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Abstract

The alien cynipid wasp Dryocosmus kuriphilus Yasumatsu, 1951 is a serious pest of chestnuts
(Castanea spp.) in Japan, North America and Europe, causing fruit losses while inducing galls
in buds. While D. kuriphilus galls have a recognizable and roughly invariable globular shape,
their size varies, reaching up to 4 cm in diameter. Among other factors, such variation may
depend on different climatic conditions in different attacked areas. Here, we sampled and
measured 375 D. kuriphilus galls from 25 localities throughout the Iberian Peninsula, includ-
ing both cold and rainy northern (Eurosiberian) areas and warm and dry central-southern
(Mediterranean) areas, to test the effects of climate and geographical location on gall morph-
ology. The analyses indicate that gall mass and volume follow a pattern that can be associated
with a climatic cline. In particular, the Eurosiberian galls were smaller than the Mediterranean
galls according to differences in climatic conditions. In the southern areas, the greater
insolation regime does not allow the chestnut trees to be distributed at lower altitudes, but
the high rainfall and humidity regime of the mountain enclaves allow their presence. These
conditions of insolation and precipitation seem to influence the morphological characteristics
of the galls of D. kuriphilus.

Introduction

Dryocosmus kuriphilus Yasumatsu, 1951 (Hymenoptera: Cynipidae), the Asian chestnut gall
wasp, represents a severe pest of chestnut (Castanea Mill.) forests in invaded areas throughout
Europe, Asia and North America (Ôtake, 1980; Moriya et al., 2003; EFSA, 2010; Avtzis et al.,
2019). Originally distributed in China, this gall wasp has recently been dispersed through
human action (transport of seedlings) in many non-native territories where the absence of
native natural enemies and lack of competition with native oak gall-wasp species allow high
densities of galls to easily develop in chestnut trees. In addition, the Castanea species present
in Europe is Castanea sativa, which is different from its native hosts in China and which does
not have any type of resistance adaptation against D. kuriphilus. This small cynipid (approxi-
mately 2 mm in body length) consists only of females (obligate parthenogenetic cycle), with
adults emerging from June to August (Pérez-Otero et al., 2017) and laying eggs in chestnut
buds, after which galls develop during the next spring (Yasumatsu, 1951; EPPO, 2005;
CABI, 2015). The galls are irregular, rather globular in shape, greenish or reddish and unilocu-
lar or multilocular. By developing on the midribs of leaves and on petioles, stems, stipules and
male catkins, galls have negative effects on the plant, including reduction in fruit production,
branch shortening and general weakening or even tree death (Payne et al., 1975; Battisti et al.,
2014; Gehring et al., 2018), leading to important economic damage (Brussino et al., 2002;
Zhang, 2009; EFSA, 2010). On the other hand, the development of D. kuriphilus within its
galls are clearly beneficial for the insect since they protect against hydrothermal stress and
improve nutrition for the larvae, and they may have evolved to provide a protection against
natural enemies (Price et al., 1987).

On the Iberian Peninsula (IP), D. kuriphilus first reached Catalonia (northeastern IP) in 2012
(EPPO, 2012; Pujade-Villar et al., 2013; Nieves-Aldrey et al., 2019), then spread towards other
Spanish regions, including many northern-northwestern areas of Spain as well as the chestnut
forest of Malaga Province (southern IP) in 2014 and the city of Madrid in 2016
(Gil-Tapetado et al., 2018). This cynipid arrived in northwestern Portugal in 2014 (EPPO,
2014) in an area adjacent to northwestern Spain. The distribution of D. kuriphilus in the IP
matches the distribution of its host plant throughout the IP, which is a climatically heteroge-
neous territory. Indeed, the IP is divided into three main types of biogeographic regions: the
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Alpine region, the Atlantic region and the Mediterranean region
(European Commission, 2011). The Alpine region of the IP is
restricted to the Pyrenees, including mountains located in the
Northeast on the border between Spain and France, and it is char-
acterized by a relatively cold and harsh climate, high altitudes and
an often complex, varied topography (European Commission,
2005). Castanea trees do not tolerate environments with extreme
cold and frost, so they are scarce in this region. The Atlantic region
is distributed only along the northern and northwestern shores of
the IP and presents mild winters, cool summers, predominantly
westerly winds and moderate rainfall throughout the year
(European Commission, 2009a). These climatic conditions favour
the presence of chestnut forest, and most chestnut trees are distrib-
uted in this area (EUFORGEN, 2009). The Mediterranean region
covers most of the IP and presents hot dry summers and humid,
cool or cold winters with bouts of high winds or sudden torrential
downpours (European Commission, 2009b). Castanea trees do not
tolerate environments with extreme dryness, such as most
Mediterranean territories, but they are present in high-altitude
areas of this region (the Penibaetic System, in the southern IP, or
the Central System, in the central and western-central IP), where

the climate is more favourable. Therefore, chestnut forests are
more dispersed in northern areas and more clumped and restricted
to a few zones in southern areas.

