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SUMMARY
This paper deals with motion planning and control problems for a class of partially differentially flat
systems. They possess a feature that the derivative of the fiber variable can be represented purely by
the base variable and its derivatives. Based on this feature, a Beta function-based motion planning
algorithm is proposed with less computational cost compared with the optimal control formulation
while providing similar system performance. Then, an adaptive controller is constructed through a
function approximation technique-based approach. Finally, the feasibility of the proposed motion
planning and control algorithms is verified by simulations.
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1. Introduction
Underactuated systems have fewer independent actuators than the number of degrees of freedom.
In this paper, we focus on a class of partially differentially flat (PDF) systems,20 a special type of
underactuated systems where a portion of configuration variables can be expressed by the derivatives
of another portion through integration. The need for analysis and control of this type of systems
arises in many practical applications. To realize these applications, two of the important problems
need to be solved in the research of underactuated systems: motion planning and control. Typically,
the motion planning problem requires to steer the system from an initial state to a given final state and
the control problems aim to eliminate the difference between the actual and planned output signals.

Motion planning for an underactuated system requires to generate time trajectories satisfying its
nonholonomic constraint.34 Contrary to the fully actuated systems, it is impossible to find the control
input for underactuated ones by directly inverting the system dynamics since they are not square.
Instead of the exact inversion, a nilpotent approximation-based technique23 has been proposed which
spans a nilpotent Lie algebra to approximate the original system. However, the motion trajecto-
ries generated by this technique may not accurately satisfy the given boundary conditions. Different
from approximate techniques, a small amplitude and oscillatory control method4, 12 provides desired
trajectories through iteration techniques. However, it is only applicable to Lagrangian systems with
controllability rank condition satisfied at low order and the iterations may result to a rather high com-
putational cost. Other than the approximation and iteration techniques, several directions have been
explored focusing on the simplification of motion equations. The partial feedback linearization16 has
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been applied for the simplification concerns by removing nonlinearities from the control systems.
However, the nonholonomic constraint in the system dynamics, as the core to the motion planning
problem, cannot be simplified through this method. The geometric mechanics5 can also be utilized
to simplify an underactuated system by representing it in a kinematic form. Thus, the computational
complexity of the motion planning problem is reduced as it is decoupled into path planning followed
by time scaling. However, the range of applications for this method is restricted to underactuated
systems that are kinematically controllable.

Although the aforementioned motion planning methods work on specific PDF systems such as
the cart-pole, they are not applicable to the whole class of systems. The optimal control formulation
is generic and feasible for all PDF systems, but it may result to heavy computational cost. In this
paper, we develop a generic motion planning method for PDF systems with a rather high speed. This
method is based on the concept of fiber and base variables, definitions of which are as follows in
ref. [25]. The configuration variables of mechanical systems include the base variables describing
the internal shape changes of the system and the fiber variables representing the system’s position
and orientation change.

The motion planning algorithm is constructed as follows. First, a Beta function multiplied by
a constant parameter is selected as a candidate function for the base variable. Its feasibility for the
nonlinear system is then proved by showing that the corresponding fiber variable can satisfy the given
boundary conditions. Then the parameter of the Beta function is adjusted such that a desired shift
for the fiber variable can be obtained. Under the proposed motion planning algorithm, rest-to-rest
trajectories for the configuration variables are generated with less computational cost compared with
the optimal control formulation.

In the actual implementation however, an underactuated system may not follow the planned tra-
jectories due to un-modeled disturbances such as friction. To eliminate the effect of the disturbances,
control problems for the PDF systems are studied.

In the literature, a number of works on the control of underactuated mechanical systems have been
proposed. One of the well-known control methods is the energy shaping technique.7, 11, 26, 32 However,
the energy shaping method only works for systems satisfying the passivity condition, which narrows
its range of applications. Another commonly used method is the backstepping method which allows
the feedback controller to be designed step by step. However, similar to the energy shaping method,
the backstepping is applicable to a limited class of systems that are in the backstepping form. Also,
when the degree of freedom (DOF) of underactuated systems increases, the procedure of backstep-
ping becomes complicated, and implementation of such a control design on actual systems becomes
impractical. Different from the above two methods, the partial feedback linearization17, 18, 29 is a
generic method, providing a natural global change of coordinates that transforms underactuated sys-
tems into the strict feedback form. However, one drawback of this technique is that it requires full
knowledge of the system model, which is unrealistic for the practical application when system uncer-
tainties exist. To deal with the uncertainties in system models, the sliding mode control,8, 13, 15, 19, 24, 33

a robust control method which depends on switching, can be adopted. This methods, however, is
suitable only for small uncertainties. Soft computing methods are more suitable for rather large
uncertainties, but the stability is difficult to be proved.

To address both the stability and the adaptiveness, in this paper, we propose an function
approximation technique (FAT)-based method inspired by its application to adaptive control prob-
lems.2, 3, 6, 10, 30, 31 It is model-free, and thus feasible for a wide class of systems and robust to
uncertainties. On the other hand, compared with the soft computing techniques, the stability of the
FAT-based method can be proved.

