
Philosophy of Science, 74 (December 2007) pp. 574–587. 0031-8248/2007/7405-0003$10.00
Copyright 2007 by the Philosophy of Science Association. All rights reserved.

574

The Communication Structure of
Epistemic Communities

Kevin J. S. Zollman†‡

Increasingly, epistemologists are becoming interested in social structures and their effect
on epistemic enterprises, but little attention has been paid to the proper distribution
of experimental results among scientists. This paper will analyze a model first suggested
by two economists, which nicely captures one type of learning situation faced by
scientists. The results of a computer simulation study of this model provide two in-
teresting conclusions. First, in some contexts, a community of scientists is, as a whole,
more reliable when its members are less aware of their colleagues’ experimental results.
Second, there is a robust tradeoff between the reliability of a community and the speed
with which it reaches a correct conclusion.

1. Introduction. Increasingly epistemologists have become interested in
the relationship between ‘social’ influences and proper epistemic behavior.
The analysis of this set of issues comes in one of two forms. One form
is to consider the proper response for epistemic agents when faced with
evidence that comes via another person (or persons). This type of analysis
remains focused on the traditional epistemic problems of individual belief
formation and revision, but incorporates appropriate responses to data
of a certain kind (cf. Goldman 1999; Bovens and Hartmann 2003).

Another approach focuses more on the structure of epistemic com-
munities. This second type asks, given certain assumptions about the
individuals in communities, what sort of community structures best serve
the epistemic aim of that community? For example, Kitcher (1990, 1993)
and Strevens (2003a, 2003b) have recently looked at the impact that dif-

†To contact the author, please write to: Department of Philosophy, Baker Hall 135,
Carnegie Mellon University, Pittsburgh, PA 15213-3890; e-mail: kzollman@andrew
.cmu.edu.

‡The author would like to thank Brian Skyrms, Kyle Stanford, Jeffrey Barrett, Bruce
Glymour, and the participants in the Social Dynamics Seminar at University of Cal-
ifornia–Irvine for their helpful comments. Generous financial support was provided
by the School of Social Science and Institute for Mathematical Behavioral Sciences at
UCI.

https://doi.org/10.1086/525605 Published online by Cambridge University Press

https://doi.org/10.1086/525605


COMMUNICATION STRUCTURE 575

ferent methods for assigning credit have on communities of scientists.
They conclude that our current method of assigning credit is best for
achieving the desired results of science.

These two projects need not compete with one another. While it is
possible that the best epistemic communities are made up of epistemically
“sullied” individuals, we have no a priori reason to think this is the case.1

Neither is it the case that a theory of proper individual epistemic conduct
answers all the question of community design. Once one fully articulates
a theory of individual epistemic rationality, it is still an open question
what the optimal community structure is for these agents—the individ-
ualistic question is only part of the answer.

A community is made up of many facets, and there are many questions
to be answered when it comes to optimal epistemic communities. Here
we will be interested in one feature of communities, the structure of com-
munication. Specifically we will ask: what is the best way for information
to be transmitted? In order to analyze this problem we will look at the
prime example of an epistemic community, science. In order to do this,
we will use a model first suggested by two economists, Bala and Goyal
(1998). The surprising result of this analysis is that in many cases a com-
munity made up of less informed individuals is more reliable at learning
correct answers. Reducing information to scientists, one might expect
would also have the effect of making their convergence to the truth much
slower, and our model confirms this suspicion. The model suggests that
there is a robust tradeoff between speed and reliability that may be im-
possible to overcome.

After presenting the model in Section 2, the results from a computer
simulation study of the model are presented in Section 3. Following that
the limitations of the model as a model of science are discussed in Section
4, and Section 5 concludes by comparing the results of this model with
another problem discussed by Kitcher and Strevens.

2. The Model. Consider the following stylized circumstance. There are
four medical researchers working on a particular disease. They are con-
fronted with a new method of treatment which might be better or worse
than the current, well understood, method of treatment. Work on the new
treatment will help to determine whether it is superior. Since the old
treatment is well understood, work on it will not result in any new in-

1. Some have suggested that the goals of epistemically virtuous communities may
conflict with the goal of epistemically virtuous individuals, primarily in discussing a
community virtue recently called the “division of cognitive labor” (cf. Popper 1975;
Hull 1988; Kitcher 1990, 1993). While this certainly may be the case, more work is
needed to demonstrate that this virtue cannot be achieved in other ways.