Thus, throughout the IP, variable environmental conditions
may have important effects on D. kuriphilus behaviour and ecol-
ogy, including its gall production and gall morphology.

For example, it is still unknown if climate may affect gall size in
Cynipidae across their distribution range. The influence of climate
on alien species is profusely studied in biological invasions (Dukes
and Mooney, 1999; Jiménez-Valverde et al., 2011; Zerebecki and
Sorte, 2011), and thus this topic deserves attention in the case
of D. kuriphilus across its invaded territory. A possible effect of
climate on gall morphology in gall wasps is supported by the
‘microenvironment’ hypothesis (Price et al., 1986), which states
that gall tissue buffers larvae against environmental fluctuations.
Thus, in harsh arid environments galls likely reduce hygro-
thermal stress, which may decrease with increasing gall size, for
larvae within gall tissue (Price et al., 1986; Hawkins and Unruh,
1988; Tscharntke, 1994; Marchosky and Craig, 2004).

The lack of information on the possible role of climatic regime
on gall size contrasts with a wide bulk of studies that showed that

Table 1. Information on the sampled localities, including their coordinates (longitude and latitude), the suitability of their corresponding pixels in the survey by
Gil-Tapetado et al. (2018), their climatic and geographic area types, and the type of gall response

No. Locality Longitude Latitude Suitability Climatic area Geographic area Gall response

1 Puerto Ojén (1) −4.8319 36.5864 0.91 M-Csa/Bsk South area TGR

2 Puerto Ojén (2) −4.8515 36.5856 0.91 M-Csa/Bsk South area TGR

3 Yunquera −4.9431 36.7315 0.47 M-Csa/Bsk South area AGR

4 El Juanar (1) −4.8842 36.5779 0.77 M-Csa/Bsk South area TGR

5 El Juanar (2) −4.8904 36.5709 0.94 M-Csa/Bsk South area TGR

6 Igualeja (1) −5.12 36.64 0.88 M-Csa/Bsk South area TGR

7 Igualeja (2) −5.1111 36.6292 0.96 M-Csa/Bsk South area TGR

8 Pujerra −5.1364 36.6184 0.97 M-Csa/Bsk South area AGR

9 Júzcar −5.1443 36.6182 0.97 M-Csa/Bsk South area TGR

10 Merouzo Pequeño −7.8875 42.2209 0.91 M-Csb Northwest area TGR

11 As Corvaceiras −7.5662 42.0037 0.41 M-Csb Northwest area AGR

12 Trelle (1) −7.9513 42.2793 0.94 M-Csb Northwest area TGR

13 Trelle (2) −7.9616 42.2733 0.9 M-Csb Northwest area TGR

14 Vilariño das Touzas −7.3134 41.9451 0.49 M-Csb Northwest area AGR

15 Riós −7.2838 41.9735 0.36 M-Csb Northwest area AGR

16 Mabegondo −8.2688 43.2445 0.44 E-Cfa/Cfb Northwest area TGR

17 Oza de los Ríos −8.1873 43.2209 0.55 E-Cfa/Cfb Northwest area AGR

18 Lousada −7.5872 42.8954 0.75 E-Cfa/Cfb Northwest area AGR

19 Campus Lugo −7.5449 42.9919 0.73 E-Cfa/Cfb Northwest area AGR

20 Sant Marçal 2.4239 41.8029 0.94 M-Cfa/Cfb Northeast and Central area AGR

21 El Puig de Sant Marçal 2.4252 41.8005 0.94 M-Cfa/Cfb Northeast and Central area TGR

22 Sant Hilari Sacalm 2.4969 41.8838 0.99 M-Cfa/Cfb Northeast and Central area TGR

23 Bera −1.7062 43.2797 0.59 E-Cfa/Cfb Northeast and Central area AGR

24 San Roque de Riomiera −3.7035 43.2359 0.94 E-Cfa/Cfb Northeast and Central area AGR

25 Ciudad Universitaria −3.7255 40.446 0.1 M-Csa/Bsk Northeast and Central area AGR

M-Csa/Bsk is a Mediterranean hot dry-summer or cold semi-arid climate; M-Csb is a Mediterranean oceanic climate; E-Cfa/Cfb is a Eurosiberian humid subtropical climate with hot-humid
summers and mild winters or cool summers and cool but not cold winters and M-Cfa/Cfb is a Mediterranean humid subtropical climate with hot-humid summers and mild winters or cool
summers and cool but not cold winters, following Kottek et al. (2006). TGR is the typical gall response and AGR is an anomalous gall response.
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gall size is affected by other variables, such as the population
density, the settlement period, parasitoid pressure, chestnut tree
variety and plant-related microhabitats (Stone and Schönrogge,
2003; Bernardo et al., 2013; Egan et al., 2013; Nugnes et al.,
2018; Gehring et al., 2020).

