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Gas injection into a liquid cross-flow is examined for the case where the gas is
injected beneath a horizontal flat surface. For moderate Froude numbers, the gas
pocket that is formed will rise toward the flow boundary under the action of buoyancy,
a condition that is conducive to the formation of gas layers for friction-drag reduction
on the surface. At the location of gas injection, a plume whose geometry is related
to the mass and momentum flux of the injected gas and liquid cross-flow is formed,
and the influence of buoyancy is minimal. However, as the gas pocket convects
downstream, buoyancy brings the gas back upward to the flow boundary, and leads to
the bifurcation of the pocket into two distinct branches, forming a stable ‘V’-shape.
Under some conditions, the flow between the two gas branches is almost entirely
liquid, while for others there exists a bubbly flow or a continuous sheet of gas between
the branches. The sweep angle and cross-sectional geometry of the gas branches are
related to free-stream speed and boundary-layer thickness of the liquid cross-flow,
the mass-injection rate of the gas, the diameter of the injection orifice and the gas
outlet mean velocity and gas–jet angle. Data for a range of experimental conditions
are used to scale the flow and results are compared to numerical computations of the
flow, and these data are used to illustrate the underlying flow processes responsible
leading to the formation the stable and straight gas branches. A simple model based
on the balance of forces around a stable gas branch is presented and used to scale
the observed data, and we use the results of this analysis and the computations to
discuss how the process of gas injection may interact with the formation of the stable
gas pockets farther downstream.

Key words: gas/liquid flow, multiphase flow, wakes/jets

1. Introduction
The interaction of a jet in a cross-flow has received considerable attention,

especially for the case when the jet and free-stream flows consist of fluids with
the same or similar density and compressibility, and a recent review of this topic
has been provided by Mahesh (2013). In the present study, we examine a particular
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flow that has received considerably less attention: the injection of a gas into a liquid
cross-stream. Given the large difference between the density of the gas and liquid, the
mechanisms for mass and momentum transport between the gas and the liquid may
also differ considerably from flow with similar material phase with buoyancy playing
an important factor. The motivation for this effort arose from the desire to create gas
layers beneath the hulls of marine vehicles to reduce the skin friction (Ceccio 2010),
and thus improve the vehicles’ energy economics (Mäkiharju, Perlin & Ceccio 2012).
Air layer drag reduction (ALDR) has been successfully achieved by injection of gas
beneath a hull via a slot injector (Sanders et al. 2006; Elbing et al. 2008, 2013).
For the practical application of ALDR, it may be advantageous in terms of the hull
mechanical structure and the marine engineering of the gas delivery to inject the gas
from discrete orifices in the hull, rather than via a long slot. To that end, this study
was conducted to examine how gas is distributed beneath a flat surface after it is
injected from an orifice into a liquid cross-flow.

Despite the canonical nature of this flow, few studies have been published regarding
the injection of gas into a liquid cross-flow for cases where a gas pocket is formed
at the injection location, rather than the immediate formation of bubbles at the
injection orifice as discussed by Wace, Morrell & Woodrow (1987). Pignoux (1998)
investigated a horizontal gas jet injected into a vertical liquid cross-flow, where the
direction of gravity is aligned with the mean liquid flow direction. The injected
gas jet was deflected by the incoming liquid flow and formed a distinct gas pocket,
with a shape that is reminiscent of a Rankine half-body formed by a source in a
cross-flow, but having an ellipsoidal shape. The high void fraction gas pocket then
transitioned into a multiphase recirculating region, which subsequently broke down
into a bubbly flow that convected downstream from the cavity closure. Pignoux (1998)
also measured the spatial evolution of the void fraction in the gas pocket and the
resulting bubbly wake. Vigneau et al. (2001a) examined how changes in the upstream
liquid boundary layer influence the topology of the gas pocket, showing little effect.
And, Vigneau et al. (2001b) examined the interaction of multiple gas jets emitted
from several orifices. Insel, Gokcay & Helvacioglu (2010) reported on air injection
through circular orifices beneath a model-scale ship hull, a flow that is closest to that
of interest in the present study. Their observations revealed that the gas flow from
a single injection port splits into two branches, described as a ‘V’-shape. The gas
spreading angles between two branches were measured and analysed for different
cross-flow speeds and air injection rates, and they also examined injection through
multiple injection ports. However, no general scaling for the spreading angle (or
topology in general) as a function of flow conditions has been formulated.

Figure 1 presents a schematic diagram of the basic cavity topology for gas injection
into liquid cross-flow, when gravity is oriented such that buoyancy brings the gas
toward the flat flow boundary, and hence buoyancy may play an important role in
the evolution of the gas-pocket topology. Figure 2 presents typical images of the gas
pocket. Near the gas injection port, we see the formation of a gas pocket that is
similar to those observed by Pignoux (1998), where buoyancy acts parallel to the
free stream (and therefore has a much reduced influence on the cavity dynamics).
However, as the gas beneath the surface convects downstream, we observe a two-
branched pattern similar to that reported by Insel et al. (2010), except in the present
study two distinct topological variations of the V-shaped cavity are observed; one
where the region between the branches contains practically no air (i.e. a Lambda, Λ,
type cavity) and one where the region is covered by a continuous air layer (i.e. Delta,
∆, type cavity).
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FIGURE 1. (Colour online) (a) A schematic diagram showing the side view of the flow
near the point of gas injection, with the gas volume flow rate at draft pressure, Qi, the
orifice diameter, Di, the angle of injection, β and the free-stream speed is U∞; (b) a plan
view of the basic cavity topology for gas injection into a liquid cross-stream when gravity
is oriented such that buoyancy brings the gas toward the flat flow boundary showing the
cavity sweep angle, ϕ, the average chord length of the gas branch, C and equivalent
diameter of the jet DE; Delta (∆) type topologies have gas filled in between branches (area
with cross-hatching) and Lambda (Λ) types have little to no gas between the branches.

We should also note the similarity in appearance to other bifurcating jets (where
jet and fluid are both either liquid or gas) forming as the jet divides into separate
vortex streams in the absence of surfaces (Reynolds et al. 2003), as the buoyant jet
encounters a free surface (Abdelwahed & Chu 1978) or as the jet impinges on a solid
surface (Choi, Lai & Lee 2015). While bifurcation in the former is not thought to be
due to the same mechanism as that causing the bifurcation in the present study, it
is less clear if the bifurcation mechanism in the latter two cases is analogous to the
present flow under consideration here.

In the present study, we examine gas pockets as they are formed via gas injection
from a single orifice into a liquid cross-flow. We combine experimental observations
with computations to study the basic flow processes responsible for the formation of
the V-shaped gas pocket, and attempt to show how the flow parameters such as the
free-stream speed, boundary-layer profile, gas mass injection rate, size of the orifice
and gas injection angle change the topology of the gas pocket. The organization this
paper is as follows: in § 2 we introduce the experimental set-up, in § 3 we discuss the
numerical model, § 4 discusses the cavity topology, § 5 discusses how the computed
results explain the topology and § 6 presents a simplified scaling of the gas-pocket
topology.

2. Experimental set-up
The experiments were performed in the Physical Modeling Basin of the Marine

Hydrodynamic Laboratory at the University of Michigan. The basin has 109.7 m
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10 cm

(a) (b)

FIGURE 2. The flow topology viewed from below; (a) the gas pocket with the Delta
topology (i.e. gas layer between the branches) (Di

∼= 5 mm, β = 112.5◦, U∞ = 3.0 m s−1,
Qi = 2.5 × 10−3 m3 s−1, δ = 51 mm) and (b) the Lambda topology (i.e. little to no gas
between the branches) (Di

∼= 10 mm, β = 90◦, U∞ = 4.0 m s−1, Qi = 6.7× 10−3 m3 s−1,
δ = 53 mm). The flow direction is from bottom up.

carriage running length with 6.7 m width and 3.2 m depth. A manned carriage
transports instruments and a towed model along the basin at speeds ranging from
0.1 6 U∞ 6 6.1 m s−1. During testing, up to a 30 min interval was taken between
every run to ensure a calm water condition for the subsequent run. The water level
was adjusted daily such that it was constant for all experiments.

Two barge models with flat bottoms, and producing nominally two-dimensional
inflow boundary layers, were utilized. Gas-injection tubes with their ends flush
with the flow boundary were inserted through the bottom of the barges in vertical
orientation. The flow rate of the injected air, Qi, and free-stream speed U∞ were
independently varied. Image-based measurements were recorded around the gas
injection location using an imager viewing the gas pocket from below. A more
detailed description of the models and set-up is presented in Lee (2015).

2.1. Towed test models
Two different barge models, Barge I and Barge II, were used as they had different
boundary-layer thickness at the location of gas injection. Schematic diagrams of the
two test models are shown in figure 3. Both models had a transparent bottom to enable
real-time observation of the gas injected underneath. The models were rigidly fixed
with four struts to the carriage to prevent any motion relative to the carriage, and had
a constant 81 mm draft.