The key to the construction of the FAT-based controller is to express an underactuated system by
the combination of an approximated square system, referring to the auxiliary system, and a varia-
tion term from the original system. This variation term is treated as a time-varying uncertainty to
the restructured square system. Then, we parameterize the uncertainty term with a set of chosen
basis functions weighted by unknown parameters. These parameters are required to be constants in
order to allow the application of the Lyapunov function-based design. Finally, define update laws
such that the parameters of the weighted basis functions can be automatically determined and the
variation between the auxiliary square system and the original non-square system can be eliminated.
By combining these two parts, we obtain a feedback controller that makes the underactuated system
asymptotically stable.

https://doi.org/10.1017/S0263574720000685 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000685


720 Motion planning and control for partially differentially flat systems

Phase change of fiber variable

B

F

Phase change of base variable

Fig. 1. A closed loop in shape variables producing a displacement in the fiber variable.

The rest of the paper is organized as follows. In Section 2, a rest-to-rest motion planning problem
for PDF systems is studied and a Beta function-based algorithm is proposed. In Section 3, the con-
trol problem for PDF systems is stated and a corresponding FAT-based algorithm is constructed. In
Section 4, the proposed motion planning and control algorithms are verified under simulations for
two types of PDF systems, the cart-pole system and the planar ballbot system.14 Finally, conclusions
are drawn in Section 5.

2. Beta function-based motion planning
A PDF system is defined as follows in ref. [20]. A system ẋ = F(x, u) is PDF if there exists a parti-
tion of the states, x = (s, r) and outputs y = y(s, u, u̇, ..., u(p)) such that s and u can be expressed
as functions of y and its derivatives, respectively, and the r-state dynamics are that of one or more
chains of integrators. Roughly speaking, a system is PDF if we can find a set of outputs and a state
partition, such that the inputs and a partition of the states can be obtained from the outputs and their
higher-order derivatives without integration.

Without loss of generality, we construct motion planning algorithms for 2DOF PDF systems,20

which correspond to the shape accelerated systems including the cart-pole system, the hoop-
pendulum system, the planar ballbot system and the segway, etc. The motion equations of these
systems with one input τ are [

m f f m f b

mbf mbb

] [
q̈ f

q̈b

]
+
[

h f

hb

]
=
[

0

1

]
τ, (1)

where q = (q f , qb) is the vector for the generalized coordinates and q f , qb are, respectively, the fiber
and the base variables. The base variable describes the internal shape changes of the system, and
the fiber variable represents the system’s position and orientation change. As (1) is PDF, the base
variable qb can be taken as the flat output, the second-order derivative of the fiber variable q f can be
expressed purely by τ , qb, and its derivatives as

q̈ f = h(qb, q̇b, τ ). (2)

Note that the underactuated portion of the motion equations (first line of (1)) forms a nonholo-
nomic constraint. For systems with nonholonomic constraint, a closed loop phase change of the base
variable can lead to a non-zero phase change of the fiber variable, as illustrated in Fig. 1. In this
figure, F is the set of fiber variables and the B is the manifold for the base space. A trivial principle
fiber bundle with B and F consists of the configuration manifold Q = B × F to which q belongs.9

This property implies that a periodic internal shape change of underactuated system steers its
position and orientation. Therefore, one can select the base variable qb to be the input in the motion
planning problem. The selection of qb as input is implemented by the partial feedback linearization
for (1) with respect to qb conducted below. Selecting

τ = (mbb − mbf m−1
f f m f b)u + (hb − mbf m−1

f f h f ), (3)
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and substituting (3) back into (1) gives

q̈ f = −m−1
f f h f − m−1

f f m f bu, (4)

q̈b = u, (5)

where u is the auxiliary input. By choosing a state vector x = (q f , q̇ f , qb, q̇b), the partially linearized
system (4) and (5) can be written in the state space form as

ẋ = f(x)+ G(x)u =

⎡
⎢⎢⎢⎢⎣

q̇ f

−m−1
f f h f

q̇b

0

⎤
⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎣

0

−m−1
f f m f b

0

1

⎤
⎥⎥⎥⎥⎦ u. (6)

2.1. Special feature of PDF systems
A notable property of (6) is that the controllable canonical form of the linearized system of (6) around
qb = 0 and q̇b = 0 is an integrator. This property is proved as follows. The linearization of (6) around
qb = q̇b = 0 is expressed as

ẋ = Ax + bu =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 a23 a24

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦ x +

⎡
⎢⎢⎢⎣

0

b

0

1

⎤
⎥⎥⎥⎦ u, (7)

where a23, a24, b are constants. According to (2), the second row of matrix A has two non-zero items
a23 and a24 due to that q̈ f contains no q f or q̇ f terms.