https://doi.org/10.1086/525605 Published online by Cambridge University Press

https://doi.org/10.1086/525605


576 KEVIN J. S. ZOLLMAN

formation about its probability of success, scientists’ efforts will only refine
delivery methods or reduce harmful side effects. Suppose our scientists,
labeled A, B, C, and D, assign the following probabilities to the superiority
of the new treatment: 0.33, 0.49, 0.51, and 0.66. They then each pursue
the treatment method which they think best. Two scientists, C and D, will
pursue the new treatment option and two, A and B, the old. Suppose,
further that the new treatment is in fact better than the old but, as is
perfectly possible, C and D’s experiments both suggest slightly against it.
Specifically suppose all agree on these probabilities:

’P(The result of C s experiment d New method is better) p 0.4
’P(The result of D s experiment d New method is better) p 0.4
’P(The result of C s experiment d New method is worse) p 0.6
’P(The result of D sexperiment d New method is worse) p 0.6

After meeting and reporting their results to each other A, B, C, and D
now asses the probability of the new theory being better as 0.1796, 0.2992,
0.3163, and 0.4632 respectively. As a result, none of them will pursue the
new treatment; we have lost a more beneficial treatment forever. This
outcome is far from extraordinary; given that the new methodology is
better and the experimental outcomes are independent (conditioned on
the new methodology being superior), the probability of getting this result
is 0.16.

This circumstance arises for two reasons. First, scientists in our ex-
ample must pursue evidence, they are not passive observers. Second,
they already have a good understanding of the old treatment and further
study of it will not help them to conclude anything about the new
treatment.2

Even given this structure, the availability of the evidence contributes
to the abandonment of the superior theory. Had D not been aware of
C’s result, she would still have believed in the superiority of the new
treatment.3 As a result, had she been unaware of C’s results, she would
have performed a second round of experiments, which would offer the
opportunity to correct the experimental error and thereby to find the
truth. In this toy example, it seems that the wide availability of exper-

2. Had the scientists been passive observers, their beliefs would not have influenced
the type of information they received. In that case, information about either treatment
might still arrive despite the fact that the theory has been abandoned. Additionally,
had experiments on the old theory been informative about the effectiveness of the new
theory, the fact that everyone pursues the old theory does not preclude them from
learning about the new theory.

3. If D had only been aware of her own negative results, but not the results of C, her
posterior belief in the superiority of the new treatment would have been 0.5621.
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imental results was detrimental to the group’s learning. Of course no
general lesson can be drawn from this example. It is not offered as a
general model for all scientific practice but is instead provided a gen-
eralization of a learning situation that some scientists unquestionably
face.

Two economists, Bala and Goyal (1998), present a very general model
that can be applied to circumstances like the one faced by the medical
researchers. Stated formally, in this model, there are two states of the
world and and two actions and . Action has the samef f A A A1 2 1 2 1

expected return in both states while ’s is lower in and higher in .A f f2 1 2

Agents are aware of the expected payoff in both states, but are unaware
of which state obtains. Agents have beliefs about the state of the world
and in each period take the action which has the highest expected utility
given their beliefs. They receive a payoff from their actions which is in-
dependently drawn for each player from a common distribution with the
appropriate mean. Each agent observes the outcome of his actions and
the outcome of some others, and then updates his beliefs based on simple
Bayesian reasoning about the state of the world.4

This model has multiple interpretations, but one of them is analogous
to the circumstance discussed above. The agents are scientists and their
action is choosing which method to pursue. and respectively rep-f f1 2

resent the state where the current method and the new method is better.
Bala and Goyal endeavor to discover under what conditions correct con-
vergence can be guaranteed. They consider two different restrictions, re-
strictions on priors and restrictions on information.

The second suggestion, limiting information, will be our primary focus
here. This restriction is achieved by limiting which other agents an in-
dividual can ‘see’, and thus restricting the information on which an agent
can update. They do this by placing an agent on a graph and allowing
her only to see those agents with which she is directly connected.

Bala and Goyal consider agents arranged on a line where each agent
can only see those agents to the immediate left and right of them. If there
are an infinite number of agents, convergence in this model is guaranteed
so long as the agents’ priors obey some mild assumptions. Bala and Goyal
also consider adding a special group of individuals to this model, a ‘royal
family’. The members of the royal family are connected to every individual
in the model. If we now consider this new collection of agents, the prob-
ability of converging to the wrong result is no longer zero! This is a

4. ‘Simple’ here means that the agent only updates her belief using the evidence from
the other’s experiment. She does not conditionalize on the fact that her counterpart
performed a particular experiment (from which she might infer the results of others).
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remarkable result, because it contradicts a basic intuition about science:
that access to more data is always better.5 In this case, it is not.

