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Abstract

Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a
chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a cos2 envelope. The dynamics
emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in
the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with
identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways,
at initial relativistic speeds are studied.
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1. INTRODUCTION

Particle laser-acceleration is currently an active field of re-
search, stimulated by the continued progress made in laser
technology (Yanovsky et al., 2008) and the need for ma-
chines that are more compact and less costly than the conven-
tional accelerators. Many schemes and a number of different
accelerator configurations have been suggested and investi-
gated both theoretically (Scully & Zubairy, 1991; Umstadter
et al., 1995; Esarey et al., 1995; Salamin et al., 2000; 2008;
Wang et al., 2001; Pang et al., 2002; Salamin & Keitel, 2002;
Kawata et al., 2005; Salamin, 2006; Xu et al., 2007; Xie
et al., 2010) and experimentally (Malka et al., 1997; Shao
et al., 2013; Plettner et al., 2005; Sears et al., 2005). The
idea of employing a chirped pulse in laser acceleration has
been suggested relatively recently (Singh, 2005; Sohbatza-
deh et al., 2006; 2009; 2010; 2011; Gupta & Suk, 2007;
Galow et al., 2011; Salamin, 2012). The basic mechanism
at work in this scheme hinges on the fact that chirping the fre-
quency distorts the pulse and generates a quasi-static electric
field portion which, in turn, gives the particle, e.g., an elec-
tron, a substantial boost. In other words, the electron
moves synchronously with the pulse by surfing over this low-
frequency portion and gains energy continuously from it.

The scheme, as such, works to accelerate electrons from
rest, and can be useful as a booster, too.

Several papers have been written on acceleration by a
chirped pulse, mostly presenting numerical results. In this
paper, the aim is two-fold. Efforts will be invested here to
find out how much progress can be achieved by pursuing
the analytic investigations. It is always good to develop the
equations that guide our thinking about the physics and
also help us benchmark the numerical simulations, which
will ultimately be resorted to, to handle a real accelerator con-
figuration. The second, intimately related, aim of this work is
to some extent pedagogical. It is hoped that detailed investi-
gation of the various dynamical aspects of the process will
shed new and much needed light onto the mechanism of ac-
celeration by a chirped pulse (Galow et al., 2011).

The basic theory and main working equations will be pre-
sented in Section 2. In the same section, the equations will be
used to investigate the dynamics of a single electron injected
axially for subsequent interaction with a chirped pulse. The
parameters used in this investigation are the same as those
used elsewhere (Hartemann et al., 1995) albeit employing
a non-chirped pulse. The purpose is to show that both inves-
tigations agree in the appropriate limits. Details of the inves-
tigation of acceleration configurations of electrons initially at
rest at the origin of coordinates, axially injected, and injected
sideways at some angle with respect to the propagation direc-
tion of the pulse, will be presented in Section 3. Finally, a
summary and the main conclusions will be given in Section 4.
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2. BASIC THEORY

The theoretical background of laser acceleration by a chirped
plane-wave laser pulse will be briefly described in this sec-
tion. A particular case of axial injection will be discussed
in some detail and the results of our calculations will be
shown to have the correct limits of acceleration by the corre-
sponding unchirped pulse (Hartemann et al., 1995).

2.1. General

In the main working equations for the dynamics of a single
electron in chirped plane-wave laser fields, the electron is
treated as a point particle of mass m and charge −e, the rel-
ativistic energy and momentum are given, respectively, by
ε= γmc2 and p→= γmcβ

→, where β→ is the velocity of the parti-
cle scaled by c, the speed of light in vacuum, and γ= (1−
β2)−1/2. The fields, on the other hand, are modeled by an in-
finite plane-wave and a finite-duration plane-wave pulse. In
modeling those fields the combination η= ω0t− k0z, in
which ω0 is the initial (unchirped) frequency and k0= 2π/
λ0 is the wavenumber, is used as a variable. Thus, the chirped
frequency is ω= ω0(1+ bη), where b is the dimensionless
chirp parameter. We work with the fields (SI units)

E
→
(η) = îE0 sin (η+ bη2) cos2

π

τω0
(η− �η)

[ ]
, (1)

B
→
(η) = ĵ

E(η)
c

. (2)

These equations model the fields of a pulse with a cos2 enve-
lope, a temporal width τ= 50 fs, a wavelength λ0= 1 μm,
provided the choice �η = 15π is made. For an electron inter-
acting with an infinite plane wave, the normalized field
strength a= eE0/mcω0 is related to the laser field intensity
I by a = e

