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We argue that a method developed by Ångström (Ann. Phys. Chem., vol. 114,
1861, pp. 513–530) to measure the thermal conductivity of solids can be adapted
to determine the effective diffusivity of a large-scale magnetic field in a turbulent
electrically conducting fluid. The method consists of applying an oscillatory source
and measuring the steady-state response. We illustrate this method in a two-
dimensional system. This geometry is chosen because it is possible to compare the
results with independent methods that are restricted to two-dimensional flows. We
describe two variants of this method: one (the ‘turbulent Ångström method’) that is
better suited to laboratory experiments and a second (the ‘method of oscillatory sines’)
that is effective for numerical experiments. We show that, if correctly implemented, all
methods agree. Based on these results we argue that these methods can be extended to
three-dimensional numerical simulations and laboratory experiments.

Key words: MHD and electrohydrodynamics, MHD turbulence, turbulent mixing

1. Introduction
The evolution of astrophysical magnetic fields is most often characterized by

changes in their large-scale structure. This is typically because the small-scale
magnetic fields are not amenable to direct observations. The large-scale evolution
is often described using the concept of turbulent diffusion (see e.g. Parker 1979).
This is justified by noting that most astrophysical plasmas have very large Reynolds
numbers and are in a state of vigorous turbulent motion. Although this concept has
proven useful, its precise theoretical underpinning has remained elusive. The reasons
for the difficulties are twofold. The first is that the magnetic field is a vector quantity
so its transport properties are more akin to (although subtly different from) vorticity
rather than temperature. The second is that the magnetic field is not a passive quantity
and so it can effect the underlying turbulence through the action of the Lorentz force.

Analytical approaches to determining the turbulent diffusivity are difficult; they
can only be justified in certain regimes such as low-Reynolds-number flows or short
correlation time turbulence, which are not the correct regimes for astrophysical flows
(Moffatt 1978; Krause & Raedler 1980). However, even if these assumptions are made,
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the biggest difficulty lies in self-consistently calculating the effect of the magnetic
field once it becomes dynamic and modifies the statistics of the underlying turbulence.
Much of what is known (or not known) derives from measurements of the turbulent
diffusivity in numerical experiments (see e.g. Cattaneo & Vainshtein 1991; Cattaneo
1994; Courvoisier, Hughes & Tobias 2009). Even these are not entirely straightforward.
The first issue arises owing to the requirement for a separation of scales between
the characteristic scale of the underlying turbulence and the (much-larger) scale
on which the magnetic field displays diffusive behaviour. The second is that the
magnetic Reynolds number needs to be large enough for a clear distinction between
the collisional and turbulent diffusion. This is not only numerically challenging but
also introduces large fluctuations that somehow need to be controlled (Cattaneo &
Hughes 2009). Finally in three dimensions, the vectorial nature of the magnetic field
introduces the possibility of dynamo action, whereby the large-scale magnetic field is
not only advected and diffused but also amplified. This makes it difficult to disentangle
the effects of diffusion from mean induction. These issues notwithstanding there are
methods that have been constructed in order to calculate the turbulent diffusivities in
numerical experiments (Brandenburg et al. 2008; Brandenburg, Svedin & Vasil 2009).
Recently another possibility has emerged, which is to measure the turbulent diffusivity
in laboratory experiments based on liquid metals (see Monchaux et al. 2009). Indeed
there have been a couple of implementations to calculate the turbulent diffusivity for
an experiment in toroidal geometry (Frick et al. 2010; Noskov et al. 2012). Most of
the methods that have been used to calculate the turbulent diffusivity in numerical
experiments do not carry over to experimental set-ups. For example, the popular ‘test
field method’ (Schrinner et al. 2005) involves the solution in space and time of an
auxiliary field (the test field) that cannot be reproduced in a real experiment.