To transform the linearized model (7) to the controllable canonical form, one defines a transfor-
mation matrix P by

P = [
A3b A2b Ab b

]
. (8)

By setting x = P x̂, one obtains the controllable canonical form of (6) as

˙̂x = P−1 AP x + P−1bu = Âx̂ + b̂u =

⎡
⎢⎢⎢⎣

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0

⎤
⎥⎥⎥⎦ x̂ +

⎡
⎢⎢⎢⎣

0

0

0

1

⎤
⎥⎥⎥⎦ u, (9)

which is a fourth-order integrator. The analytical solution to the linear system (9) under the minimum
effort optimal control problem (the optimal criterion is 1

2

∫
u2dt) is well established in the control

literature, which is represented as

x(t)= e Ât
((

I − W(t)W(T )−1
)
x(0)+ W(t)W(T )−1e− ÂT x(T )

)
, (10)

where W(t)= ∫ t
0 e− Âs b̂b̂�e− Â�s ds and T is the total time interval. For a rest-to-rest motion,

e− ÂT x̂(T )= x̂(T ). Setting the nominal time t̂ = t/T and with binomial expansion for (1 − t̂)3, one
obtains

q linear
f (t̂)=

∫ T
0 p3(1 − p)3dp

B(4, 4)
= B(t̂; 4, 4)

B(4, 4)
, q linear

b (t̂)= q̈ linear
f (t̂), (11)

for the fourth-order integrator, where B(t̂; 4, 4) is the regularized incomplete Beta function. In what
follows, as we deal with the fourth-order systems only, B(t̂; 4, 4) will be written as B(t̂) unless
otherwise specified. The linearized solution for the base variable q linear

b (t̂), which is a polynomial, is
later on shown to be a feasible solution to the original nonlinear system (6).
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Fig. 2. Motion pattern of the base variable qb(t)

2.2. A Beta function-based motion planner design for a rest-to-rest problem
Based on (6), a rest-to-rest motion planning problem is stated as defining u such that the
corresponding trajectories for the state x satisfy the given boundary conditions

x(0) = (q f (0), q̇ f (0), qb(0), q̇b(0))= (0, 0, 0, 0),

x(T ) = (q f (T ), q̇ f (T ), qb(T ), q̇b(T ))= (qdes, 0, 0, 0). (12)

The nonlinear optimal control formulation provides a generic way to plan the rest-to-rest motion
for system (6). However, it comes with a high computational cost and the algebraic relation between
the configuration variables is not analytically known. In this section, we propose a systematic way
for capturing the optimal motion pattern by a polynomial function that satisfies the given boundary
conditions. The resulting motion planner is less computationally expensive and thus more suitable
for real-time application.

The construction of the motion planning algorithm consists of two steps: first one defines a feasible
base variable qb(t) and then computes the corresponding fiber variable q f (t) under given boundary
conditions.

2.2.1. Define the base variable qb. To construct a less computational expensive but feasible motion
planner for system (6) satisfying the rest-to-rest boundary conditions (12), we select

qb(t)= q linear
b (t̂)

∣∣∣
t̂=t
. (13)

Note that qb(t), as shown in Fig. 2, is an odd function with respect to the middle point, where t = T/2.
It implies |qmax| = |qmin|, where qmax and qmin are constants indicating the maximum and minimum
values of qb(t). Then, we prove its feasibility by showing that the corresponding trajectories of x(t)
satisfy the given boundary conditions.

For the sake of simplicity, we represent qb(t) in the form of a polynomial whose maximum value is
1, weighted by qmax. One way to do so is to find the location tmax of the maximum point, calculating
the corresponding value qb(tmax), and rendering it to 1. Note the zero-velocity points of qb(t) are
found at t = 0, t = tmax, t = tmin, and t = T , where

tmax =
(

5 − √
5

10

)
T, tmin =

(
5 + √

5

10

)
T . (14)

Thus, the value of qmax = qb(tmax) can be easily calculated and the base variable qb(t) can be
expressed as

qb(t)= qmax

(
25

√
5t2(t − T )2(2t − T )

T 5

)
. (15)

Having defined the base variable qb(t) as (15), the auxiliary input u(t) is calculated as the second-
order derivative of qb(t).

Then, one proves that (15) is a feasible candidate function for the base variable qb(t) to realize
a rest-to-rest motion for the original nonlinear underactuated system. As qb(t), selected as (15),
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satisfies the given boundary conditions (12), to prove the feasibility of qb(t) is equivalent to prove
that the corresponding q f (t) satisfies (12).

As for the PDF systems, the derivative of the fiber variable q f can be expressed by the derivatives
of the base variable qb, one has

q̈ f = h(qb, q̇b). (16)

The substitution of the expression of qb as (15) into (16) gives

q̈ f = h(qmax, t). (17)

One can obtain q f (t) by solving (17) with q f (0)= q̇ f (0)= 0 in (12). Therefore, the initial conditions
for q f are satisfied.

However, the selection of qb as (15) is considered to be feasible only when the final rest conditions
of q f are also as desired, namely q f (T )= qdes and q̇ f (T )= 0 as given in (12). The final displacement
q f (T )= qdes can be obtained by developing an algorithm for the automatic adjustment of parameter
qmax, which is shown later on in Section 2.2.2. The proof of the final velocity q̇ f (T )= 0 is sketched
as follows.