�������
2I/cε0

√
/(mcω0), where ε0 is the permittivity of

free space and λ0 is the wavelength of the unchirped laser
field. Inserting values of the universal constants, one gets

I
W
cm2

[ ]
= 1.36817 × 1018

a

λ0[μm]

[ ]2
, (3)

thus making a2 a dimensionless intensity parameter.
In the next two subsections, two sets of conditions on the

initial injection position and velocity of the electron will be
considered. Section 2.2 will be devoted to the axial injection
configuration, while the more general case of electron injec-
tion at an angle ζ0 to the pulse propagation direction, will be
taken up in Section 2.3. Various aspects of the electron dy-
namics will be discussed, including evolution of its kinetic
energy and velocity components, as well as its trajectories.
In order to be able to tackle the general injection situation,
for which some of the analytic solutions become too

cumbersome, we will resort here to numerical integration
of the combined equations of motion

dβ
→

dt
= e

γmc
β
→
(β
→ · E→ )− (E

→ + cβ
→
× B

→
)

[ ]
. (4)

Instead of working directly with the time t as a variable, we
will employ η. The integration limits will be denoted by ηi
and ηf. Equation (4) is equivalent to three coupled differential
equations. This system of differential equations has been
solved numerically using Runge-Kutta-based Mathematica
codes we have developed over the years. All of our results
have independently been confirmed by codes written in
Python, as well.

2.2. Axial Injection

In Salamin (2012), the special case corresponding to ζ0= 0
(axial injection) was briefly discussed. Much of the discus-
sion there was based on the analytic solution to the Newton-
Lorentz equations. Issues pertaining to this particular case
not covered in Salamin (2012) will be discussed here for
completeness and in order to demonstrate that the results ob-
tained in the chirped pulse have their correct unchirped limits
published elsewhere (Hartemann et al., 1995).
For the initial conditions on particle injection, the assump-

tion will be made that the front of the pulse catches up with
the MeV electron at t= 0, precisely at the origin of coordi-
nates (x0= y0= z0= 0). Hence, ηi= 0 and ηf= 30π for the
cos2 pulse described above. Furthermore, the electron is as-
sumed to be traveling axially (along the direction of propaga-
tion of the pulse, the z-axis) with a scaled speed β0, derived
from γ0= 10, which corresponds to the initial injection ki-
netic energy K0 ~ 4.6 MeV. For an unchirped laser pulse
of field intensity I ~ 1.23 × 1019 W/cm2 (a= 3), this config-
uration has been discussed thoroughly elsewhere (Hartemann
et al., 1995). What we will do below is investigate the same
electron dynamics, albeit in a chirped laser pulse. The results
will be displayed along with their unchirped counterparts, so
that visual comparison may be facilitated.
To begin with, Figure 1a shows the unchirped scaled elec-

tric field of the pulse vs. η. Figure 1c shows how this field
gets distorted when the frequency is chirped using
b=−0.0103. The pulse develops an asymmetrical low-
frequency, indeed quasi-static, part. In Figure 1b, evolution
with η of the kinetic energy of the electron is shown for
b= 0. As expected from the Lawson-Woodward theorem
(Woodward, 1947; Lawson, 1979) the electron gains no net
energy from interaction with the plane-wave unchirped
pulse. Substantial gain, however, is shown in Figure 1d to
result from synchronous interaction with the low-frequency
part of the chirped pulse. As expected, too, interaction with
the wings, whose frequency is minimally affected by the
chirp, results in very little or no further energy gain at all.
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As has been shown elsewhere (Hartemann et al., 1995;
Salamin, 2012), in the case of axial injection, the trajectory
of the electron is confined to the xz–plane, the polarization
plane of the laser pulse. Instead of showing the xz trajectory,
Figure 2 displays evolution of the x– and z– coordinates, sep-
arately, with η. By comparing the unchirped Figure 2a with
the chirped Figure 2c one can read clearly the amount of
net electron displacement, Δx as a result of interaction with
the pulse (poderomotive scattering). For the parameter set
used, Δx ~ 2 μm (unchirped) whereas Δx ~ 7.5 mm (chirped).

Likewise, the corresponding axial excursions made by the
electron during interaction with the pulse are: Δz ~ 8 mm (un-
chirped) and Δz ~ 3.8 m (chirped).