The reason for this result is interesting. In the single line case the prob-
ability that everyone receives misleading results becomes vanishingly small
as the population grows to infinity. However, in the population with the
royal family, this probability no longer vanishes. Negative results obtained
by the royal family infect the entire network and mislead every individual.
Once the entire population performs act , they can no longer distinguishA1

between the good and bad states because this action has the same expected
payoff in both and . As a result, a population composed entirely off f1 2

players will never escape.A1

One might worry about Bala and Goyal’s results since they depend so
critically on the infinite size of the population. For finite populations,
there exists a positive probability that any population will not converge.
One might wonder, in these cases how much influence the ‘royal family’
would have on the population. Furthermore, it is unclear what moral we
ought to draw from these results—many things are different in the two
different models. In addition to increased connectivity, there is also un-
equal distribution of connections. If we are interested in evaluating the
performance of actual institutions it is unclear which features we should
seek out. Through computer simulations, we will endeavor to discover
the influence that network structure has on reliable learning in finite pop-
ulations and also to develop more detailed results regarding the relation-
ship between network structure and success.

3. Finite Populations.

3.1. The ‘Royal Family’ Effect. To begin, we will look at three graphs
known as the cycle, the wheel, and the complete graph (pictured in Figure
1) and compare their convergence properties. The cycle is a finite analogy
to Bala and Goyal’s line. Here agents are arranged on a circle and only
connected with those on either side of them. The wheel is a cycle but one
of the agents is connected to everyone else, Bala and Goyal’s royal family.
The last network is one where everyone is connected to everyone.

We will, unbeknownst to our agents, set the world in , where the newf2

5. Ellison and Fudenberg (1995) present a different model which comes to the same
conclusions. In their model, the interaction structure is not fixed, individual take a
different random sample of fixed size in each time period. Because the individuals in
their model have much shorter memories, it seems less appropriate for modeling sci-
entific behavior (an application which they do not consider). A similar conclusion can
be found for even individual learning in the work of Herron, Seidenfeld, and Wasserman
(1997). This work presents a rather different learning situation and will not be discussed
in detail here.
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Figure 1. A 10-person cycle, wheel, and complete graph.

methodology is better. We will then assign our agents random beliefs
uniformly drawn from the interior of the probability space and allow
them to pursue the action they think best. They will then receive some
return (a ‘payoff ’) that is randomly drawn from a distribution for that
action. The agents will then update their beliefs about the state of the
world based on their results and the results of those to which they are
connected. A population of agents is considered finished learning if one
of two conditions are met. First, a population has finished learning if
every agent takes action , in this case no new information can arriveA1

which will convince our agents to change strategies. (Remember that the
payoff for action is the same in both states, so it is uninformative.)A1

Alternatively the network has finished learning if every agent comes to
believe that they are in with probability greater than 0.9999. Althoughf2

it is possible that some unfortunate sequence of results could drag these
agents away, it is unlikely enough to be ignored.

The results of a computer simulation are presented in Figures 2 and 3.
In Figure 2, the x-axis represents total number of agents and y-axis rep-
resents the proportion of 10,000 runs that reached the correct beliefs.6

The absolute probabilities should not be taken too seriously as they can
be manipulated by altering the expected payoffs for and . On theA A1 2

other hand, the relative fact is very interesting. First, we have demon-
strated that Bala and Goyal’s results hold in at least some finite popu-
lations. In all the sizes studied the cycle does better than the wheel. Second,
we have shown that both of these do better than the complete graph
where each agent is informed of everyone else’s results.

This demonstrates a rather counterintuitive result, that communities
made up of less informed scientists might well be more reliable indicators
of the truth than communities which are more connected. This also sug-

6. Although it is possible for a population to continue unfinished indefinitely, no
population failed to converge.
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Figure 2. Learning results of computer simulations for the cycle, wheel, and complete
graphs.

gests that it is not the unequal connectivity of the ‘royal family’ that is
the culprit in these results. The harm done by the individual at the center
cannot be simply overcome by removing their centrality.

There is a benefit to complete networks, however; they are much faster.
Figure 3 shows the average number of generations it takes to reach the
extreme beliefs that constituted successful learning among those networks
that did reach those beliefs. Here we see that the average number of
experimental iterations to success is much lower for the complete network
than for the cycle, and the wheel lies in between. This suggests that, once
networks get large enough, a sacrifice of some small amount of accuracy
for the gain of substantial speed might be possible.7

So far, we have only looked at the properties of three networks, the
trend seems to be that increased connectivity corresponds to faster but
less reliable convergence. This is generalizing from three, relatively extreme

7. The results for both reliability and speed are robust for these three networks across
modifications of both the number of strategies (and thus states) and the difference in
payoff between the good and uninformative actions. Although these different modi-
fications do effect the ultimate speed and reliability of the models, for any setting of
the parameters the relationship between the three networks remains the same.
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Figure 3. Speed results of computer simulation for the cycle, wheel, and complete
graphs.

networks, however. It would be good to engage in a more systematic
survey.