Note that qb(t) is the second derivative of Beta function, and Beta function has the property that
B(t)= B(T )− B(T − t). Therefore, all its even derivatives are odd (asymmetric) and odd deriva-
tives are even (symmetric) with respect to the middle point t = T/2. By introducing the new time
coordinate t̃ = t − T/2, one obtains

qb(t̃)= qb

(
t − T

2

)
, q̇b(t̃)= q̇b

(
t − T

2

)
,

and thus

qb(−t̃)= −qb(t̃), q̇b(−t̃)= q̇b(t̃). (18)

By substituting (18) into (16), one obtains the second derivative of the fiber variable q̈ f as a
function of t̃ . If

q̈ f (−t̃)= −q̈ f (t̃), (19)

holds, which implies that q̈ f (t) is odd with respect to t = T/2, one obtains that with the initial
condition q̇ f (0)= 0, ∫ T

0
q̈ f (t) dt = q̇ f (T )− q̇ f (0)= 0, (20)

which leads to the conclusion that q̇ f (T )= 0. Therefore, the selected qb(t) is a feasible candidate for
the rest-to-rest motion planning for the underactuated system (6).

It is important to notice that the Beta function-based algorithm works only when (19) holds.
Although a proof of (19) for all PDF systems is yet to be proposed, one can show its validity for
typical PDF systems such as cart-pole, hoop-pendulum,1 and planar ballbot system.20

2.2.2. Compute the fiber variable q f . After defining the based variable qb, one needs to find the
corresponding fiber variable q f as (15) satisfying given boundary conditions. The fiber variable q f

can be obtained by solving (17) with the rest-to-rest boundary conditions q f (0)= q̇ f (0)= q̇ f (T )= 0
and q f (T )= qdes.

Note that if q f (0)= q̇ f (0)= 0, the condition q̇ f (T )= 0 is automatically satisfied (proved in
Section 2.2.1). Therefore, one needs to solve (17) with independent boundary conditions

q f (0)= 0, q̇ f (0)= 0, q f (T )= qdes. (21)

However, one second-order differential equation can only carry two independent boundary condi-
tions. To deal with this problem, one can treat qmax as an independent variable. As qmax is constant,
one supplements (17) with one more differential equation28

q̇max(t)= 0. (22)
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Hence, the number of boundary conditions (21), which is three, matches the number of differential
equations (a second-order differential Eq. (17) and a first-order differential Eq. (22)). The correspond-
ing boundary value problem is then solvable and solving the boundary value problem is equivalent to
solving the rest-to-rest motion planning problem where the value of qmax is automatically determined.

Note that for PDF systems with m degrees of actuation and n degrees of underactuation, the time
complexity of an optimal control formulation is O(4(m + n)) since it requires to solve 4(m + n) first-
order differential equations. The Beta function-based method, however, needs to solve only 2m + n
first-order differential equations. Correspondingly, the time complexity is O(2m + n). Thus, the Beta
function-based method has a lower computational cost.

3. FAT-Based Feedback Control
Consider (6) where x ∈ Rm , u ∈ Rn and m > n. By selecting the state x to be the system output, the
control problem addressed in this paper can be stated as constructing an input u such that lim

t→∞ x = 0.

Different from a square system where G is an invertible matrix and a feedback law can be easily for-
mulated, for a non-square system where G is an m × n matrix, G−1 does not exist. The construction
of the control law for non-square systems can be conducted as follows.

3.1. Design of controller
To square the control system, one introduces the auxiliary input u∗ ∈ Rm where

u = G∗u∗, (23)

and the auxiliary matrix G∗ is chosen to be a full rank n × m matrix. Then, the non-square system
(6) is rewritten as

ẋ = f + GG∗u∗, (24)

of which the dimensions for the input and the state are matched. Note that an essential condition
for the selection of matrix G∗ is that the reconstructed system (24) is required to be controllable,
otherwise the design of u∗ cannot guarantee the convergence of x. Methods for the design of G∗ that
render system (24) controllable are specified in Appendix.

As matrix GG∗ is singular and not invertible, we restructure the system (24) as

ẋ = f + GG∗u∗ + u∗ − u∗ = u∗ + d, (25)

where d(x, u∗, t)= f + (GG∗ − I)u∗. Through the above rearrangement, the original non-square
system is restructured as the combination of two parts, a square system ẋ = u∗ referring to the aux-
iliary system and d, which can be viewed as an uncertainty term. Thus, the control problem for
the non-square system is reformulated as an adaptive control problem for a square system with
time-varying uncertainties, which is stated as constructing u∗ such that lim

t→∞ x = 0, with d unknown.

Compared with the adaptive control problem for a system with parametric uncertainty, it is diffi-
cult for a system with time-varying uncertainty. Traditional techniques such as the model reference
adaptive control (MRAC) are not feasible. To tackle this problem, we adopt the FAT-based adaptive
control.6, 10, 30, 31 Compared with the traditional MRAC, the advantage of the FAT-based control is in
the representation of the time-varying uncertainties by a set of given basis functions weighted by a set
of unknown constant parameters. Thus, the problem of eliminating the influence of the uncertainty
terms is transformed to the estimation of parametric errors. Then, Lyapunov designs are applied to
derive proper update laws adjusting the estimates of the unknown parameters. In what follows, the
construction of the controller based on the FAT approach is shown in detail.