In this study, we hypothesized that the variability of climatic
conditions across the IP distribution of D. kuriphilus may contrib-
ute to the observed variation in gall morphology, i.e. gall mass,
gall volume and gall surface area. This relationship may be
expected at least for two reasons. First, climate-driven differences
in chestnut tree development exist in the IP and they, thus, may
affect D. kuriphilus gall growth. In particular, chestnut trees in
suboptimal areas could exhibit lower fruit production or be
more susceptible to pests because of reduced vigour compared
with plants growing under optimal environmental conditions. It
is possible that environmental variables may condition chestnut
tree function and indirectly or directly affect D. kuriphilus
(Cooper and Rieske, 2010; Colombari and Battisti, 2016;
Bonsignore and Bernardo, 2018). For example, in early stages of
development, when galls are small and still do not efficiently iso-
late the larvae from the external environment, these structures can
be more susceptible to frosts, and the viability of larvae may be

affected. It is also possible that a certain plasticity in the gall
phenotype may favour adaptation to sub-optimal environmental
conditions, thus ensuring the survival of developing cynipids.
Second, following the ‘microenvironment’ hypothesis (Price
et al., 1986), galls of D. kuriphilus may vary in size because differ-
ent climatic conditions across the IP may result in different
degrees of hygro-thermal stress, which is suggested to shape gall
morphology (Price et al., 1986; Hawkins and Unruh, 1988;
Tscharntke, 1994).

Materials and methods

Gall sampling

Twenty-five sampling points were selected within the known
D. kuriphilus and C. sativa distribution in the IP (Gil-Tapetado
et al., 2018). The sampling points are included in the areas that
are more heavily attacked by D. kuriphilus and spanned the
four different categories of climate regions indicated below
(table 1 and fig. 1). To limit as much as possible time-related
bias (i.e. settlement year of D. kuriphilus), sampling points con-
sisted in the first occurrence points for each of the detected

Figure 1. Maps of the IP. (a) Sampling points for D. kuriphilus galls (red dots) and the C. sativa distribution on the IP (green). The locality reference numbers in this
map appear in table 1. (b) Different climatic zones of the IP according to Kottek et al. (2006). Csa/Bsk is a hot dry-summer or cold semi-arid climate; M-Csb is an
oceanic climate; E-Cfa/Cfb is a humid subtropical climate with hot-humid summers and mild winters or cool summers and cool but not cold winters and M-Cfa/Cfb
is a humid subtropical climate with hot-humid summers and mild winters or cool summers and cool but not cold winters. (c) Different biogeographic areas of the
IP. ALP is an Alpine area, ATL is an Atlantic or Eurosiberian area and MED is a Mediterranean area. The presence of C. sativa is represented by purple shapes in the
last two maps.
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Spanish foci of D. kuriphilus infection. At each location, we first
selected a chestnut tree area with D. kuriphilus galls and traced
a 15-m radius buffer around the approximate centre. Only healthy
Castanea trees were chosen (i.e. not small trees or trees attacked
by fungi).

Fifteen galls were collected at each sampling point (for a total
of 375 galls from 25 locations) from an area spanning all trees
inside the buffer and all cardinal points. The galls were collected
from stems, leaves or leaf stipules. Only galls without fungal
lesions or damage caused by insect herbivores were selected and
only if they were located between the ground and a height of
2 m. Moreover, only fresh, completely formed and grown greenish
or reddish galls were collected to minimize the effect of growth
stage differences. Galls were collected in 2017 from June to
August (Supplementary material 1). Galls were measured and
weighed in a period of 24–72 h, keeping all in refrigerated condi-
tions, due to the transport of the sample from different areas of
Spain to the laboratory. Despite gall size at the intra-population
level is known to be affected by both gall former genotype

(Abrahamson and Weis, 1997) and number of larval chambers,
in our case these two factors likely have a small role. First, geno-
type variation within a population for an obliged parthenogenetic
species, such as D. kuriphilus, is expected to be very low. Second,
the number of larval chambers in D. kuriphilus galls in Spain was
5.26 on average (South 5.7, Northeast and North 5.2 and
Northwest 4.8) (Nieves-Aldrey et al., 2019). This suggests a
small variation in larval chambers within populations, and fur-
thermore, galls from North and South of Spain generally have a
similar number of cells (SD = 0.49). Additionally, we limited the
variation within sampling points by studying only galls with a
maximum of two emergency holes.

Gall morphometry

The 15 collected galls from each sampling point were selected to
obtain data on their individual mass, volume and surface area
(Supplementary material 1) considering the three main observed
gall types: shoot, leaf and stipule (following Gehring et al., 2018).