Barge I had overall dimensions of 4.3 m in length, 0.7 m in width and 0.3 m in
height. The spanwise uniform bow had a slope of 8.0◦. Particles of 150 µm mean
diameter were randomly scattered and affixed across the span of the model 1.0 m from
the leading edge of the model on a 0.1 m wide strip to induce turbulent boundary-
layer transition upstream of the injection location. The resulting boundary-layer profile
was measured at the model centreline at the gas injection location 0.4 m downstream
of the beginning of the flat bottom.
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Injection hole

1.3 (bow)
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FIGURE 3. Sketches of (a) Barge I and (b) Barge II. All dimensions are in metres.

Barge II had overall dimensions of 6.5 m in length, 1.5 m in width and 0.3 m in
height. In order to reduce air ingestion at higher speeds, the bow was modified and
consisted of a submerged flat plate with an elliptic planform fixed to a surface-piercing
wedge. Particles of 150 µm mean diameter were randomly scattered and affixed across
the span of the model 1.3 m from the leading edge of the model on a 0.2 m wide
strip to induce turbulent boundary-layer transition ∼0.5 m upstream of the injection
location.

Unless stated otherwise for a specific figure, the coordinate system is chosen such
that the origin is at the centre of the injector, the x-axis points downstream (towards
stern) and the y-axis is normal to the surface parallel to gravity vector (i.e. y increases
with depth).
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FIGURE 4. The boundary-layer profiles measured at the location of gas injection for
Barge I (grey symbols) and Barge II (black symbols); for Barge I, 15.8 6 δ1 6 19.1 mm
over a speed range of 16U∞6 2 m s−1; for Barge II, 50.76 δ2 6 57.4 mm over a speed
range of 1 6 U∞ 6 5 m s−1. The solid line shows a 1/7th power law.

2.2. The boundary layer upstream of gas injection
The boundary-layer profiles for each barge model and flow speed were measured
at the location of the air injection by traversing a pitot tube (Omega Engineering
PBE-H-M) in the y-direction. The pitot was translated from 0 mm (flush with the
bottom of the model surface) to 250 mm beneath the surface. The dynamic pressure at
each height was measured using a 0–17 kPa differential-pressure transducer (Omega
Engineering PX409-2.5DWU5V) with a manufacturer specified accuracy of ±14 Pa.
Boundary-layer profiles for both barge models are presented in figure 4, with δ1 and
δ2 representing the boundary-layer thickness for Barges I and II, respectively. The
data suggest that the boundary layers are turbulent at the location of gas injection for
all conditions discussed in this paper.

2.3. The gas-injection system
The gas-injection system was designed to generate, regulate and measure a stable air
mass flow rate. A 1.2 kW air compressor was used to supply a 0.30 m3 reservoir
maintained at 650 kPa. Airflow from the pressure reservoir was controlled by a
pressure regulator that supplied the flowmeters with 101 to 308 kPa air. Multiple
Omega Engineering FMA 5400/5500 series gas mass flow controllers were used to
maintain accurate measurement of the air mass flow rate over a wide range. The
accuracy of the mass flowmeters was ±3 % of full scale (corresponding to at most
±10 % of the reported value). Rotameters (Omega Engineering FL2003 and FL2001)
were also used to confirm the measured flow rates with accuracies of ±5 % of full
scale.

Different gas-injection tubes were used to change both the diameter of the orifice,
Di, and gas jet angle with respect to the free-stream flow, β. Tubes were fabricated
with fixed outer diameter, and various inner diameters. For Barge I, the orifice
diameters were 6.0 and 10.0 mm, and for Barge II, they were 4.9, 10.2 and 19.7 mm.
For simplicity, we will denote the diameters with the nominal values of Di = 5 mm,
10 mm and 20 mm. To enable the assumption of a fully developed pipe flow, the
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Parameter Range Uncertainty Note

U∞ 1.0 m s−1 <U∞ < 5.0 m s−1 ±0.4 % The cross-flow equal to
the carriage speed.

δ 15.8 mm 6 δ1 6 19.1 mm δ1 ± 1.0 mm Boundary-layer thicknesses
on Barge I and Barge II.50.7 mm 6 δ2 6 57.4 mm δ2 ± 2.8 mm

Di Barge I: 6.0 mm and 10.0 mm ±0.1 mm Nominal inner diameters
are taken to be 5, 10 and
20 mm.

Barge II: 4.9 mm, 10.2 mm,
19.7 mm

β Di = 5.0◦; β = 22.5◦, 45.0◦, 67.5◦, ±2◦ When β 6= 90, Di is the
diameter of the pipe
leading to the orifice.

90.0◦, 112.5◦, 135.0◦, and 157.5◦

Qi 1.0× 10−4 6 Qi 6 1.2× 10−2 m3 s−1 <±10 %
of reading

Volume flow rate at draft
pressure.

P∞ 102.1 kPa ±0.1 kPa Static pressure draft
pressure.

TABLE 1. Ranges and uncertainties of the parameters examined during the present study.

pipes had a straight lead-up section of at least 20Di before the exit. Three-dimensional
printing was used to fabricate angled injection tubes. For angled injectors, only the
data from 5 mm inner diameter tubes are included. The injection angle, β, was
defined with respect to the bottom surface of the barge (see figure 1), and the
injection angle varied from 22.5◦ 6 β 6 157.5◦. To calculate the average injected gas
velocity, Ui, the measured mass flow rate of the air was converted to a volume flow
rate at the static pressure at the fixed barge draft (81 mm).

2.4. Video imaging systems
A stationary high-speed cinematography system (Phantom v710 camera in a custom
watertight enclosure) was installed at the bottom of the basin, 3 m beneath the free
surface to view the bottom of the model as it passed over at mid tank 49 m from
the starting point of the carriage. Ten 100 W (8500 lm) light-emitting diode (LED)
lights were used to illuminate the barge as it passed through the camera’s field of
view. High-speed videos were recorded with 1440× 1080 pixel resolution at 200 Hz
frame rate and 5 ms exposure time.

2.5. Experimental test conditions
The independent parameters of the experiment consisted of the free-stream flow speed
(i.e. the carriage speed), U∞, boundary-layer thickness at the injection location, δ,
diameter of the gas injection orifice, Di, gas injection angle, β, and the volume flow
rate of the gas (at draft pressure), Qi. The ranges of these parameters are presented
in table 1. The densities ρi = 1.2 kg m−3 and ρ∞ = 1000 kg m−3, and kinematic
viscosities νi = 1.5× 10−5 m2 s−1 and ν∞ = 1.0× 10−6 m2 s−1 of the gas jet and the
liquid water cross-flow are assumed to be constant throughout the experiments. The
water and air temperatures were 20± 1 ◦C.
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3. Numerical model

The numerical simulations were performed using the open-source finite-volume
computational fluid dynamics (CFD) toolkit OpenFOAM 2.3 (www.openfoam.com)
that consists of a set of numerical solvers and discretization schemes commonly used
to solve partial differential equations that govern fluid flow.

3.1. Description of the numerical method
The governing equations are the conservation of mass and momentum equations for
an incompressible fluid with varying mechanical properties of density and viscosity.
The numerical solver is based on a formulation of the incompressible Navier–Stokes
equations for multiphase flow used by Scardovelli & Zaleski (1999). The volume-of-
fluid (VOF) method of Hirt & Nichols (1981) is adopted here and surface tension is
incorporated through the continuum surface force (CSF) approach of Brackbill, Kothe
& Zemach (1992). In all simulations, the surface tension coefficient is taken as S =
0.07 N m−1. The gas–liquid interface is defined as the contour of 50 % void fraction
within the computational domain.

The discretized equations are solved on unstructured grids composed of hexahedra
and prism elements. The spatial terms of the governing equations are discretized based
on the generalized Gauss’s theorem and a combination of second-order linear and
linear-upwind schemes. The temporal terms are handled implicitly using the second-
order backwards Euler scheme. The flow quantities are stored at the cell centres in a
co-located arrangements and the system of equations is solved in a segregated manner
through the PISO (pressure implicit with splitting of operators) algorithm.

3.2. Boundary conditions
The rectangular computational domain has overall dimensions of 1.20 m in length,
1.00 m in width and 0.20 m in height. The air injector is located at the origin that
is on the centreline and 0.20 m downstream from the upstream inlet boundary. The
cylindrical injector has a diameter of 10 mm and it is modelled with a no-slip wall
that extends 0.02 m above the no-slip flat bottom of the barge. The air injection
rate is prescribed at the injector boundary and the water upstream inlet boundary is
assigned the mean boundary-layer profiles measured in the physical experiments. The
downstream outlet boundary is prescribed a fixed pressure value and the lateral and
bottom boundaries are modelled as slip walls. See figure 5 for a depiction of the flow
domain on the centre plane and on the wall near the injector. The reported pressure
is calculated relative to the value at the outlet boundary, which produces positive and
negative values.

3.3. Grid resolution and solution convergence
The spatial and temporal discretization is selected based on a grid convergence study.
The solution for U∞ = 3.0 m s−1, Qi = 2.5× 10−3 m3 s−1, δ = 51 mm, Di ∼ 10 mm
and β = 90◦ (case A) is computed on a set of three geometrically similar grids.
Each grid is uniform in the region where the air–water interface passes. Details
of the grids are summarized in table 2. A time step size of 1.3 × 10−6 s is used
to ensure that the maximum Courant number remains below 1 for all simulations.
All simulations completed were performed on the Stampede cluster that is a part
of the XSEDE network (Towns et al. 2014). The time-averaged air-cavity profiles
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FIGURE 5. (Colour online) Time-averaged air-cavity profiles computed on three different
grid resolutions for U∞ = 3.0 m s−1, Qi = 5.0 × 10−3 m3 s−1, δ = 51 mm, Di = 10 mm
and β = 90◦ (case A) (a) centre plane and (b) plate.

