.org/10.1017/CB09780511779398

[10] S. N. Evans, Probability and real trees. Lecture Notes in Mathematics, 1920, Springer, Berlin,
Germany, 2008. http://dx.doi.org/10.1007/978-3-540-74798-7

[11] J.-F. Le Gall, Random trees and applications. Probab. Surv. 2(2005), 245–311.
http://dx.doi.org/10.1214/154957805100000140

[12] T. Lei, Scaling limit of random forests with prescribed degree sequences. Bernouilli 25(2019),
2409–2438.

[13] C. McDiarmid, Concentration. In: Probabilistic methods for algorithmic discrete mathematics,
Algorithms Combinations, 16, Springer, Berlin, Germany, 1998, pp. 195–248.
http://dx.doi.org/10.1007/978-3-662-12788-9-6

[14] P. Mörters and Y. Peres, Brownian motion. Cambridge Series in Statistical and Probabilistic
Mathematics, 30, Cambridge University Press, Cambridge, UK, 2010.
http://dx.doi.org/10.1017/CBO9780511750489

[15] Y. L. Pavlov, Random forests. VSP, Utrecht, 2000.
[16] J. Pitman, Combinatorial stochastic processes. Lecture Notes in Mathematics, 1875, Springer-Verlag,

Berlin, Germany, 2006.
[17] R. L. Schilling and L. Partzsch, Brownian motion. De Gruyter, Berlin, Germany, 2012.

http://dx.doi.org/10.1515/9783110278989

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montréal, QC

H3A 0B9, Canada
e-mail: tao.lei@mail.mcgill.ca

URL: http://www.math.mcgill.ca/~tlei/

https://doi.org/10.4153/S0008439520000685 Published online by Cambridge University Press

http://dx.doi.org/10.1017/CB09780511779398
http://dx.doi.org/10.1007/978-3-540-74798-7
http://dx.doi.org/10.1214/154957805100000140
http://dx.doi.org/10.1007/978-3-662-12788-9-6
http://dx.doi.org/10.1017/CBO9780511750489
http://dx.doi.org/10.1515/9783110278989
mailto:tao.lei@mail.mcgill.ca
http://www.math.mcgill.ca/~tlei/
https://doi.org/10.4153/S0008439520000685

	1 Introduction
	1.1 Concepts
	1.2 Functional Convergence and Proof of Theorem 1.1
	1.3 Proof of Theorem 1.1

	2 Coding Marked Forests by Skip-free Walks
	3 Convergence of the Coding Processes
	4 Empirical Degree Sequences of Trees