In this paper we argue that a popular technique due to Ångström (1861), yes, really,
that Ångström, for measuring the thermal diffusivity in solids can be adapted to
measure the turbulent diffusivity of a magnetic field in an electrically conducting fluid.
We shall describe two variants of this technique. One, which we term the TAM is
suitable for laboratory experiments, whilst the second, the ‘method of oscillatory sines’
(MOS), is better suited to numerical experiments. The most important feature of these
methods is that they are based on measuring properties of the magnetic field in a
stationary state. We believe that this is desirable because it leads to the property that
by taking enough measurements (or measurements for long enough) one can reduce
the errors to an acceptable level.

In the long term, we would like to use these methods to address some fundamental
issues: under what circumstances does it make sense to characterize the evolution of
the magnetic field in terms of a turbulent diffusion? If it does make sense, then what
is the value of the turbulent diffusivity, how does it differ from that of a passive
scalar and what is its dependence on magnetic field strength. In this paper we examine
the basic concepts and apply the methods to turbulent flows in two dimensions. This
will act as a proof of concept. Because other methods are available to measure the
diffusivity in two dimensions we can compare these new methods and determine under
what circumstances agreement is reached. In a further paper we shall extend the
methods to the more interesting case of three-dimensional turbulence.

2. Measurement of the turbulent diffusivity
There are two related, but separate, concepts of turbulent diffusion that are generally

invoked. The first, termed Richardson diffusion (Richardson 1926), looks at the
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process of diffusion of scales that are comparable with the range of scales of the
inertial range of the turbulence; for an extension of the concept of Richardson
diffusion to vector fields see (Eyink 2009). In this case there are always scales of
motion that are larger than the scales at which the diffusion is operating. The other,
termed Taylor diffusion (Taylor 1921) (which is the subject of this paper), arises in
cases where there is a separation of scales between the random motions (such as
the fluid turbulence) and the dynamics of large scales of the quantity of interest. If
this separation exists, and subject to reasonable assumptions about the nature of the
underlying turbulent velocity, then the evolution of the average over scales much larger
than that characterizing the turbulent velocity can be described using an effective
diffusivity, which, in general, should be independent of collisional processes. It is
possible for the diffusivity to be time-dependent, but here we restrict attention to
the case where the flows are statistically steady and so the diffusivity is independent
of time. For a scalar quantity, such as temperature or contaminant, measurement of
the effective diffusivity is straightforward. It can be calculated either by prescribing
the large-scale variation of the scalar and measuring its rate of decay (Cattaneo &
Vainshtein 1991) or alternatively by calculating the trajectories of the turbulent flow
and utilizing the result that the turbulent diffusivity is related to the time rate of
change of the mean-square displacement (Taylor 1921; Cattaneo 1994). For anisotropic
cases the calculation is less straightforward, but in any case, knowledge of the two-
point statistics yields all the information required to determine the diffusivity tensor.
Because in two dimensions the magnetic field can be described by the evolution of
a single scalar field, either one of these two methods can be immediately utilized
to calculate the turbulent diffusivity, whether or not the magnetic field is active or
passive.

In the case of a vector quantity the calculation is more involved, because now there
is the possibility of dynamo action which leads to the amplification of magnetic energy.
Therefore, imposing an initial large-scale distribution of magnetic field and waiting
for it to evolve to measure its rate of decay may prove a fruitless exercise; it may
actually grow. Indeed, for high magnetic Reynolds number, if the flow is sufficiently
complicated to lead to a turbulent diffusivity it is almost guaranteed to lead to dynamo
action, where the field grows until it reaches a stationary state. There are ways of
circumventing the problem of the lack of decay. For example, the test-field method
attempts to measure the turbulent diffusivity of the stationary state. Its aim is to
disentangle the effects of induction from those of diffusion by calculating the evolution
of a test field that satisfies an auxiliary fluctuating vector field equation (the test field).
Although the test-field method has been used extensively in numerical work, it is
hard to see how it may be used directly in the laboratory. Moreover, the expression
for the turbulent diffusivity in terms of trajectories for a vector field is significantly
more complicated than for a scalar (Moffatt 1974). It has a piece that requires the
determination of the two-point statistics of the displacement field and also a piece
that requires the knowledge of the Lagrangian gradient of the displacement field. In a
chaotic flow, this quantity is related to the Lyapunov exponents and therefore increases
exponentially in time (or faster if it is in the inertial range scales), even in a stationary
flow (Moffatt 1978). It is therefore almost impossible to implement trajectory methods
for vector fields even numerically, let alone experimentally.