Mesh Cells Cell size (mm)

Fine 11 836 364 2.0
Medium 6 669 560 2.4
Coarse 3 786 834 2.9

TABLE 2. Parameters of the grid refinement study.

obtained using the three grids are compared in figure 5. The time-averaging is
performed over a time window of 1 s, after 1 s of simulation time has passed. In
dimensionless time, t∗ = tU∞/Di, the shortest averaging window is t∗ = 200. The
lowest oscillation frequency in the flow is approximately t∗ ∼ 5, and hence the
shortest averaging window contains a minimum of 40 oscillations. All three grids
show a strong agreement especially in the proximity of the injector and near the
reattachment region. The fine grid is used for all of the simulations and analyses
presented in this paper.

4. The cavity topology

When the gas jet discharges from the injection hole with diameter Di into the
cross-flow, the diameter of the jet increases to DE, and the gas forms a single pocket
near the injector. The gas jet is deflected by the oncoming liquid flow, but it often
undergoes a ‘puffing’ behaviour where the volume flux varies around a mean level
with some fixed frequency. Farther downstream from the injection location, the gas
pocket reaches a maximum thickness and begins to close on the model surface. As
the gas pocket closes at the centreline, it cleaves into two distinct pockets of gas
(‘branches’). In many cases, the majority of the injected gas flows into the two
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10 cm

(a) (b)

10 cm

FIGURE 6. A stitched image of Barge II with (a) a Delta-type gas pocket (Di ∼
20 mm, β = 90◦, U∞ = 2.0 m s−1, Qi = 4.3 × 10−3 m3 s−1, δ = 53 mm) and (b) a
Lambda-type gas pocket (Di

∼= 10 mm, β = 90◦, U∞= 4.0 m s−1, Qi= 6.7× 10−3 m3 s−1,
δ = 53 mm).

branches, while in others some gas fills the region between the branches more or
less continuously. Topologies of the resulting flow are broadly classified into three
different types: Delta type (∆) that have a bubbly flow or thin air layer between
the branches, Lambda type (Λ) that have little to no interstitial air, and transition
type (T) which have air partially covering the region in between branches. Figure 6
presents stitched image (combining multiple images recorded as the barge passes over
the stationary camera) of the larger gas-pocket topologies for both Delta type and
Lambda type.

As the flow developed along the surface, the gas branches were stable until they
either impinged on the edges of the barge model or broke down after loss of gas
as a result of entrainment in the branch cavity closure. Three quantities (shown
in figure 1b) were derived from images of the gas cavity: the sweep angle of the
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branches ϕ, the chord length of the branch C and the equivalent diameter of the jet,
DE. The sweep angle of the branch was measured from the plane perpendicular to
the cross-flow direction to the edge of the branch. The reported chord length was
based on the measurement of average branch thickness of a ∼0.25 m long section of
the branch, measured at the thickest part off the branch. The procedure was discussed
in detail by Lee (2015), where the uncertainty of the chord length measurement was
estimated to be ±5 mm. We should also note that in some instances the chord shrunk
notably downstream due gas loss from the branch, and potentially due to other yet
to be well-characterized factors.

4.1. The gas pocket formed near at the location of gas injection
The flow near the location of gas injection resembles that reported by Pignoux (1998)
and Vigneau et al. (2001a,b) for the injection of gas into a downward flowing vertical
stream. They reported that the gas injected from the circular orifice on the surface of
a flat wall (i.e. the wall of the test section) would form a gas pocket for a range of
free-stream velocity, boundary-layer thickness and mass-flux of gas. The shape of the
gas pocket was analogous to that of a Rankine half-body, but with a nominal shape of
a semi-ellipsoid. The axis of the ellipsoid in the wall-normal direction of the injected
gas was typically larger than the axis in the cross-stream direction. The gas pocket,
once formed, would grow in cross-sectional area with downstream distance until a
critical cross-sectional area was reached. Then, the cavity would break down into a
recirculating bubbly mixture, with bubbles being continually entrained in the cavity
wake. These investigators measured the cavity gas–liquid interfacial profiles, cavity
cross-sectional area and gas-pocket length for varying liquid flow speed, gas mass flow
rate, orifice size and boundary-layer thickness.

Despite its relative simplicity, this near-injector flow is particularly difficult to scale.
It is helpful to draw a comparison to the liquid flow around an axisymmetric cavitator,
as discussed by Franc & Michel (2004). Here, a solid object placed in the liquid flow
leads to the creation of a low-pressure gas-filled cavity in its wake. The dimensions
of the cavity are principally related to the drag coefficient and radius of the
cavitator, and the cavitation number (i.e. the under-pressure of the cavity) defined as
σ = (P∞ − PC)/

1
2ρU2

∞. The resulting cavity is approximated by an ellipsoid far from
the cavitator, and with decreasing cavitation number, the radius and length of the
cavity increases. If non-condensable gas is directly injected into the liquid, the gas
itself serves as the cavitator; therefore, the static pressure of the gas exiting the
orifice must exceed the stagnation pressure of the incoming flow. Figure 7 shows the
instantaneous cavity profile and time-traces of the normalized pressure at the injector
from the CFD, and the gas exit pressure can indeed be seen to exceed the cavity
pressure in the boundary layer at jet penetration depth p̄, where

p̄= P/ 1
2ρ∞U2

∞. (4.1)

Note that the pressure is calculated relative to the value at the outlet boundary, and
hence takes values that are positive and negative. The effective drag and size of
the cavitator will depend on the extent to which the gas penetrates the flow for a
given mass, velocity and momentum flux of the injected gas, the injection angle,
the free-stream liquid speed and, to a lesser extent, the thickness of the boundary
layer compared to the size of the orifice. The unsteadiness of the cavity exit pressure
shown in the figure will also be discussed below.
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FIGURE 7. (Colour online) (a) Instantaneous cavity profile and (b) time history of
the normalized gas pressure p̄ at the injector exit from the computation (case A1). In
reviewing (a) we should note that the gas exit pressure exceeds the static pressure in the
boundary layer at jet penetration depth y/δ∼=−0.4 and the pressure fluctuations shown in
(b) exhibit a frequency of St= 0.29.

If the cavity pressure remains below the free-stream pressure, the cavity will reach
a maximum cross-section and then close. And, the maximum cross-sectional area of
the cavity is proportional to the effective cavitator drag and cavity under-pressure (a
consequence of streamwise momentum conservation). If the cavity pressure rises to
the static pressure of the flow (i.e. cavitation number approaches zero), the cavity
will not close (i.e. it will be a super-cavity). In the case of injected non-condensable
gas, the mean streamwise gas velocity within the cavity will decrease as the cavity
expands, and if the average streamwise velocity of the gas reaches the free-stream
velocity before the cavity has reached its maximum cross-sectional area, the pocket
breaks down into a bubbly mixture. Conversely, if the average gas velocity reaches the
free-stream velocity at or after the location of maximum cavity cross-sectional area,
the gas pocket can persist. Therefore, it is the interaction of the relative gas volume
flux and momentum flux of the gas jet that will determine the drag on the liquid at
the point of injection and the downstream position where the cavity might break down
into a bubbly mixture. A scaling that captures this complex phenomenon has yet to
be presented; however, Vigneau et al. (2001a) demonstrated that modest changes to
the thickness of the liquid boundary layer did not have a significant influence on the
behaviour of the gas pocket and Vigneau et al. (2001b) scaled the cross-sectional area
of the gas-pocket breakdown with the gas volume flux and the free-stream speed.

To illustrate the features of this flow, a computation was performed of gas
injection into the liquid for conditions of zero buoyancy (i.e. without gravity) for
U∞ = 3.0 m s−1 and Di = 10 mm, β = 90.0◦, and Qi = 5 × 10−3 m3 s−1. Figure 8
shows the time-averaged flow field around the injector in the x–z and x–y planes. The
location of the cavity interface, static pressure and flow speed with velocity vectors
are presented. The stagnation region around the orifice is clearly visualized, along
with the turning of the gas jet by the liquid flow. The flow speed of the gas decreases
until it reaches the average free-stream speed and the cavity reaches a nearly constant
cross-sectional area. This is a higher gas volume flux compared to those reported by
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FIGURE 8. (Colour online) The computed time-averaged cavity flow without the effect
of gravity (case A2); U∞ = 3.0 m s−1 and Di = 10 mm, β = 90.0◦ and Qi = 5.0 ×
10−3 m3 s−1; δ=51 mm; the static pressure on the flow boundary (a) and centre plane (b);
the normalized velocity magnitude on the centre plane (c) with non-scaled velocity vectors
indicating direction. The white line denotes the time-averaged cavity interface location.

Vigneau et al. (2001b), and thus the gas pocket persists for a longer distance from
the injector.