Figure 2. Surface plots of gall responses per locality. In each sampling point figure, the x-axis is the surface area; the y-axis is the volume and the z-axis is the mass.
The colour of each sampling point name is related to the bioclimatic region to which it belongs according to fig. 3b. Legend values and colours are related to the
measure of the variation of each plane formed by the three variables and indicate the type of gall response. Less variation in the plane and mild convexity or
concavity are related to a TGR, and high variation in the plane and high convexity, concavity or intermediate curvature, appearing as sigmoidal planes, are related
to an AGR. These two categories appear above each sampling point name depending on the corresponding gall response (see table 1).
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In each geographic area, similar proportions among gall types
(50% leaf, 40% shoot and 10% stipule galls) were collected, to
avoid possible bias in the comparisons. The mass of each individ-
ual gall was measured with an electronic balance to the nearest
0.001 g (KERN, PCB250-3). As galls have irregular shapes, for
the estimation of their volume and surface area, they were roughly
considered as ellipsoids (Cooper and Rieske, 2009, 2010). The
maximum radii along the three planes of the gall were measured
with a callipers (Alca, Pie de Rey 150 mm) to the nearest mm. To
ensure that galls of each sampling point were representative and
no appreciable biases in the three considered radii were attained,
it was examined whether the coefficient of variation (ratio
between standard deviation and average) of these measurements
was lower than 80% (Everitt, 1998). The volume and surface
area of each gall were calculated by applying the following
formulas:

Volume = 4/3× p × r1 × r2 × r3

Surface area = 4p

���������������������������
r1pr2p + r1pr3p + r2pr3p

3
p

√

where r1, r2 and r3 are the radii along the three planes, and p =
1.6075 (Cooper and Rieske, 2009, 2010).

Surface area, volume and mass variables (as well as all independ-
ent variables) were standardized (Brase and Brase, 2018) to perform
generalized linear model (GLM) analyses (Supplementary material
2). The mean values across the galls at each sampling point and
their standard deviations were used in the subsequent analyses.

Geographical and climatic data

The three large biogeographical regions of the IP include different
climates. According to the Köppen-Geiger climate classification
system (Kottek et al., 2006), it is possible to recognize areas of
the IP with the following different climate types: oceanic climate
(Cfb), with cool summers and cool but not cold winters and a
relatively narrow annual temperature range with few extremes of
temperature; humid subtropical climate (Cfa), with hot-humid
summers and mild winters; warm-summer Mediterranean cli-
mate (Csb), with lower temperatures compared with other
Mediterranean regions; and cold semi-arid (BSk) and hot dry-
summer (Csa) climates, with low isothermality and more extreme
conditions. Thus, the IP can be divided into four regions overall:
(1) Mediterranean-Csa/BSk (M-Csa/BSk); (2) Mediterranean-
Cfa/Cfb (M-Cfa/Cfb); (3) Eurosiberian-Cfa/Cfb (E-Cfa/Cfb) and
(4) Mediterranean-Csb (M-Csb). This classification was used in
our study to assign each sampling point to a climatic regime.

For the geographic variables, a GPS (Garmin, eTrex® 10) was
used to obtain the coordinates of latitude, longitude and altitude.
Derived geographic variables of latitude and longitude (longi-
tude × latitude, longitude2 × latitude and latitude2 × longitude)
were subsequently calculated as recommended by Legendre and
Legendre (1998) to include geographical variables as independent
factors.

For the bioclimatic variables, 19 WorldClim 1.4 (30 s reso-
lution (1 km × 1 km)) was used toclimatically describe each sam-
pling point by using the geographical coordinates obtained for the
centre and were standardized (Supplementary material 2). The
procedure was performed with ArcMap 10.3 via the ‘Sample’ tool.

As BIO8 and BIO9 (mean temperature of the wettest quarter
and mean temperature of the driest quarter) are derived layers
for which different periods of the year are used depending on
the geographical location, they were not used in these analyses.
There is a lack of coherence of these two layers with the real con-
ditions on the IP since they result in unnatural patterns. As
D. kuriphilus presents a disjoint distribution on the IP and the
sampling points were heterogeneously distributed, we performed
two SIMPROF cluster analyses using the clustsig package in R
(R Studio Team, 2018) to obtain groups of sampling points
significantly separated by geographical and climatic variables.
SIMPROF analysis determines the number of significant clusters
produced using Euclidean distances and a cluster similarity
based on Ward index with no a priori grouping. The resulting
groups were then considered in subsequent analyses.

