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Channel bifurcations are a fundamental element of a broad variety of flowing
freshwater environments worldwide, such as braiding and anabranching rivers, river
deltas and alluvial fans. River bifurcations often develop asymmetrical configurations
with uneven discharge partition and a bed elevation gap between the downstream
anabranches. This has been reproduced by one-dimensional (1-D) analytical theories
which, however, rely on the empirical calibration of one or more parameters and
cannot provide a clear and detailed physical explanation of the observed dynamics.
We propose a novel two-dimensional (2-D) solution for the flow and bed topography
in channel bifurcations based on an innovative application to a multi-thread channel
configuration of the 2-D steady linear solution developed decades ago to study
river bars and meandering in single thread river settings. The resonant value
of the upstream channel aspect ratio, corresponding to the theoretical resonance
condition of regular river meanders (Blondeaux & Seminara, J. Fluid Mech., vol. 157,
1985, pp. 449–470) is the key parameter discriminating between symmetrical and
asymmetrical bifurcations, in quantitative agreement with experimental observations
and numerical simulations, and qualitatively matching field observations. Only when
the aspect ratio of the upstream channel of the bifurcation exceeds resonance, is the
bifurcation node able to trigger the upstream development of a steady alternate bar
pattern, thus creating an unbalanced configuration. Ultimately, the work provides an
analytical explanation of the intrinsic legacy between bifurcation asymmetry and the
phenomenon of 2-D upstream morphodynamic influence discovered by Zolezzi &
Seminara (J. Fluid Mech., vol. 438, 2001, pp. 183–211).

Key words: instability, river dynamics, sediment transport

1. Introduction

Bifurcations are fundamental processes in the dynamics of many river systems such
as alluvial fans, braided and anastomosing rivers, fluvial lowland plains and deltas
(Kleinhans et al. 2013). Understanding the control on their morphodynamics and how
they evolve in time is therefore key to increase the present knowledge on a vast class
of fluvial systems.

† Email address for correspondence: marco.redolfi@unitn.it

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

38
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

mailto:marco.redolfi@unitn.it
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.389&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.389&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.389&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1017/jfm.2016.389&domain=pdf
https://doi.org/10.1017/jfm.2016.389


Channel bifurcations and morphodynamic influence 477

Many observations in both natural and laboratory bifurcations (Mosley 1983;
Federici & Paola 2003; Zolezzi, Bertoldi & Tubino 2006; Edmonds & Slingerland
2008) show their tendency to develop an unbalanced configuration, with one
branch carrying most of the coming discharge. Such asymmetric behaviour can be
geometrically forced, like in the presence of channel curvature or of a slope advantage
of one of the distributaries, but can arise even in symmetrical configurations in the
absence of external forcing (Bertoldi & Tubino 2007).

Despite the flow being strongly three-dimensional, several properties of bifurcation
systems have been modelled by matching a simple one-dimensional scheme for the
morphodynamics of each channel with a suitable nodal condition. Following this
approach, Wang, Fokkink & de Vries (1995) proposed an empirical relation for the
partition of the sediment flux, showing how an uneven sediment and water distribution
may occur even in a symmetrical planform configuration. A more physically based
nodal condition has been proposed by Bolla Pittaluga, Repetto & Tubino (2003), who
introduced a simplified process description based on two rectangular cells located
just upstream the bifurcation, which mutually exchange water and sediment flows
depending on the transverse bottom gradient. This approach allows for including
further ingredients, like the secondary flow due to bends or offtake angles (Kleinhans
et al. 2008; van der Mark & Mosselman 2013) and the effect of incoming migrating
bars (Bertoldi et al. 2009), and enables us to test alternative transport formulae
(Bolla Pittaluga, Coco & Kleinhans 2015). The experimental observations of Bertoldi
& Tubino (2007) confirmed the capability of Bolla Pittaluga et al. (2003) model to
distinguish between balanced and unbalanced cases.

The main limitation of the above approaches lie in the presence of model parameters
that need to be calibrated: such an operation can hardly be performed on a physical
process basis but it is rather the result of purely numerical model tests against
observed data. In the Bolla Pittaluga et al. (2003) approach, this is mainly represented
by the longitudinal size of the upstream reach that controls the partition of sediment
and water fluxes in the distributaries. As typical of simplified closure relations, this
ultimately reflects a limitation in the physical description of the complex process at
hand.

Moreover, analysis of the experimental findings of Bertoldi & Tubino (2007) points
out a particularly intriguing finding, whereby the optimal length of the upstream
exchange reach is closely related to how distant local hydraulic conditions are with
respect to resonance (Blondeaux & Seminara 1985). In the two-dimensional (2-D)
morphodynamics of single thread river channels, resonance represents a fundamental
theoretical condition discriminating between different modes of planform evolution
of meandering rivers (Seminara et al. 2001; Lanzoni & Seminara 2006; Frascati
& Lanzoni 2009; Zolezzi, Luchi & Tubino 2009) and sets the threshold between
prevailing upstream or downstream propagation of 2-D information of morphological
change (Zolezzi & Seminara 2001; Mosselman, Tubino & Zolezzi 2006).

The experimental results of Bertoldi & Tubino (2007) suggest a new interpretation
of bifurcation instability founded on the theory of Zolezzi & Seminara (2001),
showing that in the absence of external forcing, the occurrence of unbalanced
configurations is ultimately related to the upstream influence exerted by the bifurcation
under super-resonant conditions. This leads to the formation of a steady alternate bar
pattern in the upstream reach, which is the primary topographic cause of flow
diversion towards one of the two distributaries and consequent development of
an asymmetrical configuration. This concept brings a fascinating theoretical legacy
between bifurcation dynamics and the framework of morphodynamic theories for river
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bars and meandering. Such legacy clearly emerges from experimental observations
but it has not been given a rigorous theoretical explanation so far.

In this work we aim at developing a theoretical explanation of the linkage between
the phenomenon of 2-D morphodynamic influence in single thread channels and
the dynamics of channel bifurcations. This is achieved by solving analytically the
depth-averaged shallow-water morphodynamic model through a perturbation approach,
with reference to a bifurcating channel domain. The solution is found by imposing
a matching procedure at the bifurcation node which ensures the continuity of all the
variables across the three joining channels.

The proposed solution refers to the commonly investigated geometrically symmetri-
cal bifurcation configuration. It is initially developed with reference to the idealised
case of two parallel distributaries separated by a thin wall and is afterwards extended
to the more realistic case of a non-vanishing bifurcation angle. For such a reason,
and in analogy with the terminology employed in the framework of established
morphodynamic theories for river bars (e.g. Seminara & Tubino 1989), the solution
derived in the present work can be viewed as the analytical solution for the ‘free’
bifurcation problem, since we focus on the straight channel configuration and we
not consider external planform forcing effects such as channel curvature or slope
advantage. These are out of the scope of the present work and can be studied using
the free solution as starting point.

2. Channel bifurcations and morphodynamic influence
The key point of this work is to model the bifurcation dynamics in the framework of

2-D steady bar theory and morphodynamic influence. It is convenient to briefly recall
the fundamental theoretical background of morphodynamic influence and bifurcation
dynamics where the present work lays its foundations.

2.1. The theory of morphodynamic influence
Two-dimensional morphodynamic influence can be defined as the process whereby the
presence of a local persistent perturbation in a channel geometry is felt downstream
and/or upstream through a series of damped, steady bed oscillations typically taking
the form of alternate bars. Theoretically, this emerges from the linear theory of
non-migrating bars in straight channels with a non-uniform boundary condition at
one end of the channel, which translates in mathematical terms to a discontinuity.
This phenomenon has been known for decades to occur downstream of the local
perturbation (Struiksma et al. 1985; Struiksma & Crosato 1989), while the discovery
that, under suitable conditions, morphodynamic influence can also be felt upstream
of the geometrical perturbation is more recent (Zolezzi & Seminara 2001). Such a
phenomenon has been experimentally verified (Zolezzi et al. 2005) and numerically
reproduced (van der Meer et al. 2011; Siviglia et al. 2013), and has been mostly
associated with a localised persistent perturbation, such as a local narrowing in a
straight channel or a discontinuity in channel curvature in a stream of constant width.