Components of the electron scaled velocity vector are dis-
played in Fig. 3. Interaction with the unchirped pulse gives
results identical to those obtained earlier (Hartemann et al.,
1995). Figures 3a and 3b show that the electron is left
behind the pulse moving at exactly the same velocity with
which it was injected initially, again as expected from the
Lawson-Woodward theorem (Woodward, 1947; Lawson,
1979). By contrast, interaction with the chirped pulse results
in clear particle acceleration, as shown in Figures 3c and 3d.
The electron emerges from the interaction with a slight
increase in its transverse velocity βx, while βz → 1.

2.3. Sideways Injection

The axial injection configuration, discussed in Section 2.2, is
probably difficult to realize experimentally. Assuming that
the model itself is sound, a more practically-realizable con-
figuration would be one in which the electron is injected
in, for example, the yz–plane at an angle ζ0 with the laser
pulse propagation direction, the z–axis. Thus, the initial
injection velocity of the electron, scaled by the speed of
light c, may be written as

β
→

0 = β0(− ĵ sin ζ0 + k̂ cos ζ0). (5)

Here, too, the assumption will be made that the front of the
laser pulse catches up with the electron at t= 0 at the
origin of coordinates. Every result to be presented below
has been produced employing numerical codes which
return the corresponding result discussed in Section 2.2 in

Fig. 1. (a) Evolution of the normalized unchirped (b= 0) electric field of a
cos2 laser pulse of duration τ= 50 fs. (b) Evolution of the electron kinetic
energy during interaction with the unchirped pulse. (c) and (d ): Same as
(a) and (b), respectively, but for a chirped laser pulse (b=−0.0103). The
remaining parameters are: λ0= 1 μm, a= 3 (intensity I ~ 1.23 × 1019 W/
cm2) and γ0= 10 (injection kinetic energy K0 ~ 4.6 MeV).

Fig. 2. (a) and (b): Evolution of the transverse and axial position coordi-
nates, respectively, as functions of the variable η, while interacting with an
unchirped (b= 0) cos2 laser pulse of duration τ= 50 fs. (c) and (d ):Same
as (a) and (b), respectively, but for a chirped pulse (b=−0.0103). The re-
maining parameters are the same as in Figure 1.

Fig. 3. (a) and (b): Evolution of the electron transverse and axial scaled
velocity components, respectively, as functions of the variable η, while
interacting with an unchirped (b= 0) cos2 laser pulse of duration τ= 50 fs.
(c) and (d ): Same as (a) and (b), respectively, but for a chirped pulse
(b=−0.0103). The remaining parameters are the same as in Figure 1.
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the limit ζ0 → 0. More importantly, the following logical
amendments to the working equations must be introduced
(Salamin, 2012). Adopting Eq. (5) as the initial condition
on the velocity requires that the constants of the motion be
altered to read: c1= γβy=−γ0β0 sinζ0, and c2= γ(1− βz)=
γ0(1− β0 cosζ0). Taking all of this into consideration, the
scaled energy expression takes the form

γ = 1+ (γβx)
2 + (γ0β0 sin ζ0)

2 + γ20(1− β0 cos ζ0)
2

2γ0(1− β0 cos ζ0)
. (6)

On the other hand, the general expression of γβx(η) stays the
same (Salamin, 2012)

γβx(η) = a

∫η
η0

sin (η′ + bη′2 ) cos2
π

τω0
(η′ − �η)

[ ]
dη′. (7)

Before investigating the electron dynamics in this general
scenario, values of the chirp parameter b, appropriate for ob-
taining substantial acceleration, will have to be obtained. To
this end, exit electron kinetic energies will be calculated as b
is varied from −0.04 to zero. The results are shown in
Figure 4, for the cases of axial injection (ζ0= 0°) and side-
ways injection (at ζ0= 10°). All other parameters are the
same as in Section 2.2. The peaks in the figures occur at b
values which result in optimal synchronous motion between
the electron and the pulse. Conversely, total lack of synchro-
nization leads to the appearance of the minima, which ex-
press zero net energy gain. Note that the absolute
maximum in Figure 4, which has already been used in the
case of axial injection, occurs at b ~ − 0.0103.

