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The stability and dynamics of two-dimensional gravity–capillary solitary waves in
deep water within the fully nonlinear water-wave equations are numerically studied.
It is well known that there are two families of symmetric gravity–capillary solitary
waves – depression waves and elevation waves – bifurcating from infinitesimal
periodic waves at the minimum of the phase speed. The stability of both branches
was previously examined by Calvo & Akylas (J. Fluid Mech., vol. 452, 2002,
pp. 123–143) by means of a numerical spectral analysis. Their results show that the
depression solitary waves with single-valued profiles are stable, while the elevation
branch experiences a stability exchange at a turning point on the speed–amplitude
curve. In the present paper, we provide numerical evidence that the depression solitary
waves with an overhanging structure are also stable. On the other hand, Dias et al.
(Eur. J. Mech. B, vol. 15, 1996, pp. 17–36) numerically traced the elevation branch
and discovered that its speed–amplitude bifurcation curve features a ‘snake-like’
behaviour with many turning points, whereas Calvo & Akylas (J. Fluid Mech., vol.
452, 2002, pp. 123–143) only considered the stability exchange near the first turning
point. Our results reveal that the stability exchange occurs again near the second
turning point. A branch of asymmetric solitary waves is also considered and found to
be unstable, even when the wave profile consists of a depression wave and a stable
elevation one. The excitation of stable gravity–capillary solitary waves is carried
out via direct numerical simulations. In particular, the stable elevation waves, which
feature two troughs connected by a small dimple, can be excited by moving two fully
localised, well-separated pressures on the free surface with the speed slightly below
the phase speed minimum and removing the pressures simultaneously after a period
of time.

Key words: capillary waves, solitary waves, surface gravity waves

1. Introduction
Nonlinear gravity–capillary waves are of interest due to their complexity and

applications to wind–ocean coupling. Since the pioneering work of Longuet-Higgins

† Email address for correspondence: z.wang5@bath.ac.uk
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(1989), considerable effort has been put into the numerical study of these waves of
solitary type. It is well known that in deep water there are two fundamental branches
of symmetric two-dimensional gravity–capillary solitary waves, including one family
of waves with a positive free-surface elevation at their centre – denoted waves of
elevation – and the other family of waves with a negative free-surface elevation at
their centre – denoted waves of depression. Both branches bifurcate from infinitesimal
periodic waves at the minimum of the phase speed where the group velocity is equal
to the phase velocity (Vanden-Broeck & Dias 1992). At small amplitude, these waves
are in the form of wavepackets, and their envelopes can be approximated by the
soliton solutions of the focussing cubic nonlinear Schördinger (NLS) equation (Dias
& Iooss 1993).

The speed–amplitude and speed–energy curves are both monotonic for the branch
of depression (see Wang, Vanden-Broeck & Milewski (2014) or figure 1 in this
paper). As the translating speed c decreases, the depression solitary waves, which
consist of a single trough at the centre, become steeper and gradually turn into
an overhanging structure (i.e. multivalued wave profiles). The limiting configuration
occurs when the two sides of the trough meet, enclosing a pendant-shaped bubble. The
depression solitary waves were found to be stable by Calvo & Akylas (2002) using a
numerical spectral analysis, however the result only applies to the single-valued wave
profiles. On the other hand, Saffman (1985) found a necessary condition for stability
exchange for periodic gravity waves subject to superharmonic perturbations. His
results show that the stability exchange can only occur at limiting points (including
stationary points where the derivative is equal to zero and turning points where
the derivative becomes infinite) of the total energy. As pointed out in his original
paper, the argument can be easily generalised to include the surface tension term
without essential modifications. For solitary waves, all the perturbations have the
same horizontal scale as the fundamental waves, and hence are superharmonic.
Therefore we can draw the conclusion that the depression solitary waves with an
overhanging structure are also stable due to the monotonicity of the speed–energy
curve (see figure 1b). In this paper, the numerical evidence that the overhanging
structure survives the collisions of solitary waves supports this conclusion.

Unlike the branch of depression solitary waves, stability exchanges may occur on
the branch of elevation since its bifurcation diagrams feature different characteristics.
Wang et al. (2014) traced the elevation branch and showed that there are many
limiting points on the speed–energy curve where stability exchanges may occur
according to Saffman’s theorem. It was found by Calvo & Akylas (2002) that the
elevation branch is unstable between the bifurcation point and the first turning point,
but gains spectral stability beyond this point, where the elevation waves resemble two
depression waves placed side by side. These stability characteristics were confirmed
in direct numerical simulations of the full equations by Milewski, Vanden-Broeck &
Wang (2010). These results raise the question as to whether stability exchanges can
occur at other limiting points. More interestingly, after passing through the fourth
turning point, the solitary-wave solutions, which consist of two troughs separated
by two small dimples, appear (see 2j in figure 2a). Apart from the local shape
between two basic troughs, the structure is similar to the known stable elevation
waves (compare 2j and 2c in figure 2a). One then can ask whether this structure is
also stable. For the reasons given above, the stability of the elevation branch merits
a revisit.

The existence of asymmetric solitary waves was originally predicted by Zufiria
(1987) using the fifth-order Korteweg–de Vries (KdV) equation, a reduced model
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FIGURE 1. (a) Bifurcation curve of the depression branch parameterised by the value at
the middle point of waves, together with the typical wave 1a (η(0)=−0.2433 and c=1.4),
the overhanging structure 1b (η(0)=−1.48 and c= 0.9320) and the unphysical profile 1c
(η(0)=−1.50 and c=0.9187). (b) Monotonic speed–energy relation for depression solitary
waves.