3.2. Connectivity and Success. For relatively small sizes (less than
seven), we can exhaustively search the properties of all networks. The
suggestion in the previous section, that decreased connectivity results in
slower, but more reliable learning, can be tested more extensively. In the
previous section, connectivity was left as an intuitive criterion. In fact,
there are several graph statistics that correspond to our notion of con-
nectivity. Here, we will use density which represents the percentage of
possible connections that actually obtain in a graph.

Taking all networks (up to isomorphism) between size three and six we
can compare these statistics to network’s learning properties. These results
are presented in Figure 4.8 A regression among the largest group (networks
of size six) reveals that density is a stronger predictor of successful learning
than any other common graph statistic. Only one other graph statistic
significantly improves the prediction beyond density alone, that is the

8. This is a result of running 10,000 trials for every graph, up to isomorphism, of size
six or lower. The initial beliefs were independently drawn from a uniform distribution
over [0, 1].
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Figure 4. Density versus probability of successful learning.

clustering coefficient.9 This statistic measures the degree to which one’s
neighbors (those to whom an individual is connected) are connected to
each other. In both cases, the lower the statistic (i.e., the less dense and
less clustered a graph is) the higher the successful learning. In addition,
the in-network degree variance is not correlated with success, suggesting
that it is not the centrality of the wheel, but its high connectivity that
results in its decrease in reliability.10

Examining the differences among the different finite cases is instructive.
It appears that sparsely connected networks have a much higher ‘inertia’.
This inertia takes two forms. First, an unconnected network experiences
less widespread change in strategy on a given round than a highly con-
nected network. The average number of people who change their strategies
after the players receive less than expectation is four times higher inA2

9. In fact, there are two clustering coefficients in the literature. One from Newman et
al. (2002) is a slightly better predictor than one presented in Watts (1999) although
the difference is very small.

10. The in-network degree variance measures the variability of the number of neighbors
for each agent in a network. This number will be high when certain agents are connected
to more people than the average, thus representing unequal connectivity. Since this
statistic is uncorrelated with success, we can conclude that the centrality of the royal
family does not influence its reliability.
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Figure 5. The five most accurate (top) and five fastest (bottom) networks.

a highly connected network than a less connected network. Second, un-
connected networks are less likely to occupy precarious positions than
connected ones. Conditioning on the network having only one player,A2

a highly connected network is almost three times as likely to have no
individuals playing on the next round. Since there is only one newA2

piece of evidence both cases, the difference between the two networks is
the result of individuals having less extreme beliefs (i.e., closer to 0.5) in
the connected network. Since all networks have the same expected initial
beliefs, this must be the result of the information received by the agent.11

Both of these results suggest that unconnected networks are more robust
to the occasional string of bad results than the connected network because
those strings are contained in a small region rather than spread to everyone
in the network. This allows the small networks to maintain some diversity
in behaviors that can result in the better action ultimately winning out if
more accurate information is forthcoming. This also explains why we
observed the stark difference in speeds for the cycle and complete networks
in the previous section. When bad information is contained so too is good
information. In fact, we find that this trade off is largely robust across
networks.

An inspection of the five most reliable and five fastest networks suggests
that the features of a network that make it fast and those that make it
accurate are very different (see Figure 5). Four of the five most reliable
graphs are minimally connected—that is, one cannot remove any edge
without essentially making two completely separate graphs. Conversely,
the five fastest graphs are highly connected, two of them are complete
graphs, and the remaining ones are one, two, and three edges removed

11. The statistics reported here are comparing 100 runs of complete six-person net-
works, with the most reliable six-person network pictured in Figure 5.
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Figure 6. Speed versus accuracy for networks of size six.

from complete graphs. Figure 6 compares the average time to success and
probability of success for networks of size six. Here we find that there is
a relationship between the accuracy of a network and its speed. In fact,
this graph shows that sometimes a small increase in probability can result
in a substantial increase in time to success.