As it turns out, the plots of Kexit vs. b, corresponding to the
different cases of particle injection into the laser field, have
the same structure and exhibit minima and maxima at pre-
cisely the same values of b, with all other parameters the
same. The heights of the corresponding maxima, however,
are different. For the chosen parameters, the exit kinetic en-
ergies associated with the configuration of sideways injection
at ζ0= 10° are roughly a factor of 4 smaller than those of the
axial injection case.
The above conclusions should come as no surprise, in light

of the following. To find the values of b that correspond to
maximum exit kinetic energies, one sets equal to zero the de-
rivative with respect to b of the expression of γ given in Eq.
(6). This is tantamount to extremizing γβx with respect to b,
Eq. (7). In fact, this process amounts to finding the zeros of
the following function, obtained by differentiating with re-
spect to b under the integral in Eq. (7)

S(b) =
∫η
η0

η′2 cos (η′ + bη′2 ) cos2
π

τω0
(η′ − �η)

[ ]
dη′. (8)

Careful inspection of S(b) quickly reveals that it is indepen-
dent of the initial velocity of the electron and the laser field
intensity parameter a. Thus, those zeros as well as the
maxima exhibited by the Kexit vs. b plots, will always have
the same general structure and the same b values at which
the zeros of S(b) and maxima of Kexit occur, provided the
pulse-shape is the same. In other words, the positions of
the maxima are model-dependent. The heights of the
maxima, however, depend upon a2, γ0 and ζ0. This is demon-
strated in Figure 5 where, in addition to S(b), the exit kinetic
energy is shown over the same range of b values for the case
of an electron initially at rest at the origin. Vertical lines are
added to indicate the zeros of S(b) and the corresponding exit
kinetic energy maxima.

Fig. 4. Electron exit kinetic energy, Kexit ≡K(ηf)= [γ(ηf)− 1]mc2, where
ηf= 30π, vs. the chirp parameter, as a result of interaction with a chirped
plane-wave laser pulse of a cos2 envelope and duration τ= 50 fs. The
laser wavelength is λ0= 1 μm, and a= 3 (I ~ 1.23 × 1019 W/cm2). Initial
injection is at γ0= 10 (K0 ~ 4.6 MeV) axially (ζ0= 0) and sideways at
ζ0= 10°. Onset of the interaction is assumed to have been at t= 0, the instant
the electron passes through the origin of coordinates.

Fig. 5. Same as Figure 4, but for electron initial conditions of rest at the
origin of coordinates. Shown also is the function S(b) given by Eq. (8)
whose zeros are the values of b corresponding to each of which the exit ki-
netic energy attained is a maximum. The vertical lines indicate the zeros of S
and the exit kinetic energy maxima.

N.M. Jisrawi et al.674

https://doi.org/10.1017/S0263034614000603 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034614000603


3. FURTHER ELECTRON DYNAMICS

In the investigations of the previous section, the parameters
used were chosen for the purpose of comparing our results,
in the limit of b → 0 (unchirped configuration) with
known ones (Hartemann, 1995), in addition to investigating
the process of net energy gain from interaction with the
chirped pulse. This section will be devoted to further inves-
tigations of the electron dynamics in chirped pulses employ-
ing a totally different, yet experimentally available, set of
laser and electron parameters. The laser field intensity param-
eter will be taken as a= 10 (I ~ 1.37 × 1020 W/cm2, at λ0=
1 μm).
Here, too, situations corresponding to three different sets

of initial conditions will be explored. Variations of Kexit

with b for all three cases are shown in Figure 6. As has
been shown above, the same values of b locate the maxima
of all cases. Axial injection results in best gains while less
energy is gained when injection is made at ζ0> 0. With in-
creasing injection angle more energy is carried by the trans-
verse degree of freedom, oscillation in the polarization
direction of the laser pulse. Note also that the figure shows
clearly that substantial energy is also gained in the case of
initial rest at the origin. This configuration will be discussed
in more details in the next subsection.

3.1. Acceleration from Rest

In laser-assisted atomic ionization, an electron may be pro-
duced in a state of near rest (Hu & Starace, 2002; Maltsef
& Ditmire, 2003). When subsequently subjected to the
fields of the chirped pulse, such an electron may be acceler-
ated in vacuum. If the front of the pulse reaches the point at
which the electron is born at the same time, its subsequent
dynamics will be dominated by the fields of such a pulse.

This is clearly an idealized state of affairs and a probably dif-
ficult scenario to realize experimentally. Nevertheless, sever-
al aspects of the electron motion will be discussed here based
on the solutions to the relativistic equations of motion.