for small-amplitude gravity–capillary waves of finite depth when the Bond number
B = σ/ρgh2 (σ is the surface tension coefficient, ρ is the fluid density, g is the
gravitational acceleration and h is the depth of the fluid) is close to one-third. It is
only fairly recently that the computations of asymmetric gravity–capillary solitary
waves in the full Euler equations were carried out in deep water (Wang et al. 2014).
Apparently, there is the question of stability of these solutions. As emphasised
by Yang & Akylas (1997) and Wang et al. (2014), these asymmetric waves are
characterised by a multipacket structure, namely, they are formed by two or more
adjacent wavepackets. Therefore we stand a chance of finding stable asymmetric
waves if the constituent parts are all stable. However for a branch arising from an
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FIGURE 2. (a) ‘Snake-like’ bifurcation of the elevation branch, which is parametrised by
the value of the middle point. The curve starts from the bifurcation point (

√
2, 0) and

follows the path 2a→ 2b→ 2c→ 2d→ 2e→ 2f → 2g→ 2h→ 2i→ 2j. The sharp nature
of the second turning point (between 2d and 2e) and near overlapping points 2b and 2g
are respectively shown in more details. The typical profiles for c= 1.4 (2d and 2e) and
c = 1.36 (2c and 2j) are also shown. (b) Speed–energy bifurcation diagram of elevation
solitary waves. Waves according to the segment between the turning point 2B and the
stationary point 2C (solid line) are stable, while waves corresponding to the dotted line
are unstable.
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asymmetric solitary wave with the profile being composed of a depression wave and
a stable elevation one, we give a negative answer in the present paper based on the
linear eigenvalue analysis and direct numerical simulations.

On the experimental side, the depression gravity–capillary solitary waves can be
excited by applying a localised pressure distribution moving with a constant subcritical
speed; once the pressure is removed, a free depression solitary wave is shed and then
quickly dissipates due to the viscous effect (see Longuet-Higgins & Zhang (1997),
Diorio et al. (2009, 2011) for more details). Two-dimensional gravity–capillary
travelling-wave solutions under a fully localised, constant-moving forcing were first
computed by Vanden-Broeck & Dias (1992) in deep water. The linear stability of
Vanden-Broeck & Dias’ solutions was later studied by Calvo & Akylas (2002),
whereas in shallow water (Bond number bigger than one-third), the stability of the
forced solutions was investigated by Grimshaw, Maleewong & Asavanant (2009). The
numerical studies of shedding of gravity–capillary solitary waves by forcing were
carried out in the shallow water limit by Milewski & Vanden-Broeck (1999) and
Cho & Akylas (2009) via the forced fifth-order KdV equation under the inviscid
and viscous assumptions respectively, and in deep water by Akers (2012) via an
inviscid cubic-truncation model. In this paper, the shedding of solitary waves in deep
water is investigated using the direct time-dependent simulations of the fully nonlinear
equations in the inviscid setting. Our results show that, besides the depression solitary
waves, the stable elevation ones can also be excited by forcing, and the way to achieve
this is to move two fully localised, well-separated pressures on the free surface with
the speed slightly below the phase speed minimum and switch off the pressures
simultaneously after a period of time.

2. Formulation
In this section, we recall the two-dimensional potential flow equations for a body

of water of infinite depth. The equations can be reduced to a closed system of
one dimension in space using the time-dependent conformal mapping technique,
that maps the fluid domain to the lower half-plane where Laplace’s equation can
be solved analytically. Following the procedure described by Milewski & Tabak
(1999), the system is further recast to a single complex evolution equation and then
numerically solved via the method of integrating factors for time integration. The
free solitary-wave solutions are approximated by long periodic waves with flat tails,
and computed using the pseudo-spectral method described in Milewski et al. (2010),
Wang et al. (2014).

2.1. Governing equations
Let x denote the horizontal coordinate, y the vertical direction, with y = 0 at
the undisturbed interface between water and air, and t time. We consider a
two-dimensional inviscid fluid of infinite depth flowing irrotationally, such that
the velocity field can be expressed as the gradient of a potential function φ. If the
fluid is assumed to be incompressible, the equation that holds throughout the fluid is
Laplace’s equation

φxx + φyy = 0, for y<η(x, t), (2.1)

where the subscript denotes differentiation, and y = η(x, t), which is also unknown,
is designated as the free surface of the fluid. The kinematic and dynamic boundary
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conditions are to be satisfied on y= η(x, t). The kinematic requirement that the free
surface contains the same fluid particles is expressed by

ηt = φy − ηxφx. (2.2)

While the dynamic boundary condition reads

φt =−1
2

(
φ2

x + φ2
y

)− gη+ σ
ρ

ηxx

(1+ η2
x)

3/2
+ Pe

ρ
, (2.3)

where g is gravitational acceleration, σ is surface tension, ρ is fluid density and Pe
represents the externally applied pressure at the free surface. Finally, the kinematic
boundary condition at infinity is given by

φy→ 0, as y→−∞. (2.4)

The equations (2.1)–(2.4) form the complete system for the two-dimensional
surface water-wave problem including both gravity and surface tension. Since
gravity and surface tension are equally important in the present problem, one can
non-dimensionalise the whole system by choosing[

σ

ρg

]1/2

,

[
σ

ρg3

]1/4

,

[
σ 3

ρ3g

]1/4

, (2.5a−c)

as length, time and potential scales, respectively. Therefore the dynamic boundary
condition (2.3) can be recast as

φt =−1
2

(
φ2

x + φ2
y

)− η+ ηxx

(1+ η2
x)

3/2
+ Pe. (2.6)

For a problem without external forcing, the total energy of the system is the sum of
the kinetic and potential energies, which is given by

E= 1
2

∫ ∞
−∞

dx
∫ η

−∞

(
φ2

x + φ2
y

)
dy+ 1

2

∫ ∞
−∞

η2 dx+
∫ ∞
−∞

(√
1+ η2

x − 1
)

dx. (2.7)

Zakharov (1968) showed that the inviscid water-wave problem is a Hamiltonian
system, and the correct Hamiltonian is simply the total energy given by (2.7) with
surface variables η and φ(x, η, t) being canonical conjugates. In order to obtain
the dispersion relation of gravity–capillary waves in deep water, we drop all the
nonlinear terms in (2.2) and (2.6) and the external pressure in (2.6), and then solve
the linearised system. It is easy to find the relation between the wave frequency ω
and the wavenumber k