A crucial parameter of the theory is the channel aspect ratio, β, defined as the
half-width-to-depth ratio. It is now broadly agreed (Mosselman et al. 2006) that 2-D
morphodynamic influence can occur upstream of the localised perturbation only if β is
larger than a threshold resonant value βR, whereas only downstream influence occurs
when β < βR. The term ‘resonant’ refers to the unbounded response of the linear bar
solution in meandering channels with periodic distribution of curvature as β matches
βR (Blondeaux & Seminara 1985).
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Channel AFlow

Cell 1

Cell 2

Channel C

Channel B

FIGURE 1. (Colour online) Sketch of a channel bifurcation. Cells 1 and 2 refer to the Bolla
Pittaluga et al. (2003) model.

The legacy between morphodynamic influence and bifurcation dynamics can be
understood when viewing the bifurcation node as a localised persistent perturbation
found at the downstream end of the bifurcating channel and at the upstream ends of
the two downstream bifurcates.

2.2. Channel bifurcations: simplified modelling and morphodynamic influence
Modelling of channel bifurcation morphodynamics has been proposed in the last
three decades through simplified one-dimensional (1-D) models for each of the
three distributaries, plus suitable boundary conditions to be imposed at the upstream
end of the bifurcating channel, at the downstream ends of the bifurcates and at
the bifurcation node. Namely, adopting a 1-D mobile-bed model for every channel
requires us to specify two conditions at the upstream end of each distributary and
one condition at the downstream end of the inlet channel, for a total of five nodal
relations (Bolla Pittaluga et al. 2003). In addition to the conservation of water and
sediment mass, most 1-D models (e.g. Bolla Pittaluga et al. 2003; Miori, Repetto
& Tubino 2006; Kleinhans et al. 2011; Bolla Pittaluga et al. 2015) impose the
continuity of free surface elevation at the node. Setting the fifth relation is more
complex because it needs to take into account the structure of the flow field and
sediment transport near the bifurcation node. The type of this boundary condition and
the values of the involved parameter are key to discriminating between contrasting
types of bifurcation behaviours. Moreover, the nodal condition is nearly the only
opportunity of incorporating 2-D information related to water and sediment partition
at the bifurcation within a 1-D approach.

The nodal condition proposed by Bolla Pittaluga et al. (2003) provides a simple
description of the 2-D processes at the bifurcation node based on the definition of two
cells (figure 1) of length (αW∗A) proportional to the width of the inlet channel, which
exchange water and sediment fluxes depending on their bottom elevation differences.

The model indicates that, when the aspect ratio of the inlet channel βA is higher
than a critical threshold, whose value depends on the flow and sediment parameters
of the incoming flux, the balanced solution is unstable and an uneven configuration
arises. Such an unbalanced configuration has two key characteristics: the discharge
partition between the two bifurcates is uneven and there is an elevation gap (‘inlet
step’) between the bed levels at the inlet of the two bifurcates.

This simple model is able to capture important bifurcation properties observed
both in laboratory physical models and in the field (Ferguson et al. 1992; Zolezzi
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et al. 2006). It predicts the development of unbalanced bifurcation configurations
for relatively low values of Shields stress and large aspect ratio, as found in many
individual branches of gravel-bed bifurcations.

The main disadvantage of this quasi-2-D approach is that the resulting critical
aspect ratio is highly dependent (i.e. directly proportional) on the parameter α, which
measures the upstream reach length affected by the bifurcation. Calibration of α often
yields rather different values: 1 in Bolla Pittaluga et al. (2003), 2.5 in Siviglia et al.
(2013), 3 in Kleinhans et al. (2008) and 6 in Bertoldi & Tubino (2007).

The clearest and perhaps most intriguing indication of the factors controlling
the length of the bifurcation-affected upstream channel reach follows from the
experimental analysis of Bertoldi & Tubino (2007). They observed that the value
of the parameter α which yields the best matching with the measured discharge
partition is highly correlated with the difference between the bar-forming value of
the inlet channel aspect ratio βA and the resonant threshold βR. Such observation sets
the connection between the theory of morphodynamic influence and the dynamics
of bifurcations. In particular, as reported in figure 12 of Bertoldi & Tubino (2007),
the optimal cell size (αW∗A) shows its peak under near-resonant conditions; this is
consistent with the theory which predicts the spatial damping of the steady bars
to vanish at the resonant point. In addition Bertoldi & Tubino (2007) noticed that
the final configuration reached at the end of experimental runs crucially depends on
the distance from the resonant conditions; indeed, the two indicators of bifurcation
asymmetry, namely the discharge ratio and the difference in bed level at the inlet
of downstream anabranches, show a strong correlation with the scaled difference
(βA − βR)/βR rather than with the aspect ratio itself.

3. Formulation of the problem

In this chapter we set the theoretical framework to investigate the dynamics of
bifurcations in the context of the theory of morphodynamic influence. We refer to the
channel configuration illustrated in figure 2(a), consisting of one upstream channel ‘A’
and two downstream bifurcates (‘B’ and ‘C’). The channels have erodible bed, fixed
and frictionless banks and are assumed to be indefinitely long far from the bifurcation
node. The width of the channel A is assumed to be twice the width of B and C
(W∗A = 2B∗ and W∗B,C = B∗ respectively). A two-step analysis is proposed, whereby
the idealized configuration of figure 2(a) is initially investigated (vanishing bifurcation
angle, distributaries separated by a thin wall), while the more realistic layout with
bifurcates diverging by an angle 2δ (figure 1) is subsequently examined.

In § 3.1 the complete 2-D model is formulated in dimensionless form and
§ 3.2 introduces the perturbation approach used to find the linear steady solution.
Section 3.3 reviews the fundamental linkage between the eigenvalues of the steady
linear system derived in § 3.2 and the phenomenon of 2-D morphodynamic influence.
The reader will note (§ 3.4) that the linear solution also includes a 1-D component,
which is relevant to our problem in so much as the matching procedure at the node
involves linear solutions derived for channels having different widths.

3.1. The steady two-dimensional model
We adopt a Cartesian system of coordinates {x∗, y∗} and we call U∗ and V∗ the
longitudinal and cross components of the depth-averaged velocity vector (figure 2a).
We define {τ ∗x , τ ∗y } and {qs∗x, qs∗y} the components of the bed shear stress and of the
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(b)

(a)

Channel B

Channel C

Channel A

Thin wallFlow

FIGURE 2. (Colour online) Geometrical configuration and notation: (a) planimetric view
of the geometrical configuration; (b) cross-sectional view of the main channel A.

specific (per unit width) solid discharge, respectively. In addition we use the symbols
D∗ for water depth and η∗ for bed elevation (figure 2b).

The above quantities can be made dimensionless as follows:

{x, y} = {x
∗, y∗}
B∗

, {U, V} = {U
∗, V∗}
U∗0

,

{τx, τy} =
{τ ∗x , τ ∗y }
ρU∗20

, {qsx, qsy} =
{qs∗x, qs∗y}

qs∗0
,

D= D∗

D∗0
, η= η∗

D∗0
,


(3.1)

where ρ is the water density, B∗ is the horizontal length scale, taken to coincide with
the width of the bifurcates, U∗0 , D∗0 and qs∗0 are reference values for velocity, depth and
unit sediment discharge corresponding to uniform flow conditions, for given discharge,
sediment size and average slope.