Note first the synchronized rise in the kinetic energy of the
electron in Figure 7, during interaction with the part of the
pulse that has been distorted by the chirp. That accelerating
part of the pulse witnesses a substantial decrease in the fre-
quency due to the negative chirp. The electron interacts
with an essentially quasi-static electric field and gains
about 4.53841 GeV from it, for the parameter set used and
b=−0.01. Interaction with the higher frequency parts of
the pulse results in no further energy gain or loss.

Figure 8 shows the x– and z–components of the velocity of
the electron, scaled by c, while it is interacting with the pulse.

Fig. 6. Same as Figure 4, but for a= 10 and electron initial conditions
of rest at the origin of coordinates, and injection at γ0 = 5, for ζ0= 0
and 5°.

Fig. 7. Evolution in η of the normalized electric field strength, Ex/E0, of a
chirped (b=−0.01) cos2 laser pulse of 50 fs duration, and the kinetic
energy, K, of a single electron interacting with it. The field intensity is I ~
1.37 × 1020 W/cm2 (a= 10, λ0= 1 μm). Initial conditions are those of
rest at the origin of coordinates.

Fig. 8. Evolution in η of the components, βz and βx, of the velocity vector,
normalized by the speed of light in vacuum, of the electron whose kinetic
energy is shown in Figure 7.
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In the absence of a force y–component, the electron motion is
confined to the xz–plane and, thus, a βy is absent. Note that
during the initial stage of interaction with the pulse, βx
only rises, due to the x–component of the force exerted by
the laser’s oscillatory electric field. Soon after that, the
z–component of the v→ × B

→
force of the laser begins to

impart axial kicks to the electron. Thus, while βx continues
to exhibit essentially equal-amplitude oscillations for a
while, βz oscillates between zero and an increasing positive
value which approaches unity quickly as the electron is left
behind the pulse. Note that the exit value of βx is nonzero,
which shows that the electron will suffer net deflection
from pure axial motion (ponderomotive scattering). A scat-
tering angle, indicating the direction in which the electron
will emerge after interaction with the pulse has ceased,
may be defined by

θsc = arctan
βx,exit
βz,exit

[ ]
, (9)

where βx,exit= βx(ηf) and βz,exit= βz(ηf). Using the exit values
βx(ηf) ~ 0.0150046 and βz(ηf) ~ 0.999887 results in a scatter-
ing angle of θsc ~ 0.859732°.
As has just been pointed out, the electron trajectory, while

interacting with the laser pulse, is two-dimensional (in the
xz–plane). A sample trajectory is shown in Figure 9. Initial
interaction with the linearly-polarized pulse results in the fa-
miliar structure shown in the inset. After these initial oscilla-
tions the electron follows an essentially straight-line
trajectory while interacting with the quasi-static part of the
electric field. For the parameter set employed, the calculation
returns exit transverse and axial excursions Δx ~ 0.944792
mm, and Δz ~ 5.75264 cm, respectively.
Performance of a conventional accelerator is often indicat-

ed by quoting its average acceleration gradient. An estimate

of this quantity may be obtained by dividing the exit kinetic
energy (see Fig. 7) by the exit axial excursion (see Fig. 9)

�G ≡
ΔK

Δz
, (10)

where ΔK= K(ηf)− K(η0) and Δz= z(ηf)− z(η0). For exam-
ple, a natural limit of ~ 100 MeV/m exists on the average
gradient of a conventional electron linear accelerator. For
the electron accelerated from rest by the present scheme,
our results show that �G ∼ 78.8926 GeV/m, or close to
three orders of magnitude times the conventional limit.

3.2. Acceleration from Axial Injection

An already fast electron, pre-accelerated by a table-top linear
accelerator or an electron gun, may be subjected to a static
magnetic field in order to bend its trajectory prior to shining
the laser pulse on it. This can approximate the case of axial
injection, to be discussed here. Again, the assumption is
made that the front end of the pulse will catch up with the
electron at t= 0, exactly at the origin of the coordinate
system. Following the pattern of the previous subsection,
the normalized electric field of the high-intensity chirped
pulse is shown in Figure 10, together with the evolving kinet-
ic energy of the electron during interaction. In addition to ex-
hibiting the same general features as in Figure 7, Figure 10
shows an increase in the electron’s kinetic energy from K0

