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A pancake droplet translating in a
Hele-Shaw cell: lubrication film and flow field

Lailai Zhu1,† and François Gallaire1,†
1Laboratory of Fluid Mechanics and Instabilities, Ecole Polytechnique Fédérale de Lausanne,

Lausanne, CH-1015, Switzerland
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We adopt a boundary integral method to study the dynamics of a translating
droplet confined in a Hele-Shaw cell in the Stokes regime. The droplet is driven
by the motion of the ambient fluid with the same viscosity. We characterize the
three-dimensional (3D) nature of the droplet interface and of the flow field. The
interface develops an arc-shaped ridge near the rear-half rim with a protrusion in
the rear and a laterally symmetric pair of higher peaks; this pair of protrusions
has been identified by recent experiments (Huerre et al., Phys. Rev. Lett., vol. 115
(6), 2015, 064501) and predicted asymptotically (Burgess & Foster, Phys. Fluids A,
vol. 2 (7), 1990, pp. 1105–1117). The mean film thickness is well predicted by
the extended Bretherton model (Klaseboer et al., Phys. Fluids, vol. 26 (3), 2014,
032107) with fitting parameters. The flow in the streamwise wall-normal middle
plane is featured with recirculating zones, which are partitioned by stagnation points
closely resembling those of a two-dimensional droplet in a channel. Recirculation is
absent in the wall-parallel, unconfined planes, in sharp contrast to the interior flow
inside a moving droplet in free space. The preferred orientation of the recirculation
results from the anisotropic confinement of the Hele-Shaw cell. On these planes, we
identify a dipolar disturbance flow field induced by the travelling droplet and its
1/r2 spatial decay is confirmed numerically. We pinpoint counter-rotating streamwise
vortex structures near the lateral interface of the droplet, further highlighting the
complex 3D flow pattern.

Key words: boundary integral methods, drops, Hele-Shaw flows

1. Introduction

The dynamics of a droplet or bubble pushed by a carrier fluid flowing in a
confined space is a classical multiphase problem that has a long history. In such
cases, a capillary interface develops between the immiscible droplet/bubble and the
carrier fluid that wets the wall. A thin film is formed between the interface and the
wall, lubricating the droplet/bubble. Despite knowledge of the fundamental picture of
the thickness of the film, the shape of the menisci or the velocity of the suspended
phase, and regardless of the steadfast efforts initiated in the 1960s by Bretherton
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FIGURE 1. (Colour online) (a) A pancake droplet translating at velocity Ud in a Hele-
Shaw cell with gap width H, driven by an ambient fluid with a mean velocity of U∞.
The film thickness is h(x, y) as denoted in the inset. (b) A discretized drop with Ca∞ =
0.02 under confinement R/H= 2. Blue lines denote the walls and the green dashed curve
indicates the nearly flat region of the film.

(1961) and Taylor (1961), investigating a bubble confined in a tube as the first
step, the dynamics of translating droplets/bubbles under confinement is not yet well
understood.

The existing literature focuses mainly on a moving droplet/bubble confined in a
capillary tube or between two closely spaced parallel plates (Hele-Shaw cell). In
the former case, Taylor (1961) performed experiments by blowing air into a tube
filled with a viscous liquid where the air forms a round-ended cylindrical bubble.
He measured the bubble velocity Ud compared with the mean velocity U∞ of the
underlying flow, showing its excess velocity m = (Ud − U∞)/Ud as a function of
the capillary number Cad = µUd/γ , where µ denotes the dynamic viscosity of the
liquid and γ the surface tension; he also predicted the presence of stagnation points
in the flow ahead of the front meniscus and how the number and location of the
stagnations vary with m. Almost at the same time, Bretherton (1961) conducted
similar experiments and performed an axisymmetric lubrication analysis, showing that
the lubrication equations were similar to their two-dimensional (2D) version assuming
spanwise invariance. He focused on the shape of the front/rear menisci, the pressure
drop, the thickness of the lubrication film and the excess velocity m. Bretherton
established the well-known 2/3 scaling between the non-dimensional film thickness
2h/H and the capillary number Cad, namely, 2h/H = P(3Cad)

2/3 with P = 0.643,
where h and H denotes the film thickness and the tube diameter respectively. The
pre-factor P could vary with the droplet/bubble’s interfacial rigidity (Bretherton 1961;
Cantat 2013), and the viscosity ratio between the droplet/bubble phase and the carrier
phase (Teletzke, Davis & Scriven 1988).