2.1. A simple one-dimensional example
The considerations described above, lead us to the conclusion that the method for
calculating the turbulent diffusivity should be based on measurements in a stationary
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state (i.e. not decay), should not use trajectories and should not rely on fictitious fields.
We take as our starting point the method proposed by Ångström for calculating the
thermal diffusivity of a one-dimensional metal rod. The essence of the method can be
illustrated very simply. Imagine a metal rod with one end kept at fixed temperature
whilst the other end is periodically (sinusoidally) heated and cooled with frequency
ω. After a sufficiently long time so that the transients that are related to the initial
distribution of temperature in the rod have died away, the temperature at any point
within the rod will vary sinusoidally in time with frequency ω and with an amplitude
that and phase that depend on the thermal diffusivity of the rod (assuming that the
thermal diffusivity does not depend on temperature). Thus, if one could measure either
of these quantities then one could invert the problem and infer the thermal diffusivity.

Now imagine that instead of a solid rod, we have a very long thin pipe filled with
some fluid. We further imagine that the fluid in this pipe is turbulent with a typical
eddy size comparable with the diameter of the pipe. Once again, one end of the pipe
is kept at T = 0 whilst the other is heated and cooled sinusoidally. What would be the
outcome of the experiment described above? The temperature at each point along the
pipe is the superposition of two signals, one at the frequency ω which arises owing
to the oscillation at the boundary and another component that arises because of the
turbulent fluctuations. If the frequency of the turbulence is large compared with that of
the oscillation then it is possible to measure the amplitude of the sinusoidal component
to a required level of precision by taking a very long signal. What is crucial here is
that both the turbulence and the system are in a statistically stationary state, so there is
no restriction a priori to the length of signal that can be taken.

We conclude this section by noting that, from a numerical point of view, by sticking
two of these problems together we may map a non-periodic system with a time-
dependent boundary condition into a spatially periodic system with an oscillatory
source term. If this source term is spatially localized then the new system is a good
model of a boundary driven experiment, we call this technique the TAM. However,
now that we are in the realm of numerics we are not restricted to localized source
terms and so one may consider oscillatory sources that are sinusoidal in space, which
as we shall see has some advantages; we term this type of calculation the MOS.
Although this example is ‘one-dimensional’, the techniques can clearly be extended to
a volume of turbulent fluid by an appropriate distribution of sources and sinks.

3. Mathematical formulation and measurement techniques
Our objective is to construct a simple model and apply the techniques described

above to determine under what circumstances the turbulent diffusivity can be
calculated. Our computational domain is a two-dimensional Cartesian rectangle
(0 6 x < Xmax, 0 6 y < Ymax). For computational convenience we apply periodic
boundary conditions in x and y. The interaction between an incompressible fluid and
a magnetic field in two dimensions can be described in terms of two quantities, the
vertical component of the vorticity ζ and the flux function A. The evolution equations
for these quantities are

∂tζ = J(ψ, ζ )+ J(A,∇2A)+ ν∇2ζ −Λζ + G0, (3.1)
∂tA= J(ψ,A)+ η∇2A+ SA, (3.2)

where J(a, b) = axby − aybx, ν = 5 × 10−4 is the viscosity, η = 10−3 is the collisional
diffusivity and Λ = 3 × 10−2 is the coefficient of friction. Here G0(x, y, t) is the
driving (sometimes referred to as the force curl) and SA is the source term for the flux
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FIGURE 1. (a) Density plot of vorticity as a function of x and y at a representative time for
a kinematic case. (b) Time-averaged energy spectrum. The narrow peak corresponds to the
scale of the forcing whilst the broad plateau arises at a scale where the inverse cascade is
balanced by friction.

function. The vorticity is related to the streamfunction by ζ =−∇2ψ and the magnetic
field B is given by B= (−Ay,Ax).