In the following we investigate the steady bifurcation configuration: therefore we
neglect the time derivatives and we focus on the spatial structure of the solution.
The 2-D, depth-averaged conservation of x-momentum, y-momentum, water mass
and sediment mass can be expressed through the following set of partial differential
equations:

U
∂U
∂x
+ V

∂U
∂y
+ 1

Fr2
0

∂

∂x
(η+D)+ β τx

D
= 0, (3.2a)

U
∂V
∂x
+ V

∂V
∂y
+ 1

Fr2
0

∂

∂y
(η+D)+ β τy

D
= 0, (3.2b)
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∂UD
∂x
+ ∂VD

∂y
= 0, (3.2c)

∂qsx

∂x
+ ∂qsy

∂y
= 0, (3.2d)

where the Froude number and the aspect ratio are given by:

Fr0 = U∗0√
gD∗0

, β = B∗/D∗0. (3.3a,b)

In order to close the problem we need to specify the bed shear stress and
sediment transport components in terms of the primitive variables η, U, V, D.
Following a widely adopted procedure, this is achieved through the ‘local equilibrium’
approximation, whereby closure relationships for the near-bed shear stress and bedload
rates are evaluated in terms of the local values of the primitive variables. Specifically,
the bed shear stress is expressed by the Chèzy formula and is assumed to be oriented
as the velocity vector, namely

{τx, τy} = {U, V}
√

U2 + V2

C2
, (3.4)

where the dimensionless Chèzy coefficient can be estimated as in Engelund & Fredsoe
(1982):

C= 6+ 2.5log
(

D
2.5ds

)
, ds = d∗s

D∗0
, (3.5a,b)

and d∗s is the grain size.
Assuming bedload as the dominant mode of sediment transport we use the Einstein

(1950) scaling, namely

|qs∗| =Φ(θ)
√

g∆d∗3s , (3.6)

where ∆ is the relative submerged density of the bed material and the Shields
parameter θ is defined as

θ = |τ ∗|
ρg∆d∗s

. (3.7)

The dimensionless sediment flux is consequently expressed as

|qs| = Φ(θ)

Φ(θ0)
, (3.8)

where Φ(θ) is computed using a suitable bedload formula such as Parker (1990) and
θ0 is the Shields stress of the reference uniform flow.

The direction of the sediment transport vector is given by:

qsy

qsx
= tan(γq + γg), (3.9)

with
tan(γq)= V

U
, tan(γg)=− r√

θ

∂η

∂n
, (3.10a,b)
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where γq represents the direction of the velocity vector, γg is a correction due to the
transverse bed slope, n is the coordinate orthogonal to the local velocity vector and
r is an empirical constant typically ranging from 0.3 to 0.6 (Ikeda, Parker & Sawai
1982; Talmon, Van Mierlo & Struiskma 1995).

We note that a unique definition of the reference flow is given in dimensionless
form once the independent parameters β, θ0, ds and ∆ are fixed, as the following
conditions hold for uniform flow conditions:

θ0 = S0

∆ds
, Fr2

0 = S0 C2
0, (3.11a,b)

where

C0 = 6+ 2.5log
(

1
2.5ds

)
, (3.12)

and S0 is the average longitudinal slope.

3.2. The steady linear solution for a straight channel
The governing dimensionless mathematical model consists of a system of four
nonlinear partial differential equations in two space dimensions (3.2) whose initial
boundary problem can be fully solved only through numerical approximation
(e.g. Siviglia et al. 2013). Nevertheless, under the hypothesis of relatively small
perturbations with respect to a known basic solution, it is possible to linearize
the problem, which enables us to obtain an analytical solution for some particular
geometrical and boundary configurations. The analytical approach makes it easy to
detect the key controlling parameters and to efficiently explore the system behaviour
within a broad range of controlling factors.

The basic solution is taken as the uniform flow that would occur on a flat-bottom
sloping channel, namely:

{η,U, V,D} = {−S0βx, 1, 0, 1}. (3.13)

A perturbation solution of (3.2) is obtained by expanding the four unknowns
(η,U, V,D) around the basic state as follows:

η = −S0βx+ ε η1(x, y)+O(ε2), (3.14a)
U = 1+ ε U1(x, y)+O(ε2), (3.14b)
V = 0+ ε V1(x, y)+O(ε2), (3.14c)
D = 1+ ε D1(x, y)+O(ε2), (3.14d)

where the small parameter ε measures the order of magnitude of the perturbations
and O(ε2) indicates quadratic and higher-order terms that can be neglected at a first
approximation as far as perturbations are sufficiently small to ensure that nonlinear
effects are weak.

The complete linear solution for the free bifurcation problem requires us to
separately solve the 2-D linear morphodynamic model for each of the three channels
A, B, C and then to match the solutions through suitable nodal conditions. Matching
also implies that every solution is obtained referring to the same Cartesian coordinate
system (x, y) displayed in figure 2(a). This means that the origin of the y-axis is
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located on the centreline of channel A, on the right bank of channel B and on the
left bank of channel C.

In this section we review the steady linear solution as obtained by Zolezzi &
Seminara (2001) with reference to the main channel A. Once the solution for channel
A is obtained, calculating the solution for the sub-domains B and C is straightforward
because it only requires us to shift the location of the streamwise axis x with respect
to the lateral channel boundaries (see §§ 4.1 and 4.2 for more details).

The linear approximation of the system (3.2), at the order O(ε), reads:

∂U1

∂x
+ 1

Fr2
0

∂(D1 + η1)

∂x
+ β

C2
0

[2U1 −D1 (1+ 2CD)]= 0, (3.15a)

∂V1

∂x
+ 1

Fr2
0

∂(D1 + η1)

∂y
+ β

C2
0

V1 = 0, (3.15b)

∂D1

∂x
+ ∂U1

∂x
+ ∂V1

∂y
= 0, (3.15c)

∂V1

∂y
− r
β
√
θ0

∂2η1

∂y2
+ 2ΦT

∂U1

∂x
− 2ΦTCD

∂D1

∂x
= 0, (3.15d)

where ΦT and CD express the dependence of bedload and flow resistance on Shields
stress and depth, respectively, and read:

ΦT = θ0

Φ0

∂Φ

∂θ

∣∣∣
θ=θ0

, CD = D0

C0

∂C
∂D

∣∣∣
D=1
. (3.16a,b)

The first-order linear system (3.15) can be solved by Fourier analysing the
unknowns in the transverse (y) direction, thus obtaining a cascade of fourth-order
ordinary differential problems in the independent variable (x) for each Fourier mode
m. Linearity of the system enables us to solve the differential problem for each mode
m separately.

Following Zolezzi & Seminara (2001) we then write the general solution for each
Fourier mode m in the form:

{η1,U1,D1} = Fm(y)
4∑

j=1

η̃mj{1, umj, dmj}Emj(x)+ c.c., (3.17a)

V1 =Gm(y)
4∑

j=1

η̃mjvmj Emj(x)+ c.c., (3.17b)

where c.c. denotes the complex conjugate and the longitudinal variation is defined as

Emj = exp(λmjx). (3.18)

In (3.18) λmj is a complex wavenumber, whose real part represents the spatial
growth rate of perturbations, while the imaginary part defines their spatial periodicity.
Furthermore, the transverse structure of the different modes reads:

Fm(y)= sin(mπy/2), Gm(y)= cos(mπy/2) (m ∈ odd), (3.19a,b)

Fm(y)= cos(mπy/2), Gm(y)= sin(mπy/2) (m ∈ even). (3.19c,d)
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We note that, unlike Zolezzi & Seminara (2001), who considered only the odd
modes (the asymmetrical component of the solution), we need in general to include
also the even modes (symmetrical component), as required to represent the bifurcation
configuration.

Substituting (3.17)–(3.19) into the linear system (3.15) we obtain a fourth-order
polynomial of the form

fm(λm; β, ds, θ0)= 0, (3.20)

which in general admits four complex eigenvalues λmj ( j= 1, . . . , 4), for each Fourier
mode m.

The coefficients {umj, vmj, dmj} can be computed from system (3.15) in terms of the
parameters of the basic flow, while the complex constants η̃mj, being undetermined,
can be arbitrary chosen.

In the following we will derive a solution in the complex field and we will therefore
omit the complex conjugate notation for the sake of clarity. However, we should keep
in mind that only the real part of the final solution for the variables {η1,U1, V1,D1}
is physically significant.

3.3. Solution of the linear system and morphodynamic influence
As pointed out by Zolezzi & Seminara (2001), the sign of the real part of λj (spatial
growth rate) of each solution plays a key role in determining the dominant direction
of the morphodynamic influence that can be induced by the presence of a local
discontinuity. In fact, spatially growing perturbations that do not vanish far from the
discontinuity are not compatible with the conditions set by the reference flow in a
semi-infinite domain.