The situation is more complicated in a Hele-Shaw cell where the droplet is so
squeezed that it adopts a flattened pancake-like shape, leaving a lubrication film
between its interface and the wet plates (figure 1). Such flattened droplets are
encountered in the context of droplet-based microfluidics (Baroud, Gallaire & Dangla
2010) where droplets are manipulated in microfluidic chips to achieve micro-reaction,
therapeutic agent delivery and biomolecule synthesis, etc. (Teh et al. 2008). Those
chips are often thinner in the wall-normal direction than in others, in order to process
simultaneously a large number of droplets constrained to move only horizontally. The
problem of a moving pancake droplet in a Hele-Shaw cell hence serves as a model
configuration to investigate the dynamics of those microfluidic droplets. Besides,
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A pancake droplet in a Hele-Shaw cell 957

the problem belongs to a larger set of research topics of moving menisci on a wet
solid, a phenomenon that is involved in a broad range of industrial and natural
situations (Cantat 2013) and has motivated pioneering studies (Park & Homsy 1984;
Meiburg 1989; Burgess & Foster 1990) of the pancake droplet/bubble in a Hele-Shaw
cell, as detailed below.

The dynamics of the Hele-Shaw droplet/bubble occur at different length scales
spanning a broad range; their close coupling makes the problem truly multi-scale.
The length scale in the unconfined direction is much larger than that in the confined
direction. The latter corresponding to the gap width of the cell is again much
larger than the thickness of the lubrication film. Thanks to the mathematical analogy
between the governing equations of the depth-averaged Hele-Shaw flow and those
of the 2D irrotational flow as proved by Stokes (1898) and commented by Lamb
(1932), potential flow theory was adopted to study the motion of a Hele-Shaw bubble
theoretically (Taylor & Saffman 1959) and numerically (Tanveer 1986). Park &
Homsy (1984) formulated a rigorous theory of a two-phase displacement problem
(a less viscous fluid displacing a viscous one in a Hele-Shaw cell) as a double
asymptotic expansion in small capillary numbers, Ca, and non-dimensional gap
widths, ε, of the cell (scaled by its transverse characteristic length scale); the theory
holds as long as the viscosity ratio λ between the displacing and displaced fluid
satisfies λ= o(Ca−1/3). Burgess & Foster (1990) performed a multi-region asymptotic
analysis for a Hele-Shaw bubble based on the same assumption of small Ca and
ε, focusing on the scaling dependence of the minimum/mean film thickness on Ca
and ε. Based on the stress jump derived by Bretherton (1961) and Park & Homsy
(1984) that enables using lumped interfacial boundary conditions, depth-averaged 2D
simulations were carried out by Meiburg (1989) for a Hele-Shaw bubble, including
the leading-order effects of the dynamic meniscus hindering the movement of the
bubble. In a similar vein, an alternative depth-averaged framework has been recently
implemented by Nagel & Gallaire (2015) by solving the so-called 2D Brinkman
equations that take account of the in-plane velocity gradients.

These results are supposed to hold for a particular range of the parameter space
due to their asymptotic nature and they have not been verified by either experiments
or fully resolved three-dimensional (3D) simulations. Moreover, these studies often
neglected the viscosity of the droplet phase or considered very low viscosities. The
asymptotic analysis also fails to provide information such as the interior/exterior
flow field, a full 3D description of the droplet profile or lubrication film, or detailed
connections with the droplet velocity. A tip of the iceberg has been revealed, and
much effort will be required to reach a thorough understanding of the problem.
Very recently, elaborate experiments have been performed by Huerre et al. (2015)
to measure the thickness and topology of the lubrication film between a viscous,
surfactant-laden droplet and the wall. They identified a regime where the interface
resembles a catamaran shape featuring two protrusions formed on its lateral sides,
without providing a detailed explanation about its physical origin. Very few 3D
simulations have been conducted for a pancake droplet/bubble despite the very recent
work of Ling et al. (2016) for a droplet with small but finite inertia. Here, we
simulate a matching-viscosity droplet (the fluid inside and outside has the same
viscosity) in the inertialess regime based on an accelerated boundary integral method
(BIM). We focus on the effect of the capillary number and the confinement (in other
words the aspect ratio) of the droplet. We show the topology of the lubrication film
and the spatial distribution of the film thickness. The dependence of the mean and
minimum film thickness on the capillary number are reported, and they are compared
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with the numerical and theoretical predictions of a 2D droplet in a channel. Finally,
we depict the flow field inside and outside the droplet, demonstrating its complex
three-dimensionality.