To control (25), the effect of the uncertainty term d to the system needs to be eliminated. Note that
the uncertainty term varies with respect to time t and the state x (the input u can also be expressed
by t and x). However, at any moment (i.e., t = 1, t = 2, ...) d is a constant. We use weighted basis
functions to approximate d at each moment as

d(x, t, u∗)=
N∑

i=0

diψi (x, t)+ ε, (26)
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where di , referring to the plant parameter, is constant, ψi , referring to the basis function, consists of
x and t , and ε, referring to the approximation error, describes the deviation between the uncertainty
d and the weighted basis functions. Hence, by substituting (26) into the state Eq. (25) yields

ẋ = u∗ +
N∑

i=0

diψi (x, t)+ ε (27)

at each moment.
The control of (27) requires the unknown plant parameters di to be identified. To achieve this

goal, the plant parameters di at each time t are estimated by d̂i (t), referring to the control parameter.
The change of d̂i (t), with respect to time, is governed by an update law that we are to define in the
construction of a feedback controller u∗ from the following process.

To construct u∗ that steers x to zero and an update law that defines d̂i (t), a feasible Lyapunov
candidate function can be selected

V = 1

2
x�x + 1

2

N∑
i=0

(
d̂i (t)− di

)� (
d̂i (t)− di

)
, (28)

which combines both the state x and the estimation error d̂i (t)− di between the plant parameters
di and their estimates d̂i (t). Note that the parameters di are constants in (28), which implies ḋi = 0.
Therefore, the derivative of the Lyapunov function candidate is calculated as

V̇ = x� ẋ +
N∑

i=0

(
d̂i (t)− di

)� ˙̂di (t). (29)

Substituting the vector ẋ expressed by (27) into (29) gives

V̇ = x� (u∗ + ε
)+

N∑
i=0

d̂i (t)
� ˙̂di (t)+

N∑
i=0

d�
i

(
xψi (x, t)− ˙̂di (t)

)
.

As the control law to be constructed cannot contain unmeasurable elements, the unknown parameters
di in the derivative of the Lyapunov function need to be excluded. To cancel the terms with di , define
the update law

˙̂di (t)= xψi (x, t), (30)

which leads to

V̇ = −x�
(

u∗ +
N∑

i=0

d̂i (t)ψi (x, t)+ ε

)
.

The approximation error ε needs to be considered in the construction of the auxiliary input u∗. To
this end, select u∗ as

u∗ = u∗
x + u∗

ε , (31)

where u∗
ε is to cover the effect of ε. Thus, the derivative of the Lyapunov candidate function V̇

becomes

V̇ = −x�
(

u∗
x +

N∑
i=0

d̂i (t)ψi (x, t)

)
− x�(u∗

ε + ε
)
. (32)

Constructing

u∗
x = −K x −

N∑
i=0

d̂i (t)ψi (x, t), (33)
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where K is a positive matrix, yields

V̇ = −x� K x − x� (u∗
ε + ε

)
. (34)

Next, one designs a robust control law for u∗
ε to cover the effect of ε. Denote the components of

ε ∈ Rm to be ε j , where j = 1, 2, ..., m. Suppose ε j is bounded and its variation bound is available,
that is, there exists δ j > 0 such that ‖ε j‖ ≤ δ j . Then, selecting u∗

x the same as (33) and u∗
ε j as

u∗
ε j = −δ j sgn(x j ) (35)

yields

V̇ = −x� K x +
m∑

j=0

(
x jε j − δ j‖x j‖

)
. (36)

Note that
m∑

j=0

(
x jε j − δ j‖x j‖

)≤ 0 (37)

holds true when ε j is bounded by δ j . Therefore, V̇ ≤ 0 is guaranteed under the control law

u = G∗(u∗
x + u∗

ε ). (38)

Therefore, the convergence of the state x is achieved while the effect of the approximation error ε

is eliminated. Thus, (38) together with the update law (30) formulates the FAT-based controller for
non-square systems.

Note that if the number of the basis functions ψi is chosen to be sufficiently large such that ε ≈ 0,
the robust term in the designed controller could be dropped while guaranteeing the convergence of
the state x. Specifically, by selecting u∗

ε = 0, the derivative of the Lyapunov function candidate (32)
becomes

V̇ = −x�
(

u∗
x +

N∑
i=0

d̂i (t)ψi (x, t)

)
. (39)

Constructing the auxiliary input u∗ = u∗
x yields

V̇ = −x� K x ≤ 0, (40)

which implies the convergence of x. Hence, the system input u can be simplified from (38) as

u = −G∗
(

K x +
N∑

i=0

d̂i (t)ψi (x, t)

)
(41)

with the update law defined by (30).

3.2. Proof of stability
To prove the asymptotic stability of the closed-loop system formulated by (6), (30), and (41) around
the equilibrium point, we follow the Lyapunov-like analysis27 based on the following:

Lemma 1. If a scalar function V satisfies the following conditions:

1. V is lower bounded
2. V̇ is negative semi-definite
3. V̇ is uniformly continuous in time

then V̇ → 0 as t → ∞.
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Fig. 3. Cart-pole system.

