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Abstract

We study the conditions for unimodality of the lifetime distribution of a coherent system
when the ordered component lifetimes in the system are described by generalized order
statistics. Results for systems with independent and identically distributed lifetimes of
components are included in this setting. The findings are illustrated with some examples
for different types of systems. In particular, coherent systems with strictly bimodal
density functions are presented in the case of independent standard uniform distributed
lifetimes of components. Furthermore, we use the results to derive a sharp upper bound
on the expected system lifetime in terms of the mean and the standard deviation of the
underlying distribution.
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1. Introduction

The study of unimodality for lifetime distributions of particular system structures dates
back to the beginnings of modern reliability theory. Barlow and Proschan (1966) and Alam
(1972) established conditions for unimodal distributions of the lifetime of k-out-of-n systems
with independent and identically distributed (i.i.d.) component lifetimes (see also Huang and
Ghosh (1982) and Dharmadhikari and Joag-Dev (1988)). Following this, Sabnis and Nair
(1997) generalized Alam’s result to the setting of coherent systems. Moreover, the results on
k-out-of-n systems have also been extended in another direction. For the subset of k-out-of-n
systems, the system lifetime coincides with that of a fixed order statistic among the ordered
component lifetimes. A unifying framework for a number of models for ordered data including
the usual order statistics is provided by generalized order statistics introduced by Kamps
(1995) (see also Kamps (2016)). Results on unimodality in this larger model of generalized
order statistics were presented in Cramer (2004), Cramer et al. (2004), Chen et al. (2009),
Alimohammadi and Alamatsaz (2011), and Alimohammadi et al. (2016).

In this paper we study the unimodality of the lifetime distribution of coherent systems with
failure-dependent component lifetimes. A univariate continuous distribution function G is
called unimodal with a mode at m ∈ R if G is convex on (−∞, m) and concave on (m, ∞).
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Consider the distribution function for a coherent system consisting of n components with failure-
dependent lifetimes X∗

1, . . . , X∗
n based on continuous distribution functions F1, . . . , Fn. Let φ

denote the associated coherent life function of the system (see Esary and Marshall (1970) or
Barlow and Proschan (1975, p. 12)) and let s = (s1, . . . , sn) denote the associated signature
(see Samaniego (1985) and Samaniego (2007)). Then the system lifetime T = φ(X∗

1, . . . , X∗
n)

can be expressed as (see Burkschat (2009) and Navarro and Burkschat (2011))

FT (t) =
n∑

i=1

siP(X∗
i : n ≤ t), t ∈ R,

where X∗
1 : n ≤ · · · ≤ X∗

n : n denote the sequential order statistics based on F1, . . . , Fn (see
Kamps (1995), Cramer and Kamps (2001), and Cramer (2016)). Due to the construction of
sequential order statistics, the exchangeable random variables X∗

1, . . . , X∗
n describe component

lifetimes in an environment where it is possible that component failures affect the performance
of remaining intact components (see, e.g. Hollander and Peña (1995), Aki and Hirano (1997),
Burkschat (2009), and Navarro and Burkschat (2011)).

In what follows, we assume that the distribution functions F1, . . . , Fn possess proportional
hazard rates. Therefore, we impose the condition that

Fi(t) = 1 − (1 − F(t))αi , t ∈ R,

with parameters α1, . . . , αn > 0 and an absolutely continuous distribution function F with
density function f . Moreover, we assume that the density f is positive on an interval (a, b),
where 0 ≤ a < b ≤ ∞, and 0 otherwise. However, the results remain valid also for −∞ ≤
a < b ≤ ∞.

If no change in the underlying distributions takes place, i.e. in the α1 = · · · = αn = 1
case, then the random variable T describes the lifetime of a coherent system with signature
s = (s1, . . . , sn) and i.i.d. component lifetimes with distribution function F . Under the general
assumption of proportional hazard rates, the sequential order statistics have the same joint
distribution as generalized order statistics with model parameters γi = (n−i+1)αi, 1 ≤ i ≤ n,
and the above survival function of the system lifetime can be expressed as (see Burkschat and
Navarro (2018))

P(T > t) = q(F (t)), t ∈ R, (1.1)

with the survival function F = 1 − F and the distortion function

q(x) = 1 −
n∑

r=1

srF∗,r (1 − x), x ∈ [0, 1],

where F∗,1, . . . , F∗,n denote the distribution functions of uniform generalized order statistics
with parameters γ1, . . . , γn. In particular, the lifetime T has the density

fT (t) =
n∑

r=1

srf∗,r (F (t))f (t), t ∈ (a, b),

with the corresponding densities f∗,1, . . . , f∗,n of the uniform generalized order statistics. In the
particular case of an underlying standard uniform distribution with F(x) = x, x ∈ [0, 1], we
will denote the density function of the system lifetime by

gs,γ (u) =
n∑

r=1

srf∗,r (u), u ∈ (0, 1), (1.2)
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with the signature s = (s1, . . . , sn) and the parameter vector γ = (γ1, . . . , γn) with entries
γi = (n − i + 1)αi, 1 ≤ i ≤ n. In order to evaluate the distribution function and the density
of the system lifetime, corresponding representations for uniform generalized order statistics
given in Kamps and Cramer (2001) and Cramer and Kamps (2003) can be utilized.