2. Problem description
As shown in figure 1(a), we consider, in the creeping flow regime, a translating

pancake droplet at velocity Ud driven by an ambient flow inside two infinitely large
plates placed at z = ±H/2. The fluids of the droplet phase and carrier phase are
Newtonian, sharing the same dynamic viscosity µ; the viscosity ratio λ between
the two (droplet phase versus carrier phase) is 1. We solve the steady Stokes
equations with no-slip boundary conditions on the plates and stress jump condition
σ1 ·n−σ2 ·n= γn(∇S ·n) on the droplet interface, where σ1 and σ2 are the total stress
tensors corresponding to the carrier phase and drop phase respectively, n is the unit
normal vector on the interface pointing towards the carrier phase and ∇S= (I−nn) ·∇
is the surface gradient. A Poiseuille flow with a mean velocity of U∞ is applied in
the inlet, hence the ambient velocity field in is u∞ = U∞(1.5− 6z2/H2, 0, 0)xyz. The
radius of the droplet at rest is a and all the length scales hereinafter are scaled by
a unless otherwise specified. Since the thickness h(x, y) of the lubrication film is
much smaller than the gap width H, the drop can be viewed as a cylinder of radius
R and height H, where R2H = 4a3/3. We use R/H to quantify the confinement. The
surface tension of the droplet interface is γ . We define capillary numbers based on
the velocity of the underlying flow or that of the droplet, leading to Ca∞ = µU∞/γ
or Cad =µUd/γ respectively.

3. Numerical methods
We use a BIM accelerated by the general geometry Ewald method (GGEM)

proposed by Hernández-Ortiz, de Pablo & Graham (2007) and Pranay et al. (2010).
On top of a GGEM-based BIM code originally developed to simulate elastic capsules
in general geometries (Zhu et al. 2014; Zhu & Brandt 2015), we implement a new
module to simulate droplets. Thanks to the linearity of Stokes equations, GGEM
decomposes the flow field into two parts, a short-ranged, fast-decaying part solved by
traditional BIM techniques, and a long-ranged, smoothly varying part handled by a
Eulerian mesh-based solver for which we choose the spectral element method solver
NEK5000 (Fischer, Lottes & Kerkemeier 2008) here. For the details of our GGEM
implementation, the reader is referred to Zhu & Brandt (2015). Our current work
only accounts for a matching-viscosity droplet without the necessity for performing
double-layer integrations, enabling us to follow directly the GGEM initially developed
for the fast computation of the Stokes flow driven by a set of point forces. To simulate
a non-matching-viscosity droplet (λ 6= 1), we can further adopt the GGEM-accelerating
BIM formulation (Kumar & Graham 2012) where the velocity field is expressed by
a single-layer integration solely even for problems with non-matching viscosities.

In the original GGEM-based BIM code for capsules, the interface is discretized by
spherical harmonics. For the droplet interface, we use triangular elements instead for
the discretization (see figure 1b). For a highly deforming interface that is far from a
sphere, as in our case, the triangular elements would capture the geometrical details
more accurately and flexibly compared to the spherical harmonics. Another benefit
of this choice is that adaptive mesh refinement on the interface like that performed
in Zhu, Lauga & Brandt (2013) can be readily incorporated to more efficiently and
robustly describe the fine-scale geometrical features.
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A pancake droplet in a Hele-Shaw cell 959

Based on the triangular elements, we perform singular integration on the droplet
interface using the plane polar coordinates with Gauss–Legendre quadrature, and a
high-order near-singularity subtraction has also been adopted following Zinchenko
& Davis (2006). A robust fourth-order local fitting algorithm (see appendix B
of Zinchenko & Davis (2006) for details) is used to accurately calculate the
surface normal vectors and curvatures of the interface. The most important feature
incorporated is the so-called passive mesh stabilization scheme (Zinchenko & Davis
2013) which has dramatically improved the robustness of our simulations because
the orthogonality and smoothness of the triangular elements are well guaranteed over
a long time evolution. For validation, we simulated a droplet tightly squeezed in a
long tube and observed excellent agreement with the data of Lac & Sherwood (2009)
based on a 3D axisymmetric BIM implementation.