The Lyapunov function V expressed by (28) satisfies the first and second conditions that V is
lower bounded and V̇ is negative semi-definite. To follow the Lyapunov-like analysis, we need to
show the uniform continuity of V̇ . This can be done by proving that V̈ is bounded, where

V̈ = −2x� K ẋ. (42)

As V̇ ≤ 0, V is bounded and thus so is its component x. According to (40), we see that V̇ is only
composed of variables x, V̇ is bounded, and, thus, so is its component ẋ. Therefore, V̈ is bounded
since it only contains the elements x and ẋ which are shown above to be bounded. Hence, V̇ is
uniformly continuous. The application of Barbalat’s lemma then indicates that x converges to 0
when t → ∞.

It should be noted that d̂i (t)− di , the error between the parameters and their estimations, is not
necessarily asymptotically stable. However, according to (40), we see that the derivative of the
Lyapunov function of the closed loop system is negative semi-definite and d̂i (t)− di is bounded,
which indicates that the update laws d̂i (t) finally converge to certain constant values.

4. Case Study
Here, in this section, we provide examples of the proposed motion planning and control algorithms
for two PDF systems: the cart-pole system and the planar ballbot system. We choose a fourth-order
Beta function in the motion planning examples and a set of polynomial basis functions for estimating
the variation d in the control examples, that is, ψi (x, t)= t i .

4.1. Cart-pole system
The cart-pole system, as shown in Fig. 3, is a well-known test bed for nonlinear control techniques. It
is combined by a sliding cart, on which a inverted pendulum is mounted, connected by a passive pin
joint. The displacement of the cart is denoted by s and the pendulum angle by θ , increasing counter-
clockwise. The input force f is acting on the cart. The dynamic model of the cart-pole system is
obtained1 as

(m + m p)s̈ − m pl cos θ θ̈ + m pl sin θ θ̇2 = f, (43)

−m pl cos θ s̈ + Jp θ̈ + m pgl sin θ = 0, (44)

where m, m p stand for the mass of the cart and of the pendulum and g for the standard gravitational
acceleration. Here, one assumes that the pendulum to be a uniform beam of length 2l. Thus, its inertia
momentum with respect to the pin joint Jp = 1

12 m p(2l)2 + m pl2 = 4
3 m pl2.

Beta function-based motion planning. The rest-to-rest motion planning problem is stated as finding
a feasible trajectory for θ such that the corresponding s satisfies the following boundary conditions:
s(0)= 0, ṡ(0)= 0, s(T )= sdes, ṡ(T )= 0. The candidate function for the input-based variable θ is
chosen in the form (15) with the constant parameter qmax to be determined.

To analyze the performance of the cart-pole system under proposed planner compared with that
under nonlinear optimal control formulation seeking for the minimum effort (the optimal criterion
is 1

2

∫
u2dt), we conduct simulations with respect to various desired shift sdes of the fiber variable s.

The value of sdes changes from 0 to 20π . We plot the configuration variables s and θ as functions
of both sdes and time t . The motion of the cart-pole system under the Beta function-based planner
is shown in Fig. 4 by blue surfaces whereas motion under optimal control in Fig. 5 by red surfaces.
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Fig. 4. Motion of the cart-pole system resulted from the Beta function-based control.

Fig. 5. Motion of the cart-pole system resulted from the minimum effort optimal control.

The numerical values used in the simulation are m = 1 kg, m p = 1 kg, l = 0.1 m, g = 9.8 m/s2, and
the time interval T = 10 s.

By comparing the simulation results of the optimal control and the Beta function-based approach,
one finds that the cart motions under both planners are almost the same whereas the pendulum
motions differ by less than 0.1 rad in maximum. For both motion planners, the comparison between
the values of the cost function J for the cart-pole system is illustrated in Table I. Note that the value
of J for the Beta function-based approach is only 0.038% higher than that of the optimal control in
maximum, which implies that both motion planners provide similar system performance. Upon this
fact, the Beta function-based approach is less computationally expensive and thus more suitable for
the real-time applications.

FAT-based control. To apply the constructed control law (41), we select the gain matrix K as
diag(5, 5, 5, 5). The initial conditions of the system output are x1, x2, x3, and x4, and are speci-
fied as 2, 0, 0, and 0. The numerical values used in the simulation are m = 1 kg, m p = 1 kg, l = 0.1
m, g = 9.8 m/s2, and T = 15 s. The initial state is (2, 0, 0, 0) and the initial values of the control
parameters d̂i (t) are chosen to be zero.

Under the constructed controller, the system outputs x1, x2, x3, and x4 converge to zero, as illus-
trated in Fig. 6. The solid curves stand for the trajectories of the displacement x1 and velocity x2 of
the cart, whereas the dashed curves for the angular displacement x3 and angular velocity x4 of the
pendulum.