The steady flow described above occurs when there is equilibrium between the
static pressure of the gas jet near the orifice and the stagnation pressure of incoming
liquid. Pignoux (1998) noted, however, that the gas would not necessarily exit steadily,
but would undergo a periodic variation in the flow rate, resulting in a puffing effect.
This was also observed in the present study in both experiments (figure 9a,b) and
CFD (figures 7 and 9c). This phenomenon results from the pinch-off of the orifice
by an encroaching liquid flow at the base of the jet. If balance between the liquid
stagnation pressure and the jet static pressure is perturbed, the liquid can move over
the orifice, blocking the gas flow, and increasing the gas pressure upstream of the
orifice. In turn, the build-up in gas pressure will eventually blow back the liquid,
moving the stagnation region upstream of the orifice. Puffing results from the cyclic
blockage and blowout of the gas at the orifice. The dynamics of the system depends
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2 cm

(a) (b) (c)

2 cm 2 cm

FIGURE 9. Close-up images of the gas jet showing the effective diameter, DE, and the
puffing pattern observed during the present experiments: Di

∼=10 mm, β=90◦, δ∼=52 mm;
(a) U∞=2.5 m s−1, Qi=6.7×10−3 m3 s−1; (b) U∞=3.0 m s−1, Qi=5.0×10−3 m3 s−1;
and computation: (c) U∞ = 3.0 m s−1, Qi = 5.0× 10−3 m3 s−1.

on both the experimental flow conditions and the dynamics and control of the gas
delivery system. Figure 7(b) presents a time series of gas pressure at the orifice to
illustrate the puffing phenomenon captured by the simulation, where a length of the
inlet pipe is included in the simulated geometry allowing for the flow to interact with
the connection at the orifice. Based on the CFD, the Strouhal number (St= fDi/U∞)
of this puffing was found to be ∼0.29. Albeit presumably due to a different physical
mechanism, the gas–liquid interface with periodic structures due to the puffing has an
appearance reminiscent of that seen on the interface of a cavitating jet in a cross-flow
(Brandner, Pearce & de Graaf 2015). Figure 9 also reveals that effective jet diameter
DE at the jet exit is much larger than the orifice diameter Di. Figure 10 presents a
plot of the DE as function of jet to cross-flow velocity ratio, and for all conditions
DE has an uncertainty of ±3 mm. We also note that the orifice diameter does not
necessarily scale the geometry of the jet, even near the location of injection. There
is also a clear dependence on boundary-layer thickness, as a thinner boundary layer
will present higher average cross-stream flow momentum to the exiting gas stream,
and the expected outcome is corroborated based on comparison of case A1 versus D
results for which also the numerical results compare favourably to experimental data,
as seen in table 3. It is interesting to note that the data collapse if the cross-flow
velocity is scaled with the ratio of the turbulent boundary-layer thicknesses.

4.2. Formation of the gas-filled branches
Figure 11 shows the computation with buoyancy for the conditions otherwise similar
to those shown in figure 8 without buoyancy. The influence of buoyance leads to a
significantly different topology of the gas pocket. The effect is evident within a few
DE downstream of the orifice, as the liquid flowing around the cavity begins to move
up toward the flow boundary, bisecting the gas pocket and creating two flow branches.
Without gravity, the gas pocket forms and develops into a long slender cavity with
the shape of a semi-ellipsoid. However, as seen in more detail in figure 11(b,d, f ),
with gravity acting normal to the flow direction, and hence buoyancy moving the
gas toward the flow boundary, the gas pocket is bisected, forming the two stable
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FIGURE 10. The effective jet exit diameter, DE, as a function of velocity ratio. The
different symbols denote various free-stream speeds, as indicated by the legend. The
size of symbol indicates the orifice size, with the largest corresponding to Di = 20 mm,
mid-size to Di = 10 mm and smallest to Di = 5 mm. Empty markers represent data from
Barge model I, with δ1, and filled markers data from Barge model II, δ2.
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FIGURE 11. (Colour online) The computed time-averaged cavity flow with the effect
of gravity (case A1); U∞ = 3.0 m s−1 and Di = 10 mm, β = 90.0◦ and Qi = 5.0 ×
10−3 m3 s−1; δ = 51 mm; (a) static pressure, (b) normalized pressure p̄ on the flow
boundary, (c) static pressure on the x–y centre plane and (d) velocity magnitude with
non-scaled velocity vectors indicating direction. The velocity magnitude with non-scaled
velocity vectors indicating direction on the y–z plane at x/δ= 1 (e) and x/δ= 8 ( f ). The
white line denotes the time-averaged cavity interface location.

branches (note the pressure peak on the surface at the bifurcation location seen in
figure 11b). This topology was observed experimentally for the wide range of flow
conditions of the present study. At speeds >2 m s−1, the leading edges of the gas
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10 cm

(a) (b) (c)

FIGURE 12. Images illustrating the change in sweep angle, ϕ, and chord length, C, with
varying flow speed, U∞, with fixed Di

∼= 5 mm, β = 90◦ and Qi = 2.0× 10−3 m3 s−1, for
U∞ = 2.0 m s−1 (a), 3.0 m s−1 (b), and 4.0 m s−1 (c); δ ∼= 52 mm. The resulting sweep
angles and chord lengths are (a) ϕ= 74.2◦ and C= 64 mm, (b) ϕ= 79.9◦ and C= 60 mm,
(c) ϕ = 84.6◦ and C= 38 mm.

branches were usually well defined and straight. The chord length of the branches
was also nominally constant, until entrainment of gas away from the branches led to
their gradual diminution.

4.3. Sweep angle of the gas branches
The sweep angle, ϕ, is the angle between the plane perpendicular to the cross-flow
and leading edge of the branch. The angles of both branches were measured from
multiple images. The uncertainty was estimated as ±1.5◦ and is principally attributed
to the fluctuations of the edge of the gas branch that is related to the puffing discussed
previously. Figures 12–15 illustrate how the sweep angle, ϕ, changes with varying
cross-flow speed U∞, jet volume flow rate Qi, injection orifice diameter Di and
injection angle β. The sweep angle significantly varies with varying cross-flow speed,
jet volume flow rate and, to a lesser extent, the injection hole diameter and injection
angle. Figure 16 presents plots of ϕ versus Qi for varying U∞ for the three nominal
orifice diameters of 5, 10 and 20 mm, for β = 90◦. The sweep angle is primarily a
function of the free-stream speed, with the angle increasing with increasing speed.
Conversely, for a fixed value of U∞, the sweep angle decreases with increasing gas
flow rate, Qi.

Variation in the orifice size, Di, and injection angle, β, suggests that the gas exit
velocity and momentum in direction of the cross-flow has a secondary, but discernible,
influence on the sweep angle. A higher exit velocity (i.e. smaller orifice for fixed
volume flux) and higher injection angle (i.e. increased momentum against cross-flow)
led to a smaller sweep angle for a given volume flux of gas. Figure 17 shows the
effect of gas injection angle, and in the extreme case of 22.5◦ <β < 157.5◦ a nearly
6◦ difference is observed, which is approximately the same as the effect of changing
the gas volume flow rate by a factor of five in 3 m s−1 liquid cross-flow.

4.4. Chord length of the gas branches
The average chord of the gas branch, C, was measured along several spanwise
segments across the thickest part of the branch, and the measurement uncertainty of
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10 cm

(a) (b) (c)

FIGURE 13. Images illustrating the change in sweep angle, ϕ, and chord length, C, with
varying volume flow rate, Qi, with fixed Di

∼= 10 mm, β = 90◦ and U∞ = 2.0 m s−1, δ∼=
52 mm, for Qi = 1.7 × 10−3 m3 s−1 (a), 3.3 × 10−3 m3 s−1 (b) and 6.5 × 10−3 m3 s−1

(c). The resulting sweep angles and chord lengths are (a) ϕ = 76.7◦ and C= 44 mm; (b)
ϕ = 72.2◦ and C= 86 mm; (c) ϕ = 68.8◦ and C= 142 mm.

10 cm

(a) (b) (c)

FIGURE 14. Images illustrating the change in sweep angle, ϕ, and chord length, C, with
varying injection hole diameters Di with fixed U∞ = 3 m s−1, δ= 51 mm, β = 90.0◦ and
Qi = 2.5 × 10−3 m3 s−1, for Di = 5 mm (a), 10 mm (b) and 20 mm (c). The resulting
sweep angles and chord lengths are (a) ϕ = 9.7◦ and C = 90 mm; (b) ϕ = 81.8◦ and
C= 66 mm; (c) ϕ = 82.4◦ and C= 40 mm.