ω2 = |k| (1+ k2
)
, cp =

√
1+ k2

|k| , (2.8a,b)

where cp denotes the phase speed. It follows that the phase speed cp attains its
minimum

√
2 at k = ±1. Vanden-Broeck & Dias (1992) showed that solitary waves

bifurcate from the minimum of the phase speed and exist below this speed.
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2.2. Numerical method
Based on the time-dependent conformal mapping technique (see Dyachenko, Lvov &
Zakharov (1995), Dyachenko et al. (1996), Milewski et al. (2010) for details), the
two-dimensional full Euler equations (2.1), (2.2), (2.4) and (2.6) can be reduced to a
closed system of exact evolution equations. After mapping the physical fluid domain
to the lower half-plane, the surface elevation η(ξ, t) and the surface potential φ(ξ, t)
can be parametrised by ξ , and the total energy in the transformed plane reads

E= 1
2

∫ ∞
−∞

[
φξψ + η2 + 2

(√
J − xξ

)]
dξ, (2.9)

where J , x2
ξ + η2

ξ is the Jacobian of the conformal map, x(ξ , t) and ψ(ξ, t) are
associated with the harmonic conjugates of η(ξ, t) and φ(ξ, t) respectively. More
precisely,

xξ = 1−H
[
ηξ
]
, φξ =−H

[
ψξ
]
. (2.10a,b)

Here H represents the Hilbert transform defined by

H
[

f
]
(ξ , t)= 1

π
−
∫ ∞
−∞

f (ξ ′, t)
ξ ′ − ξ dξ ′, (2.11)

where the integral is of the Cauchy principal form. The Fourier symbol of the Hilbert
transform is Ĥ = i sgn(k) where the hat denotes the Fourier transform and k is the
wavenumber in Fourier space. Following Dyachenko et al. (1995), the Lagrangian
function in the conformal plane takes the form

L =
∫ ∞
−∞

φ
(
ηtxξ − xtηξ

)
dξ − E

=
∫ ∞
−∞

[
ηt
(
φxξ −H

[
φηξ
])− 1

2
φξψ − 1

2
η2xξ −

(√
J − xξ

)]
dξ . (2.12)

If we define Θ , φxξ − H[φηξ ], Θ and η are two canonical variables of the
Hamiltonian system, and φ can be recovered as

φ = Θxξ +H[Θηξ ]
J

. (2.13)

Then the evolution equations for Θ and η can be obtained by taking the variational
derivatives of the total energy:

∂η

∂t
= δE
δΘ

,
∂Θ

∂t
=−δE

δη
. (2.14a,b)

Based on the Hamiltonian formulation in the new coordinates, Saffman’s theorem of
the stability exchange of water waves (Saffman 1985) can be extended to include
multivalued solutions. However, the specific expressions of the Euler–Lagrangian
equations (2.14) are rather cumbersome, therefore it makes sense to consider
alternative variables to reduce the problem, even though these variables are not
canonically conjugate. Following Dyachenko et al. (1996) or Milewski et al. (2010),
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we use η and φ as dependent variables, then the dynamics of free surface in the
transformed plane can be expressed as

ηt = ηξH
[
ψξ

J

]
− xξ

ψξ

J
, (2.15)

φt =
ψ2
ξ − φ2

ξ

2J
+ φξH

[
ψξ

J

]
− η+ xξηξξ − ηξxξξ

J3/2
+ Pe. (2.16)

Following Milewski & Tabak (1999), we recast the system (2.15)–(2.16) as a single
complex evolution equation. The numerical experiments are implemented on a periodic
domain, where the Fourier transform is applicable in the spatial variable ξ , hence,(

η̂

φ̂

)
t

+
[

0 −|k|
1+ |k|2 0

](
η̂

φ̂

)
=
(
N̂1

N̂2

)
, (2.17)

with N1 and N2 being of the form

N1 = ηξH
[
ψξ

J

]
+ψξ

(
1− 1

J

)
+ ψξH[ηξ ]

J
, (2.18)

N2 =
ψ2
ξ − φ2

ξ

2J
+ φξH

[
ψξ

J

]
+ ηξξ

(
1

J3/2
− 1
)
+ ηξH[ηξξ ] −H[ηξ ]ηξξ

J3/2
+ Pe. (2.19)

Introducing the notations p̂ = η̂ + (i/cp)φ̂ and q̂ = η̂ − (i/cp)φ̂, we can rewrite the
system as

p̂t + i|ω|p̂= N̂1 + i
cp

N̂2, (2.20)

q̂t − i|ω|q̂= N̂1 − i
cp

N̂2, (2.21)

where ω and cp are defined in (2.8). Using the fact that η and φ are both real, these
two equations are eventually equivalent, and η and φ can be recovered from p alone
with

η̂= 1
2

[
p̂(k)+ p̂(−k)∗

]
, φ̂ = cp

2i

[
p̂(k)− p̂(−k)∗

]
, (2.22a,b)

where the asterisk indicates complex conjugation. Thus the problem is reduced to
solving (2.20) which is a single complex evolution equation, and the method of
integrating factors can be easily implemented for time integration (see Milewski &
Tabak (1999) for more details).

In order to study the stability and dynamics of solitary waves, as a first step, we
numerically seek fully localised travelling waves translating with speed c. We assume
functions η and φ to depend on ξ − ct, then it follows from (2.15) that

−cηξ = ηξH
[
ψξ

J

]
− xξ

ψξ

J
,

−cH
[
ηξ
]=−xξH

[
ψξ

J

]
− ηξ ψξJ .