3.1. Construction of the velocity
In order to make meaningful measurements of the turbulent diffusion, there are
certain characteristics that the velocity field should possess. It should be stationary,
it should be complicated (in the sense that it should have positive Lyapunov exponents
everywhere) and it should satisfy the requirement of scale separation both in space
and time. Interestingly this can be achieved trivially in three dimensions by going to
high enough Reynolds number, but is somewhat trickier to achieve in two dimensions.
The main issue is the presence of an inverse cascade that has a tendency to generate
large, long-lived eddies; this breaks scale separation in both space and time. The
simplest way to control this is to introduce friction, which we do by setting Λ > 0.
This removes the energy at large scales and ensures that a stationary solution can be
achieved. The forcing is chosen to be localized in phase space to a band of high
wavenumbers so that the corresponding velocity is likewise characterized by high(ish)
wavenumbers. The amplitude and renewal time for the forcing are selected so that
the resulting eddies have lifetimes that are comparable with their turnover times. This
requires some tuning of the parameters. There are many different ways of selecting
the forcing. Our procedure involves selecting a wavenumber to force from a band
of wavenumbers 15 6 kx, ky 6 20 and maintaining the forcing for a length of time
(the renewal time) that is itself chosen from a uniform (top-hat) distribution with
well-defined mean and width, before selecting another wavenumber to force. We have
determined, however, that the statistics and dynamics of the resulting velocity is not
sensitive to the precise form of this forcing. The friction is selected so as to remove
energy at small wavenumbers. We solve (3.1)–(3.2) using standard pseudospectral
techniques (Canuto et al. 1987) and all calculations are performed at a resolution of
10242.
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Figure 1(a) shows a snapshot of the vorticity after it has reached a statistically
steady state. Here we have set Xmx = Ymx = 4π with a renewal time of τr = 0.1;
these parameters are held fixed for the rest of the paper. The field is characterized
by the presence of many interacting vortices with a well-defined characteristic spatial
scale, which is not too large. Figure 1(b), which gives a two-dimensional spectrum
of the kinetic energy, shows that the solution is dominated by two wavenumbers,
one at the forcing scale, but a significant amount of energy has inverse cascaded
to lower wavenumbers with a peak in energy at kh = (k2

x + k2
y)

1/2 ∼ 5. This peak is
determined by a balance between the inverse cascade efficiency and the friction. The
temporal coherence of the flow can be characterized by the correlation time τc. For
these parameters τc ≈ 0.7, which is significantly larger than the renewal time τr of
the forcing. The increased correlation time of the flow is due to the presence of
longer-lived coherent vortices that emerge as a result of nonlinear interactions in the
flow.

3.2. Description of the experiments
3.2.1. The measurement of turbulent diffusivity

At this point, we need to be more precise about what is meant by turbulent
diffusivity. The idea is that even though the evolution of Bx is described by (3.2),
the evolution of the averages of Bx is described by

∂tBx = ηT∇2Bx + S, (3.3)

where ηT is the turbulent diffusivity and S is some average version of S. The type of
average depends on circumstances; in principle, they could be time averages, ensemble
averages or spatial averages. Here we consider spatial averages over volumes that are
small compared with the system size, but large compared with a typical length scale
for the turbulent eddies.

The subject of homogenization theory is to calculate ηT given the velocity, without
ever calculating Bx. What we want to do here is different. Here, we want to measure
ηT , i.e. we solve (3.2) and then use the solution for Bx to say what value of ηT best
describes the evolution of Bx.

We outline four different ways of doing this for two-dimensional flows; the first two
of which are well-tested and understood and are included here for comparison. The
first method involves setting S = 0 and prescribing an initial field with only a large-
scale component and no net flux so that Bx(t = 0) = B0 sin(2πy/Ymx). The turbulent
diffusivity can be calculated from the decay rate of the amplitude of the largest-scale
Fourier component. For this case Bx(t) is not stationary, it is a decaying field. Hence,
if one wanted to improve the accuracy of the measurement then one would need to
repeat the experiment a number of times to reduce the error. Furthermore, as Bx decays
the value of ηT changes (since ηT depends on the field strength), which can make
unambiguous calculation of ηT difficult.