The paper is organized as follows. In Section 2 we present our main results on unimodality
(and bimodality) for coherent systems in the present set-up. Section 3 contains some examples
of system types, where unimodality and bimodality can be verified with our means. Finally, an
application yielding sharp upper bounds on the expected system lifetime is given in Section 4.

In this paper, the terms increasing and decreasing are used in the weak sense, i.e. a function
is called increasing (decreasing) if it is nondecreasing (nonincreasing).

2. Conditions for uni- and bimodality

In this section we study the unimodality of the density function fT for the system lifetime
given in the introduction. We call a density function g, which is positive on (a, b) and 0
otherwise, unimodal with mode m if there is some m ∈ [a, b] such that g is increasing on
(a, m) and decreasing on (m, b). Clearly, the corresponding distribution function is unimodal.
If, additionally, m ∈ (a, b) and g is strictly increasing on (a, m) and strictly decreasing on
(m, b), then g is called strictly unimodal (otherwise g can be just increasing or decreasing).
Moreover, g is called log-concave if ln g is concave on (a, b). It is well known that a log-concave
density function is also unimodal.

Unimodality has been studied by Sabnis and Nair (1997) for coherent systems with i.i.d.
component lifetimes. The authors obtained an extension of a result by Alam (1972) in which
the density function of the usual order statistics was considered. A corresponding result for
systems with failure-dependent components is given in the following theorem.

Theorem 2.1. Let 1/f be convex on (a, b). If gs,γ is log-concave then the density function fT

is unimodal.

Proof. The function gs,γ is positive and differentiable on (0, 1) (see Cramer et al. (2004)).
Now, the result can be proved along the lines of the proof of Sabnis and Nair (1997, Theorem 2.1)
(see also Cramer (2004, Theorem 2.8)) by considering (1.1) and observing that the derivative
q ′(u) = gs,γ (1 − u), u ∈ (0, 1), is log-concave if and only if gs,γ is log-concave. This
completes the proof. �

Since log-concavity of the density function gs,γ of the system lifetime for an underlying
standard uniform distribution is relevant in order to achieve unimodality of the corresponding
density for general F , we study the weaker condition of unimodality of gs,γ in greater detail.
Moreover, by deriving conditions for bimodality, we are able to show that there exist coherent
systems such that the log-concavity property of gs,γ is not satisfied (see Section 3). Bimodal
density functions are defined analogously to the unimodal density functions.

In what follows we will use the variation diminishing property of f∗,1, . . . , f∗,n with arbitrary
parameters γ1, . . . , γn (see Bieniek (2007, Theorems 1–3 and Corollary 1)). For a fixed set of
parameters γ1, . . . , γn > 0, we denote γ1 : n = min(γ1, . . . , γn) and

� = max{1 ≤ j ≤ n : γj = γ1 : n}.

In other words, γ� is the last repetition of the smallest element of the sequence γ1, . . . , γn. Let
a = (a1, . . . , an) ∈ R

n be any fixed sequence of coefficients. We are interested in sign changes
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of the linear combination

Ha(u) =
n∑

r=1

arf∗,r (u), u ∈ (0, 1).

Theorem 2.2. For a = (a1, . . . , an) ∈ R
n, define

k = min{1 ≤ j ≤ n : aj �= 0}, m = max{1 ≤ j ≤ n : aj �= 0},
i.e. ak is the first nonzero element of a and am is the last nonzero element of a.

(i) The number of zeroes of Ha in (0, 1) does not exceed the number of sign changes in the
sequence a after deletion of zeroes.

(ii) The first sign of Ha coincides with the sign of ak .

(iii) The last sign of Ha coincides with the sign of

An(a) = am +
m−1∑

j=max(k,�)

aj

m∏
i=j+1

(γi − γ�).

(iv) If γ1 ≥ · · · ≥ γn then the last sign of Ha is the same as the sign of am.

(v) The above statements hold if (0, 1) is replaced with (a, b) and f∗,1, . . . , f∗,n with
f̂∗,1, . . . , f̂∗,n, where f̂∗,r = f∗,r ◦W and W : (a, b) → (0, 1) is some strictly increasing
continuous distribution function.

We aim at finding the conditions on s1, . . . , sn and γ1, . . . , γn which ensure strict unimodality
or at worst bimodality of gs,γ (see (1.2)). To this aim, we study the sign changes of the
derivative g′

s,γ . We have, for 1 ≤ r ≤ n (see Cramer et al. (2004)),

f ′∗,r (u) = 1

1 − u
[γrf∗,r−1(u) − (γr − 1)f∗,r (u)],

adopting the convention f∗,0 ≡ 0. Therefore, a straightforward computation reveals that g′
s,γ

can be expressed as a linear combination of f∗,1, . . . , f∗,n:

g′
s,γ (u) = 1

1 − u

n∑
r=1

brf∗,r (u), (2.1)

where

br =
{

sr+1γr+1 − sr (γr − 1) for 1 ≤ r < n,

−sn(γn − 1) for r = n.
(2.2)

We consider the important case of i.i.d. component lifetimes first. This corresponds to the
situation where the successive failures in the system are modeled by the usual order statistics.