 (2.23)
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Solving the system (2.23) yields

ψξ = cηξ , H
[
ψξ

J

]
= c

(xξ
J
− 1
)
. (2.24a,b)

Substituting (2.24) into the dynamic boundary condition (2.16) and noticing φt=−cφξ ,
we obtain an integro-differential equation after some algebra

c2

2

(
1
J
− 1
)
+ η+ ηξxξξ − xξηξξ

(J)3/2
= Pe. (2.25)

It is noted that as Pe= 0, the obtained solutions are free solitary waves. The nonlinear
equation (2.25) was extensively used in computing gravity–capillary solitary waves
(see, for example, Vanden-Broeck & Dias 1992; Dias, Menasce & Vanden-Broeck
1996; Calvo & Akylas 2002; Milewski et al. 2010; Wang et al. 2014). The total
energy is a key parameter of free solitary waves since it is related to their stability
characteristics according to Saffman’s theorem. In the transformed plane, the total
energy takes the form

E= 1
2

∫ ∞
−∞

[
c2ηξH[η] + 2

(√
x2
ξ + η2

ξ − xξ

)
+ η2xξ

]
dξ . (2.26)

The solitary-wave solutions are approximated by long periodic waves with flat tails,
therefore the Hilbert transform and derivatives can be efficiently computed in Fourier
space using Fourier multipliers. We introduce a uniform mesh ξi = (i − 1)(L/N) −
(L/2) for i= 1, 2, . . . , N, and corresponding unknowns η(ξi), where L is the length
of the domain and N is the number of grid points. The nonlinear integro-differential
equation (2.25), which is discretised and evaluated in ξ−space, is solved via Newton’s
method, and the solution is considered to have converged when the l∞-norm of the
residual error is less than 10−11. Once one solitary wave is found, other solutions on
the same branch can be computed via a numerical continuation method by choosing
the wave speed or energy as a bifurcation parameter. This pseudo-spectral scheme was
successfully implemented in Milewski et al. (2010) for computing symmetric waves
and in Wang et al. (2014) for finding asymmetric waves. Finally, the length of the
computational domain L and the number of grid points N are both chosen sufficiently
large so that, to the numerical accuracy we use, the solutions do not change when L
and N are further increased.

3. Results
3.1. Solitary-wave dynamics

As shown in the aforementioned references, two basic families of symmetric
gravity–capillary solitary waves, depression and elevation waves, are known to exist
in deep water, and we briefly review some relevant results here. The bifurcation
diagrams for depression and elevation branches together with typical wave profiles
are presented in figures 1 and 2, from which we conclude that both branches bifurcate
from infinitesimal periodic waves at the minimum of the phase speed c∗ =√2, and
exist at subcritical speeds. Figure 1 shows that both the amplitude (where ‘amplitude’
is defined as the centre elevation) and the energy (which is given by (2.26)) of
depression waves are monotonic functions of the translating speed c. As c decreases
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the wave steepness increases, while the wave crest becomes more rounded and
eventually the wave profile develops an overhanging structure at the trough (e.g. the
profile 1b). Further down the curve, the profile develops a point of contact with a
‘trapped bubble’ (which occurs at c ≈ 0.9275) and even a self-intersecting structure
(e.g. the profile 1c). The solutions with self-intersections have no physical meaning
but are mathematically admitted by the full Euler equations. In contrast to the branch
of depression, the bifurcation of the elevation branch exhibits the characteristic
‘snake-like behaviour’: the speed–energy curve (figure 2b) has stationary points
where dE/dc = 0 (e.g. 2C in figure 2b), and turning points where dE/dc = ∞ or
equivalently dc/dE = 0 (e.g. 2B in figure 2b). Together with some wave profiles,
the speed–amplitude curve of the elevation branch is shown in figure 2(a), which
also features the snake-like behaviour. We stopped the computations after passing
through the fourth turning point when two almost completely separated depression
waves appear (see 2j in figure 2a). At this point, more accurate computations became
prohibitive, presumably since the waves are far apart and their separation is sensitive
to perturbations. We finally remark that there are infinite many branches of symmetric
gravity–capillary solitary waves existing at finite amplitudes (the read is referred to
the numerical computations by Dias et al. (1996), Wang et al. (2014), and the
asymptotic analysis of Yang & Akylas (1997)).

The stability characteristics of basic branches were examined by Calvo & Akylas
(2002) via a linear spectral analysis and by Milewski et al. (2010) via direct numerical
simulations. They found that all single-valued depression solitary waves are stable,
while the elevation waves are unstable between the bifurcation point and the first
turning point (2B in figure 2b) but regain spectral stability beyond this point where the
wave profiles feature two well-separated troughs (see 2c in figure 2a). The existence
of stable solitary waves brings up the question of the excitation of these steady
solutions. In laboratories, depression gravity–capillary solitary waves were generated
under controlled conditions by Longuet-Higgins & Zhang (1997), Diorio et al. (2009,
2011), among others. The experimentalists excited the depression waves by blowing
air towards the surface of the fluid and moving the air source with a speed close
to the phase speed minimum. We present here an inviscid numerical analogue of
these experiments. The equation (2.20) was simulated with a fully localised pressure
distribution

Pe(x− ct)=−0.02 e−(x−ct)2, with c= 1.41. (3.1)

The time evolution of the transient response from a quiescent state, together with
wave profiles, is illustrated in figure 3. Moving the frame of reference with the speed
of the forcing, we observe a periodic shedding of depression solitary waves generated
downstream of the pressure distribution. A similar phenomenon occurs for pure gravity
waves in shallow water, where the KdV-type solitons can be periodically generated
by a moving surface pressure, and the reader is referred to the comprehensive review
paper by Keller (1985). The difference between these two cases is that the depression
gravity–capillary solitary waves trail behind the pressure distribution, while the
solitons for pure gravity waves advance upstream of the disturbance in processions.
Despite being different in behaviour, two phenomena share an important core feature.
In the transcritical range (namely, the speed slightly below the phase speed minimum
for gravity–capillary waves in deep water, or the speed slightly above the phase
speed maximum for pure gravity waves in shallow water) the dispersive effect is
weak. When a fully localised pressure distribution moves with the speed in this
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FIGURE 3. (a) Shedding of depression solitary waves resulting from moving a fully
localised forcing with the constant speed c = 1.41. (a) A forced solution in the ξ − t
plane clearly indicates that solitary waves are generated periodically to the left of the
forcing. (b) Snapshots in the physical domain at times t= 500, 1000, 1500, 2000 from top
to bottom respectively. The frame is moving with the forcing and only a portion of the
computational domain is shown.

range, there is neither steady forced solution nor linear mechanism to radiate energy
away. Therefore the energy accumulates within the forced region, as a consequence,
the amplitude of the local wave grows. When the amplitude reaches a certain level,
the nonlinear effects start to become efficient. The subtle balance between weak
dispersion and weak nonlinearity results in the formation of solitary waves moving
at a different velocity from that of the forcing.