The dispersion relation (3.20) implies that the values of complex eigenvalues change
with the whole set of parameters of the reference flow, with the spatial growth rate
being mainly controlled by the aspect ratio β, for given values of θ0 and ds. The
example reported in figure 3 illustrates the dependency on the channel aspect ratio
β of the four eigenvalues (λ1, λ2, λ3, λ4) of the 2-D steady solution: results are
given with reference to the first transverse mode only (m = 1), therefore the index
m is omitted to simplify the notation. Within a wide range of β (say 5–18), two
eigenvalues (λ1 and λ4) are purely real and relatively large, while the other two
eigenvalues (λ2 and λ3) are complex conjugates and exhibit a comparatively smaller
growth rate. The two real eigenvalues represent a local effect which grows (or decays)
rapidly in x direction, while the two complex eigenvalues embody the fundamental
2-D morphodynamic influence which manifests itself through the formation of a
steady, spatially growing (or damped), alternate bar pattern. The above scenario does
not change qualitatively when different values of θ0 and ds are used.

Figure 3(a) shows that the real part of the two complex conjugate eigenvalues
(λ2)R = (λ3)R changes sign from negative to positive as the aspect ratio β crosses
the resonant threshold βR. This condition sets the fundamental connection between
resonance and morphodynamic influence, which turns out to be the key ingredient to
interpreting the dynamics of the bifurcation. Two distinct ‘morphodynamic regimes’
can be identified:

(i) super-resonant (β >βR), dominant upstream influence, when the real part of three
(λ2, λ3 and λ4) out of four eigenvalues is positive;

(ii) sub-resonant (β <βR), dominant downstream influence, when only one eigenvalue
(λ4) has positive real part.
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FIGURE 3. (Colour online) Dependence on the channel aspect ratio β of the four
eigenvalues λmj of the eigenrelation (3.20) for the first transverse mode (m = 1) and
ds = 0.05, θ0 = 0.1, r = 0.5: (a) real part (spatial growth rate); (b) imaginary part
(wavenumber).

To better clarify such a connection we first consider a semi-infinite rectangular
channel extending to −∞ (left panel in figure 4), which mimics channel A joining at
the node at the downstream end. If we look for bounded (i.e. limited) solutions set by
boundary conditions in x = 0 and having the form of (3.17), we must discard those
solutions having (λj)R < 0 as they grow exponentially in the upstream (negative x)
direction. Consequently, in the sub-resonant regime (β < βR), the only acceptable
solution, corresponding to the eigenvalue λ4, is rapidly damped in the upstream
direction, and therefore the upstream influence is felt only locally. On the other
hand, in the super-resonant regime (β > βR) two further independent solutions are
acceptable, corresponding to the complex conjugate eigenvalues λ2 and λ3, which
implies that the influence of boundary conditions can be felt relatively far upstream
through the formation of damped alternate bars.

The opposite behaviour characterizes a semi-infinite channel which extends towards
+∞ (right panel of figure 4), as in the case of channels B and C joining at the
node at the upstream end. In this case the occurrence of a spatially damped alternate
bar pattern in the downstream direction is only possible in the sub-resonant regime,
where (λ2)R = (λ3)R is negative, while in the super-resonant regime (β > βR) the
only acceptable solution (associated with the eigenvalue λ1) produces a downstream
influence which vanishes quite rapidly.

The results reported in figure 3 can be readily extended to the solutions for higher
(m>1) modes when considering that the dispersion relation (3.20) obeys the following
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Super-resonant
Dominant upstream influence

BC

(b)

BC

Dominant downstream influence
Sub-resonant(a)

Flow

Flow

FIGURE 4. (Colour online) Structure of the solution for semi-infinite channels under sub-
resonant (a) and super-resonant (b) conditions. BC denotes the section (x = 0) at which
the boundary conditions are applied, m indicates the transverse Fourier mode and j the
eigenvalue.

scaling property:

fm(λmj; β, ds, θ0)= f1(mλ1j; β/m, ds, θ0), (3.21)

which indicates that the solution for the higher (m> 1) modes is identical to that for
the first mode (m= 1) if we take λmj=mλ1j and scale the aspect ratio β by a factor m.

Therefore, according to (3.21), in both sub-resonant and super-resonant regime,
provided β < 2βR, three eigenvalues have a negative real part for all m > 1,
which means that for the higher transverse modes there are always three linearly
independent solutions in the downstream semi-infinite channel and one in the upstream
semi-infinite channel of figure 4. In other words, as long as β does not exceed 2βR,
higher-order modes behave as in the sub-resonant regime and therefore the occurrence
of steady m> 1 bed oscillations is only possible in the downstream direction.

3.4. The one-dimensional component

The linear solution of system (3.15) also includes a 1-D component {η1, U1, D1}1D

corresponding to the transverse mode m = 0, which cannot be written in the form
of (3.17).

Discarding the y-derivatives in the continuity equations for water and sediment
(3.15c) and (3.15d) one readily finds that the 1-D solution is uniform, namely

U1 = const., D1 = const. (3.22a,b)

Substituting into the longitudinal momentum equation (3.15a) and recalling (3.11b)
gives

η1 =−β S1 x+ η̃0, S1 = S0[2 U1 −D1(1+ 2 CD)], (3.23a,b)

where the (arbitrary) integration constant η̃0 indicates a uniform variation of the
bottom elevation and S1 represents a perturbation of the bed slope. Therefore, the
1-D component is determined once the three constants U1,D1, η̃0 are fixed.

In order to better highlight the physical meaning of such a component, it is
convenient to re-write (3.22) and (3.23) as follows:

{η1,U1,D1}1D = η̃0{1, 0, 0}︸ ︷︷ ︸
Uniform η perturbation

+ Q1{0, γ1, γ2},︸ ︷︷ ︸
Discharge perturbation

+ S1{−βx, γ3,−γ3}︸ ︷︷ ︸
Slope perturbation

, (3.24)
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where the coefficients γ1 and γ2 account for the variations of velocity and depth due
to a perturbation of the discharge (Q1 =U1 +D1), with fixed-bed elevation, and read

γ1 = 1+ 2CD

3+ 2CD
, γ2 = 2

3+ 2CD
, (3.25a,b)

while the coefficient γ3 measures the perturbation of depth and velocity due to slope
variation, with fixed discharge, and is defined as

γ3 = 1
S0

1
3+ 2CD

. (3.26)

The 1-D component (3.24) is constant in the transverse direction and physically
expresses the lowest-order (m= 0) channel response which can be driven by a uniform
variation of bottom elevation η̃0 or flow discharge Q1, as well as by a longitudinal
slope adjustment (term proportional to S1). We note that such a component, which
was not included in previous theories for steady bars in straight channels (e.g.
Struiksma & Crosato 1989; Seminara & Tubino 1992), is relevant in the present case
of a bifurcating configuration as it brings the fundamental ingredient in reproducing
differences in discharge and bed level between the two distributaries.

The complete steady linear solution in a straight channel is finally obtained by
summing the 2-D (3.17) and 1-D (3.24) components. Specifically, considering a finite
sum of the first N Fourier modes, the solution reads:

{η1,U1,D1} = {η1,U1,D1}2D + {η1,U1,D1}1D

=
N−1∑
m=1

Fm(y)
4∑

j=1

η̃mj{1, umj, dmj}Emj

+ η̃0{1, 0, 0} +Q1{0, γ1, γ2} + S1{−βx, γ3,−γ3}, (3.27a)

V1 = V2D
1 =

N−1∑
m=1

Gm(y)
4∑

j=1

η̃mjvmj Emj. (3.27b)

Equation (3.27) shows that the number of degrees of freedom for the steady linear
solution in each channel, i.e. the number of complex constants that can be chosen
arbitrarily, is equal to 4N − 1, namely

η̃0,Q1, S1 3 const.,

η̃m1, η̃m2, η̃m3, η̃m4 m ∈ [1,N − 1] 4(N − 1) const.

}
(3.28)

4. Results: the steady free response of bifurcations
Once the solution for a single semi-infinite branch is known, we are ready to face

the more complex case of the bifurcation composed by three straight, semi-infinite
channels which join at the bifurcation node, as illustrated in figure 2(a).