Gall morphometry and geo-climatic variables

We first described how the galls varied morphologically among
the different sampling points. In these plots, the x axis was the
surface area; the y axis was the volume and the z axis was the
mass. All surface plots were represented with the same scale
based on the maximum and minimum values of the variables.
Because the surface area was calculated using the same linear
measurements used for the volume calculation (which appeared
to have much more explanatory power), it was not used in all sub-
sequent statistical analyses. Because data did not show a normal
distribution (Kolmogorov–Smirnov test: P < 0.01–0.05 in the
three radii and mass), differences among climatic and geographic
groups and relationships among variables were analysed through
statistics that do not require normality of the data and homogen-
eity of variances (Kruskal-Wallis and Mann–Whitney U tests).

A SIMPROF cluster analysis was performed to determine the
similarity among sampling points based on gall morphological
variables (in this case, the average mass and volume per locality).
To test for differences in gall morphology among considered
geographical and climatic regions, a series of Kruskal–Wallis
tests were performed, with the average volume and mass of the
galls from different sampling points as dependent variables
(Supplemental material 2). Additionally, a series of Mann–
Whitney U tests were performed to test for differences between
pairs of samples belonging to different geographic and climatic
regions. Significant α values were corrected by the Bonferroni
method.

To evaluate how much variance in morphological variables is
explained by the geographic and bioclimatic variables, GLMs were
employed. The independent variables were analysed separately,
constituting two different groups: geographic models and biocli-
matic models. To elaborate these models, a GLM analysis between
each dependent and independent variable was performed, gener-
ating an F value that could be compared to a null model to obtain
the significance level of the relationship. Once grouped by model
type, a backward stepwise procedure was performed to test all
variables of each model and to obtain the variables with the great-
est effect on the variance of each dependent variable. A final
model with the percentage of variance explained by both pure
and combined effects was calculated for each dependent variable.
Pure and combined effects were discriminated by means of a vari-
ance partitioning analysis.

A contour plot representation of each dependent variable was
plotted considering a significant and simple independent explana-
tory variable for each type of model. A negative exponentially-
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Figure 3. Dendrogram obtained from the SIMPROF cluster analyses of Iberian sampling points. (a) Similarity among points based on geographical independent
variables. (b) Similarity among points based on bioclimatic independent variables.
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Figure 4. Dendrogram obtained from the SIMPROF cluster analyses of Iberian sampling points considering the morphological variables of D. kuriphilus galls. (a)
Similarity among points based on morphological variables based on the bioclimatic groups of fig. 2. (b) Similarity to dependent variables based on the geographic
groups in fig. 2.
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weighted fitting was used to perform these contour plots. These
descriptive figures explain the behaviour of each dependent vari-
able in the models. BIO1 was selected among climatic and latitude
among geographical variables due to its easy interpretation com-
pared to the rest of them.

All the analyses were carried out using Statistica 10 (StatSoft,
2010), while all the maps and other spatial analyses were devel-
oped with ArcGIS 10.3 (ESRI, 2010).

Results

Coefficients of variation of the three gall radii measured per sam-
pling point were lower than 80% (mean = 35%; SD = 10%), indi-
cating an adequate representativeness of each sample. The

surface plots based on gall morphological variables built for
each sampling point show different patterns (fig. 2). Some local-
ities present galls of homogeneous mass, volume and surface area,
while others present galls of heterogeneous morphology. While
the volume and surface area exhibit a certain variability, the
mass tends to vary relatively weakly across galls within localities
(fig. 2). Only when the volume and/or surface area are highly
variable is the mass variability appreciable. The most common
shape of the surface plots is characterized by mild convexity or
concavity; thus, we defined such sampling points as those with
a typical gall response (TGR). The other gall responses present
conditions of greater convexity, concavity or intermediate curva-
ture, appearing as sigmoidal planes, thus differing from the
TGR. This other group therefore includes sampling points with

Figure 5. Graphs showing the mean ± standard error of
gall mass (a) and volume (b) across climatic regions,
together with the results of the Kruskal–Wallis and
Mann–Whitney U by groups. Different letters refer to sig-
nificant paired differences.
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an anomalous gall response (AGR). TGR galls exhibit less vari-
ation among sampling points, while AGR galls are considerably
different among sampling points. All sampling points are, thus,
categorized according to these two types of responses (see
table 1). Kruskal–Wallis tests performed for each variable reveal
significant or marginally significant differences between these
two groups (nAGR = 12; nTGR = 13; N = 2; volume: KW-H= 4.973;
P = 0.026; mass: KW-H = 3.624; P = 0.057; surface: KW-H =
4.050: P = 0.042).

SIMPROF cluster analysis based on geographical attributes
shows three main groups, including all galls from the southern
sampling points in a single set (South region); all galls from the
northwest areas together; and a group with galls from the remain-
ing localities (Northeast and Central regions) (fig. 3a). The last

group can be further divided into two groups, but they remain
united in the subsequent analyses for simplification. SIMPROF
analysis of climatic variables among the sampling points shows
four main groups. The significant groups (P < 0.05) reflect well
the climatic classification of the sampling points (Köppen-
Geiger IP regions: M-Csa/Bsk, M-Cfa/Cfb, E-Cfa/Cfb and
M-Csb) (fig. 3b).