We now consider the generation of stable elevation solitary waves featuring two big
troughs connected by a small dimple. Motivated by the structure of these waves, the
pressure applied to the rest free surface consists of two identical, properly separated
Gaussian functions

Pe(x− ct)=−0.03
[
e−(x−ct)2 + e−(x−ct−10)2

]
, with c= 1.405. (3.2)

Snapshots in figure 4(a) show that this special pressure impinging on the fluid surface
can produce a disturbance in the form of an elevation wave. The pressure was then
released after a period of time (t = 80). The bottom snapshot in 4(a) and the top
snapshot in 4(b) are shortly before (t = 75) and after (t = 100) the pressure was
switched off respectively. The bottom snapshot in 4(b) indicates that the elevation
solitary wave maintains its structure for long time in spite of the interaction with the
background radiation field induced by the initial generation process.

The numerical computations for generating figures 3 and 4 were performed on a
periodic domain ξ ∈ [−250, 250), with the time step 1t= 2× 10−4, N= 20 000 Fourier
modes, dealiasing with a buffer of N modes and no filtering. The character of the
stable solution is not sensitive to the radiated waves wrapping around the domain.

The second dynamical computational experiment presented is the stability test
of the depression solitary waves with an overhanging structure. As noted earlier,
the numerical spectral analysis by Calvo & Akylas (2002) shows that depression
waves are longitudinally stable. Unfortunately, their formulation is applicable only to
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FIGURE 4. Excitation of a stable elevation solitary wave due to two fully localised,
well-separated pressures moving at c= 1.405. The pressures are switched on at t= 0 and
switched off at t = 80. The solution (solid line) together with the pressures (dotted line)
are shown in (a) at t= 15, 45, 75 from top to bottom respectively. After the pressures are
turned off, the solution at times t= 100, 500, 1000 is shown in (b).

the single-valued surface profiles, therefore the stability of the overhanging waves
remains unknown. However this problem can be easily solved if one notices that the
speed–energy curve is monotonic for the branch of depression and all perturbations
are superharmonic in a sense for solitary waves. That’s because Saffman’s theorem
indicates that for superharmonic perturbations stability exchanges can only occur at
stationary points or turning points of the total energy. To provide more evidence
for this assertion, we collided two depression waves: the larger slower wave was
characterised by an overhanging structure, while the smaller faster wave served
as a perturbation. Snapshots of the head-on collision in figure 5 show that both
depression waves survive the collision, although they lose part of the energy, which
eventually turns into a small wavepacket intercepted on the right-hand side of the
larger solitary wave. The striking phenomenon is the persistence of the overhanging
structure, although its shape slightly opens due to the energy loss during the collision
process. In the case of overtaking collisions, the behaviours are different from those of
head-on collisions, since the interacting time is much longer so that strong nonlinear
effects are more likely to take place. An example is shown in figure 6, where only
the larger solitary wave remains after the collision. As the smaller faster depression
wave approaches the overhanging wave, it breaks up by transferring some energy
to the overhanging structure and radiating the remaining part. We should emphasise
that although the overhanging structure survives the overtaking collision, the gain
of energy during the interaction results in a self-intersecting structure, therefore the
solution satisfies the full Euler equations but has no physical significance. For the
experiments of collisions, the equation (2.20) was integrated on a periodic domain
ξ ∈ [−100, 100) with the time step 1t= 10−5 and N = 4000 Fourier modes.

3.2. Linear spectral analysis
In this section, using numerical spectral analysis and direct numerical simulations, we
revisit the branch of symmetric elevation solitary waves and investigate the stability
of a typical branch of asymmetric solitary waves. Following Tanaka (1985) or Calvo
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FIGURE 5. Head-on collision between a solitary wave with an overhanging structure (1b
in figure 1a) and a small-amplitude depression wave (η(0) = −0.208 and c = 1.405):
(a) t=0, (b) t=40, (c) t=50 and (d) t=70. The collision is inelastic, but both depression
solitary waves survive the collision.

& Akylas (2002), we first outline the formulation of the linear eigenvalue problem for
gravity–capillary waves. We introduce a frame of reference moving to the right with
speed c, namely, we define x̂ = x − ct and φ̂ = φ − cx̂. Dropping hats, the dynamic
boundary condition (2.6) can be rewritten as

φt =−1
2

(
φ2

x + φ2
y

)− η+ ηxx

(1+ η2
x)

3/2
+ c2

2
, (3.3)

while the kinematic boundary condition remains the same. As a consequence,(
φx, φy

)→ (−c, 0), as
√

x2 + y2→∞. (3.4)

The steady solutions to the system (2.1), (2.2), (3.3) and (3.4) can be obtained by
using hodograph transformation which exchanges the dependent variables φ and ψ
and independent variables x and y, and the Cauchy integral formula which solves
Laplace’s equation in an explicit manner. Following Vanden-Broeck & Dias (1992),
the horizontal and the vertical velocities can be expressed in terms of the complex
potential f = φ + iψ and z= x+ iy by the following formula

φx − iφy =
(

dz
df

)−1

= 1
xφ + iyφ

, (3.5)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
6.