As in Zolezzi & Seminara (2001), who considered a constant curvature reach
interconnecting two semi-infinite straight channels, the complete solution can be
determined by imposing the matching at the bifurcation node of the linear solutions
for each channel in terms of the four primitive variables. The main difference is
that in our case the problem is homogeneous and therefore, in the absence of the
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interconnection at the node, the linear response would invariably vanish in each
individual straight branch. Conversely, in the configuration of Zolezzi & Seminara
(2001) the curved reach introduces a forcing non-homogeneous term associated with
the particular solution for the flow and bed topography in a constant curvature channel.
We can then consider our solution for the simple configuration of figure 2(a) as the
‘free’ counterpart of the ‘forced’ problem examined by Zolezzi & Seminara (2001).

An additional mathematical complexity resides in the different width of the main
and secondary branches, which makes a straightforward correspondence of each
transverse mode at the matching section no longer possible. Any single m mode of
the solution for the main incoming channel induces an infinite number of modes in
the solution for each distributary and consequently, in the matching procedure, the
transverse components cannot be treated independently but must be solved together
through a unique linear system which leads to an N-modes approximation of the
exact solution.

The solution can be split, without any loss of generality, into a symmetric
component, mirrored across the x-axis, and an anti-symmetric component which
changes sign across the x-axis. Due to the linearity of the problem (3.15) the two
components can be treated independently and the complete solution can be simply
computed as a sum of the two.

Finding the symmetric part of the overall solution is trivial, as any symmetric
solution does not contemplate any flux of water, sediment and momentum across
the x-axis. Therefore, extending the thin wall (figure 2a) along channel A would
not affect the symmetric component, which for the zero-angle bifurcation equals the
solution of a straight channel (of width B∗) formed by the left half of channel A and
the channel B (or equivalently by the right half of channel A and the channel C). The
only possible steady solution for such an infinitely long, straight channel is uniform
flow, which implies that the symmetric component of the perturbation vanishes.

Hence, the symmetry properties of the problem enable us to simplify the solution
keeping only the anti-symmetric component in the main channel A, while the solutions
in the downstream bifurcates B and C are opposite in sign.

4.1. Solution for the main channel A
The solution for the inlet channel A can be readily derived from (3.27) discarding all
the even modes m as in Zolezzi & Seminara (2001) and including the 1-D component.
As illustrated in § 3.3, the structure of the solution depends on β being smaller or
greater than the resonant threshold βR. The two cases are then tackled separately in
the following sub-sections.

4.1.1. Sub-resonant case
Under sub-resonant conditions only the j = 4 component of (3.27) is compatible

with the semi-infinite length of the channel, regardless the mode m. Therefore, the
general, anti-symmetric solution is expressed as a linear combination of N independent
components η̃A

m4, namely:

{ηA
1 ,UA

1 ,DA
1 } = η̃A

14{1, uA
14, dA

14} sin
(πy

2

)
EA

14︸ ︷︷ ︸
First mode

+
N∑

k=2

η̃A
m4{1, uA

m4, dA
m4} sin

(mπy
2

)
EA

m4︸ ︷︷ ︸
Higher modes

(m= 2k− 1), (4.1a)
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VA
1 = η̃A

14v
A
14 cos

(πy
2

)
EA

14︸ ︷︷ ︸
First mode

+
N∑

k=2

η̃A
m4v

A
m4 cos

(mπy
2

)
EA

m4︸ ︷︷ ︸
Higher modes

(m= 2k− 1). (4.1b)

The number of independent parameters (η̃A
m4) in (4.1) equals the number N of Fourier

modes taken into account.

4.1.2. Super-resonant case
For βA > βR the first (m= 1) harmonic admits three linearly independent solutions

compatible with the semi-infinite domain length. Consequently, the general N-modes
solution has two more degrees of freedom with respect to (4.1), and reads:

{ηA
1 ,UA

1 ,DA
1 } =

4∑
j=2

η̃A
1j{1, uA

1j, dA
1j} sin

(πy
2

)
EA

1j︸ ︷︷ ︸
First mode

+
N∑

k=2

η̃A
m4{1, uA

m4, dA
m4} sin

(mπy
2

)
EA

m1︸ ︷︷ ︸
Higher modes

(m= 2k− 1), (4.2a)

VA
1 =

4∑
j=2

η̃A
1jv

A
1j cos

(πy
2

)
EA

1j︸ ︷︷ ︸
First mode

+
N∑

k=2

η̃A
m4v

A
m4 cos

(mπy
2

)
EA

m1︸ ︷︷ ︸
Higher modes

(m= 2k− 1), (4.2b)

which, if compared with the sub-resonant case (4.1), contain two additional
independent parameters η̃A

12 and η̃A
13.

4.2. Solution for the downstream branches B, C
The anti-symmetric structure of the problem implies that finding the solution in the
bifurcates only requires us to consider one distributary (hereinafter the left channel B),
the corresponding solution in the other channel being the opposite.

Differently from the main channel A, the secondary channel B has half-width (B∗)
and the reference system is placed on the right bank (see figure 2a). Therefore, the
solution can be given the form (3.27), where

Fm(y)= cos(mπy), Gm(y)= sin(mπy) ∀m> 0, (4.3a,b)

and the Fourier expansion includes both even and odd modes, as the solution in a
single bifurcate does not follow any symmetry property.

Moreover, as W∗A = 2W∗B, the secondary branch is always under sub-resonant
conditions, regardless the upstream channel flow being sub- or super-resonant, and
provided βA does not exceed 2βR. Therefore, as discussed in § 3.3, the exponentially
growing solution corresponding to the fourth positive eigenvalue is not compatible
with the semi-infinite character of the channel. Similarly, any change of slope S1
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Channel A Channel B Total
m= 1 m> 1 n= 0 n > 1

Sub-resonant βA <βR 1 N − 1 2 3 N − 3 4N − 1
Super-resonant βA >βR 3 N − 1 2 3 N − 3 4N + 1

TABLE 1. Number of degrees of freedom (linearly independent components) for each
channel, under sub- and super-resonant conditions.

produces a variation of the bottom level which becomes infinite when x→∞, and is
therefore not acceptable. Hence, the solution for the downstream bifurcate B reads:

{ηB
1 ,UB

1 ,DB
1 } =

N−1∑
n=1

cos(nπy)
3∑

j=1

η̃B
nj{1, uB

nj, dB
nj}EB

nj + η̃B
0 {1, 0, 0} +QB

1 {0, γ B
1 , γ

B
2 },

(4.4a)

VB
1 =

N−1∑
n=1

sin(nπy)
3∑

j=1

η̃B
njv

B
nj EB

nj, (4.4b)

where the subscript n is used to denote the transverse modes in downstream branches
to avoid confusion with the A-solution.

Solution (4.4) is a combination of 3N − 1 linearly independent components, whose
amplitude is defined by the following constants:

QB
1 , η̃

B
0 2 const.,

η̃B
n1, η̃

B
n2, η̃

B
n3 n ∈ [1,N − 1] 3N − 3 const.

}
(4.5)

4.3. The matching procedure
The general N-modes solution derived for each channel is a combination of linearly
independent components whose amplitude can be freely chosen. We now seek
solutions which satisfy not only the differential problem within each channel, but also
the matching condition across the boundary between inlet channel and distributaries.

As highlighted before, the general solution in the secondary channel B is a linear
function of 3N − 1 independent parameters, while in the main channel A it is a
combination of N or N + 2, depending upon βA being smaller or larger than βR (see
table 1). This difference in the number of degrees of freedom is key to understanding
the different bifurcation behaviour under sub- and super-resonant conditions.

Matching is achieved by setting the N-modes expansion of the main channel
solution at x = 0 equal to the solution in channel B, within the transverse range
y ∈ [0, 1]. Due to the different width of the channels, the two solutions exhibit
a different Fourier representation, as is apparent when comparing (4.1) or (4.2)
with (4.4). This implies that the matching condition must be ensured by expanding
each transverse m mode of the upstream channel solution in terms of the Fourier
representation used in the downstream B channel (or vice versa).