4.2. Planar ballbot system
The planar ballbot system,14 illustrated in Fig. 7, is a mobile robot that moves on a rolling hoop. The
generalized coordinates of the system are denoted by the hoop angle φ(t) and the body angle with
respect to the ground θ(t), both of which are increasing counter-clockwise. The red dot on the hoop
is its initial contact point to the ground. One revolution of the initial contact point implies a 2πR
linear displacement for the center of the hoop. Note that at the starting configuration (φ(0)= 0), the

https://doi.org/10.1017/S0263574720000685 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574720000685


Motion planning and control for partially differentially flat systems 729

Table I. Comparison of the values of the cost function J for the cart-pole system

φdes Minimum effort optimal control Beta function-based control

2π 0.00206971 0.00206971
4π 0.00825442 0.00825443
6π 0.0184816 0.0184817
8π 0.0326325 0.0326329

10π 0.0505456 0.0505469
12π 0.0720210 0.0720247
14π 0.0968251 0.0968346
16π 0.124697 0.124718
18π 0.155355 0.155395
20π 0.188503 0.188575
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Fig. 6. Motion of the cart-pole system under the FAT-based control.
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Fig. 7. Planar ballbot system.

initial contact point touches the ground. The input torque τ is acting on the joint between the hoop
and the body, also increasing counter-clockwise. The dynamic model is obtained1 as(

Jc − m p Rl cos θ
)
φ̈ + (

Jp − m p Rl cos θ
)
θ̈ + m pl sin θ

(
Rθ̇2 + g

)= 0, (45)

−m p Rl cos θφ̈ + Jp θ̈ + m pgl sin θ = τ, (46)

where Jc = ( 4
3 m + m p)R2. The masses for the hoop and for the body are denoted by m and m p. R

stands for the radius of the hoop and g for the standard gravitational acceleration. Here, one assumes
that the body to be a uniform beam of length 2l. Thus, its inertia momentum with respect to the center
of the hoop Jp = 1

12 m p(2l)2 + m pl2 = 4
3 m pl2.

Beta function-based motion planning. The rest-to-rest motion planning problem is stated as finding
a feasible trajectory for θ such that the corresponding φ satisfies the following boundary conditions:
φ(0)= 0, φ̇(0)= 0, φ(T )= φdes, φ̇(T )= 0.

The performance of the ballbot system, under the proposed planner and the optimal control (with
the optimal criterion 1

2

∫
u2 dt), is compared as follows. We conduct simulations with respect to

various desired shift φdes of the fiber variable φ. The value of φdes changes from 0 to 20π . We plot the
configuration variables φ and θ as functions of both φdes and time t . Motion under the Beta function
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Table II. Comparison of the values of the cost function J for the planar ballbot system

φdes Minimum effort optimal control Beta function-based control

2π 0.00029573 0.00029573
4π 0.0011836 0.0011836
6π 0.00266544 0.00266544
8π 0.00474466 0.00474466

10π 0.00742581 0.00742582
12π 0.0107149 0.0107149
14π 0.0146193 0.0146194
16π 0.0191479 0.0191480
18π 0.0243110 0.0243113
20π 0.0301207 0.0301211

Fig. 8. Motion of the planar ballbot system resulted from the Beta function-based control.

Fig. 9. Motion of the planar ballbot system resulted from the minimum effort optimal control.

based planner is shown in Fig. 8 by blue surfaces, whereas motion under optimal control in Fig. 9
by red surfaces. The numerical values used in the simulation are m = 2 kg, m p = 1 kg, R = 0.2 m,
l = 0.3 m, g = 9.8 m/s2, and the time interval T = 10 s.

Similar to the cart-pole system, for the planar ballbot system, the hoop motions resulted from
the optimal control and the Beta function approach are almost the same whereas the body motions
differ by less than 0.2 rad in maximum. The comparison between the values of the cost function J
for the planar ballbot system under both motion planners is illustrated in Table II. Note that the value
of J for the Beta function-based approach is only 0.0013% higher than that of the optimal control
in maximum, which implies that both motion planners provide similar system performance. Upon
this fact, the less computationally expensive Beta function-based method is more suitable for the
real-time applications.
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Fig. 10. Motion of the planar ballbot system under the FAT-based control.

FAT-based control. In this section, we test the control law (38) also on the planar ballbot system. The
numerical values used in the simulation are selected the same as in the motion planning example.
The initial conditions of the system output x1, x2, x3, and x4 are specified as 2π , 0, 0, and 0, and the
initial values of the control parameters d̂i (t) are chosen to be zero. The gain matrix K is selected as
diag(1, 25, 5, 5).

Under the constructed controller, the system outputs x1, x2, x3, and x4 converge to zero, as illus-
trated in Fig. 10. The red solid curves stand for the trajectories of the displacement x1 and velocity
x2 of the hoop, whereas the blue solid curves for the angular displacement x3 and angular velocity x4

of the body. The input signal is illustrated by the dashed curve.

5. Conclusions
Motion planning and control problems for a class of PDF systems have been considered in this paper.
A Beta function-based motion planning algorithm has been constructed. The second-order derivative
of Beta function multiplied by a constant parameter was selected as a candidate for the base variable.
The parameter can be adjusted such that a desired shift for the fiber variable is obtained. Under the
proposed motion planning algorithm, rest-to-rest motion trajectories for the configuration variables
were generated with similar system performance but less computational cost, compared with the
nonlinear optimal control formulation.