±5 mm is primarily due to fluctuations of the edge of the gas branches. Figures 12–15
also illustrate the changes in C for varying cross-flow speed U∞, jet volume flow
rate Qi, injection angle β and injection orifice diameter, Di. The chord length C
is a strong function of the volume flow rate, Qi, the orifice diameter, Di, and the
boundary-layer thickness, δ. Figure 18 present plots of C versus Qi for varying U∞
for the three nominal orifice diameters of 5, 10 and 20 mm and for β = 90◦. The
dominant trends are increasing C with Qi, and figure 19 illustrates the effect of
β, with a clear trend of increasing chord length with increasing momentum of gas
injection against cross-flow. Similar to what was observed for angle, ϕ, the chord
length is not independent of δ, Di and β, but the dominant variables are again Qi

and U∞.
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10 cm

(a) (b) (c)

FIGURE 15. Images illustrating the change in sweep angle, ϕ, and chord length, C, with
varying injection angles, β, with fixed Di

∼= 5 mm, U∞= 3.0 m s−1, δ= 53 mm and Qi=
2.5 × 10−3 m3 s−1 for β = 157.5◦ (a), 90.0◦ (b), 22.5◦ (c). The resulting sweep angles
and chord lengths are (a) ϕ = 76.0◦ and C = 113 mm; (b) ϕ = 79.7◦ and C = 90 mm;
(c) ϕ = 81.2◦ and C= 63 mm.
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FIGURE 16. Sweep angle, ϕ, versus volume flow rate, Qi, for varying flow speeds,
β = 90◦: Di

∼= 5 mm (a), ∼=10 mm (b) and ∼=20 mm (c). Markers are such that U∞ =
1.0 m s−1 (E), 2.0 m s−1 (D), 3.0 m s−1 (B), 4.0 m s−1 (6) and 5.0 m s−1 (@). Filled
markers represent data from Barge model I, with δ1, and empty markers data from Barge
model II, δ2.
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FIGURE 17. Sweep angle, ϕ, versus injection angle, β, for U∞ = 3.0 m s−1, Qi = 2.5×
10−3 m3 s−1 and for Di = 5 mm. The open symbols signify Lambda, grey transitional
and black filled Delta topology. Note: for the particular example data shown, the Lambda
topology (open symbols) was not observed.
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FIGURE 18. Chord length, C, versus volume flow-rate, Qi, for varying flow speeds,
β=90◦: Di

∼=5 mm (a), ∼=10 mm (b) and ∼=20 mm (c). Symbols are same as in figure 16.

4.5. Topology of the gas pocket at low free-stream speed

Observation of the jet and branch topology show consistent trends except at the lowest
cross-flow speed examined. Figure 20 compares the topologies for changing cross-flow
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FIGURE 19. Chord length, C, versus injection angle, β, for U∞ = 3.0 m s−1, Qi = 2.5×
10−3 m3 s−1 and for Di = 5 mm. The open symbols signify Lambda, grey transitional
and black filled Delta topology. Note: for the particular example data shown, the Lambda
topology (open symbols) was not observed.

speed ranging from U∞ = 1 to 3 m s−1. At the lowest speed, the branches barely
form and have an irregular leading edge and chord length. As the speed increases,
they become distinct, straight and more uniform in chord length. This phenomenon is
related to the relative importance of surface tension in the flow and is discussed in
§ 6.4.

5. The computed flow within and around the cavities

The flows for a subset of the experimentally observed conditions are computed, and
their parameters are listed in table 3. Also shown are the computed parameters DE,
ϕ, C and the maximum thickness of the gas branch, e, along with the experimentally
observed quantities for the similar conditions listed in parenthesis. Overall, the features
of the experimentally observed flow are captured well by the computations, as evident
from the comparison in figure 21. Figure 21(a) presents a comparison between an
image of the observed flow along with the cavity outline from the computation
demonstrating the very good match between the two. The streamwise evolution of
the cavity observed in the experiment is generally well captured by the computational
prediction. The only significant difference is observed in the detailed appearance
of the instantaneous cavity surface interface, with the computational interface being
rougher than the experimentally observed interface. It is important to recall that the
numerical simulations are performed on a grid with finite resolution, and the error
due to the discretization may play a role in the small differences that are present
between the experimental observations and the numerical predictions.

Figure 22 shows the computed topologies for all conditions listed in table 3, as well
as comparisons to photos from experiments. We also see not only that the variation of
sweep angle and chord is well captured by the CFD, but we can also observe the side
profiles of the cavities. From the side profiles we see that the ‘hump’ height varies
with the gas momentum compared to that of the cross-flow, and is influenced to a
lesser extent by the boundary-layer thickness. Also evident is that the magnitude of
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10 cm

(a) (b)

(c) (d)

FIGURE 20. The topologies of the gas jet for low and higher-speed cross-flow; the speed
varies from U∞= 1.0, 1.5, 2.0 and 3.0 m s−1 (a–d) and 51 mm <δ < 57 mm, while the
other conditions are fixed at Di ∼ 10 mm, Qi = 1.7× 10−3 m3 s−1 and β = 90.0◦.

the pressure peak at bifurcation location varies approximately proportionally to hump
height.

In the next sections, we use U∞ and δ to scale length and velocity. The static
pressures will be scaled either by (4.1) or by the following relationship

p= P
P∞ + ρ∞gy

− 1, (5.1)

where P is the computed average static pressure and y is the distance from the flow
boundary (in direction along gravity vector). With this normalization, we can show
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(a) (b) (c)

FIGURE 21. (Colour online) (a) A comparison of the instantaneous computed and
observed plan view of the cavity topology for case A1 (see table 3). Comparison of
the time-averaged computed cavity topologies (solid black lines) and the approximate
experimental cavity topologies (solid red lines) for cases A1 (b) and D (c).

how the gas pressure within the cavity varies with respect the static pressure in the
fluid far from the injection location. Figure 23 illustrates the sections of the flows
that will be presented. Section PX is the plane of symmetry parallel to the mean
flow direction; sections PY are the planes perpendicular to the surface and the mean
flow direction; section BX is the plane parallel to and centred on the gas branch; and
sections BY are planes normal to the gas branch.

5.1. The basic cavity flow
Figure 24 presents contours of the time-averaged (a) static pressure, p, and (b)
the in-plane velocity magnitude, |u|/U∞, on the PX plane for cases A1 and D.
Figure 24(c) is an instantaneous realization of the pressure field. When p< 0 at the
gas–liquid interface, buoyancy will tend to move the gas back toward the plate. At
the jet exit, the pressure at the gas–liquid interface is such that p� 0 and matches
the stagnation pressure of the incoming liquid flow. Along the interface of the cavity,
p decreases and the initial gas pocket begins to close and form the branches. The
influence of the gas volume flux can be seen through the change in the shape of
the initial gas pocket. With the higher gas flux the hump is taller and the upward
momentum of the liquid following the contour of the hump is sufficient to bifurcate
the gas pocket, as also seen in figure 22. Recall that the branches form as the
free-stream liquid around the gas cavity returns to the flow boundary along the
plane on symmetry and bifurcates the gas pocket. This is illustrated in figures 22
and 25(b,c) that show the surface pressures for the case A1 (also presented in
figure 11). A high-pressure region is observed at the location of cavity bifurcation
that results from the impingement of the liquid onto the wall boundary. Whether
the region between the gas branches is filled with gas (Delta-type cavity) or liquid
on the surface (Lambda-type) is of importance if the goal is to form an air layer
evenly covering the surface. Figure 25(c) also shows the large flow structures that
form in front of the gas injection location, and persist far downstream. The vortex
structures are visualized with the second invariant of the velocity-gradient tensor,
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B A1

C A2

D E

–0.02 0 0.02

FIGURE 22. (Colour online) Profile and plan views of the computed cavity topologies
and contours of the normalized pressure p̄ on the flow boundary for cases listed in
table 3. Comparison figure from experiment included if available. All the plan views show
approximately a 46 cm× 68 cm region.

commonly referred to as the Q-criterion (Hunt, Wray & Moin 1988). These structures
modify the boundary layer ‘seen’ by the branch from one with a u/U = (y/δ)1/n
power-law shape best fitted with n ∼ 8–n ∼ 5. This can explain how the manner in
which the gas is introduced into the flow can affect the equilibrium sweep angle
far downstream, and other detail discussed in § 6. Figure 25(a) also shows the mean
velocity field, and in particular, the manner in which the turbulent mean profile that
is applied on the inlet persists downstream until it is modified by the cavity.

Figure 26 presents a series of PY planes illustrating the time-averaged in-plane
velocity magnitude for the case A1. The planes start upstream of the injection location
and move downstream toward the formation of the branches, at the location where

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

98
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2017.98


The topology of gas jets beneath a surface and subject to liquid cross-flow 165

y
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BY

BY BX

BX
PX PX

FIGURE 23. Illustration of the branch-aligned coordinate system. Section PX is the plane
of symmetry parallel to the mean flow direction; sections PY are the planes perpendicular
to the surface and the mean flow direction; section BX is the plane parallel to and centred
on the gas branch; and sections BY are planes normal to the gas branch.
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FIGURE 24. (Colour online) The time-averaged (a) static pressure, p, and (b) velocity
magnitude, |u|/U∞, on the PX plane for cases A1 (Qi= 5.0× 10−3 m3 s−1) and D (Qi=
1.7× 10−3 m3 s−1); (c) is an instantaneous realization of the pressure field p̄. The solid
line indicates the gas–liquid interface defined for 50 % void fraction.

the liquid impinges on the surface. Figure 27 presents the normalized pressure, p, to
illustrate the influence of buoyancy on the development of the branches. Away from
the gas injection site the cavity is at a constant pressure, far from the branches the
pressure varies due to buoyancy as ρ∞gy. However, near the cavity the pressure is
below ρ∞gy, as the flow accelerates locally.