We used an open-source multiphase flow solver, Gerris (Popinet 2009), for some
complementary simulations of a 2D drop in a channel. Rigorous validations against
our own 2D BIM codes have been conducted. Gerris is adopted here to obtain accurate
flow fields conveniently.

4. Results
We focus on the regime Ca∞ ∈ (0.007,0.16) when the capillary forces are important.

Lower capillary numbers are not pursued because they would require prohibitively
high computational cost due to the rapid decrease of the film thickness h with
decreasing Ca∞. More precisely, numerical difficulties arise because of the singular
perturbative nature of the problem at small Ca∞ values (Park & Homsy 1984). Three
confinement levels R/H = 1.5, 2 and 3 have been examined; their corresponding gap
widths are H = 0.840, 0.693 and 0.529. As depicted in figure 1, we denote the x, y
and z directions as the streamwise, spanwise and wall-normal directions, and the yz,
xz and xy planes as the transverse, vertical and horizontal planes.

4.1. Droplet velocity
Figure 2(a) depicts the dependence of the scaled droplet velocity Ud/U∞ with the
capillary number Ca∞ and confinement R/H. The velocity increases slightly with R/H.
This weak dependence is in accordance with the experimental observations of Shen
et al. (2014) for λ≈ 1.4 and capillary numbers several orders smaller than ours. The
scaled droplet velocity increases with Ca∞ monotonically and surpasses 1, in contrast
with the predicted velocity of Ud/U∞ = 1 by Gallaire et al. (2014) for a matching-
viscosity pancake droplet modelled by an undeformed cylinder at sufficiently low Ca∞.
The mismatch results from two drawbacks of their model: it neglects the impeding
effect of the dynamics of the menisci of the drop at low Ca∞; and it does not capture
the film thickening at high Ca∞ that enhances the droplet velocity.

4.2. Shape of the droplet and film thickness
To better visualize the fine-scale geometrical features of the drop shown in figure 1(b),
we stretch its top interface by 7.5 times vertically and the zoomed view is shown in
figure 2(b). The interface clearly bulges on the rear half of the rim of the interface,
displaying an arc-shaped ridge.

We show in figure 3 the contour lines of constant film thickness h(x, y)/H for
droplets with Ca∞ = 0.007, 0.02 and 0.08 under confinement R/H = 2. Note that
the height z(x, y) of the droplet interface is inversely correlated to the film thickness
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FIGURE 2. (Colour online) (a) The scaled droplet velocity Ud/U∞ as a function of Ca∞
for varying confinement. (b) Stretching the thin-film region of the drop as in figure 1(b)
by 7.5 times in z.
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FIGURE 3. (Colour online) Contour lines of the scaled film thickness h/H for droplets
with Ca∞ = 0.007 (a), 0.02 (b) and 0.08 (c) under confinement R/H = 2. The black
contour line h/H = 0.5 indicates the edge of the droplet cut by the z= 0 plane.

h(x, y), i.e. z(x, y) + h(x, y) = H/2. The black curve h/H = 0.5 represents the edge
of the droplet cut by the z = 0 plane, which resembles a circle at Ca∞ = 0.007 but
becomes elongated at Ca∞= 0.08. For all Ca∞ investigated, the contour map exhibits
three local minima: one at the rear and a symmetric pair on the lateral edges. These
minima correspond to the peaks of the interfacial protrusions. The two symmetric
lateral protrusions are higher than the rear one. They have been recently observed
experimentally for a pancake droplet with λ= 25 by Huerre et al. (2015), who noted
the resulting ‘catamaran-like shape’ adopted by the droplet. This feature has also
been portrayed theoretically by Burgess & Foster (1990), performing a multi-region
asymptotic analysis of a pancake bubble (see figure 5 of their paper). As far as we
know, our study represents the first computational work that identifies this unique
interfacial topology.