A slightly different method that takes care of the problem of non-stationarity is to
impose a uniform field (i.e. Bx independent of y). For this case the initial value of Bx

is preserved and the system evolves to a stationary state. Now, the turbulent diffusivity
can not be calculated by measuring a decay rate, as nothing decays. However, it
can easily be shown that in two dimensions (see e.g. Zel’dovich 1957; Gruzinov &
Diamond 1994)

ηT

η
= B2

B
2 , (3.4)
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and that this remains true even when the average is taken over the whole spatial
domain so that the relationship becomes

ηT

η
= B2

B2
0

. (3.5)

Because the measurements are taken over a stationary ensemble, the determination
of the turbulent diffusivity can be made as accurate as required by averaging over
a sufficiently long time scale. However, because of the possibility of dynamo action,
neither this method nor the previous one can be generalized to three dimensions in a
straightforward way.

The next two methods use a stationary ensemble and should be generalizable to
three dimensions. For these methods it is necessary that S be non-zero and a stationary,
but not a steady function of time. The two methods differ solely in the localization of
the spatial part of S. The idea is to compare the average solutions of (3.2) with the
solutions of the averaged (3.3) to find the value of ηT that yields the best agreement.
The critical question is then, which aspects of the solutions to these equations should
be compared. To address this issue, we shall examine the specific case where S is
given by

S= ωB0(y) cosωt, (3.6)

where the factor of ω is introduced for normalization purposes. The corresponding S
is unknown, as it is the result of spatial averaging of S. However, it is reasonable to
assume that it has the same frequency dependence in time as S. The solution of (3.3)
can be written in terms of Fourier series as∑

kx,ky

φ(kx, ky, t) exp i(kxx+ ky)+ c.c., (3.7)

where the coefficients are given by

φ(kx, ky, t)= ωŜ(ky)Re

[
exp (iωt)

ηT

(
k2

x + k2
y

)+ iω

]
+ C exp

(−ηT

(
k2

x + k2
y

)
t
)
, (3.8)

where Ŝ(ky) is the Fourier coefficient of B0. The transient response decays
exponentially in time and is determined by the initial conditions, thus could be made
zero by a suitable choice. Note that since the source is independent of x and therefore
B0 is independent of x it makes sense to focus on the kx = 0 coefficients which are
given by

φ(ky, 0, t)= G(ky) cos(ωt − ψ) (3.9)

where ψ is a phase and G(ky) is the Fourier coefficient of the time-periodic response
for kx = 0, which is given by

G(ky)= ωŜ(ky)(
η2

Tk4
y + ω2

)1/2 . (3.10)

In principle, one can use equation (3.9) to calculate ηT if Ŝ(ky) were known. As
noted earlier, it is not. However, if one were to consider solutions of equation (3.9) for
two different driving frequencies, ω1 and ω2 say, then the ratio of these coefficients at
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FIGURE 2. Method (i): time history of the normalized magnetic energy in the (k, l) =
(0, 1/2) component for B0 = 10−3 (solid) 10−2 (dot-dashed) 2 × 10−2 (dashed) 10−1 (dotted).
The decay rates are computed by fitting a straight line to the later parts of the curves. Method
(ii): time histories of the total magnetic energies for B0 = 10−3, 10−2, 10−1. The turbulent
diffusivity is calculated from these curves using (3.5).

the respective driving frequencies is independent of Ŝ(ky) and given by

R(ky)= |G1(ky)|2
|G2(ky)|2

= ω
2
1(η

2
Tk4

y + ω2
2)

ω2
2(η

2
Tk4

y + ω2
1)
, (3.11)

where the Gi are the Fourier coefficients of the solution corresponding to driving at
frequency ωi. This defines ηT for any value of ky. Clearly R(ky) can be calculated
from turbulence calculations by Fourier analysis. However, the analogy between the
averages of the solution of (3.2) and the averaged (3.3) is only valid if the assumptions
about a sufficient separation of scales are valid. This has to be verified a posteriori:
there is no way to know in advance whether the separation of scales remains valid in
the presence of a mean field. These are best satisfied by the low wavenumbers rather
than the high wavenumbers, and thus it makes sense to compute ηT from the lowest
overtone ky1 . Also we note that the expression on the right-hand side of (3.11) rapidly
approaches unity for large ky and therefore it would require knowledge of R(ky) to
high precision in order to compute ηT accurately. Thus, for the rest of this paper we
shall use R(ky1) to extract our working definition of ηT .