Theorem 2.3. Assume the case of i.i.d. component lifetimes, i.e. γr = n − r + 1 for r =
1, . . . , n.

(i) Let n ≥ 2. If the sequence s1, . . . , sn is increasing (decreasing) with s1 < (>) sn then
gs,γ is strictly increasing (decreasing).
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(ii) Let n ≥ 3. If the signature s is strictly unimodal, i.e. there exists 1 < k < n such that

s1 ≤ s2 ≤ · · · ≤ sk, sk ≥ sk+1 ≥ · · · ≥ sn (2.3)

with at least one strict inequality in each block, then gs,γ is strictly unimodal.

(iii) Let n ≥ 5. If the signature s is strictly bimodal, i.e. there exist 1 < k < l < m < n such
that

s1 ≤ s2 ≤ · · · ≤ sk, sk ≥ sk+1 ≥ · · · ≥ sl,

sl ≤ sl+1 ≤ · · · ≤ sm, sm ≥ sm+1 ≥ · · · ≥ sn

with at least one strict inequality in each block, then gs,γ is either strictly unimodal or
strictly bimodal.

Proof. By assumption, γr = n − r + 1 and, consequently,

br =
{

(sr+1 − sr )(n − r) for 1 ≤ r < n,

0 for r = n.
(2.4)

Moreover, we clearly have γ1 > · · · > γn so Theorem 2.2(iv) is applicable. By (2.4) we have,
in general, bn = 0.

In case (i), it follows that b1, . . . , bn−1 ≥ (≤) 0 with at least one positive (negative) element
among the br . Thus, according to Theorem 2.2(i), g′

s,γ has no zeroes in (0, 1) and, therefore,
Theorem 2.2(ii) yields that g′

s,γ is positive (negative) on (0, 1).
In case (ii), if (2.3) holds then

b1, . . . , bk−1 ≥ 0, bk, . . . , bn−1 ≤ 0

with at least one positive element in the former block, and at least one negative in the latter.
By Theorem 2.2(i), there is at most one sign change of g′

s,γ . But, by Theorem 2.2(ii), the first
sign of g′

s,γ is positive, and by part (iv) of the same theorem, the last sign of g′
s,γ is negative.

Therefore, g′
s,γ is first positive and finally negative (+ − for short), so gs,γ itself is strictly

unimodal.
In case (iii), similar arguments show that if s is bimodal then g′

s,γ is either + − or +−+ −.
This yields the assertion. �
Remark 2.1. In the above proof we have shown that for i.i.d. component lifetimes, the vari-
ability of gs,γ is at worst the same as that of the signature s.

Remark 2.2. The majority of coherent systems have unimodal signatures and therefore satisfy
the assumptions of Theorem 2.3(ii). However, there are also systems that fulfill the conditions
of Theorem 2.3(i) and 2.3(iii). Examples of coherent systems with increasing signature entries
are the parallel systems for arbitrary n ≥ 2 and the systems with signature vector (0, 0, 1

2 , 1
2 )

in the case of n = 4 components (see Samaniego (2007, Table 3.2, System 17)) as well as
(0, 0, 3

10 , 3
10 , 2

5 ) and (0, 0, 0, 2
5 , 3

5 ) in the case of n = 5 components (see Navarro and Rubio
(2010, Table 2, Systems 176 and 179)). Signatures with decreasing entries are obtained by
considering the corresponding dual systems (see Samaniego (2007, Theorem 3.3)). An example
of a bimodal signature vector in the n = 5 case is provided by Jasiński et al. (2009); namely,
(0, 2

5 , 1
5 , 2

5 , 0). Note that the density gs,γ of this system is strictly unimodal in the i.i.d. case.
An extension to higher orders yielding strictly bimodal densities can be found in Section 3.
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Now let us consider the situation of arbitrary α1, . . . , αn > 0 which corresponds to the
general setting of failure-dependent component lifetimes. Then γr = αr(n − r + 1) holds and
we define the vector b = (b1, . . . , bn) with the entries given by (2.2). A general condition for
strict unimodality of gs,γ is stated in the following theorem. The proof proceeds analogously
to that of Theorem 2.3. Moreover, other cases can be obtained similarly by arguing with the
results on the variation diminishing property in Theorem 2.2.

Theorem 2.4. Let n ≥ 2 and γ1, . . . , γn > 0 with An(b) < 0. If there exists k ∈ {2, 3, . . . , n}
such that

b1, . . . , bk−1 ≥ 0, bk, . . . , bn ≤ 0

with at least one strict inequality in each block, then gs,γ is strictly unimodal. For γ1 ≥ · · · ≥
γn > 0, the condition An(b) < 0 can be dropped.