Burgess & Foster (1990) showed in the low capillary number limit that the contour
lines of h/H are streamwise parallel in the central film region (excluding the lateral
portion) where the viscous forces dominate, resulting in flat film. The contour lines of
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FIGURE 4. (Colour online) The scaled mean h̄/H (a) and minimum hmin/H (b) film
thickness versus the capillary number Cad, for a pancake droplet under confinement R/H=
1.5 (circles), 2 (squares) and 3 (diamonds). Its minimum thickness on the middle vertical
slice is denoted by hy=0

min . The dashed curve corresponds the constant film thickness hEB/H
of a 2D drop predicted by the EB model (Klaseboer, Gupta & Manica 2014) with P= 0.6
and Q= 1.5. The triangles denote the numerical data hsim|2D/H (constant) and hsim

min|2D/H
(minimum) for a 2D drop.

the Ca∞= 0.08 case are indeed parallel in the region x∈ (−1, 1), y∈ (−0.75, 0.75). At
a reduced capillary number Ca∞ = 0.007, such parallel lines disappear and the three
protrusions instead occupy a large portion of the film, pointing to its 3D nature.

We show in figure 4(a) the dependence of the mean thickness h̄ on the capillary
number. Cad is adopted instead of Ca∞ to be consistent with prior studies. We obtain
h̄ by averaging h over a central circular patch with radius Rcen= 0.3Rxy, where Rxy is
the effective radius of the nearly circular droplet profile in the z= 0 plane. The scaled
film thickness h̄/H increases with Cad monotonically and weakly depends on R/H.

For comparison, we use the flow solver Gerris to simulate a 2D matching-viscosity
droplet in a channel of width H where the droplet length is much larger than its size
in the confined direction. The film far away from the dynamic menisci is almost flat
with a constant thickness of hsim|2D which is reported in figure 4(a). Additionally, we
include the prediction of the extended Bretherton (EB) model proposed by Klaseboer
et al. (2014) for a bubble, according to which, apart from the dynamic meniscus
regions, the lubrication film has a constant thickness of hEB

hEB/H = 1
2

P(3Cad)
2/3

1+ PQ(3Cad)2/3
, (4.1)

where H is the tube diameter, and P = 0.643 and Q = 2.79 (Bretherton 1961). This
model agrees well with the empirical fit of Aussillous & Quéré (2000) of Taylor’s
(1961) experimental data. We adopt P = 0.6 and Q = 1.5 in (4.1), and the fitted
thickness hEB/H almost coincides with the numerical value hsim|2D/H. The mean film
thickness h̄/H agrees well with the two values hsim|2D/H and hEB/H of the 2D drop at
low capillary numbers, but starts deviating when Cad increases. As the confinement
increases, the film thickness h̄/H agrees better with the 2D results. The agreement
between h̄/H with the thickness hsim|2D/H ≈ hEB/H can be attributed to two reasons:
first, the central region where h̄ is measured is rather flat, as illustrated by the sparsely
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A 2D droplet in a channel

Middle vertical slice of a pancake droplet

FIGURE 5. (Colour online) Velocity field in the droplet frame including the vectors and
streamlines of the flow (a) on the y = 0 plane of the drop with Ca∞ = 0.007 and
R/H = 2, (b) of a 2D droplet with Ca∞ = 0.007 and λ = 1 travelling in an infinitely
long channel. Red curves denote the droplet interface and black/magenta/tip circles denote
the interfacial/axial/tip stagnation points; the contour colour indicates the in-plane velocity
magnitude scaled by the droplet velocity |u|/Ud.

distributed contour lines in figure 3, implying the mean film thickness h̄ adopts the
constant thickness h of the vertical slice (y= 0); second, as we will show in § 4.3, the
velocity field of this slice strongly resembles that of a 2D matching-viscosity droplet.

We plot in figure 4(b) the scaled minimum film thickness hmin/H of the pancake
droplet, where hy=0

min /H denotes the scaled minimum thickness of its middle vertical
slice, and hsim

min|2D/H that of the 2D drop. For all R/H, hy=0
min /H is slightly below

hsim
min|2D/H and increases with R/H. For the most confined case, R/H = 3, hy=0

min /H
agrees with hsim

min|2D/H reasonably well, which is in accordance with the agreement
between their mean thickness counterparts, i.e. h̄/H and hsim|2D/H, as discussed
previously.

The global minimum hmin/H is, however, approximately half of the local hy=0
min /H,

as can be inferred from the minima of the contour maps (figure 3) that represent the
thickness of the film above the lateral and rear interfacial protrusions. The difference
between these two minima indicates the 3D nature of the droplet interface. Note that,
while h̄/H slightly increases with the confinement R/H, hmin/H decreases significantly
with R/H, especially at large Cad numbers. This suggests that the 3D nature is more
pronounced for a more confined drop.