5.2. Flow around and within the stable gas branches
Once the two branches have been formed, they maintain a near equilibrium topology
as they extend downstream from the cavity injection location with both a fixed gas
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Modified boundary layer
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FIGURE 25. (Colour online) Case A1 (a) velocity magnitude, |u|/U∞, on the centre
plane and the cavity (defined as 50 % time-averaged void fraction) are shown as the dark
grey isosurface. (b) The time-averaged normalized pressure, p̄, on the top boundary and
the cavity. (c) The time-averaged normalized pressure, p̄, on the top boundary, and an
isosurface of the Q-criterion (Q= 10) illustrating the junction vortex formed in front of
the gas branches.

sweep angle and chord length. Figure 28 presents the flow along the branch in
the plane BX, and this shows that the flow along the centre of the branch reaches
equilibrium within ∼5x′/δ distance from the injection location. The flow over the
branch is reminiscent of the flow over a long swept wing, and we can use the
concepts of incompressible swept wing theory. Figure 29 presents the time-averaged
static pressure, p, and flow speed and velocity vectors, for the case A1 at the
location x′/δ where the branch has reached a near equilibrium shape. The slices of
figure 29 more clearly show there is only minimal variation in the branch shape
until it is impinged on the exit of the computational domain. Experimentally, the
variation along the branch was significant in cases where notable amounts of gas
were entrained all along the closure of the branches.

5.3. Influence of free-stream speed and boundary-layer thickness
The experimental observations suggested that the free-stream speed and boundary-layer
thickness both significantly influence the topology of the gas branches, and this was
explored computationally. Cases B and C were computed with U∞ = 2 and 4 m s−1.
Figure 30 presents the (a) time-averaged static pressure, p, (b) the flow speed and
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FIGURE 26. (Colour online) A series of PY planes presenting the time-averaged in-plane
velocity magnitude for case A1. The solid line indicates the gas–liquid interface defined
for 50 % void fraction. The cases are for x/δ = 1, 3, 8, 10.

velocity vectors at the location x′/δ where the branch has reached a near-equilibrium
shape. Besides the obvious change in angle, the branches become significantly smaller
in both chord, C, and height, e. Inspection of the average gas velocity along the
branch shows good correlation with U∞sin(ϕ), as well as some dependence on e, and
this notable observation is discussed further in § 6.

The effect of incoming boundary-layer thickness was examined by computing case
E with 1/3δ of case A1. Figures 31 and 32 present the time-averaged static pressure,
p, and the flow speed and velocity vectors for case E, respectively. While the chord
length changed modestly, a significant difference in branch thickness is observed. We
should also note the difference in pressure immediately upstream of both the injection
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FIGURE 27. (Colour online) The static pressure, p, on a series of planes PY planes for
case A1. The solid line indicates the gas–liquid interface defined for 50 % void fraction.
The cases are for x/δ = 1, 3, 8, 10.

and branches, as was seen most clearly in figure 22, and is likely due to change
in stagnation pressure and relative strength of large structures (i.e. junction vortex)
observed in figure 25. For these cases, we also find that the average gas velocity along
the branch shows dependence on e, in addition to U∞sin(ϕ), as will be discussed in
the next section.

6. Scaling of the gas branch topology
The sweep angle, chord length and general gas branch topology were determined

for a range of conditions in order to develop scaling relationships. We can define
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FIGURE 28. (Colour online) The (a) static pressure, p, and (b) in-plane velocity
magnitude, |u|/U∞, for the flow along on gas branch on the plane BX for the case A1.
The solid white line indicates the gas–liquid interface as 50 % time-averaged void fraction.

five non-dimensional groups to scale both of the dependent variables ϕ and C, that
are derived from the eight independent parameters, U∞δ, Qi, Di, β, ρ∞, υ∞ and g.
We assume that the gas is incompressible with a density much less than the liquid.
The influence of surface tension is discussed separately in § 6.4. The five groups of
independent parameters can be chosen as the Froude number based on the boundary-
layer thickness Fr = U∞/

√
gδ, the Reynolds number based on the boundary-layer

thickness, Re=U∞δ/υ∞, the scaled gas volume flow rate Q∗ =Qi/U∞δ2, the scaled
gas injection velocity U∗ = Ui/U∞ and the angle of the gas injection β. Note that
Ui = Qi/π(Di/2)2. The experimental ranges of these non-dimensional parameters are
presented in table 4. Henceforth, we will exclude the data collected for U∞< 2 m s−1

since these gas pockets have less stable and regular gas branches, and we will first
focus on scaling for the case of fixed gas injection angle β = 90◦ (i.e. wall-normal
injection). We will attempt to scale sweep angle, ϕ, and normalized chord length, C/δ,
with the four parameters Fr, Re, Q∗ and U∗.

6.1. Power-law scaling
Figure 33 presents cosϕ as a product of four non-dimensional groups raised to
exponents derived from nonlinear regression. The scaling successfully groups the data
with the following equation:

cosϕ ∼= 1.012Re−0.037Fr−1.089Q∗0.267U∗0.137. (6.1)

A linear regression of this function has a correlation of 0.94. From (6.1) we see
that the Froude number has the largest influence on the sweep angle, with the angle
decreasing with increasing Fr. A similar regression is shown in figure 34 for C/δ:

C
δ
∼= 1.3× 10−4Re0.84Fr−0.67Q∗0.57U∗0.23. (6.2)
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FIGURE 29. (Colour online) The (a) static pressure, p, and (b) in-plane velocity
magnitude, for the flow in the plane BY for the case A1. The solid line indicates the
gas–liquid interface defined for 50 % void fraction. The planes in each panel, from left to
right and top to bottom, are at x′/δ = 9, 10, 12, 14.

Here, the scaling has a somewhat reduced correlation of 0.87. Based on the exponents
found from regression, the cavity chord, C/δ, is strongly related to the rate of volume
injection, as expected. However, the chord is also significantly influenced by the
Froude number, injection velocity and Reynolds number. Next, we will present a
physical basis for these observed scaling.

6.2. A simplified model of the flow around the gas branch
A simplified model of the flow around a single gas branch can help illuminate the
basic flow processes that lead to the formation of such straight and stationary gas
pockets. We expect that the drag of the long gas pocket is proportional to its height,
e, the boundary-layer thickness, δ, flow static pressure, P∞, and the pressure of the gas
within the cavity, PC. If we consider the component of the drag force perpendicular
to the leading edge of the gas branch, D, the net force is given by

D∼ 1
2

CDeρ∞

(
U∞cosϕ

(e
δ

)1/n
)2

− (Pc − P∞)e, (6.3)

where CD is a drag coefficient and U∞ cos ϕ is the magnitude of the velocity
component perpendicular the leading edge scaled by the depth the cavity penetrates
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FIGURE 30. (Colour online) The (a) static pressure, p, (b) flow speed and velocity vectors
for the cases B and C. Case B is for U∞ = 2 m s−1 and x′/δ = 8, and case C is for
U∞= 4 m s−1 and x′/δ= 8 or 12. The solid line indicates the gas–liquid interface defined
for 50 % void fraction.

Parameter Range Note

Fr 1.3< Fr< 7.2 Fr= U∞√
gδ

Q∗ 6.7× 10−2 <Q∗ < 1.4× 101 Q∗ = Qi

U∞δ2

Di

δ
7× 10−2 <

Di

δ
< 7× 10−1

β 22.5<β < 157.5 deg.
ρi

ρ∞
1.2× 10−3 ρi = 1.2 kg m−3 ρ∞ = 1000 kg m−3

Π 1.0× 10−3 <Π < 6.1× 103 Π = ρiU2
i

ρ∞U2∞

ReDi 3.6× 103 < ReDi < 1.0× 105 ReDi =
UiDi

νi

Reδ 1.5× 104 < Reδ < 2.9× 105 Reδ = U∞δ
ν∞

TABLE 4. Ranges of non-dimensional parameters of the present study.
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FIGURE 31. (Colour online) The time-averaged static pressure, p case E at (a) x′/δA1= 1,
3, 8, 10, and (b) x′/δE= 1, 3, 8, 10, from left to right and top to bottom, respectively. The
boundary layer for case E is 1/3 that of case A1. The solid line indicates the gas–liquid
interface defined for 50 % void fraction.

the boundary layer, e/δ, and where 1/n is the exponent of the boundary-layer profile
power law. If we assume that the drag coefficient is a weakly decreasing function of
the Reynolds number based on the cavity thickness, then

CD =CDO

(
eU∞cosϕ

(e
δ

)1/n
/
ν∞

)−m

, (6.4)

where m>0 is a constant. A cavitator is formed by the leading edge of the gas pocket
but it is not fixed to the surface. Therefore, in order to have a stationary gas pocket
in the laboratory frame of reference, the net drag force on the gas pocket must be
zero. Setting D= 0 in (6.3) yields the force equilibrium condition:

0= 1
2

CDρ∞

(
U∞cosϕ

(e
δ

)1/n
)2

− (Pc − P∞). (6.5)

The average cavity pressure, PC, will be related to the cavity height, volume rate of
the injected air and the rate of gas entrainment at the local cavity closure and the
terminus of the branch at the farthest downstream extent of the gas pocket. Without
direct measurements of the pocket pressure, a relationship for PC must be prescribed.
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FIGURE 32. (Colour online) The time-averaged flow speed and velocity vectors for case
E at (a) x′/δA1 = 1, 3, 8, 10 and (b) x′/δE = 1, 3, 8, 10, from left to right and top to
bottom, respectively. The boundary layer for case E is 1/3 that of case A1. The solid
line indicates the gas–liquid interface defined for 50 % void fraction.