Remark 2.3. By considering signature vectors with one entry equal to 1 and the remaining ones
equal to 0, results for k-out-of-n systems can be obtained. In our setting these just correspond
to densities of single generalized order statistics. Unimodality in this case has been discussed
in detail by Cramer et al. (2004) and Bieniek (2007) (see also the recent results on strong
unimodality in Alimohammadi et al. (2016)).

Example 2.1. Consider a situation where the load on an n-component system is evenly dis-
tributed among the remaining units after each failure. Then, at the rth stage, the (constant)
overall load on the system is described by γr = n and the individual load on the intact
components by αr = n/(n − r + 1) (see, e.g. Balakrishnan et al. (2011, Example 1) and
Burkschat and Navarro (2013, Remark 2.3)). In particular, the failure times can be also
interpreted as n-records (see Dziubdziela and Kopociński (1976)). It follows that

br =
{

(sr+1 − sr )n + sr for 1 ≤ r < n,

−sn(n − 1) for r = n.

For example, assume that s is increasing with s1 < sn. Then, for some 1 ≤ r0 < n, b1 =
· · · = br0−1 = 0, br > 0, r = r0, . . . , n − 1, and bn < 0. Hence, the density gs,γ is strictly
unimodal according to Theorem 2.4. Note that in the setting without load sharing, i.e. for i.i.d.
component lifetimes, the corresponding density is strictly increasing under this assumption.

If the location of the mode of unimodal signature entries s1, . . . , sn and the behavior of the
model parameters γ1, . . . , γn match in some way, then the following condition can be checked.

Corollary 2.1. Assume that the signature s is strictly unimodal so that (2.3) holds for some
k ∈ {2, . . . , n − 1}. If An(b) < 0 and

γr − γr+1

{
≤ 1 for 1 ≤ r < k,

≥ 1 for k ≤ r < n,

then gs,γ is strictly unimodal.

So far, we have studied the unimodality of gs,γ (x), x ∈ (0, 1), which coincides with the
density function fT (x) = gs,γ (F (x))f (x) of the system lifetime in the case of an underlying
uniform distribution on [0, 1]. In the remainder of the section, we want to determine other
distributions F for which the above approach may be effectively applied. Note that

f ′
T (x) = g′

s,γ (F (x))(F ′(x))2 + gs,γ (F (x))F ′′(x), x ∈ (a, b).
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Using (1.2) and (2.1), we easily see that

f ′
T (x) = (F ′(x))2

1 − F(x)

n∑
r=1

brf∗,r (F (x)) + F ′′(x)

n∑
r=1

srf∗,r (F (x)), x ∈ (a, b).

In order to apply the variation diminishing property, we need to have

F ′′(x) = c
(F ′(x))2

1 − F(x)
for some c ∈ R.

However, Bieniek (2008, Lemma 2.1) states that all lifetime distributions (with F(0) = 0) that
satisfy this relation have a distribution function of the form F(x) = Wα(λx) for some λ > 0,
α ∈ R, and c = α − 1, where Wα denotes the distribution function of the generalized Pareto
distribution defined by

Wα(x) =

⎧⎪⎨⎪⎩
1 − (1 − αx)1/α for x ≥ 0 if α < 0,

1 − (1 − αx)1/α for 0 ≤ x ≤ 1/α if α > 0,

1 − e−x for x ≥ 0 if α = 0.

Therefore, if F = Wα then setting f̂∗,r = f∗,r ◦ Wα , we have

f ′
T (x) = (W ′

α(x))2

1 − Wα(x)

n∑
r=1

dr f̂∗,r (x),

where

dr =
{

sr+1γr+1 − sr (γr − α) for 1 ≤ r < n,

−(γn − α)sn for r = n.
(2.5)

Due to Theorem 2.2(v), results on the unimodality of this density can be obtained analogously
to Theorems 2.3 and 2.4 by examining the sign changes in the sequence d1, . . . , dn.

Example 2.2. Consider the choice of model parameters as in Example 2.1 in the case of an
underlying exponential distribution (α = 0). Then

dr =
{

n(sr+1 − sr ) for 1 ≤ r < n,

−nsn for r = n.

Hence, if the signature s is strictly unimodal then the density function fT is also strictly unimodal
on (0, ∞).

Remark 2.4. The coefficients dr in (2.5) illustrate the considerable influence of the underlying
distribution F on the monotonicity behavior of the density fT irrespective of the modality
properties of gs,γ . For convenience, let γ1 ≥ · · · ≥ γn. For arbitrary signatures vectors
(s1, . . . , sn), all dr become nonnegative if α > 0 is chosen appropriately large. Since at least
one of the entries s1, . . . , sn is positive, it follows that for the choice F(x) = Wα(λx), 0 ≤
x ≤ 1/(λα) with suitable α > 0, the density fT is then strictly increasing on the interval
(0, 1/(λα)). Moreover, for sufficiently small α < 0, fT is strictly decreasing on (0, ∞)

if s1 > 0, and strictly unimodal if s1 = 0, since the signature has no internal zeroes (see
Ross et al. (1980, Theorem 2) and D’Andrea and De Sanctis (2015)).
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3. Illustrative examples

In this section we consider more elaborate examples to illustrate our findings. In the first
example, we present the construction of a class of systems that possesses strictly bimodal density
functions gs,γ of the system lifetimes in the setting of i.i.d. component lifetimes distributed
according to a uniform distribution on [0, 1]. The example is of particular interest since Jasiński
et al. (2009) conjectured that in this setting every density function gs,γ is at most unimodal.
As a consequence, we provide a counterexample to this conjecture. Moreover, the considered
systems provide examples for density functions gs,γ that obviously do not satisfy the log-
concavity assumption in Theorem 2.1.