The SIMPROF cluster analysis based on gall morphological
variables (fig. 4) shows the classification of sampling points
reflecting the mass and volume of galls, highlighting three signifi-
cantly different groups (P < 0.05) (large-, medium- and small-
sized galls, with the last group including very small galls). Large
galls are associated with southern sampling points and with
TGR galls, while small galls only occur at northern sampling

Figure 6. Graphs showing the mean ± standard error of
gall mass (a) and volume (b) across geographical
regions, together with the results of the Kruskal–Wallis
and Mann–Whitney U by groups. Different letters refer
to significant paired differences.
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points. However, galls from a locality of the Northwest region
(Merouzo Pequeño, fig. 1a, 10) belong to the large size group,
and galls from different regions are included in the medium
size group.

Kruskal–Wallis tests show that there are significant differences
between the climatic and geographical regions for all the gall
morphological variables (climatic, mass: H = 71.488, P < 0. 0001,
volume: H = 44.058, P < 0.0001; geographical, mass: H = 66.633,
P < 0.0001, volume: H = 43.481, P < 0.0001) (figs 5 and 6).
These analyses show that galls are larger and with more mass in
the M-Csa/Bsk (and Southern) region. Mann–Whitney U test
comparisons by groups indicate that in most cases, there are dif-
ferences between the South area and the other geographical
regions and between M-Csa/Bsk and the other climatic regions.

The results of the GLMs (table 2) show that the most import-
ant explanatory variable of the geographic model is latitude, and
for the mass and volume, this variable explains the greatest
amount of their variance (39.24 and 34.72%, respectively). The
most important explanatory variable of the climatic model is
BIO1 (annual mean temperature), which explains 40.60% of the
observed variance in mass. The pure geographical effect for
mass and volume is null, and the pure bioclimatic effect is very
small (1.41% for mass and 2.58% for volume). However, the com-
bined effect for the geographical and bioclimatic models reaches
30–40% of the total variance (39.20% for mass and 32.14% to
volume).

All the contour plots based on the effects of the explanatory
variables on gall morphological variables (fig. 7) show a similar
pattern: if BIO1 is high and latitude is low (or vice versa), then

gall mass and volume increase. The mass/volume relationship
for the galls of the four different zones is calculated, and the
slopes for these four regions are compared with the average
mass/volume slope for all galls pooled together. All slopes are
similar with the exception of the slope for the M-Csb galls
from the North IP, which is higher (slope mean: 12.668;
M-Csa/Bsk slope = 12.620; M-Cfa/Cfb slope = 12.630; E-Cfa/Cfb
slope = 12.687; M-Csb slope = 15.750); therefore, gall mass
increases much more than the volume in this region.

Discussion

Variation in gall morphology across the Iberian Peninsula

We found significant morphological differences in gall morph-
ology among different sampling points (figs 2 and 4–6).
Chestnut tree species respond to different environmental condi-
tions with different morphologies (Wang et al., 2006) and phy-
siologies (Lauteri et al., 1997), depending on light acclimation
and photosynthetic capacity, and southern galls may be larger
than most of the other samples because of the high production
of chestnut trees at this latitude, where they are under very favour-
able conditions. Indeed, although the suitable niche of C. sativa is
related to high rainfall and rare drought (as found on the nor-
thern IP), the photosynthetic activity of these chestnuts may be
higher due to the periods of high radiation that are typical of
the southern IP. Considering that C. sativa trees are distributed
in the South IP in M-Csa/Bsk only at high-altitude locations as
suitable sites for their cultivation, the ideal conditions of rainfall
and humidity are met, and chestnut trees can grow optimally
with an addition of high photosynthetic activity. This argument
coincides with the observed response in fig. 7, being the larger
galls at lower latitudes in warmer areas. In other parts of the
chestnut distribution on the IP, particularly in the North, rainfall
is abundant, and the average yearly temperature and insolation are
lower (AEMET, 2014), could lead to lower chestnut tree product-
ivity and, consequently, to relative smaller galls of D. kuriphilus
(fig. 6). This fact could suggest a general correlation between
plant productivity and gall size in cynipids, a hypothesis that
may be tested in future analyses of other species and regions.

In the northern areas, smaller galls would more likely be
aborted and the larvae die due to frost damage. For example,
the galls from As Corvaceiras and Oza de los Rios (fig. 1a, 11
and 17) are small possibly because these localities have suffered
periods of frost and freezing of bud trees. In January 2017,
there was a period of heavy frost on the Northwest IP (AEMET,
2017), coinciding with the beginning of the period of stagnation
and plant dormancy (Reale et al., 2016). It is possible that frosts
are a limiting factor (and a larval mortality factor) affecting the
size and mass of D. kuriphilus galls. In a premature stage of ceci-
dogenesis, galls seem to be less effective as environment insulators
for larvae (Price et al., 1987).