3.2.2. Results
We are now in a position to put these methods to the test. First of all, and for

comparison, we calculate the diffusivity using methods (i) and (ii). Figure 2(b) shows
time series of the (normalized) energy in the ky = ky1 component of the magnetic
field for the decay experiment of method (i), for four different choices of the initial
magnetic field (B0). This experiment is started from a solution of the hydrodynamic
system once the dynamics has settled down to a statistically steady state. Even though
there is noise in the data owing to the turbulent fluctuations the decay rate can be
calculated by fitting the decaying solution. It is clear from the figure that the decay
rate is diminished as the initial field strength is increased so that the magnetic field
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is suppressing the turbulent diffusion (see Cattaneo & Vainshtein 1991). Figure 2(b)
shows time series of the average magnetic energy for different values of an imposed
mean field B0. The turbulent diffusivity can be calculated in this case using method (ii)
(specifically (3.5)) once the averages have converged.

The results of methods (i) and (ii) are shown as the diamonds and the solid line
in figure 5, respectively. Here the values are shown as a function of the effective
mean field Be

0. How Be
0 is assigned is a delicate issue that we shall return to in

the discussion. For now we note that the measured diffusivity for the two methods
agree. This confirms that there is enough separation of scales between the typical
eddy size and the system size for the concept of turbulent diffusivity to be valid. The
values for weak fields gives the kinematic turbulent diffusivity (η(0)T ); if one makes
the reasonable assumption that this should be of the order UL where U is the root
mean square (r.m.s.) velocity and L is the characteristic scale of the eddies, then
η
(0)
T /η ≈ 180 is an estimate of Rm for the turbulence. Since U is known, this gives

an estimate of L ≈ 0.2� 2π, so the separation of scales is reasonable. Furthermore,
according to common folklore (Cattaneo & Vainshtein 1991; Gruzinov & Diamond
1994) substantial departure from the kinematic value for the turbulent diffusivity
should occur when B0 ∼ O(1/Rm) ∼ 5 × 10−3 which is borne out by the numerical
results in figure 5. For larger B0 the turbulent diffusivity is quenched, eventually to
reach its molecular value.

We can now turn to methods (iii) and (iv) to see whether they recover all (or any)
of the above features. In what follows we shall consider three values of ω = 0.05, 0.1
and 0.2. Our two methods correspond to two different choices for the source function.
For the TAM, which is an approximation of a field localized near a boundary in an
experiment we set

STAM(y)= B0

[
exp

(−µ(y− Ymx/4)
2
)− exp

(−µ(y− 3Ymx/4)
2
)]
. (3.12)

We have performed calculations with µ= 100 and µ= 1000, but have determined that
for µ sufficiently large then the degree of localization does not matter.

The second choice of source function involves setting

SMOS = B0 sin (2πy/Ymx) , (3.13)

which is the largest-scale Fourier component that fits in the domain.
Figure 3 shows a typical snapshot density plot of Bx for the two different source

functions after the initial transients have decayed away at the same phase of the
calculation for a source term that is strong enough to be dynamic. These images shows
the turbulence wrapping up the magnetic field, but the imprint of the source function
is clearly visible at this time. As the driving alternates, the regions of white and black
swap around. In order to calculate the diffusivity via the methods (iii) and (iv) we
need to determine the x-average of Bx as a function of y and t for many cycles. The
raw data for method (iii) therefore has the form of figure 4(a), which shows 〈Bx〉(y, t)
for two different frequencies of oscillation, this time for a kinematic case. Note these
show only a small proportion of a typical calculation. Here one can clearly see the
oscillations of the kx = 0 component and the effect of the turbulence in spreading the
magnetic field from the localized source.