68
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2016.685


Stability and dynamics of solitary waves 543

–100 –80–60 –40 –20 0 20 40 60 80 100
–1.6

–1.4

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

–100 –80–60 –40 –20 0 20 40 60 80 100
–1.6

–1.4

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

–100 –80–60 –40 –20 0 20 40 60 80 100
–1.6

–1.4

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

–100 –80–60 –40 –20 0 20 40 60 80 100
–1.6

–1.4

–1.2

–1.0

–0.8

–0.6

–0.4

–0.2

0

0.2

49.5 50.0 50.5
–1.6

–0.9

–0.2

(a) (b)

(c) (d)

49.4 49.9 50.4
–1.6

–0.9

–0.2

47.6 48.1 48.6
–1.6

–0.9

–0.2

46.9 47.4 47.9
–1.6

–0.9

–0.2

FIGURE 6. Overtaking collision between an overhanging solitary wave (η(0) = −1.4676
and c = 0.94) and a small-amplitude depression wave (η(0) = −0.208 and c = 1.405) is
shown in a frame of reference moving at the speed of the larger wave. From (a) to (d):
t= 0, 200, 250, 300. Only the larger wave survives the collision. Note that an unphysical
wave profile shows up after the collision.

whereas x+ iy is an analytic function of f in the upper half-plane (ψ > 0). Applying
the Cauchy integral formula to the function xφ+ iyφ+ (1/c) yields the relation between
xφ and yφ at ψ = 0

xφ =−1
c
+ 1

π
−
∫ ∞
−∞

ηφ′(φ
′)

φ′ − φ dφ′ =−1
c
+H[ηφ]. (3.6)

We rescale the Cauchy integral formula by defining φ, c ξ , then the expression (3.6)
becomes

xξ =−1+ 1
π
−
∫ ∞
−∞

ηξ ′(ξ
′)

ξ ′ − ξ dξ ′ =−1+H[ηξ ]. (3.7)

It is not difficult to verify that the kinematic boundary condition is satisfied
automatically by substituting (3.5) into (2.2), while the dynamic boundary condition
(3.3) can be rewritten as

c2

2

(
1

x2
ξ + η2

ξ

− 1
)
+ η− ηξxξξ − xξηξξ

(x2
ξ + η2

ξ )
3/2
= 0. (3.8)

Evidently, (3.7) and (3.8) are coincident with (2.10) and (2.25), and this fact allows us
to use the obtained travelling-wave solutions. When a fully localised steady solution
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is given, we consider small perturbations of this solution. The solitary waves are
supposed to be single valued, as well as the perturbations. Therefore we can express
the free-surface displacement η and the velocity potential φ as

η(x, t)= Y(x)+ η̃(x)eλt, φ(x, y, t)=Φ(x, y)+ φ̃(x, y)eλt, (3.9a,b)

where Y(x) and Φ(x, y) denote the profile of the free surface and the velocity potential
of an exact solitary-wave solution, while η̃eλt and φ̃eλt are small time-dependent
perturbations superposed on these quantities respectively. Linearising the free boundary
conditions (2.2) and (3.3), we obtain the eigenvalue problem for λ, η̃ and φ̃ as
follows:

λη̃ = (Φyy − YxΦxy
)
η̃−Φxη̃x − Yxφ̃x + φ̃y, (3.10)

λφ̃ = − (Φx∂x +Φy∂y
)
Φyη̃−

(
Φx∂x +Φy∂y

)
φ̃ − η̃

+ η̃xx

(1+ Y2
x )

3/2
− 3YxYxxη̃x

(1+ Y2
x )

5/2
. (3.11)

Following Tanaka (1985) or Calvo & Akylas (2002), we introduce the magnitude of
the velocity on the free surface, q=

√
Φ2

x +Φ2
y , and the angle between the velocity

and the x-axis, θ = arctan (dY/dx). The free surface can be parameterised by the arc
length s with s=0 being consistent with ξ =0 in (3.8). After some algebra, we obtain

λη̃= q
dη̃
ds
− 1

cos θ
dψ̃
ds
+ 1

cos θ
d (q cos θ)

ds
η̃, (3.12)

λφ̃ = q
dφ̃
ds
−
[

q
d(q sin θ)

ds
+ 1
]
η̃+ 1

cos θ
d
ds

(
cos2 θ

dη̃
ds

)
, (3.13)

where ψ̃ is the harmonic conjugate of φ̃. Noticing d/ds=−qd/dΦ and d/dξ = cd/dΦ,
one finally rewrites the linear eigenvalue problem as

λη̃=− c
Xξ

d
dξ

(
Xξ
J

)
η̃− c

J
dη̃
dξ
+ 1

Xξ

dH[φ̃]
dξ

, (3.14)

λφ̃ =−
[

c2

J
d(Yξ/J)

dξ
+ 1
]
η̃− c

J
dφ̃
dξ
− 1

Xξ

d
dξ

(
X2
ξ

J3/2

dη̃
dξ

)
, (3.15)

where Xξ = −1 +H[Yξ ] and J = X2
ξ + Y2

ξ . We remark that under a different scaling,
a similar formulation for left-going waves was previously used to study the stability
of solitary waves for pure gravity waves in shallow water by Tanaka (1985) and for
gravity–capillary waves in deep water by Calvo & Akylas (2002). In terms of the left-
and right-going waves, the formulations given in Tanaka (1985) and presented here are
essentially the same.

For consistency, the eigenvalue problem (3.14)–(3.15) is discretised at the uniform
grid points of a periodic domain with the derivative and the Hilbert transform being
approximated by the spectral matrices. Specifically, the square matrix of the discrete
Hilbert transform, denoted by H, is given by

H(i, j)=

−
2
N

cot
(

π(i− j)
N

)
, |i− j| 6≡ 0 (mod 2),

0, |i− j| ≡ 0 (mod 2),
(3.16)
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FIGURE 7. The most unstable normal mode for the elevation wave with α = 0.3 (which
corresponds to c= 1.3512). The profiles are modified in scale in order to compare with
figure 10 of Calvo & Akylas (2002).

and the first-derivative matrix D is given by

D(i, j)=

(−1)i−j π

L
cot
(

π(i− j)
N

)
, |i− j| 6≡ 0 (mod N),

0, |i− j| ≡ 0 (mod N),
(3.17)

where L is the length of the computational domain and N is the number of grid points
(see Trefethen (2000) for detailed derivations). Therefore, the original eigenvalue
problem is approximated by a matrix eigenvalue problem, which can be solved using
the standard QR algorithm in MATLAB.