However, large galls were also found to a lesser extent in the
northern samples. Considering the possible limiting effect of
frosts and low temperatures on D. kuriphilus gall development
and viability, only larger galls may survive under these conditions,
leading to the possibility that gall size is not only a response con-
strained by climate (i.e. southern conditions favour larger galls)
but also results from an attempt to adapt to colder environments
(i.e. in the North). This is related to the microenvironment
hypothesis of the adaptive significance of galls (Price et al.,
1987; Stone et al., 2002), although the adaptation of these

Table 2. Results of GLMs between the dependent variables (mass and volume
of D. kuriphilus galls) and independent variables (geographic and bioclimatic),
according to each model type

Variables Mass (%) Volume (%)

Geographic

LAT 39.20 *** − 34.72 ** −

LON2*LAT 22.76 * − 16.52 * −

Bioclimatic

BIO1 40.60 ** + 32.14 ** +

BIO2 21.98 * + 17.95 * +

BIO5 31.39 ** + 26.88 ** +

BIO10 38.59 ** + 33.08 ** +

BIO11 28.19 * + 20.23 * +

BIO12 25.43 * − 20.40 * −

BIO14 36.69 ** − 30.34 ** −

BIO15 38.36 ** + 31.77 ** +

BIO17 38.00 ** − 31.28 ** −

BIO18 34.54 ** − 28.09 ** −

Geographic model 39.20 34.72

Climatic model 40.60 32.14

Global model 40.60 34.72

The names of climatic variables are referred to the name of Worldclim variables, accessible
at https://www.worldclim.org/bioclim. These results show the explained variance of each
dependent variable, its respective significance value (P = *<0.05; **<0.01; ***<0.001) and
whether its effect is positive or negative with respect to the dependent variable.
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structures also responds to other factors, such as the global envir-
onment. This finding could support the ‘microenvironment
hypothesis’ (Price et al., 1987; Stone et al., 2002), with the frosting
regime as a natural selection driver for D. kuriphilus. In support
of this hypothesis, the slopes of the mass/volume relationships
across the galls of the four different zones were similar, except
for the M-Csb galls from the North. The reason for this different
mass/volume relationship could be the Csb climate conditions
(Kottek et al., 2006) at high latitudes, which are rainy and cold
but also present greater continentality and less isothermality, lead-
ing to both droughts and frosts in the region.

Results indicate that there are differences in gall morphology
among sampling points throughout the IP (figs 4–6). Up to
30–40% of this variance was explained by geographic and climatic

variables, particularly by their combination (table 2). Asmost of the
variance remains unexplained, there must be other unknown fac-
tors acting on gall morphology, such as differences between chest-
nut tree varieties, tree age, the years of settlement of the pest in the
area, tree aggregation, the population density of D. kuriphilus
(Bonsignore and Bernardo, 2018) and the existence of resistant eco-
types (Nugnes et al., 2018). Gall size also depends on the number of
eggs laid within the chestnut bud (Panzavolta et al., 2012, 2013;
Bernardo et al., 2013), and are related to the D. kuriphilus assess-
ment period and the population density. However, in the northeast
area, whereD. kuriphiluswas firstly introduced in the IP (2012), no
galls larger than the rest of the areas were observed (figs 4 and 6).
Also, concerning the south and northwest areas, D. kuriphilus was
introduced in the same year (2014) and the two areas present

Figure 7. Contour plots showing the distribution of D. kuriphilus
gall morphology (z-axis) in relation to the mean temperature
(BIO1) ( y-axis) and latitude (x-axis). (a) Mass and (b) volume.
Values of independent variables have been standardized.
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dissimilar gall sizes (fig. 6) and that provides the observed relation-
ship between gall size, mean temperature and latitude (fig. 7).
Furthermore, microclimatic variables may influence gall size and
may therefore explain why some points located very close to each
other (e.g. Juanar (1) and Juanar (2), separated by 1 km) harboured
galls of different sizes.