For example, matching the longitudinal velocity at the node is imposed by
expanding the upstream channel solution in the form:

UA
1 (0, y)'

N−1∑
n=0

[
N∑

k=1

UA
mCmn

]
cos(nπy) (m= 2k− 1), (4.6)
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where according to (4.1a) and (4.2a):

UA
m =


η̃A

m4uA
m4 (βA <βR or m> 1),

4∑
j=2

η̃A
1ju

A
1j (βA >βR and m= 1),

(4.7)

and the expansion coefficients are given by:

Cmn =


2

m π
(n= 0),

4m
(m2 − 4n2)π

(n > 1).
(4.8)

Equating (4.6) with the solution for the downstream bifurcates (4.4a) gives:

UB
n =

N∑
k=1

UA
m Cmn (m= 2k− 1) ∀ n ∈ [0,N − 1], (4.9)

where we have defined

UB
n =


QB

1γ
B
1 (n= 0),

3∑
j=1

η̃B
nju

B
nj (n > 1).

(4.10)

The different Fourier representations of the solution between the main channel and
the distributaries is highlighted in figure 5, where convergence to the exact solution
for an increasing number of Fourier components is shown with reference to the first
m= 1 (a) and second m= 3 (b) modes of the sine components of the A-solution.

The matching procedure provides N conditions of the form (4.9) for each of the
variables η, U and D, and (N− 1) conditions for the variable V , as its solution in the
downstream branches (4.4b) does not contain any constant component (n= 0).

Therefore, matching at x= 0 results in an homogeneous system of 4N − 1 linearly
independent equations. As the unknowns of this system are the ‘degrees of freedom’
reported in table 1, for β < βR, the number of equations equals the number of
unknowns; consequently, the only solution is trivial and gives a vanishing perturbation.
In other words, under sub-resonant conditions, the only steady solution compatible
with the semi-infinite character of the channels is uniform flow. As illustrated in
figure 6(a) the bifurcation node plays a ‘passive’ role and is therefore unable to
produce a morphodynamic influence that propagates far upstream.

On the other hand, in the super-resonant case two more degrees of freedom
(i.e. unknowns) exist, resulting in 4N+1 unknowns, with 4N−1 conditions. Therefore
the system admits an infinite number of non-vanishing solutions, which are compatible
with the conditions at x→±∞. Formally, the homogeneous linear system exhibits a
kernel of dimension two, so that ∞2 non-trivial solutions are possible; this implies
that an unique solution can be found once two complex constants are independently
fixed. Therefore, for βA > βR, because upstream and downstream influences occur
simultaneously (figure 6b), the bifurcation node acts like a control section and can
lead to non-vanishing unbalanced solutions.
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FIGURE 5. (Colour online) Different Fourier representation of the solution between the
main channel and the distributaries: each mode of the solution (4.2a) for the longitudinal
velocity in channel A (solid lines) is expanded using an increasing number N of transverse
modes of the solution in the downstream bifurcates (4.4a) (dashed lines): (a) channel A
mode m= 1; (b) channel A mode m= 3.

4.4. The autogenic free response of bifurcations
The above results highlight the connection between bifurcation dynamics and
morphodynamic influence. The bed elevation maps reported in figure 6 clearly
show two distinct bifurcation configurations: (a) when βA < βR (sub-resonant range)
only the trivial uniform solution is possible, the bottom is flat and the discharge
equally distributed; (b) when βA > βR (super-resonant range) a pattern of steady
damped alternate bars forms upstream of the bifurcation, which induces asymmetrical
discharge partition and elevation difference (inlet step) between distributaries.
Therefore, in the absence of external forcing, when βA < βR a perturbation of
flow and sediment partition at the node is not compatible with the steady linear
solution and eventually vanishes, while for βA > βR an unbalanced configuration
arises as a result of a free, ‘autogenic’ response of the system. This is the main
outcome of the present theory as it provides a rigorous proof to the experimental
findings of Bertoldi & Tubino (2007), showing the intrinsic tendency of bifurcations
to develop an asymmetrical configuration when the aspect ratio is large enough to
enable upstream morphodynamic influence.

Based on this result we can give a sound interpretation of the threshold value of the
aspect ratio discriminating between balanced and unbalanced bifurcations as found by
Bolla Pittaluga et al. (2003), by referring to the resonant value βR. Plots of βR as a
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FIGURE 6. (Colour online) Direction of morphodynamic influence in the three channels
joining at the node (arrows) and associated steady linear solution for bottom elevation η
(contour maps) for a bifurcation with vanishing angle (figure 2a) and for two different
conditions of the main channel A: (a) sub-resonant (βA = 12) case; (b) super-resonant
(βA = 15) case. The basic flow parameters are ds = 0.02, θ0 = 0.1, r = 0.5, the resonant
threshold is βR = 13.4.

function of the Shields stress, θ0, for different values of the dimensionless roughness
ds, are reported in figure 4 of Seminara & Tubino (1992). In figure 7 we test the
above criterion against the experimental data of Bertoldi & Tubino (2007), who
classified ‘balanced’ or ‘unbalanced’ runs depending upon the measured discharge
anomaly (QB −QC)/QA being smaller or larger than 0.03. Figure 7 also includes the
results of 19 numerical runs performed by Siviglia et al. (2013) with a fully nonlinear
2-D morphodynamical model, where the ‘balanced’ or ‘unbalanced’ character of the
bifurcation was assessed by monitoring the temporal evolution of the discharge
partition between the distributaries. In both cases the theoretical criterion performs
reasonably well, as nearly the whole set of balanced data lie in the sub-resonant
region, while the unbalanced data fall in the super-resonant domain, independently of
the Shields stress.

Present theoretical findings are consistent with the observation that bifurcations in
braided reaches of gravel-bed rivers, where super-resonant conditions are frequently
met, are rarely symmetrical (Bertoldi & Tubino 2007; Bertoldi 2012). Evidence of
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FIGURE 7. (Colour online) Comparison between the theoretical criterion for
balanced/unbalanced bifurcations based on the resonant aspect ratio βR and flume
(Bertoldi & Tubino 2007) and numerical (Siviglia et al. 2013) data.

Bifurcation βa βR

r= 0.3 r= 0.6

Ridanna 1 14.5 5.4 7.7
Ridanna 2 9.5 6.1 8.8
Ridanna 3 11.0 3.8 5.3
Sunwapta 1 10.7 7.3 10.5
Sunwapta 2 11.3 6.5 9.3
Sunwapta 3 10.5 4.4 6.2

TABLE 2. Aspect ratio of the main channel and resonant threshold at bankfull conditions
for different bifurcations in pro-glacial braided rivers (data from table 3 of Zolezzi et al.
2006): βR is computed using the Parker (1990) transport formula, for different values of
the parameter r of (3.10b).

the relationship between morphodynamic influence and bifurcation dynamics can be
obtained from field data reported by Zolezzi et al. (2006) who observed the inherent
(autogenic) tendency of the poorly vegetated, low-cohesion gravel-bed braided reaches
of the Ridanna and Sunwapta rivers to produce unbalanced bifurcations, with uneven
water distribution between distributaries, especially at relatively low flow stages. In
table 2 the bankfull values of the aspect ratio of the incoming channel βA of the six
unbalanced bifurcations analysed by Zolezzi et al. (2006) are reported along with the
corresponding computed resonant values βR. Sensitivity of the latter resonant values
with respect to the chosen value of the empirical parameter r, which accounts for
gravitational effect on sediment transport (see 3.10b), is also documented. We note
that all bifurcations fall within the super-resonant regime, which suggests that their
observed asymmetrical behaviour can be given a sound interpretation as a result of
the capability of gravel-bed channels to undergo an upstream influence.

As highlighted in § 2.2, further indication of the connection between bifurcation
dynamics and the theory of morphodynamic influence was also given by Bertoldi
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FIGURE 8. (Colour online) Values of the dimensionless length of upstream influence, α,
of the Bolla Pittaluga et al. (2003) model which best predict the discharge ratio observed
in the Bertoldi & Tubino (2007) experiments (circle and square markers) are compared
with the theoretical predictions, αT of (4.11), based on the present theory (star markers).