4.3. Flow field in the reference frame of the droplet
In this section, we focus on the flow field, udrop= ulab− (Ud, 0, 0)xyz, in the reference
frame of the droplet, where ulab indicates that in the lab frame; the disturbance flow
field will be discussed in § 4.4. The velocity fields projected on the vertical, horizontal
and transverse planes in the reference frame of the drop are depicted. We first show
in figure 5(a) that on the middle vertical plane y = 0 of the drop with Ca = 0.007
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under confinement R/H= 2. We compare it to the 2D drop with λ= 1 in figure 5(b).
We find the two flow patterns resemble each other closely, supporting the hypothesis
made in § 4.2 regarding their film thickness. In the top-half domain, the interior flow
consists of three recirculating zones, two clockwise ones appearing beside the front
and rear meniscus respectively and a third anti-clockwise one in between; they are
clearly distinguished by six stagnation points, two on the interface (black circles),
two on the axis (magenta circles) and the other two as the tips (green circles) of the
droplet. The front interfacial stagnation point has been predicted for an axisymmetric
inviscid bubble in a tube by Taylor (1961), as also discussed by Hodges, Jensen
& Rallison (2004). The recirculation has been observed numerically by Westborg &
Hassager (1989) and Martinez & Udell (1990) for an axisymmetric viscous droplet
both near its front and rear meniscus, as well as by Ling et al. (2016) for a 2D drop
with λ≈ 1.35.

As explained by Martinez & Udell (1990), this flow structure appears as a result of
the combination of the shear exerted by the wall onto the film and the zero net flux
condition inside the drop. The interface tends to follow the moving wall to reduce the
viscous dissipation in the film, producing the interior backward flow; the zero net flux
condition dictates a compensating forward flow in the near-axis region. This global
balance results from the local divergence-free condition ∂u2D

x /∂x+ ∂u2D
z /∂z= 0.

This 2D scenario holds in any vertical slice of a spanwise, infinitely long
droplet confined by two plates. But there is no reason why this condition should
be satisfied in the middle slice of the ‘pancake’. The symmetry imposes indeed
uy = 0 but not necessarily ∂uy/∂y = 0. The similarity between the two flows shows
a posteriori that the in-plane divergence-free condition is approximately verified
though, ∂ux/∂x + ∂uz/∂z = −∂uy/∂y ≈ 0. This will be confirmed in the horizontal
flow fields investigated next.

In figure 6, we display the velocity fields on the planes located at z=0, 0.1, 0.2 and
0.285 together with the colour-coded wall-normal velocity uz; note that the walls are
located at z=±0.347. The flow field can be partitioned into three patches depending
on the radial position rxy with respect to the origin: first, the inner patch that is circular
(rxy / 1) inside which the flow is mostly in the streamwise direction, i.e. uy ≈ 0 and
∂uy/∂y≈ 0; second, the outer patch (rxy ' 1.5) that contains the flow passing around
the droplet; and third, the annular patch (1 / rxy / 1.5) that bridges the other two,
where the flow mainly follows the in-plane curvature of the interface (red). The
flow inside all the patches varies direction when the horizontal plane shifts from the
middle z= 0 towards the top wall. More specifically, in the inner patch, the flow goes
forward at z= 0 but backward at z= 0.285, reflecting the anti-clockwise recirculation
on the vertical planes (see figure 5a). In addition, the low in-plane velocities at
z = 0.2 correspond to the core of this recirculation. The velocity field in the outer
patch represents the relative motion of the ambient flow with respect to the drop: near
z= 0, the flow is faster than the drop and ‘pushes’ it; near the wall, the flow is slower
and ‘retards’ it. The annular patch encompasses the droplet interface, and due to the
non-penetration condition, the flow mostly follows the motion of the fluid elements
along the interface: at z= 0, the ambient flow ‘pushes’ the droplet forward, resulting
in a clockwise annular flow; near the top wall, the ambient flow ‘drags’ the droplet
backward resulting in a counter-clockwise flow. Unlike the middle vertical slice, the
in-plane divergence-free condition in the middle horizontal plane is clearly broken, as
a source (respectively a sink) emerges on the axis at x≈−1.3 (respectively x≈ 1.2)
which exactly corresponds to the back (respectively the front) axial stagnation point
on the middle vertical plane (see figure 5a).
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FIGURE 6. (Colour online) Flow on the horizontal planes at (a) z = 0, (b) z = 0.1,
(c) z= 0.2 and (d) z= 0.285 for the same drop as in figure 5(a), shown in half (y = 0)
of the domain. The top wall is located at z = 0.347. The contour colour indicates the
wall-normal velocity uz. A reference vector with norm |u| = 1 is given. Red curves
represent the droplet interface cut by the planes and the black dashed curves indicate
the radial position of rxy = 1 and rxy = 1.5. Magenta circles in (a) denote the same axial
stagnation points as in figure 5(a).