To guarantee that the actual motions of systems converge to the planned trajectories, a FAT-based
control algorithm was proposed. By introducing an auxiliary input, an underactuated system was
restructured as the combination of a fully actuated system and the variation from the original system.
In the control process, the variation term was replaced by its approximation as a chosen basis function
weighted by constant parameters to be determined. These unknown plant parameters were estimated
at each instant, denoted by the adjustable control parameters using a defined update law. Thus, the
influence to the control process caused by the variation term can be eliminated.

The feasibility of the Beta function-based motion planner (satisfaction of given boundary condi-
tions) has been proved, and the stability of the FAT-based control method has been established. The
proposed motion planning and control techniques have been verified under simulations for two types
of PDF system, the cart-pole system and the planar ballbot. In the future work, more types of under-
actuated systems will be tested under the proposed techniques to extend their range of application.
Moreover, experimental works will be conducted for validating the proposed algorithms in practice.

6. Discussions
For the proposed motion planning, there are also several points to be improved in the future work.
For the Beta function-based algorithm, the partial feedback linearization with respect to the base
variable qb may induce an algorithmic singularity (e.g., θ = π/2 in the cart-pole system). To deal
with the singularity, several methods can be adopted. For example, by adjusting the time interval
T , qb is limited in certain range that does not contain the singular points; by dividing the desired
shift of the fiber variable qdes into several portions, qb can be formed by two or more connecting
second derivatives of Beta function; or, by selecting a rest-to-rest function for qb with more than one
oscillation, qdes can be reached with acceptable amplitudes of qb away from the singularities.

The FAT-based control method has the following features. Firstly, it is model-free and thus, appli-
cable to a wide range of systems. Secondly, the design of the FAT controller is based on a robust
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adaptive approach and therefore can reject the effect of the system uncertainties or external distur-
bances to the control system. Thirdly, unlike other model-free methods such as the soft computing
techniques, the stability for systems under the FAT control has been well established. The following
issues need to be clarified for the control algorithms in the future research. Firstly, a unified way of
selecting G∗ needs to be developed. Secondly, we chose the polynomials for estimating the variation
term d. However, the advantages and disadvantages for this type of basis function are not analyzed
and more candidates need to be investigated.
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Appendix
Methods for the design of G∗ that render system (24) controllable are specified as follows. It should
be noted that there is no unique way for defining G∗ in (23). Depending on the estimation of control
systems, it can be selected based on the following considerations.

Firstly, for the control system (6) whose tangent linearization preserves controllability, one can
design G∗ as follows. The linearization of (6) at the equilibrium (xe, ue) gives

ẋ = Ax + Bu, (A1)

where A = ∂( f +Gu)
∂x

∣∣∣∣
xe,ue

, B = ∂( f +Gu)
∂u

∣∣∣∣
xe,ue

. One selects G∗ in (23) as a constant matrix such that

Re
[
λ
(

Am×m − Bm×n G∗
n×m Km×m

)]
< 0, (A2)

where K is positive definite. Thus, the closed loop system

ẋ = (A − BG∗ K )x, (A3)

formulated by the linearized system (A1) and the state feedback portion u = −G∗ K x of the FAT-
based controller, is stable. The effect of the variation between the linearized system (A1) and the
original system (6) can be eliminated by the rest part of the FAT-based controller. Note that the
stability of (A3) also indicates the controllability of a linear system

ẋ = Ax + BG∗u∗, (A4)

where u∗ ∈R
m is viewed as the input. It is because the selection of u∗ = −K x renders (A4) to the

stable form (A3). As (A4) is the linearized system of (24) at the equilibrium, the controllability of
(A4) implies the local controllability of the restructured system (24) at the equilibrium.21

Secondly, for control systems whose tangent linearization does not preserve controllability, such
as the nonholonomic systems, one may select matrix G∗ as the weighted pseudoinverse of G as

G∗ = (G�W G)−1G�W . (A5)

The constant matrix W is designed such that system (24) is controllable. The controllability proof of
(24) for typical nonholonomic systems such as the unicycle system and the spherical rolling robot
can be found in ref. [22] with the selection of G∗ as (A5).
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Thirdly, for nonlinear systems (for instance, mechanical systems) modeled by

M(q)q̈ + N(q, q̇)= F(q)u, (A6)

the design of G∗ can be simplified by introducing, in the spirit of the sliding mode control, the
variable x = q̇ + �q, where � is a constant positive-definite Hermite matrix. Note that through this
design, when x approaches zero, q converges to zero as well. The derivative of x gives

ẋ = q̈ + �q̇. (A7)

Rearranging (A6) as q̈ = −M−1 N + M−1 Fu and substituting it into (A7) gives the state equation
ẋ = f + Gu, where f = −M−1 N + �q̇ and G = M−1 F. Compared with selecting (q, q̇) as the
state vector, the dimension of the state equation is halved and thus, the corresponding design of
matrix G∗ is simplified. Then, G∗ can be selected through the two aforementioned methods.
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