& Tubino (2007) who computed the values of the coefficient α of the Bolla
Pittaluga et al. (2003) model which best predict the observed discharge ratios in
the distributaries in their experiments. Being α in the theory of Bolla Pittaluga
et al. (2003) a measure of the upstream distance (scaled with 2B∗) of the 2-D
morphodynamical effect of the bifurcation, it should behave as the inverse of the
damping rate (λ2)R= (λ3)R, which vanishes at βA=βR. Therefore, α is expected to be
infinite close to resonant conditions and to decrease as (βA−βR) increases. In figure 8
computed values of α are compared with a theoretical estimate of such distance, αT ,
set as the dimensionless length at which the amplitude of the linear solution (3.17)
is reduced by one-third, namely

αT = 0.2
(λ2)R

. (4.11)

Note that αT in figure 8 does not decrease monotonically due to the different values
of ds and θ0 in the experimental runs.

4.5. The divergent symmetrical bifurcation
In the previous § 4.4 we have derived a linear analytical solution for the straight
bifurcation geometry of figure 2, showing that non-vanishing perturbed solutions are
only possible when βA >βR. In this section we show that this scenario is not affected
by the presence of a symmetric angle between the distributaries, as in the experimental
runs of Bertoldi & Tubino (2007) and in the numerical simulations of Siviglia et al.
(2013), as long as the angle stays relatively small.

We consider the symmetrical configuration sketched in figure 1, where downstream
anabranches form the same angle δ with respect to the main channel. Typical values of
δ observed in natural gravel-bed bifurcations and in laboratory scale models of braided
networks range from 15◦ to 30◦ (Federici & Paola 2003; Bertoldi & Tubino 2005;
Burge 2006; Bertoldi 2012).
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Channel A

B

C

FIGURE 9. (Colour online) System of reference used to analyse a geometrically
symmetrical bifurcation with non-vanishing angle δ.

When the angle is relatively small, the forced solution can be expanded in the
following form:

η=−S0βx+ δη1(x, y)+O(δ2), (4.12a)
U = 1+ δU1(x, y)+O(δ2), (4.12b)
V = 0+ δV1(x, y)+O(δ2), (4.12c)
D= 1+ δD1(x, y)+O(δ2), (4.12d)

and the general linear solution can be simply obtained by adding the O(δ) component
to the free, O(ε), component derived in § 3.

The linear O(δ) problem is solved by considering a rotated coordinate system in
channels B and C, as illustrated in figure 9. Because of the symmetrical geometry of
the bifurcation, we can seek a solution for the upper half of the domain and then
simply mirror it with respect to the symmetry axis yA = 0. In the lower half the
solution for η, U and D is identical, while V is opposite in sign.

In the rotated coordinate system the solution of the order O(δ) for each channel is
formally identical to the free solution derived in § 3.2. However, matching the three
solutions at the node no longer implies a simple correspondence of the individual
components of the velocity vector, U and V , due to the different orientation of
the channel axis in the two anabranches. Projecting the velocity components of
channel B in the Cartesian system of channel A gives the following matching
conditions at x= 0:

UA =UB cos(δ)− VB sin(δ), (4.13a)
VA =UB sin(δ)+ VB cos(δ), (4.13b)

which reduce to those adopted in the analysis of the free response as δ vanishes.
Substituting (4.12) into (4.13) we obtain, at O(δ),

UA
1 (0, yA)=UB

1 (0, yB), (4.14a)
VA

1 (0, yA)= VB
1 (0, yB)+ 1. (4.14b)
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The second term on the right-hand side of (4.14b) embodies the forcing effect
induced by the deviation of the longitudinal flow direction due to the angle δ. It
represents the main novelty with respect to the unforced problem and makes the
linear system of matching conditions at the node no longer homogeneous. The reader
can readily prove that such an additional term generates a component of the overall
solution, say in the channel A, which is odd for the transverse velocity V and even
for η, U and D.

Consequently, the forcing effect due to a symmetrical angle between the distribut-
aries produces a symmetrical additional component for bed topography which is
unable to affect the bifurcation balance and therefore does not modify the criterion
for balanced/unbalanced bifurcations set in terms of the resonant width ratio. This is
consistent with the results reported in figure 7, which show that the discharge ratio
in the distributaries depends on βA being larger or smaller than βR, irrespective of
the presence of a bifurcation angle. Similarly, any symmetric perturbation that does
not advantage one of the two branches, such as an even variation of the slope of
the distributaries or an equal variation of the downstream boundary condition (in the
case of finite length distributaries) and also does not affect the equal partition of the
flow in sub-resonant conditions or the unbalance which arises when βA >βR.

The O(δ) solution can be readily obtained on substituting (3.27), (3.19c,d) and (4.4)
into (4.14). Expanding the forcing term in Fourier series we can set the matching
conditions at the node in the following form:

N−1∑
k=1

η̃A
m4{1, uA

m4, dA
m4} cos

(mπy
2

)
=

N−1∑
n=1

cos (nπy)
3∑

j=1

η̃B
nj{1, uB

nj, dB
nj} (m= 2k), (4.15a)

N−1∑
k=1

η̃A
m4v

A
m4 sin

(mπy
2

)
=

N−1∑
n=1

sin (nπy)
3∑

j=1

η̃B
njv

B
nj +

N−1∑
n=1

Bn sin(nπy) (m= 2k), (4.15b)

where the 1-D component is omitted, as it balances at the node, and Bn are the
coefficients of the Fourier sine expansion of the second term on the right-hand side
of (4.14b).

The reader will note that the conditions (4.15a,b) only involve even transverse
modes with m > 1, so that its structure is valid under both sub- and super-resonant
regimes (see figure 4). The solution is straightforward because the different Fourier
modes do not interact each other and therefore they can be separately computed. For
each even mode m four unknowns η̃A

m4, η̃
B
m1, η̃

B
m2, η̃

B
m3 need to be calculated and four

matching conditions are available:

η̃A
m4{1, uA

m4, dA
m4} =

3∑
j=1

η̃B
nj{1, uB

nj, dB
nj} (m= 2n), (4.16a)

η̃A
m4v

A
m4 =

3∑
j=1

η̃B
njv

B
nj + Bn (m= 2n). (4.16b)

As a further simplification, we note that the coefficients Bn are given by (4.14b):

Bn =
{

4/(nπ) (n ∈ odd),

0 (n ∈ even),
(4.17)

and therefore only the m modes 2, 6, 10, . . . are actually non-vanishing.
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The analytical solution has been shown to provide a consistent agreement with the
numerical solution proposed by Edmonds & Slingerland (2008) that refers to sub-
resonant conditions (Redolfi 2014, pp. 251–252).

5. Discussion
This work represents a first application of morphodynamic bar theories to a

multi-thread channel configuration. The key to solving the linear problem is how
to refer the solution for each channel to the same coordinate system and how to
develop the matching procedure at the bifurcation node. Such an approach provides
a rigorous theoretical detection of the ‘free’ bifurcation morphodynamic response,
thus allowing us to interpret previous results (numerical, experimental) with a clear
physics-based explanation. It also provides some indication of the tendency of most
real gravel-bed river bifurcations (often super-resonant, see table 2) to develop
unbalanced configurations along with an uneven discharge and sediment distribution.

The analytical theory reveals a fundamental connection between the direction of
morphodynamic influence and the dynamics of bifurcations, such that in the ‘free’
unforced case, the bifurcation shifts from a balanced to an unbalanced configuration
as the aspect ratio of the inlet channel crosses the resonant threshold βR. When the
effect of the discontinuity (the bifurcation node) can be felt dominantly downstream
(sub-resonant regime), the only possible steady solution corresponds to uniform flow
(figure 6a) and therefore any perturbation of flow and sediment partition and bed
elevation in the downstream distributaries cannot be sustained by the flow and bed
topography of inlet channel: the bifurcation remains stable and balanced. On the
contrary, in the super-resonant regime, the effect of the discontinuity can be felt far
upstream, such that an uneven distribution of flow and sediment discharge in the
downstream branches can be maintained by the formation of a steady alternate bar
pattern in the incoming channel.