We then come to the flow in the transverse planes shown in figure 7. Because
of symmetry, we focus on the quarter (y = 0, z = 0) and we zoom in the lateral
interface of the drop. We observe two vortical structures aligned in the streamwise
direction: one at the rear, rotating clockwise, and the other in the front, rotating
anti-clockwise. The two structures are most intense at approximately x = −0.85 and
0.85, i.e. where their axis intersects the interface; they both decay in strength away
from these maximum swirl regions and are connected at a no-swirl position slightly
aft the droplet centre, i.e. between the x = −0.15 and x = 0 plane. At this position,
the vorticity switches sign and streamlines change their spiralling direction. These
streamwise vortex structures are closely related to the flow in the horizontal planes
shown in figure 6: at x = −0.85 and y ≈ 1, the flow is in the positive (respectively
negative) y direction in the annular patch at z = 0 (respectively z = 0.285), which
generates a clockwise vortex; the vortex at x=0.85 appears likewise though oppositely
oriented, because the flows in the annular patch reverse their spanwise directions.

4.4. Disturbance flow field
We hereby analyse the disturbance flow u′ = ulab − u∞ induced by the presence of
a translating pancake droplet, where u∞ = U∞(1.5 − 6z2/H2, 0, 0)xyz. For the same
drop as that examined in § 4.3, we depict u′ on the middle vertical plane in figure 8.
In most of the domain, the disturbance flow is parallel, in the direction against the
underlying flow. This represents the obstructive effect of the droplet travelling at
a velocity Ud smaller than the mean flow velocity U∞; in other words, the extra
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FIGURE 7. (Colour online) Flow on the transverse planes at (a) x=−0.85, (b) x=−0.4,
(c) x = −0.15, (d) x = 0, (e) x = 0.4 and ( f ) x = 0.85 for the same drop as shown in
figure 5(a), illustrated near the droplet interface (red) in the y = 0, z = 0 quarter of the
domain. The contour colour indicates the streamwise velocity ux. A reference vector with
norm |u| = 0.4 is given.
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x
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FIGURE 8. (Colour online) Disturbance flow field on the y = 0 plane of the droplet
analysed in § 4.3.

pressure drop stemming from the presence of the droplet is positive. Interestingly, the
disturbance flow u′ reverses its direction near the front and rear dynamic meniscus
regions that extend from the lubrication film towards the static meniscus regions. As
a result, two vortical structures aligned in the positive y direction emerge, akin to
those observed in the flow field in the droplet frame udrop projected on the transverse
(yz) planes as shown in figure 7. In fact, the projections of u′, ulab and udrop on the
transverse planes are equivalent, because both the droplet velocity and the underlying
flow u∞ have only one non-zero component that is the x component.

The disturbance flow field u′ projected on three horizontal planes is shown in
figure 9. On the middle z= 0 plane, the droplet sucks in/ejects fluid in the front/rear,
the interior flow is mostly parallel and opposite to the moving direction of the
droplet but reverses the sign near its lateral edge. This resembles a 2D dipolar
flow field decaying as 1/r2 (see figure 9e for a typical sketch), which has been
observed experimentally for a pancake droplet by Beatus, Tlusty & Bar-Ziv (2006).
This dipolar field, as an elementary solution of potential flow, was also assumed to
predict the velocity of a buoyancy-driven bubble (Maxworthy 1986). In figure 9(d),
we examine how the disturbance velocity magnitude U′xy =