We will therefore assume that PC in the gas branch is of the same order of, but
less than, the hydrostatic pressure in the surrounding liquid at a depth of the branch
maximum thickness, e:

PC = P∞ +K1ρ∞ge where 0<K1 < 1. (6.6)

Finally, we need a relationship between the gas branch height, e, and the volume
flow rate of gas, Qi. We can develop such a relationship if we assume that a fraction
K2 of the injected air flows through branches Qbranch = Qi/2K2, where K2 would be
unity for a Lambda with no gas leakage between the branches. We can also assume
that the profile of the branch approximates a half ellipsoid such that the branch chord

c(y)=C
√

1− (y/e)2. (6.7)

And, finally, we will assume that the gas flow speed within the branch is equivalent
to the branch-normal speed of the liquid at same location from the plate surface, y,
such that

ubranch(y)=U∞ sin ϕ(y/δ)1/n. (6.8)
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FIGURE 33. (Colour online) A plot of cos ϕ versus a power law employing the Froude
number, Fr=U∞/

√
gδ, the Reynolds number, Re=U∞δ/ν∞, the scaled gas injection flow

rate, Q∗=Qi/U∞δ2 and the injection speed ratio, U∗=Ui/U∞, for U∞>2 m s−1 and wall-
normal injection (β= 90◦); the markers represent Delta (A), transition (6) and Lambda (C)
cavities; filled markers represent data from Barge model I, with δ1, and empty markers
represent data from Barge model II, δ2; and the size of the marker represents the orifice
size, e.g. (A) Di ∼ 5 mm, (A) Di ∼ 10 mm, (A) Di ∼ 20 mm.

The expression for the gas flux in the branch becomes:

Qi

2
=K2

∫ e

0
U∞ sin ϕ(y/δ)1/nC

√
1− (y/e)2 dy. (6.9)

For Re(1/n) >−1 this yields

e= δ
[

2√
πK2S(n)

δQ∗

C sin ϕ

]n/n+1

, (6.10)

where S(n) = Γ ((n+ 1)/2n)/Γ ((4n+ 1)/2n). (Note that for the branch thickness, e,
and angle, ϕ, found from the CFD the average gas velocity in the branch based on
(6.9) with K2 = 1 versus CFD match well, yielding 2.08 versus 2.08 and 2.53 versus
2.51 m s−1, for cases A1 and E, respectively.)

Equations (6.4)–(6.6) and (6.10), can now be combined to develop a relationship
between the Re, Fr, Q∗ and ϕ:

Re−mFr2cos2−mϕQ∗
r

(
C
δ

sinϕ
)−r

= 2K1

CDO

[√
πK2

2
S(n)

]r

, (6.11)

where
r= (2− n)−m(1+ n)

n+ 1
. (6.12)

This scaling does not include the one additional parameter associated with the wall-
normal injection process, the gas injection velocity U∗. It is therefore instructive to
plot the scaling suggested by (6.11) as a function of U∗ = Ui/U∞. This is shown
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FIGURE 34. (Colour online) A plot of C/δ versus a power law employing the Froude
number, Fr=U∞/

√
gδ, the Reynolds number, Re=U∞δ/ν∞, the scaled gas injection flow

rate, Q∗=Qi/U∞δ2 and the injection speed ratio, U∗=Ui/U∞, for U∞>2 m s−1 and wall-
normal injection (β= 90◦); the markers represent Delta (A), transition (6) and Lambda (C)
cavities; filled markers represent data from Barge model I, with δ1, and empty markers
represent data from Barge model II, δ2; and the size of the marker represents the orifice
size, e.g. (A) Di ∼ 5 mm, (A) Di ∼ 10 mm, (A) Di ∼ 20 mm.

in figure 35, where the function

Re−m̂Fr2cos2−m̂ϕQ∗
r̂

(
C
δ

sinϕ
)−r̂

(6.13)

is plotted versus U∗. The data have the best linear fit for regression constants m̂=0.40
and r̂ = −0.79 with a correlation of 0.48. Note that a positive value of m̂ suggests
that the drag coefficient of the cavity would be decreasing with increasing Reynolds
number, as we would expect. From (6.12) we would also get n = 3.9, which can
be compared to the experimentally observed value of n∼ 7. The decreased n would
physically translate to a more gradual rate of velocity gradient in front of the branches.
Indeed, from the CFD, as discussed in conjunction with figure 25, we observed the
large junction vortex-type flow structures that modified the flow seen by the branch,
and in the CFD we observed these to drop n from ∼8 to ∼5, which would seem
to support the idea that n seen by the branches in the experiment may have well
been ∼4.

It is important to note, however, that the scaling does not lead to a constant value
as a function of U∗, which we would expect if the force balance around the branch
is independent of the gas injection process except for the gas volume flux. However,
we see an approximately linear dependence on the relative injection velocity such that
with increasing U∗ the magnitude of (6.13) increases.

To explore this further, we introduce the influence of the gas injection velocity into
the scaling as

Re−m̂Fr2cos2−m̂ϕQ∗
r̂

(
C
δ

sinϕ
)−r̂

U∗q̂. (6.14)
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FIGURE 35. (Colour online) A plot of Re−m̂Fr2cos2−m̂ϕQ∗
p̂
(sinϕ)−p̂ versus U∗ for U∞ >

2 m s−1 and wall-normal injection (β = 90◦); and the data show the best linear fit for
m̂= 0.40 and p̂=−0.79 with a linear correlation is 0.48; the markers represent Delta (A),
transition (6) and Lambda (C) cavities; filled markers represent data from Barge model I,
with δ1, and empty markers represent data from Barge model II, δ2; and the size of the
marker represents the orifice size, e.g. (A) Di∼ 5 mm, (A) Di∼ 10 mm, (A) Di∼ 20 mm.

The regression for this function is shown in figure 36 as a function of U∗ with m̂=
0.73, r̂=−0.82 and q̂= 0.79. These data show better grouping, and again the positive
value of m̂ suggests that the drag coefficient of the cavity would be decrease with
increasing Reynolds number, as we would expect. This new scaling also suggests that
the details of the gas injection process influence the equilibrium topology of the gas
branch. We would therefore expect that the gas injection angle would also play a role.
To explore this, the U∗ is scaled by sin β

Re−m̂Fr2cos2−m̂ϕQ∗
r̂

(
C
δ

sinϕ
)−r̂

(U∗sinβ)q̂ (6.15)

U∗ is shown in figure 37 as a function of (6.15) including the data for cases where
β 6= 90◦. These data for β = 90◦ follow the trend as well, but there remains some
noticeable scatter for the β 6= 90◦ data, that indicates the simple scaling does not fully
capture how the method of gas injection (modifying both the hump height and large
junction vortex-type flow structures) effects the overall flow, leading to a different
equilibrium for the branches.

The physical model discussed above presents the trends observed in the scaled
data (§ 6.1). The scaling from (6.13) can be combined with that of (6.2) to create
the scaling if we assume (sinϕ)−p ≈ 1. Recall that this scaling does not include the
influence of U∗, but it will be introduced into this scaling solely through its factor
in the open regression. Combining (6.2) and (6.13), the model scaling based on the
drag balance around the branch yields

cosϕ ∼ Re−0.16Fr−0.92Q∗0.21U∗0.51. (6.16)
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FIGURE 36. (Colour online) A plot of Re−m̂Fr2cos2−m̂ϕQ∗
p̂
(C/δsinϕ)−p̂U∗q̂ versus U∗ for

U∞> 2 m s−1 and wall-normal injection (β = 90◦) for m̂= 0.73, p̂=−0.82 and q̂= 0.79;
the markers represent Delta (A), transition (6) and Lambda (C) cavities; filled markers
represent data from Barge model I, with δ1, and empty markers represent data from Barge
model II, δ2; and the size of the marker represents the orifice size, e.g. (A) Di ∼ 5 mm,
(A) Di ∼ 10 mm, (A) Di ∼ 20 mm.

This can be compared with original open regression for the sweep angle

cosϕ ∼ Re−0.037Fr−1.1Q∗0.27U∗0.14. (6.17)

The exponents for Fr and Q∗ are similar, with the Froude number being the dominant
parameter. The scaling based on the model over-predicts the influence of Re and U∗
and the scaling would suggest a power-law profile of n∼ 4 (6.12) for the boundary
layer (i.e. a more gradual boundary-layer profile). Re and U∗ are still significant and
necessary parameters for both relations.