Example 3.1. Consider a coherent system with n ≥ 5 components which is described by the
following minimal path sets:

P1 = {2, . . . , n}, Pk = {1, k}, k ∈ {2, . . . , n}.
Then the structure function φ of this system can be expressed as, for instance,

φ(x1, . . . , xn) = max(min(x2, . . . , xn), min(x1, x2), min(x1, x3), . . . , min(x1, xn))

with x1, . . . , xn ∈ {0, 1}. This system was considered by Jasiński et al. (2009) in the n = 5
case. Then the corresponding signature vector (0, 2

5 , 1
5 , 2

5 , 0) is strictly bimodal. We will now
show that, for n ≥ 5, the signature vector s = (s1, . . . , sn) of the system has the entries

s1 = 0, s2 = 2

n
, sj = 1

n
, j ∈ {3, . . . , n − 2}, sn−1 = 2

n
, sn = 0.

In particular, the system has a strictly bimodal signature vector for every n ≥ 5. In order
to derive the above signature, we make use of a representation from Boland (2001) (see also
Marichal et al. (2011)):

si = an−i+1 − an−i , i ∈ {1, . . . , n}, (3.1)

where a0 = 0 and

ai = # path sets of size i for the system(
n
i

) , i ∈ {1, . . . , n}.

In the present setting, we obtain

# path sets of size i for the system =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, i = 1,

n − 1, i = 2,(
n − 1

i − 1

)
, i = 3, . . . , n − 2,(

n

n − 1

)
, i = n − 1,

1, i = n.

For instance, the numbers in the third case can be obtained by subtracting the number
(
n−1

i

)
of

subsets of the path set P1 that have i elements from the total number
(
n
i

)
of possible path sets

of size i. Then, it follows that

a1 = 0, a2 = 2

n
, ai = i

n
, i ∈ {3, . . . , n − 2}, an−1 = 1, an = 1,
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and using (3.1) this yields the claimed entries of the signature. Now we study the density
function gs,γ of the system lifetime distribution in the case of i.i.d. component lifetimes (i.e.
γr = n − r + 1 for 1 ≤ r ≤ n) following a standard uniform distribution. Then the density
function of the system lifetime T is given by

gs,γ (t) =
n∑

i=1

isi

(
n

i

)
t i−1(1 − t)n−i , t ∈ (0, 1).

By substituting the known entries of the signature, it follows that

gs,γ (t) = 1 − (1 − t)n−1 − tn−1 + (n − 1)t (1 − t)n−2 + (n − 1)tn−2(1 − t), t ∈ (0, 1).

Since the function is symmetric about 1
2 , it has a local extremum there. For n = 5 and 6, this

is a maximum point, since then g′
s,γ (t) is equal to 4(1 − 2t)(5t2 − 5t + 2) and 10(1 − 2t)3,

respectively. Otherwise, 1
2 is a minimum point, since

g′′
s,γ

(
1

2

)
= 16(n − 1)(n − 2)(n − 6)

2n
> 0 for n ≥ 7.

Therefore, due to gs,γ (0) = gs,γ (1) = 0, it follows that gs,γ has at least one local maximum
in each interval (0, 1

2 ) and ( 1
2 , 1). Due to Theorem 2.3(iii), the density gs,γ can have at most

two modes and, consequently, it is strictly bimodal for every n ≥ 7.

Remark 3.1. Note that, in this example, gs,γ = ϕ1,n−1 : n, where

ϕr,s : n = 1

n

(
(r + 1)fr+1 : n +

s−1∑
i=r+2

fi : n + (n − s + 1)fs : n

)
with

fi : n(t) = i

(
n

i

)
t i−1(1 − t)n−i , t ∈ (0, 1),

as defined by Bieniek (2016), while deriving optimal bounds on expectations of Winsorized
means based on i.i.d. samples.