√
(u′x)2 + (u′y)2 varies
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FIGURE 9. (Colour online) Disturbance flow field u′ projected on the horizontal planes
at (a) z= 0, (b) z= 0.15, (c) z= 0.285 for the same drop as in figure 8(a); the contour
colour indicates the disturbance velocity magnitude U′xy/Ud. (d) Spatial variation of U′xy/Ud
on the z= 0 plane, along three directions; the inset shows the log–log scale. (e) Sketch
of a typical dipolar flow pattern.

with the radial distance r=√
x2 + y2, along the three paths emitting from the centre

of the domain; the angles between these paths and the positive x direction are
θ = π/4, π/2 and 3π/4. The log–log plot in the inset indicates that the decaying
rate does indeed closely follow the 1/r2 scaling law. The dipolar flow field is also
detected on the z= 0.15 plane with a decreased strength. However, it disappears on
the z= 0.285 plane where the droplet ejects/sucks in fluid near its front/rear meniscus;
this reversed disturbance flow has in fact been revealed on the middle vertical plane
in figure 8.

5. Conclusions and discussions
We report a 3D computation of a translating pancake droplet in a Hele-Shaw cell.

The cell gap width is around 0.5∼ 0.85 the radius of a relaxed drop and the capillary
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number is in the range [0.007, 0.16]. In droplet-based microfluidic applications, the
capillary numbers are smaller than our values by an order of one to two (Shen et al.
2014; Huerre et al. 2015) and the droplets are generally more confined. Still, we
believe our computational study has taken a first step towards handling these realistic
situations by extending the previously explored parameter space.

Our simulations together with the recent experiments by Huerre et al. (2015) and
the prior asymptotic analysis by Burgess & Foster (1990) confirm a common and
unique interfacial topology of a pancake droplet/bubble, viz. a pair of protrusions
formed symmetrically on the lateral rim of the rear-half interface. The viscosity
ratios of the three studies are λ = 1, 25 and 0 respectively, suggesting that this
topology is rather insensitive to the viscosity ratio. As a complementary clue, the
work of Lhuissier et al. (2013) is worth noting. They investigated experimentally
and theoretically the levitation of an oil drop (λ≈ 2500) on a moving wall mediated
by the air film between them, observing a ridge of minimum film thickness on
the downstream and lateral sides; although not explicitly mentioned, three closed
iso-contour patterns were revealed, indicating the interfacial protrusions (see their
video Saito, Tagawa & Lhuissier (2014)).

The velocity field in the vertical planes closely resembles that of a 2D droplet in
a channel, while an analogous resemblance is missing in the horizontal planes. For
a 2D unconfined droplet or a 2D Brinkman model of the drop (Gallaire et al. 2014)
where the confinement of Hele-Shaw cell is depth-averaged, the interior flow pattern in
the drop frame, is featured with two symmetric counter-rotating recirculation regions
to satisfy the zero net flux condition; the drop’s lateral interfaces recede due to the
backward viscous forces from the exterior flow and consequently the flow near the
symmetry axis advances to ensure global balance. For a 3D pancake droplet, this
feature is, however, absent in the horizontal planes. Recirculation therefore takes place
in a preferential direction, in the vertical planes in which the drop is confined but not
in the horizontal unconfined planes. This preference results from the anisotropy of the
wall confinement as the viscous forces on the droplet interface in the vertical planes
overwhelm those active in the horizontal planes. Indeed, the lubrication film bridging
the wall and the interface is so thin that the viscous effects in the former case play
a dominant role in the determination of the flow pattern.

Despite the 3D feature of the flow, we have recovered that a moving pancake
droplet induces a dipolar disturbance flow that can be described by a 2D velocity
potential φ′. The dipole and the potential characterizing the disturbance are
d = (R2(Ud − U∞), 0)xy and φ′ = −d · r/r2 respectively, where r is the position
vector with respect to the droplet centre. This shows that the leading contribution of
the disturbance flow, ∇φ′, decays as 1/r2. This scaling is attributed to the confining
effect of the two parallel walls and is important to bear in mind when considering
the hydrodynamic interactions among several pancake droplets or among the droplets
and the lateral boundaries in micro-fluidic chips.

Planned future work includes the analysis of force balance on the droplet,
determining its velocity based on the obtained 3D data, as well as the extension
of our GGEM-based BIM code to account for non-matching-viscosity droplets and
interfacial transport of insoluble surfactants.
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