As D. kuriphilus is an alien species in a foreign territory, it is
possible that it is not fully adapted to the conditions of this envir-
onment, where it may be found in less optimal areas than in the
heart area of its original distribution. Considering niche-based
potential models for D. kuriphilus on the IP (Gil-Tapetado
et al., 2018), some of the locations studied here, such as As
Corvaceiras and Oza de los Rios (fig. 1a, 11 and 17), are not as
suitable as other nearby chestnut forest areas, which may result
in an AGR at these sampling points (fig. 2). In fact, suitability
data (Gil-Tapetado et al., 2018) and the gall response categories
appeared to be associated (R2 = 0.311; P = 0.004), and significant
differences were observed between groups (Kruskal–Wallis test:
KW-H = 5.097; P = 0.024; and simple regression: r2 = 0.311; P =
0.004). Similar results were obtained when using the suitability
of the zones near the sampling locations within a buffer of 10
km (Kruskal–Wallis test: KW-H = 5.861; P = 0.002; and simple
regression: r2 =−0.498; P = 0.011). It is possible that chestnut
trees in low-suitability areas induce a different, variable gall
response (fig. 2), related to lower production, lower resource avail-
ability or even lower fitness of Castanea trees. Because the D. kur-
iphilus distribution on the IP is related to human activities (i.e.
transport of tree seedlings; Avtzis et al., 2019), it is possible that
it occurs in suboptimal areas regardless of the presence of chest-
nut forests (Gil-Tapetado et al., 2018).

Possible consequences of gall morphology variability for the
communities of D. kuriphilus parasitoids

In its invaded areas, D. kuriphilus has recruited native parasitoids
(Askew et al., 2013; Cooper and Rieske, 2007; Aebi et al., 2007;
Quacchia et al., 2012; Matošević and Melika, 2013; Kos et al.,
2015; Jara-Chiquito et al., 2016; Nugnes et al., 2018). It would
be particularly interesting to compare the northwestern and
southern IP parasitoid communities associated with D. kuriphilus
since this cynipid arrived in these areas in the same year (2014).
In general, all known parasitoids recruited by this cynipid exhibit
a wide host range (Aebi et al., 2006; Quacchia et al., 2012).
However, their abundance, richness and community composition
can vary in different areas of the invaded range. This variation is
related to which parasitoid species attack adjacent native oak cyni-
pid communities (Aebi et al., 2006, 2007). As parasitoid species
discriminate among galls of different morphologies during host
and oviposition site selection (Weseloh, 1981; Vinson, 1985,
1988; Vet and Dicke, 1992; Quicke, 1997), at least some of
these species may either intentionally choose D. kuriphilus galls
or be confused by them and mistake them for native cynipid
galls in the case of morphological similarity. European native
galls with a similar morphology to those of D. kuriphilus are pro-
duced by Plagiotrochus australis (Mayr, 1882), Plagiotrochus quer-
cusilicis (Fabricius, 1798), Andricus curvator (Hartig, 1840),
Biorhiza pallida (Olivier, 1791) or the sexual generation of
Neuroterus quercusbaccarum (Linnaeus, 1758) (Nieves-Aldrey,
2001). These galls of native species have been the target of studies
of host preference of Torymus sinensis Kamijo, 1982, which is
commonly used as a chestnut gall wasp biocontrol agent in
other invaded countries (Moriya et al., 2003; Quacchia et al.,

2008, 2013; Matošević et al., 2016; Paparella et al., 2016; Avtzis
et al., 2019). In these host preference studies (Ferracini et al.,
2017, 2018), authors obtained that this natural enemy can ovi-
posit in these galls, although the chestnut gall wasp remains its
preferred host. Considering this, as T. sinensis is a fairly specia-
lized species synchronized with D. kuriphilus, generalist native
parasitoids would be more likely to parasitize this new resource
in chestnuts.

The parasitoid recruitment rate per area could depend on the
morphology or growing stage of D. kuriphilus galls, which is in
turn dependent on environmental conditions (Bonsignore and
Bernardo, 2018; Gil-Tapetado et al., 2018; Panzavolta et al., 2018;
Bonsignore et al., 2019). In addition, the influence of size and
shape of host has been previously observed in other parasitoid–
host relationships (Jones, 1983; Stone et al., 2002; Bonsignore
and Bernardo, 2018). Bonsignore and Bernardo (2018) conclude
that parasitoids seem to prefer small D. kuriphilus galls (i.e. easier
to parasitize galls by having a thinner wall, Cooper and Rieske
(2010)). Areas with an AGR (fig. 2) may harbour a parasitoid com-
munity with higher richness and diversity, which may result in
higher recruitment compared with areas with a TGR, which pro-
duces larger galls. Despite this, community composition of native
oak gall wasp parasitoids and the degree of synchronization of
these species with their host phenology may be factors to consider
(Bonsignore et al., 2019). As an example of this interaction, the
synchronization of parasitoids that are specialized with an early
development stage of the gall can be influenced by the temperature,
that cause a sooner or later develop of the chestnut tree buds and
the consequent formation of galls in their more conspicuous stages.

The results of our study emphasize other previously published
articles about the effect of temperature on D. kuriphilus growth
and phenology in an invaded territory, modifying the morpho-
logical characteristics of the galls and probably influencing their
interaction with the native parasitoids and biological control.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0007485320000450.
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