~ 2.044 MeV (γ0= 5) to Kexit ~ 44.9277 GeV, or more
than four orders of magnitude.
Evolution of the electron’s velocity during interaction with

the chirped pulse is shown in Figure 11. Here, too, subse-
quent motion is two-dimensional (in the polarization plane
of the laser). As for the case of acceleration from rest, βx
starts from zero due to the strong action of the oscillating
Ex of the laser pulse on it and oscillates between roughly
–0.1 and 0.1. Upon exit from the interaction region βx ~
0.00151586. On the other hand, βz starts from a relativistic

Fig. 9. Two-dimensional trajectory of the single electron whose kinetic
energy is shown in Figure 7. The inset is a zoom-in on the part of the trajec-
tory which results from interaction with the first few laser cycles.

Fig. 10. Same as Figure 7, but for an electron injected axially with an initial
kinetic energy K0 ~ 2.044 MeV (γ0= 5).
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value, oscillates for some time between that value and an in-
creasing maximum, due to the combined action of Ez and
(n→ × B

→)z, and finally approaches unity as a result of interac-
tion with the quasi-static electric field. It is eventually left
behind the pulse moving at βz ~ 0.999999.
Finally, the two-dimensional trajectory for the case of

axial injection is shown in Figure 12. The trajectory looks
similar in overall features to the corresponding one displayed
in Figure 9 for the case of acceleration from rest. The dimen-
sions in this case, however, are roughly 10-fold transversely
and a hundred-fold axially, as a result of the initial forward
momentum. Note that the electron undergoes the transverse
and axial displacements Δx ~ 9.35248 mm and Δz ~
5.63773 m, respectively. The latter, when combined with
Kexit ~ 44.9277 GeV, yields �G ~ 7.96911 GeV/m. Note fur-
ther that, although the case of axial injection results in rough-
ly ten times overall exit kinetic energy for the electron,
compared with the case of initial rest at the origin, the accel-
eration gradient is almost ten times less in the latter case

compared with the former. The initial forward momentum re-
sults in a much larger axial excursion, in this case, than in the
case of acceleration from rest.

3.3. Acceleration from Sideways Injection

It seems much easier, from an experimental perspective, for
the electron to be injected sideways (at an angle ζ0 with re-
spect to the direction of pulse propagation). This configura-
tion will be discussed next. The injected electron has initial
transverse and axial momenta. Thus, its subsequent motion
will not be confined to the xz–plane. In fact, the trajectory
will be three-dimensional, in spite of the fact that the initial
injection is made within the xz–plane. This is due to the
influence of the magnetic field of the laser pulse. Discussions
will now be presented of the case of injection at γ0= 5, but at
the angle ζ0= 5°.

The normalized electric field of the pulse and evolution of
the kinetic energy of the electron are shown in Figure 13. The
fact that the electron, in this case, is injected with less initial
axial momentum, than in the case of purely axial injection
when the same parameters are used, will result in lower
exit kinetic energy for the accelerated electron; see Eq. (6).
The exit kinetic energy that may be read off of Figure 13 is
about 38 GeV, compared to ~ 45 GeV for an axially injected
electron.

Components of the scaled velocity vector β are shown in
Figure 14. As expected, βx starts initially from a value of
zero, oscillates during interaction and retains a small exit
value, ~ 0.00179557 for the parameter set employed. On
the other hand, the y– and z–components, βy and βz, have
nonzero initial values, which help them accumulate succes-
sive increases after interaction with every laser cycle. Partly
due to the fact that the injection angle is too small and,
hence, the initial value of βz is greater than that of βy, the
exit values of these two components are widely different
(βy → − 5.75237 × 10−6 and βz → 0.999998). Using the

Fig. 12. Same as Figure 9, but for axial injection with γ0= 5.

Fig. 13. Same as Figure 7, but for an electron injected sideways at the angle
ζ0= 5° with the direction of pulse propagation, and an initial kinetic energy
K0 ~ 2.044 MeV (γ0= 5).

Fig. 11. Same as Figure 8, but for axial injection with γ0= 5.
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exit values of βx and βz in Eq. (9) gives θsc ~ 0.102879°. In
conclusion, the electron emerges from interaction with the
pulse essentially axially.