To validate our numerical code, we checked the results produced by our program
against the results in Calvo & Akylas (2002). For the elevation gravity–capillary
solitary waves, Calvo & Akylas (2002) considered the stability exchange near the
first turning point, and found that the waves are unstable before that point. For α
(which is defined as 1/c4) equals 0.26, 0.3 and 0.4, the growth rate of the most
unstable mode is respectively 0.009, 0.0153 and 0.0077. While our numerical results
read 0.009, 0.0154 and 0.01096 after being converted to their scaling. The small
discrepancies are most likely due to the different way to approximate infinitely long
solitary waves, and the different matrices of the Hilbert transform and derivatives
arising therefrom. The profile of the most unstable mode for α= 0.3 was also checked
(see figure 7), which is in excellent agreement with Calvo & Akylas’ result (figure
10 in their paper), confirming the accuracy of our numerical method. Throughout
this work, the linear eigenvalue problem (3.14)–(3.15) was solved with L= 200 and
N = 8000 for all waves we tested.

We start to explore the stability characteristics of the elevation branch near other
limiting points. In figure 2(b), away from the turning point 2B no instability can
be detected until the stationary point 2C, beyond which the elevation waves become
unstable again. Table 1 shows the instability growth rate of unstable elevation waves
at c=1.36 and c=1.4. The most striking result is the instability of the waves after the
fourth turning point, whose profiles feature two big troughs connected by two small
dimples (see 2j in figure 2a). The structure of these waves is similar to the known
stable elevation waves except for the local shape between two big troughs. However,
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c= 1.36 c= 1.40
Label η(0) E λ Label η(0) E λ

2b 0.2038 1.2139 0.03786 2a 0.1506 0.4527 0.02516
2f 0.0491 2.4630 0.03789 2e 0.0298 0.9299 0.02789
2g 0.2032 2.4719 0.04805 2h 0.1302 0.7916 0.02130
2j 0.0161 1.2119 0.00153 2i 0.0650 0.5961 0.00869

TABLE 1. Instability growth rate λ of elevation solitary waves for c= 1.36 and c= 1.4.
The value of the middle point and the energy of the wave are listed for reference.

Upper branch Lower branch
Label c E λ Label c E λ

9a 1.390 1.3903 0.03189 9e 1.405 0.8210 0.00690
9b 1.395 1.2223 0.02961 9f 1.400 0.8776 0.00419
9c 1.400 1.0597 0.02608 9g 1.395 0.9774 0.00302
9d 1.405 0.8956 0.01681 9h 1.390 1.0879 0.00224

TABLE 2. Instability growth rate λ of asymmetric solitary waves for various values of
the speed c. The energy of the wave is listed for reference.

the increase of the distance between the troughs weakens their coherence, therefore
a ‘collision-like’ instability occurs. An example of this phenomenon is presented in
figure 8, whereby the small perturbation accelerates the left trough and decelerates
the right one. Figure 8(a) depicts the profiles of the perturbation, which is the most
unstable normal mode with the corresponding growth rate λ = 0.00614. We present
in (b,c) the comparisons between the numerical simulation of the full Euler equations
and the prediction of the linear theory at t = 600, 750, which show great agreement.
After t = 750, the nonlinear effects become significant and a quasi-elastic collision
is observed where both waves survive and the primary effect of the collision is a
rapid phase shift (see the wave trajectories in 8d and typical wave profiles in 8e).
The computation shown in figure 8 was carried out with L = 300, N = 8000 and
1t= 4× 10−4.

Lastly, we consider the stability of asymmetric gravity–capillary solitary waves.
Following Wang et al. (2014), the initial guess for finding an asymmetric solitary
wave was obtained by superposing a depression wave (1a in figure 1a) and a stable
elevation one (2d in figure 2a), both of which translate at c = 1.4. With this initial
guess, the Newton’s algorithm converged to the solution 9f in figure 9. It is natural
to ask whether the obtained asymmetric solution is stable since its constituent parts
are both stable.

Using 9f as the starting point, the bifurcation curve can be followed, which is
shown in figure 9. The spectral stability analysis was then carried out using the
method described above, and the growth rate is presented in table 2. We conclude
from table 2 that all asymmetric waves on this branch are unstable, even when the
wave profiles resemble two stable solitary waves placed side by side. It is noted that
the investigation of the global bifurcation of asymmetric gravity–capillary solitary
waves is beyond the scope of this paper, and the interested reader is referred to
Wang et al. (2014).

Figures 10 and 11 show two numerical experiments of asymmetric solitary waves
(9c and 9f respectively) perturbed with their most unstable normal modes, which were
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FIGURE 8. Instability of an elevation wave which consists of two depression waves
connected by two small dimples. The steady solution, which corresponds to the point 2A
in figure 2(a) (η(0) = 0.0425 and c = 1.39), was disturbed by its most unstable mode
(λ = 0.00614) shown in (a) for η̃ (top) and φ̃ (bottom). (b,c) Comparison between the
linear theory (dashed line) and the nonlinear evolution code (solid line) at t = 600 and
t= 750 respectively. (d) Time-dependent solution in the ξ − t plane. (e) Four free-surface
profiles are shown from top to bottom at times t = 750, 1000, 2000, 8000 (solid line),
compared with the unperturbed steady solution (dotted line). The solution is shown in a
frame of reference moving to the right with the speed of the undisturbed wave.

performed with L = 300, N = 8000 and 1t = 4 × 10−4. Figure 10(b–d) show the
nonlinear evolution of the initial disturbance whose profiles are given in figure 10(a).
Figure 10(c) strongly suggests that the linear theory captures the development of the
unstable mode until t ≈ 160, a value of order 1/λ (here λ = 0.02608). Snapshots in
figure 10(e) demonstrate the long-time behaviour of the instability, which manifests
itself by a visible change of the central troughs and the subsequent breakdown of the
coherent structure. Figure 11 depicts the instability of the wave 9f. The decrease of
the amplitude of the elevation component increases its speed, while the increase of the
amplitude of the depression component reduces its speed. Hence the small difference
in speed between two components leads to changes of the connecting portion during
the interaction. The comparisons between the nonlinear simulation based on (2.20)
and the linear theory are made in figure 11(b,c), which show remarkable agreement.
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FIGURE 9. Speed–energy bifurcation diagram of a branch of asymmetric solitary waves,
together with typical wave profiles for c= 1.4 (9c and 9f ) and c= 1.39 (9a and 9h). The
branch arises from an asymmetric wave with the initial guess being composed of a stable
elevation wave and a depression one propagating at c= 1.4.