In the following, we cover two generalizations of k-out-of-n:F systems obtained from
systemwise redundancy and componentwise redundancy. Each of the resulting systems consist
of 2n components. We consider the particular choice of model parameters

γj = 2n − j + 1 + β(j − 1), j ∈ {1, . . . , 2n},
with β ∈ [0, 1]. Note that γ1 ≥ · · · ≥ γ2n and α1 ≤ · · · ≤ α2n hold. The parameters can be
interpreted as follows. For β = 1, i.e. γj = 2n, the total load on the system remains unchanged
after every failure (see Example 2.1). For β = 0, i.e. γj = 2n − j + 1, there is no load sharing
and we are in the classical situation of i.i.d. component lifetimes. In these systems, the load
of the failed components is not distributed among the surviving components. For β ∈ (0, 1),
a fixed proportion β of the individual initial load on each component is still imposed on the
system after every failure. In particular, the parameters

αj = 1 + β · j − 1

2n − j + 1
, j ∈ {1, . . . , 2n},
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describe the adjusted individual load on every intact unit before the j th failure under the
assumption that the system load is divided evenly among these units. Moreover, the overall
load γj on the system is strictly decreasing, while the load αj on the individual components
is strictly increasing with each loss of a unit. Observe that the model parameters can be also
written as a convex combination

γj = β · 2n + (1 − β) · (2n − j + 1)

of both extreme cases described above.

Example 3.2. Consider the signature (s1, . . . , s2n) of a k-out-of-n:F system with systemwise
redundancy (see Samaniego (2007, Theorem 4.7)):

s2k+r =
(
n−1
k−1

)(
n

k+r

)( 2n−1
2k+r−1

) , r ∈ {0, . . . , n − k},

and si = 0 for i ∈ {1, . . . , 2k − 1} ∪ {n + k + 1, . . . , 2n}. Then the distribution of the
lifetime of the corresponding system based on sequential order statistics with model parameters
γj = 2n − j + 1 + β(j − 1), j = 1, . . . , 2n, and underlying standard uniform distribution
has a unimodal density function gs,γ for 1 ≤ k ≤ n and β ∈ [0, 1]. The density is strictly
unimodal except for the case of k = n and β = 0, where the density is strictly increasing.

The derivation proceeds as follows. According to Theorem 2.4, we have to study the signs
of the nonzero elements of the sequence

s2γ2 − s1(γ1 − 1), . . . , s2nγ2n − s2n−1(γ2n−1 − 1), −s2n(γ2n − 1). (3.2)

At first, let k = n. Then s2n = 1, sr = 0, r = 1, . . . , 2n − 1, and so we obtain

s2nγ2n − s2n−1(γ2n−1 − 1) = s2nγ2n = 1 + β(2n − 1) > 0,

−s2n(γ2n − 1) = −β(2n − 1) ≤ 0.

The other entries in sequence (3.2) are 0. Consequently, for β > 0, the density is strictly
unimodal due to Theorem 2.4. Note that the density is strictly increasing on (0, 1) for β = 0.
Now let n ≥ 2 and k < n. It can be shown, after some calculation, that

s2k+r+1γ2k+r+1 − s2k+r (γ2k+r − 1) < 0

if and only if −(2(n−k)−r)(2(n−k)+r(n−1)) < β[(2k−2)(n−k)+k(2n−1)r +nr2 +r].
The expression on the left-hand side of the preceding inequality is strictly negative. More-

over, the expression in brackets on the right-hand side is nonnegative. Thus, the inequality is
valid for every β ∈ [0, 1]. Therefore, we obtain

s2kγ2k − s2k−1(γ2k−1 − 1) = s2kγ2k > 0,

s2k+r+1γ2k+r+1 − s2k+r (γ2k+r − 1) < 0, r ∈ {0, . . . , n − k − 1},
sn+k+1γn+k+1 − sn+k(γn+k − 1) = −sn+k(γn+k − 1) < 0

with γn+k − 1 = n − k + β(n − k − 1) > 0 and all the remaining entries of sequence (3.2)
are 0. By applying Theorem 2.4, we obtain the claimed result.
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Example 3.3. The signature (s1, . . . , s2n) of a k-out-of-n:F system with componentwise red-
undancy (see Samaniego (2007, Theorem 4.8)) is given by

s2k+r =
(
n−1
k−1

)(
n−k

r

)( 2n−1
2k+r−1

) · 2r , r ∈ {0, . . . , n − k},

and si = 0 for i ∈ {1, . . . , 2k − 1} ∪ {n + k + 1, . . . , 2n}. The density function gs,γ of the
lifetime distribution of the corresponding system based on sequential order statistics with model
parameters γj = 2n − j + 1 + β(j − 1), j = 1, . . . , 2n, and underlying standard uniform
distribution is unimodal for 1 ≤ k ≤ n and β ∈ [0, 1]. The density is strictly unimodal except
for the case k = n and β = 0, where the density is strictly increasing.

At first, note that, for k = n, the system coincides with the one from Example 3.2. In both
situations the system fails if and only if all components fail. Thus, the corresponding results
can be transferred. Now let n ≥ 2 and k < n. By arguing analogously as in Example 3.2, we
have

s2kγ2k − s2k−1(γ2k−1 − 1) = s2kγ2k > 0,

sn+k+1γn+k+1 − sn+k(γn+k − 1) = −sn+k(γn+k − 1) < 0.