The next step is to take the two-dimensional data and to extract the response of
the system at the driving frequency ω and large spatial scales (small wavenumbers).
Clearly this can be achieved by space–time Fourier analysis. In principle, it should
not make any difference in which order the Fourier analyses are taken (either space
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(a) (b)

FIGURE 3. Density plots of Bx at a given time in the dynamic regime. (a) Method (iii)
(TAM), where µ= 1000. (b) Method (iv) (MOS).

(a)

(b)

FIGURE 4. Space–time density plots of the x-average of Bx as a function of y (vertical) and
t (horizontal) for method (iii) (TAM) in the kinematic regime: (a) ω = 0.1 and (b) ω = 0.05.
Runs used to measure the diffusivity via Fourier analysis are typically 10 times longer than
this sample.

then time or vice versa). In practice, here it is much better to do space first and time
second. This is because the numerical solution is expressed in space at the Fourier
collocation points, but that is not the case in time. Thus, if the time transform is
performed first, then it can introduce errors that propagate through into the calculation
of ηT . If the space transform is performed first then it is simple to remap the resulting
one-dimensional series onto the collocation points of the temporal transform and
minimize the errors. Once the space–time transform is performed we use (3.11) and
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100

10–8 10–6 10–4 10– 2 100 102

FIGURE 5. (Colour online) Measurements of the turbulent diffusivity for all methods
described as a function of the effective large-scale field Be

0. Method (i) is shown with
diamonds, method (ii) is shown with a solid line, method (iii) (TAM) is shown with triangles
and method (iv) is shown with crosses.

the fact that in our case ky1 = 1/2 to obtain

η2
T =

16ω2
2(R − 1)

1− ω2
2R/ω

2
1

, (3.14)

where R is R(1/2) from (3.11).
We perform calculations for each of methods (iii) and (iv) for three choices of

frequency ω = 0.05, 0.1 and 0.2 for a range of B0 that goes from being kinematic
to strong enough to suppress the diffusivity. For the TAM (with µ = 1000) this B0

takes the values 10−4, 10−3, 10−2, 10−1, 0.5, 1.0, 5.0, 10.0 and 50.0, whilst for the
MOS B0 takes the values 10−4, 10−3, 10−2, 10−1, 0.5 and 1.0. As noted earlier we also
use two different degrees of localization for the TAM (i.e. values of µ) to determine
sensitivity to the degree of localization. Clearly for each value of B0 and each method
there are three possible frequency ratios that can be used to compute ηT using (3.14).
Our choices of ω1 and ω2 ensure that both of these frequencies are small compared
with the characteristic frequency of the turbulence. Once these frequencies have been
chosen, each calculation must be run for long enough so that there are enough cycles
so that there is good frequency resolution at the low frequencies and the transient
response has died away. This last requirement becomes particularly demanding when
the field is strong and the effective diffusivity approaches the molecular value; see
(3.8). If all of these conditions are satisfied, then this method is robust with respect to
choices of frequency pairs.

The results of all of the methods are summarized in figure 5, which shows the value
of the turbulent diffusivity as a function of the effective large-scale field Be

0. A few
comments are in order. All methods agree well in the kinematic regime. Moreover,
all methods predict unambiguously the value of Be

0 at which substantial departure
from kinematic behaviour first appears. As one would expect the greatest disagreement
occurs for the largest values of Be

0 for which ηT is quenched to the molecular value
and all of the error bars become large. Method (i) is particularly poor in this regime,
since it relies on measuring the decay rate of a very slowly decaying signal in a
turbulent environment.
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We note that the kinematic diffusivity, as a calculated by all four methods, for
this two-dimensional flow is exactly that for a passive scalar and therefore can be
written as ηT ∼ U/k. Interestingly if we choose the value U = Urms as measured in
the simulations, then the observed value of ηT is recovered with k chosen to be the
most energetic wavenumber. So these methods are not only consistent with each other
but they agree with our expectation of what the kinematic diffusivity should be in the
turbulent regime.