This confirms the tradeoff suggested before, in order to gain the reli-
ability that limiting information provides, one must sacrifice other ben-
efits, in this case, speed. In fact, the tradeoff is even stronger than suggested
here. These results are only for cases where we specify that the new method
is better. When the uninformative action is better convergence is guar-
anteed but the connectedness of the graph determines its speed.

In the previous section, relationship between speed and size was a
strange one. For complete networks, as the network grew the average
time to success of these groups decreased. On the other hand, for wheels
and cycles as the network grew the average time to success increased. This
diversity is verified by the more complete analysis. There appears to be
no correlation between size and speed when all networks are considered.

Ultimately, there is no right answer to the question of whether speed
or reliability is more important—it will depend on the circumstance. Al-
though a small decrease in reliability can mean a relatively large increase
in speed, in some cases such sacrifices may not be worth making. If it is
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critical that we get the right result no matter how long it takes we would
prefer groups where information is limited (without making the network
disconnected). On the other hand, if speed is important and correct results
are not as critical perhaps a more connected network is desired. It is not
the intention of this study to provide unequivocal answers to these ques-
tions, but rather to demonstrate that such tradeoffs do exist and that one
can achieve increased reliability by limiting information.

4. The Right Model. There are three assumptions that underlie this model
which might cause some concern. They are:

1. The learning in our model is governed by the observation of payoffs.
2. There is a uninformative action whose expected payoff is well known

by all actors.
3. The informative action can take on one of very few expected payoffs

and the possibilities are known by all actors.

The first assumption is of little concern. Here we use payoffs to sym-
bolize experimental outcomes. Payoffs that are closer to the mean are
more likely, which corresponds to experimental outcomes that are more
likely on a given theory. The payoffs are arranged so that an individual
who maximizes her expected payoff pursues the theory that she thinks is
most likely to be true. This fact allows this model to be applied to learning
situations where individuals are interested in finding the most effective
theory (however effectiveness is defined) and also to situations where
individuals are interested in finding the true theory. In either case the
individuals behave identically.12

The second and third assumptions are less innocuous. Similar conclu-
sion can be reached by analyzing another model which results from re-
laxing these assumptions. Unfortunately, space prohibits a discussion of
these results here. It should not be presumed, however, that the Bala-
Goyal model is inapplicable. In fact, this model very closely mimics Lau-
dan’s (1996) model of theory selection.

Laudan suggests that theory choice is a problem of maximizing expected
return. We ought to choose the theory that provides the largest expected
problem solving ability. Since we have often pursued a particular project
for an extended time before being confronted with a serious contender,
we will have a very good estimate of its expected utility. However, we will
be less sure about the new contender, but we could not learn without
giving it a try.

Even beyond Laudan, there may be particular learning circumstances

12. This is not to say that true theories always have higher payoffs. Instead, this model
is so general as to apply to either circumstance.
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that conform to these three assumptions. Bala and Goyal compare their
model to crop adoption in Africa. There, a new seed is introduced and
farmers must decide whether to switch from their current crop (whose
yield is well known) to another crop (whose yield is not). Experimental
techniques and apparatus may well follow a similar pattern.

5. Conclusion. Preventing failed learning in this model is very similar to
the problem of maintaining what Kitcher calls “the division of cognitive
labor” (1990, 1993). This is the problem of encouraging scientists to work
on theories they believe to be duds in order to secure an optimal com-
munity response. Maintaining this division of labor prevents the aban-
donment of optimal theories when experimental results are misleading or
priors are biased. Kitcher’s solution to this problem is to appeal to the
economic interests of the scientists by offering rewards to those who pur-
sue other avenues. Kitcher (1990, 1993) and Strevens (2003a, 2003b) sug-
gest that our current method of giving rewards to those who were the
first to succeed has this effect.

This solution to the problem has the unfortunate consequence of being
incompatible with our theories of good epistemic behavior for individuals.
That is, scientists are doing well, under Kitcher’s model, when they are
actively pursuing the theory they believe to be incorrect with the hopes
of gaining a big reward if the theory turns out to be true. Here we have
another possible solution to the problem which does not rely on that type
of epistemic impurity. Our scientist are genuinely pursuing those projects
which they deem to be most likely to succeed, but the division of labor
has been maintained sufficiently long by limiting the information available
to our scientists.

Even beyond the problem of maintaining the division of cognitive labor,
this model suggests that in some circumstances there is an unintended
benefit from scientists being uninformed about experimental results in
their field. This is not universally beneficial, however. In circumstances
where speed is very important or where we think that our initial estimates
are likely very close to the truth, connected groups of scientist will be
more reliable. On the other hand, when we want accuracy above all else,
we should prefer communities made up of more isolated individuals.
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