Therefore, we have to examine the signs in the sequence

s2k+r+1γ2k+r+1 − s2k+r (γ2k+r − 1), r ∈ {0, . . . , n − k − 1}. (3.3)

It is sufficient to prove that

u(r) := (r + 1)(2(n − k) − r)

(
s2k+r+1

s2k+r

γ2k+r+1 − (γ2k+r − 1)

)
is decreasing for r ∈ {0, . . . , n − k − 1}, since the signs in the sequence u(0), u(1), . . . , u(n −
k − 1) are the same as in sequence (3.3). Observe that, for the k = n− 1 case, nothing remains
to be shown. Therefore, we assume that k ≤ n − 2 and check the nonnegativity of the function

v(r) := u(r) − u(r + 1) for r ∈ [0, n − k − 2].
It can be shown, after some lengthy calculations, that

v(r) = 3(β − 1)r2 + (12(β − 1)k + 4n + 3β − 1)r + 12(β − 1)k2 − 4βk(n − 1)

+ 12nk − 2(n + k) + 2β.

Observe that, due to β ≤ 1, the function v is concave on [0, n − k − 2]. Thus, it is sufficient
to show that v(0) ≥ 0 and v(n − k − 2) ≥ 0. Interpreting v(0) as a continuous function of n,
i.e. w1(n) := v(0), n ≥ k + 2, the corresponding derivative satisfies w′

1(n) = (10 − 4β)k +
2(k − 1) > 0. Therefore, we obtain

v(0) = w1(n) ≥ w1(k + 2) = 4βk(2k − 1) + 16k + 4(k − 1) + 2β > 0.

Defining analogously w2(n) := v(n − k − 2), n ≥ k + 2, we have

w′
2(n) = 6β

(
n − 3

2

) + 2βk + 2(n + k) + 1 > 0.

Thus, it follows that v(n−k −2) = w2(n) ≥ w2(k +2) = w1(k +2) > 0, which finally yields
the assertion.
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4. Application: optimal bounds on the mean lifetime of a system

In this section we present an important application of the results on unimodality of the density
function of the system lifetime in the standard uniform distribution setting given in the preceding
sections. Let T denote the lifetime of a system consisting of failure-dependent components
with signature s = (s1, . . . , sn), parameter vector γ = (γ1, . . . , γn), and underlying distribution
function F . Concerning the model parameters γr = αr(n− r +1), 1 ≤ r ≤ n, we may assume
without loss of generality that α1 = 1 (otherwise choose F̃ = 1 − (1 − F)α1 as the underlying
distribution function). Then F describes the behavior of the components before the first failure
occurs.

For arbitrary distribution functions F with finite mean μ and finite positive variance σ 2, we
provide a sharp upper bound on the expected system lifetime T of the form

E(T ) ≤ σBs,γ + μ, (4.1)

where the real number Bs,γ is obtained by applying a well-known projection method introduced
by Gajek and Rychlik (1996). We only outline the procedure below; see Rychlik (2001)
for an extensive explanation. The bound can be used to obtain an estimate of the expected
system lifetime, when only information on the mean and standard deviation of the underlying
distribution is available. The derivation proceeds as follows. Note that

E(T ) =
∫ 1

0
F−1(u)gs,γ (u) du,

where F−1(u) = inf{t ∈ R : F(t) ≥ u}, u ∈ (0, 1), denotes a generalized inverse of F and
gs,γ is given by (1.2). In particular, from μ = ∫ 1

0 F−1(u) du and
∫ 1

0 gs,γ (u) du = 1, it follows
that

E(T ) − μ =
∫ 1

0
(F−1(u) − μ)(gs,γ (u) − c) du for every c ∈ R.

For square-integrable gs,γ , the above mentioned projection approach in combination with the
Cauchy–Schwarz inequality yields

E(T ) − μ ≤
(∫ 1

0
(F−1(u) − μ)2 du

)1/2(∫ 1

0
(gs,γ (u) − c)2 du

)1/2

, (4.2)

where gs,γ denotes the projection of gs,γ onto the convex cone of square-integrable increasing
functions on [0, 1]. The square integrability of gs,γ can be characterized by using the following
result (see Cramer (2003, Lemma 4.2.2)). The sufficient condition can be also found in Cramer
et al. (2002b). Let γ1 : r = min(γ1, . . . , γr ).

Lemma 4.1. Let λ > 1. Then,∫ 1

0
f λ∗,r (u) du < ∞ ⇐⇒ γ1 : r > 1 − 1

λ
.

Consequently, for a system signature of the form (s1, . . . , sr , 0, . . . , 0) with sr > 0, it can
be concluded that gs,γ is square-integrable if and only if γ1 : r > 1

2 .
Furthermore, since

∫ 1
0 gs,γ (u) du = 1 (see Rychlik (2001, Lemma 2, p. 30)), the right-hand

side of (4.2) is minimized for c = 1. Therefore, we arrive at (4.1) with

Bs,γ =
(∫ 1

0
g2

s,γ (u) du − 1

)1/2

. (4.3)
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Following the approach of Moriguti (1953), the right derivative of the greatest convex minorant
of the antiderivative

Gs,γ (x) =
∫ x

0
gs,γ (u) du, x ∈ [0, 1],

of gs,γ is considered in order to obtain the projection gs,γ . We conclude (see, e.g. Cramer
et al. (2002a)) that gs,γ ≡ 1 if gs,γ is decreasing, gs,γ = gs,γ if gs,γ is increasing, and
gs,γ (·) = gs,γ (min(·, v∗)), where v∗ is the unique solution of

(1 − u)gs,γ (u) = 1 − Gs,γ (u), u ∈ (0, 1), (4.4)

if gs,γ is strictly unimodal on (0, 1) and gs,γ (0) < 1. By (numerically) evaluating (4.3) for
given gs,γ , sharp bounds in (4.1) are obtained. Distributions that attain these bounds may be
constructed by analogy to the corresponding results of Cramer et al. (2002a).