4. Discussion
We begin the discussion by noting that both the TAM and the MOS work and

give results that are consistent with each other and with one’s expectations of what
a turbulent diffusivity should do. The careful reader will have noticed that we have
already twice in this paper deferred the discussion of how Be

0 is related to the input
value of B0 for each method. We feel that we can defer no further. Clearly Be

0 is
a measure of the large-scale field as perceived by the small-scale turbulence. One
expects Be

0 to be monotonic in B0 and in some cases it is even proportional to B0. Now
we describe in detail how it is defined for all of the methods. The starting point for
us here is method (i) because it is the most natural: it is related to the effective decay
rate of a large-scale field. For this case we set Be

0 = B0: the value initially imposed
large-scale field. The next easiest one to rationalize is the scaling for the MOS. Here
we choose Be

0 to be the r.m.s. amplitude (measured in the stationary regime once the
transients have decayed) of the largest-scale Fourier component. For this method this
is not too dissimilar to (but not exactly equal to) the r.m.s. amplitude of the applied
signal. The same method works for the TAM, but in this case the r.m.s. value of
the largest-scale Fourier component is much smaller than the r.m.s. amplitude of the
(extremely localized) applied signal. For method (ii) some thought is required. It is
intuitively obvious that a uniform field of strength B0 has a stronger influence on
the turbulence than any other Fourier component of the same amplitude. However,
intuition can only take you so far. The procedure we adopt is to set Be

0 = λB0

where λ is the ratio of the peak (in time) r.m.s. values of the magnetic field for
the experiments with a uniform field and an initial large-scale field. In both cases
the peak value is achieved within a few turnovers. Some comments may be useful in
justifying this procedure. For these cases most of the magnetic energy is concentrated
at wavenumbers that are close to the peak in the kinetic energy; therefore from the
point of view of the turbulence, what matters is the amount of magnetic energy that is
generated at those scales, the ratio of which is essentially given by λ (which in this
case is a number of O(2)).

It is appropriate to comment about our choice of two-dimensional turbulence with
all of its attendant peculiarities. We reiterate that the reason we chose to examine
this system was not exclusively for computational convenience, but also because
in two dimensions there are other (tried and somewhat trusted) methods for which
comparison is possible. We expect that adapting this to three dimensions should not
present any conceptual problems and we are currently implementing this method for
three-dimensional convective flows.

We conclude with a couple of comments about the implementation of these methods.
Numerically both the MOS and the TAM work; however, the former is easier to
implement and so we recommend it. Here we choose a source function with a
sinusoidal spatial distribution because sines and cosines are the natural choice for
a Cartesian domain with uniform collocation points. In general, one should pick a
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functional form for the source function that is ‘close’ to a low-order eigenfunction of
the diffusion operator in whatever geometry is being used.

It is our hope that this paper will inspire measurement of the turbulent diffusivity
in a laboratory setting; indeed, some have already been performed in run-down
experiments (Frick et al. 2010; Noskov et al. 2012). We hope that some of the
lessons we have learned here will prove useful in setting up such an experiment.
An experimental set-up will be closer although not identical to the TAM. In an
experiment one would impose time-dependent magnetic fields outside of the device,
which would penetrate into the interior by an amount comparable to the skin depth.
If the frequency of the oscillation is large enough, then in the absence of motion in
the experiment the skin depth is short, and so the effects of the external magnetic
field resembles a boundary term. This will be conceptually close to the TAM method
with a localized source term. Measurements of the field inside the domain will be
obtained by a relatively modest number of probes at strategic locations. Again, the
position of the probes should, as above, be close to the natural collocation points of
the lowest eigenfunctions of the diffusion operator. When comparing the dependence
of the turbulent diffusivity on the applied magnetic field for two different experiments
then many of the considerations discussed above will apply. Namely that the important
quantity is the level of mean magnetization felt by the turbulent eddies that are
responsible for the effective transport. This of course will vary according to geometry,
forcing and other characteristics of the experiment. Care must therefore be taken in
making universal statements based on the result of a single experiment.
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