A clear explanation of such a connection can be given by considering a strongly
simplified solution where only the first Fourier component is retained in the overall
solution. This implies that the solution in the main channel A reduces to a single
sinusoidal variation along the section (mode m = 1), while in the distributaries only
the 1-D component is retained. In such a simplified scheme, the matching conditions
reduce to the following relations:∫ 1

0
{ηA,UA,DA} dy= {ηB,UB,DB}, (5.1a)∫ 0

−1
{ηA,UA,DA} dy= {ηC,UC,DC}. (5.1b)

The integral conditions (5.1a,b) ensure the conservation at the bifurcation node of
any linear combination of η, U and D, such as discharge, bedload and energy. Such
representation is not dissimilar to the simplified model of Bolla Pittaluga et al. (2003),
except for the fact that our model is two-dimensional, so that we do not need to force
the same free surface levels at the inlet of the distributaries or introduce a two-cell
approximation near the bifurcation that requires an estimate of the coefficient α of
figure 1.

When βA <βR the only possible steady solution in the main channel (4.1) is given
by the component with eigenvalue λ4 (see (4.1)). Matching at the node requires, say
for the upper half of the domain, that the three conditions (5.1a) should be respected.
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FIGURE 10. (Colour online) Longitudinal profile of the approximate (first Fourier mode)
linear solution averaged across the half-domain (y ∈ [0, 1]) in the super-resonant regime:
β = 14, ds = 0.02, θ0 = 0.1, r= 0.5. The dotted line indicates the basic solution.

However, imposing two of them completely determines the 1-D solution in the
distributaries, so that it is not possible to satisfy at the same time the three conditions.
Consequently, only the trivial steady solution exists. Things are remarkably different
under super-resonant conditions (figure 10): in this case the solution in channel A
has two more degrees of freedom (4.2), so that it is possible to fix independently
two variables, say bottom elevation and water velocity, at x = 0. This allows us to
determine a non-trivial solution for channel A that satisfies simultaneously the three
matching conditions.

The outcomes of the present model explain reasonably well the overall behaviour
of bifurcations observed in flume experiments, though 3-D effects are not accounted
for. However, as suggested by fixed-bed experiments (Hardy, Lane & Yu 2011;
Thomas et al. 2011; Marra et al. 2014), these effects are not felt far upstream of
the bifurcation node and are likely to be important only when the bifurcation angle
is high and the aspect ratio is small. The suitability of the depth-averaged approach
is also confirmed by the weak (2%–3%) variation of the resonant value βR when a
parametrization of the curvature-driven secondary flow (e.g. Struiksma et al. 1985) is
included in the model.

A further limitation lies in the linearity of the solution, which does not enable us to
determine the amplitude and phase of the super-resonant solution and, consequently,
the values of inlet step and discharge ratio of the bifurcates.

The present analytical solution has been developed for a straight bifurcation
formed by a thin wall which separates the two distributaries. However, it also allows
for exploring the role of other effects which characterize bifurcations in real world
settings. Among them channel curvature, non-vanishing angle between the bifurcates
as well as the interaction between migrating bars and the bifurcation node have been
studied within previous theories, mainly based on the Bolla Pittaluga et al. (2003)
approach.

While extension of the model to include such effects is out of the scope of
the present work, which focuses on the ‘free’ bifurcation response, it must be
noted that the modelling approach is fully suitable to incorporate these ‘external
forcing’ effects. As seen in § 4.5, a symmetrical forcing, like that associated with
a divergent symmetrical bifurcation, does not alter the free bifurcation response in
terms of water and sediment distribution or inlet step. Conversely, we may expect
that asymmetrical forcing, like those exerted by a curved incoming channel or an
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asymmetrical configuration (different widths, angles and slope of distributaries) are
able to affect the bifurcation balance, regardless of βA being smaller or larger than
βR.

Inclusion of such ‘forcing’ effects in our modelling framework would be needed to
achieve a higher predictive ability against data from real world bifurcations, which
may eventually be controlled by a balance between the free, intrinsic response of
the bifurcation, and the forced response to external geometrical perturbations. Namely,
forcing effects should control the bifurcation evolution under sub-resonant conditions,
when the free response consists only of the trivial solution, while as β exceeds βR the
bifurcation configuration should develop following the interaction between free and
forced morphodynamic processes.

6. Conclusions
We propose a novel 2-D solution for the flow and bed topography in channel

bifurcations by applying the 2-D steady linear solution for river bars to a symmetrical
configuration consisting of an inlet upstream channel and two downstream bifurcates.
This allows us to investigate through a consistent analytical framework the intriguing
legacy between bifurcation evolution and the theory of morphodynamic influence
(Zolezzi & Seminara 2001), which was unexpectedly revealed by the experimental
observations of Bertoldi & Tubino (2007).

The shallow-water mobile-bed 2-D model is solved analytically for each of the
three channels separately through a perturbative approach, under the hypothesis of
small variations with respect to a basic, uniform flow. The matching conditions
at the bifurcation node result in a homogeneous algebraic system for the arbitrary
constants on which the homogeneous solutions of the governing differential problem
depends. A non-trivial, asymmetric solution exists if, and only if, the main channel
falls under super-resonant condition. It corresponds to a steady alternate bar pattern
in the upstream channel that originates at the bifurcation node and preferentially
deviates the flow towards one of the bifurcates, unbalancing the discharge partition
and creating a bed elevation gap and their inlet. On the contrary, when the upstream
channel is sub-resonant, the system admits only the trivial solution, which implies
that the bifurcation remains balanced.

The theory confirms that the resonant value (as defined by Blondeaux & Seminara
(1985)) of the upstream channel aspect ratio is the key parameter discriminating
between symmetrical and asymmetrical bifurcations, and allows us to disentangle
the physical and mathematical effects responsible for such behaviour, providing a
rigorous theoretical explanation.

Besides representing the first application of the steady linear theory for bars to a
multi-thread river setting, an added value of the present theory is its ability to predict
the threshold for the occurrence of an unbalanced configuration without requiring
an empirical estimate of the model coefficients. Such estimates are required in 1-D
bifurcation models (e.g. Bolla Pittaluga et al. 2003; Kleinhans et al. 2008; Bolla
Pittaluga et al. 2015) because they rely on semi-empirical nodal point relations that
here are no longer needed. Specifically, the present theory allows us to correctly
compute on a theoretical basis the α coefficient which quantifies the length of the
cell where the nodal condition is imposed. In the absence of theoretical expressions
to determine it, the value of α needs to be calibrated on the experimental conditions,
yielding a considerable variability among different cases.

Similarly to the existing 1-D models, our approach is designed for gravel- and sand-
bed bifurcations where bedload is the dominant mode of sediment transport. In such a
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case, the sediment flux is estimated through an algebraic equilibrium formula and its
deflection due to transverse bed slope is a key stabilizing factor. Further research is
needed to assess to what extent this mechanism is relevant in rivers where suspended
load dominates.

Results are then compared with existing experimental observations (Bertoldi &
Tubino 2007) and numerical simulations (Edmonds & Slingerland 2008; Siviglia
et al. 2013), showing quantitative agreement. Moreover, they are coherent with field
data for natural gravel-bed river bifurcations.

The assumption of a bifurcation consisting of three straight channels with vanishing
bifurcation angle, albeit simplistic, has a twofold motivation. First, it is fully consistent
with the formulation of the state-of-art, widely used model of Bolla Pittaluga et al.
(2003). Second, more importantly, it allows us to isolate what we name the ‘free’
bifurcation problem, i.e. the morphodynamic response of a bifurcation in the absence
of external ‘forcing’ effects that characterize more complex, real world bifurcation
configurations. We have proved that symmetrical forcing effects do not affect the
overall behaviour in terms of bifurcation balance. However, this may not be the case
when the external forcing is not symmetrical. The mathematical framework on which
the present theory is built allows such effects to be taken into account by future
research, which could reveal how the balance between free and forced bifurcation
responses may control bifurcation morphodynamics in real world settings.
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