Sideways injection of the electron leads to the three-
dimensional trajectory shown in Figure 15. Details of the
part of that trajectory which result from interaction with the
first few laser cycles are displayed in Figure 15b. The exis-
tence of turning points in the x– and y–coordinates is quite
evident. More clearly pronounced is the forward drift in z.
The following exit coordinates have been calculated: xexit ~
7.89547 mm, yexit ~ − 53.5223 μm, and zexit ~ 4.01806 m.
Therefore, using the calculated exit kinetic energy of Kexit

~ 37.9288 GeV, Eq. (10) yields �G ~ 9.43905 GeV/m, or
about two orders of magnitude better than the limit of a con-
ventional linear accelerator.

4. DISCUSSION AND CONCLUSIONS

Dynamics of a single electron submitted to a high-intensity
chirped laser pulse has been the subject of investigation in
this work. The aim has been mainly pedagogical: to gain
more insight into the process of electron acceleration by a
chirped laser pulse. A simple plane-wave model representa-
tion of the electromagnetic fields of the pulse has been em-
ployed. Three different initial conditions on the position
and velocity of the electron have been considered: rest at
the origin, injection axially and injection at an angle ζ0 rela-
tive to the direction of pulse propagation. Working equations
of general applicability have been derived and used directly
to study some aspects of the electron dynamics, or else
have served as a basis for benchmarking the numerical sim-
ulations that were conducted to investigate further more so-
phisticated aspects.
The case of axial injection has been taken up first, using

parameters the same as ones employed in a similar study,
albeit for a non-chirped laser pulse (Hartemann et al.,
1995). The aim has been to show that our chirped-pulse-
based investigations would produce the same results in the
appropriate limit, both analytically and numerically. This
aim has been fully accomplished.
Then more thorough investigations were conducted, which

typically started by scanning a small portion of the chirp pa-
rameter space for values that would lead to sizable energy
gains by the electron from interaction with the pulse. It has
been shown that the chirp parameter values which lead to
maximum gain are not affected by the change of conditions
on the electron initial injection. The same values of b maxi-
mize the gain in all considered configurations.
In an actual experiment, one would be interested in a

number of important details, such as the actual trajectory,
the ejection dynamics and, most importantly, the exit kinetic
energy of the electron. In our single-particle calculations,
synchronous motion of the electron, which is believed to
be responsible for the energy gain, has been demonstrated
by showing evolution of its kinetic energy in a typical
event together with the normalized electric field seen by it.
It has been shown, in all cases considered, that substantial
energy gain takes place always during interaction with a

Fig. 14. Same as Figure 11, but for an electron injected sideways at the angle
ζ0= 5° with the direction of pulse propagation, and an initial kinetic energy
K0 ~ 2.044 MeV (γ0= 5).

Fig. 15. Three-dimensional trajectory of a single electron submitted to a
chirped laser pulse (b=− 0.01). In (b) we zoom-in on part of the trajectory
followed during roughly the first one-third of the interaction time with the
pulse. Injection is at ζ0= 5° and γ0= 5 (K0 ~ 2.044 MeV). The laser param-
eters are: a= 10, λ0= 1 μm, and τ= 50 fs.
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quasi-static part of the field generated by chirping the pulse
frequency appropriately.
Evolution of the velocity components during interaction

have been studied. More importantly, the exit electron veloc-
ities were found in each example and a scattering angle has
been calculated. In all cases, the particles were found to be
ejected within a small cone about the propagation direction
of the pulse. In other words, while this demonstrates ponder-
omotive scattering, it also predicts that a bunch or beam of
electrons would suffer little spatial diffraction.
To gain further insight into the particle-field interactions,

actual trajectories for the various investigated events have
been calculated. Straightforward arguments, based on the ge-
neral equations of motion, led to the conclusion that the tra-
jectories in the cases of acceleration from rest at the origin or
from axial injection would be two-dimensional, motion of
the electron would be confined to the polarization plane of
the pulse. Sideways injection, however, has been shown to
lead to three-dimensional trajectories.
Finally, it should be borne in mind that the model adopted

in this work is plane-wave in character. As such, some of the
results may turn out to be overly exaggerated. The kinds of
laser peak intensities used in our calculations can only be
reached by tightly focused pulses. As is well known, a tightly
focused gaussian beam, for example, is plane-wave in char-
acter only on the focal plane or else too far away from such
a plane. Thus, the energy gains of several tens of GeV and
the acceleration gradients of a few GeV/m, predicted in
this work, may be overestimates of what is expected to
emerge from a more realistic model, like that of a tightly fo-
cused gaussian pulse.
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