Example 4.1. Let T be the lifetime of a k-out-of-n:F system with componentwise redundancy
(or systemwise redundancy) as in Example 3.3 (or Example 3.2) with model parameters γj =
2n − j + 1 + β(j − 1), 1 ≤ j ≤ 2n. Then, for every F with mean μ ∈ R and variance
0 < σ 2 < ∞, we have the bound E(T ) ≤ σBs,γ + μ with

B2
s,γ =

∫ 1

0
g2

s,γ (u) du − 1 for k = n, β = 0

(i.e. for strictly increasing gs,γ ), and

B2
s,γ =

∫ v∗

0
g2

s,γ (u) du + (1 − v∗)g2
s,γ (v∗) − 1, (4.5)

where v∗ solves (4.4), otherwise. For numerical evaluation of the occurring integral, suitable
representations of the density function gs,γ can be derived, for instance, from Cramer and
Kamps (2003).

Example 4.2. Let T be the lifetime of the system with i.i.d. component lifetimes considered
in Example 3.1. We integrate it in the present setting by choosing the model parameters
γj = n−j +1, 1 ≤ j ≤ n. For n ∈ {5, 6}, the density gs,γ is strictly unimodal. Consequently,
the projection gn satisfies

gs,γ (u) =
{

gs,γ (u) for 0 < u ≤ v∗,
gs,γ (v∗) for v∗ ≤ u < 1,

with the solution v∗ of (4.4). For n ≥ 7, the density is strictly bimodal, but the projection still
fulfills the preceding specification (see Bieniek (2016, Section 2) and Remark 3.1). Therefore,
the corresponding constant Bs,γ can be determined as in (4.5). We conclude this example with
numerical computations of Bs,γ = Bn, say, for 5 ≤ n ≤ 20 (see Table 1). Note that the values
of the corresponding optimal bounds decrease as n increases.

Table 1: Optimal bounds for 5 ≤ n ≤ 20.

n Bn n Bn n Bn n Bn

5 0.240 89 9 0.167 72 13 0.136 01 17 0.117 39
6 0.214 75 10 0.157 77 14 0.130 54 18 0.113 82
7 0.195 02 11 0.149 40 15 0.125 68 19 0.110 56
8 0.179 84 12 0.142 24 16 0.121 32 20 0.107 56
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Jasiński, K., Navarro, J. and Rychlik, T. (2009). Bounds on variances of lifetimes of coherent and mixed systems.
J. Appl. Prob. 46, 894–908.

Kamps, U. (1995). A concept of generalized order statistics. J. Statist. Planning Inference 48, 1–23.
Kamps, U. (2016). Generalized order statistics. Wiley StatsRef: Statistics Reference Online, 12pp.
Kamps, U. and Cramer, E. (2001). On distributions of generalized order statistics. Statistics 35, 269–280.
Marichal, J.-L., Mathonet, P. and Waldhauser, T. (2011). On signature-based expressions of system reliability.

J. Multivariate Anal. 102, 1410–1416.
Moriguti, S. (1953). A modification of Schwarz’s inequality, with applications to distributions. Ann. Math. Statist.

24, 107–113.
Navarro, J. and Burkschat, M. (2011). Coherent systems based on sequential order statistics. Naval Res. Logistics

58, 123–135.
Navarro, J. and Rubio, R. (2010). Computations of signatures of coherent systems with five components. Commun.

Statist. Simul. Comput. 39, 68–84.
Ross, S. M., Shahshahani, M. and Weiss, G. (1980). On the number of component failures in systems whose

component lives are exchangeable. Math. Operat. Res. 5, 358–365.
Rychlik, T. (2001). Projecting Statistical Functionals (Lecture Notes Statist. 160). Springer, New York.
Sabnis, S. V. and Nair, M. R. (1997). Coherent structures and unimodality. J. Appl. Prob. 34, 812–817.
Samaniego, F. J. (1985). On closure of the IFR class under formation of coherent systems. IEEE Trans. Reliab. 34,

69–72.
Samaniego, F. J. (2007). System Signatures and Their Applications in Engineering Reliability. Springer, New York.

https://doi.org/10.1017/jpr.2018.31 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2018.31

	1 Introduction
	2 Conditions for uni- and bimodality
	3 Illustrative examples
	4 Application: optimal bounds on the mean lifetime of a system
	Acknowledgements
	References