In contrast to the instability shown in figure 8, the elevation component is totally
destroyed in the long-time dynamics.

4. Concluding remarks
The stability and dynamics of two-dimensional gravity–capillary solitary waves

in deep water have been revisited numerically. The shedding of depression solitary
waves and stable elevation waves have been achieved by moving a proper fully
localised pressure distribution with the speed close to the phase speed minimum
to mimic the jet of air impinging on the surface of a steady stream. The stability
of depression solitary waves with an overhanging structure has been confirmed
by Saffman’s theorem. While the numerical results that the overhanging structure
survived the solitary-wave collisions provided further evidence of its stability.

The stability characteristics of multipacket solitary waves, including both symmetric
and asymmetric waves, have been investigated using linear stability analysis and direct
numerical simulations. Based on a simple rescaling, we have integrated hodograph
transformation and time-dependent conformal map, so that the linear eigenmode
obtained by the former technique can be used to prepare the initial data for the latter
one. Comparisons between the time evolution of the unstable normal mode with the
numerical integration of the full Euler equations and the prediction of the linear
theory show excellent agreement for all solitary waves we have tested, validating the
accuracy and reliability of our numerical scheme.

For symmetric elevation solitary waves, we have found that the stability exchange
occurs twice along the bifurcation curve, which extends the previous study by Calvo
& Akylas (2002) who were concerned only with the stability exchange near the first
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FIGURE 10. Time evolution of the unstable mode for an asymmetric solitary wave (9c in
figure 9). All profiles are shown in a frame of reference moving to the right with c =
1.4. (a) The profiles of the most unstable normal mode. (b,c) Comparison between the
linear theory (dashed line) and the nonlinear computation (solid line) at t = 125 and
t = 160, respectively. (d) The evolution of the perturbation using the nonlinear evolution
code. (e) Wave profiles at t = 160, 200, 500, 1200 from top to bottom, with dotted line
corresponding to the unperturbed steady solution.

turning point. A special branch of asymmetric solitary waves has also been considered
and found to be unstable, even when the wave profiles feature a depression wave and
a stable elevation one separated by small oscillations. We have further found that some
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FIGURE 11. Time-dependent computation of an asymmetric solitary waves (9f in figure 9)
subject to the unstable normal mode. All profiles are shown in a frame of reference
moving to the right with c = 1.4. (a) Profiles of the most unstable normal mode. (b,c)
Comparison between the linear theory (dashed line) and the nonlinear computation (solid
line) at t = 800 and t = 1000 respectively. (d) From top to bottom, the snapshots show
the evolution of the free surface at time t = 1000, 1500, 2750, 5000 (solid line), and the
unperturbed profile for reference.

multipacket solitary waves exhibit collision-like behaviours in the long-time dynamics.
Particularly, there is an oscillation before the separation of two solitary waves (see
figure 8d). This phenomenon is similar to the weak interaction of solitary waves in
nonlinear optics where the governing equation is the generalised NLS equation (see,
for example, figure 3 in Zhu & Yang (2007) for cubic–quintic NLS equation). While
beyond the scope of this paper, it is of great interest to study the similarities between
hydrodynamics and nonlinear fibre optics.

Instabilities for some multipacket gravity–capillary solitary waves are weak (i.e. the
growth rate is small), therefore they are probably observable in experiments within
a reasonable timescale (1000 dimensionless time units correspond to approximately
17 s). It must be pointed out that due to the small typical wavelength (≈1.7 cm)
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of gravity–capillary waves, the viscous effect, which we have neglected, plays an
important role even in the deep-water case. The Reynolds number, which measures
the dissipation rate, is defined as

Re= inertial forces
viscous forces

= velocity scale× length scale
kinematic viscosity

= 1
ν

(
σ 3

ρ3g

)1/4

, (4.1)

where ν is the kinematic viscosity. In CGS units, g=981 cm s−2, σ =72.8 g s−2, ρ=
0.998 g cm−3 and ν = 0.013 cm2 s−1 for deep water. Hence the Reynolds number is
approximately 340 for the air–water interface. The linear theory (Lamb (1932), §§ 348–
349) gives the rate of decay of order 2/Re≈0.006, which is comparable to the growth
rate of the most unstable modes of some solitary waves. To reduce the relative effect
of viscosity in practice, using other fluids like mercury (see Falcon, Laroche & Fauve
2007 for example) or conducting the experiments in a microgravity environment is
plausible.

Finally we make remarks about the stability of two-dimensional gravity–capillary
waves to three-dimensional perturbations. Based on an asymptotic analysis, Kim
& Akylas (2007) showed that plane depression solitary waves in deep water are
eventually unstable to transverse perturbations of sufficiently long wavelength. This
fact is related to the existence of genuinely three-dimensional solitary waves, which
are commonly referred to as ‘lumps’ in the literature. Gravity–capillary lumps were
numerically found by Părău, Vanden-Broeck & Cooker (2005) in the full Euler
equations, and experimentally observed by Diorio et al. (2009, 2011). The stability
and dynamics of lumps, such as lump generation either by a localised forcing moving
steadily or via transverse instability of a plane wave, long-time evolutions of unstable
lumps, and collisions between stable lumps, have not been truly justified with the
fully nonlinear water-wave equations in three dimensions, and are therefore of great
interest for future studies.
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