The question, therefore, is how the process of injection could be coupled to the
drag balance around the branch flow far downstream from the injection location. One
possibility already discussed is that the gas injection process could cause diversion
of the gas from the branches (when Delta topology is achieved) thus leading to
only a fraction of the gas flowing through each branch with the remainder flowing
between the branches. A second possibility is that the injection process can lead
to a change in the liquid flow upstream of the gas pockets. Examination of the
computed flow upstream of the branches indicates that presence of a junction vortex,
visualized in figure 25, that formed at the stagnation region around the jet. The
vortex flow parallel to and upstream of the gas branches and, as such, can modify
the momentum balance described in (6.5), modifying the effective drag coefficient
with increasing vortex strength. Then, the drag coefficient would be a function of not
only the Reynolds number but also the strength of the junction vortex. The vortex
strength would, in turn relate to a U∗ and β. Note that the quantity ρ∞ge≈ 102 Pa,
therefore only a small modification of the pressure upstream of the branch may be
sufficient to modify the drag balance.
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FIGURE 37. (Colour online) Same as figure 36 with additional data for angles of injection.
(a) All hole diameters (angles 6= 90◦ included only when Di = 5 mm) and (b) only
Di= 5 mm. For wall-normal injection (β= 90◦, grey filled symbols), downstream injection
(β < 90◦, black filled symbols) and upstream injection (β > 90◦, empty symbols); the
markers represent Delta (A), transition (6) and Lambda (C) cavities; the size of the marker
represents the orifice size, e.g. (A) Di ∼ 5 mm, (A) Di ∼ 10 mm, (A) Di ∼ 20 mm.

We conducted an additional experiment to examine how the formation of a
potentially stronger junction vortex would affect the formation of the gas branches
if all other parameters are kept constant. To do this, we extended a portion of the
outlet tube to create a solid boundary upstream of the injection location, as shown
in figure 38. During the experiment, the presence of the barrier led to a stagnation
flow ahead of the gas injection, and a path for the gas to extend farther into the
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(a) (b) (c)

FIGURE 38. (Colour online) The modified orifice for wall-normal injection that includes
a solid barrier (the half of a pipe extending beyond the pipe with larger outer diameter)
upstream of the gas port (a); images of the cavity with Di∼ 10 mm with U∞= 2.0 m s−1,
Qi= 2.1× 10−3 m3 s−1 and δ∼= 19 mm for (b) the cavity topology resulting from injection
with the plain orifice and (c) the cavity topology resulting from placement of the barrier
upstream on the injection port.

free-stream before reattaching to the surface to form the gas pocket. Examination of
the resulting flows showed that, for fixed Fr, Q∗ and U∗, the presence of the barrier
led to a decrease of the sweep angle (increase in cos ϕ) and increased tendency
towards a Lambda-type gas-pocket topology. This is consistent with the hypothesis
that the formation of a stronger junction vortex would lead to a reduction of the drag
coefficient of the branch and a resulting decrease in the equilibrium sweep angle, and
with taller hump promoting Lambda topology.

6.3. Stability of the gas branch
With a relationship developed between the sweep angle and the drag force on the gas
branch, we can examine if our simplified model predicts a stable, straight gas branch.
Given the force balance of (6.3), we can take the derivative of the drag force D with
ϕ around the point of force equilibrium:(

∂2D
∂ϕ2

)
D=0

∝ 2 sin2 ϕ − 2 cos2 ϕ + · · · . (6.18)

Since 45◦ <ϕ < 90◦, the sign of (∂2D/∂ϕ2)D=0 is always greater than zero, implying
that a restoring force exists that resists perturbation of the branch. Hence, when there
is a positive perturbation of the sweep angle, a net negative drag force occurs, and
this results in the branch returning to its equilibrium position. Similarly, if the sweep
angle is reduced, the drag on the branch increases and it is pushed back. Thus, the
simplified model confirms that the gas branch, once formed, will change in sweep
angle until the equilibrium position is achieved and will resist perturbation.
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6.4. Consideration of surface tension
The previous discussion has illustrated how the flow around the gas branches is
dominated by inertia and buoyancy. However, cases with lower cross-flow speed
(U∞ 6 1 m s−1) do not exhibit gas branches with strongly defined and straight
leading edges. In these cases, the surface tension at the air–liquid interface may be a
consideration. If we balance the dynamic pressure and pressure due to surface tension
at a cross-section of the branch, we find that:

1
2
ρ∞

(
U∞cosϕ

(κ
δ

)1/n
)2

∼ S
κ
, (6.19)

where S=0.072 N m−1 is surface tension of water–air interface and κ is the curvature
at the leading edge of the branch. Modifying this equation to define the Weber number,
We, we find the following relation:

ρ∞U2
∞κ

S
=We∼ 2cos−2ϕ

(κ
δ

)−2/n
. (6.20)

The leading edge curvature is of the order of κ/δ ∼ 10−1. At speeds where U∞ >
3 m s−1, the sweep angle varied between, 75◦ < ϕ < 88◦ making 0.12< cos2ϕ < 0.3
and therefore increasing the range of Weber numbers to 50<We< 3200. But, at the
lowest flow speed of U∞ = 1 m s−1, the sweep angle varied between, 55◦ < ϕ < 70◦,
making 0.12< cos2ϕ < 0.33. Then, the range of Weber numbers is reduced to 12<
We< 33. This scaling therefore suggests that at the lowest speeds, we are approaching
the conditions were the We≈O(1), and surface tension can no longer be neglected.

6.5. Transition from Delta to Lambda topology
The data presented in figure 39 show the transition from one topology type to another
is sensitive to the boundary layer, the liquid cross-flow velocity, the momentum of the
gas normal to the flow and the volume flux of gas. For sufficiently high Fr, increasing
Q∗ or setting β = 90◦ increases the degree to which the gas jet penetrates the free-
stream flow, and we would expect that this would increase the likelihood that distinct
gas branches (i.e. a Lambda topology) would form as the liquid flow impinges back on
the plate surface. Hence, the Delta–Lambda transition, is likely to depend on the initial
mechanism that bifurcates the cavity and sets the angle and chord length. Indeed, if
the gas hump height is modified by changing the gas injection angle, β, or is rendered
quasi-independent of the gas injection flow rate by placing a solid obstacle upstream
of the orifice, the Delta–Lambda transition conditions shift to different values of Fr
and Q∗.

7. Conclusions
The flow of a gas jet beneath a flat surface and into a liquid cross-stream was

examined both experimentally and computationally. Unlike flow configurations where
body forces can be neglected, the gas jet is strongly influenced by the presence of
buoyancy and is driven toward the plate surface as it convects away from the injection
location. Then, the gas pocket is cleaved into two gas pockets that form straight
branches at a particular sweep angle relative to the incoming flow. Examination of
the data indicates that the dominant parameter of the flow is the Froude number
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FIGURE 39. A map of the cavity topology boundaries as a function of Q∗ versus Fr for
β = 90◦ and for Di = 5 mm (a), 10 mm (b) and 20 mm (c) with δ ∼= 52 mm. Topology
map for Q∗ versus β with Di = 5 mm and Fr = 4.2. Topology map Q∗ versus Fr for
β = 90◦ and for Di = 6 mm (e) and 10 mm ( f ) with δ ∼= 17 mm. The open symbols
signify Lambda, grey transitional, and black filled Delta topology.

based on the thickness of the incoming boundary layer and the non-dimensional
volume flow rate of the injected gas. The gas branches are nominally straight and
stable, as they represent an equilibrium state balancing drag force on them due to the
convection of the boundary layer over the gas pocket against the force on the interface
due to the gas pressure within the branch. Because the branches are immersed in the
boundary layer, the boundary-layer thickness is an important parameter. Increase in
the free-stream speed leads to an increase in the sweep angle of the branches, as the
fraction of the stagnation pressure required to balance the cavity pressure decreased.
The volume flux of the injected gas changes the chord length and height of the
branches and hence, secondarily, the equilibrium sweep angle.

These observations of the cavity topology can be related to the balance of drag
around the stable gas branch. This, in turn, is related to the impinging speed of
the boundary-layer flow, the cross-sectional area of the branch and the gas pressure
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within it. The cavity pressure is of the order of the local buoyancy-induced static
pressure at the deepest extent of the pocket, and the geometric cross-section of the
branch is strongly related the overall gas volume flux moving through the branch at
a component of the boundary-layer speed. In order for a stable branch to form, there
must be a balance of the drag forces on the cavity. And, to achieve this, the branch
must rest at a particular sweep angle such that it intercepts the necessary parallel and
tangential component of the incoming flow velocity to produce equilibrium. However,
the process of gas injection can modify both the amount of gas that ultimately flows
though the branches as well as the local liquid flow that impinges around the leading
edge of the gas branches. Therefore, the scaling of branch sweep angle and chord
length is dependent on both the free-stream parameters Fr and Re, the rate of gas
injection, Q∗, and the process of gas injection related to both U∗ and β.

The method of gas injection (e.g. injection angle and orifice size) had the strongest
influence on the cavity topology. However, scaling the near-injector gas pocket was
problematic. With increasing flow speed, the relative effect of buoyancy will be
reduced, and we would expect to see the flow evolve to that described by Pignoux
(1998), and Vigneau et al. (2001a,b) for the injection of gas into a downward flowing
vertical stream. Hence, we consider the Froude numbers range of the present study
to be moderate. However, in the present orientation and in the presence of gravity,
even with increased flow speed with sufficient distance from the injector, buoyancy
will ultimately flatten and potentially bisect the gas cavity, if it had not already been
broken up by turbulent action at the cavity interface.
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