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The aim of this article is to derive the income and cost functionals required to
determine the actuarial value of certain types of perishable inventory system+ In the
basic model, the arrival times of the items to be stored and the ones of the demands
for those items form independent Poisson processes+ The shelf lifetime of every
item is finite and deterministic+Every demand is for a single item and is satisfied by
the oldest item on the shelf, if available+ The price of an item depends on its shelf
age+ For an actuarial valuation, it is important to know the distribution of the total
value of the items in the system and the expected~discounted! total income and cost
generated by the system when in steady state+ All of these functionals are deter-
mined explicitly+As extensions of the original model, we also deal with the case of
batch arrivals and general renewal interdemand times; in both cases, closed-form
solutions are obtained+

1. INTRODUCTION

We consider a perishable inventory system in which both the arrival and the demand
are independent Poisson processes+Our interest is in theactuarial valueof the system,
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defined as the value of items in stock plus the total expected future discounted net
income generated by the system+ Fresh stock arrives to the system according to a
Poisson process with ratel+Without loss of generality, we assume that the lifetime
of each item is one time unit+ If an item has not been consumed by demand before its
expiration date, it is discarded+ The demand arrival times form a Poisson process
with ratem+Demands are satisfied on a FIFO basis~i+e+, oldest items are issued first!,
and the return for a sold item is assumed to depend on its age at issuing time+ A
demand that arrives when the system is empty is lost+

This problem can arise in several contexts+One would be to value a concern that
sells or supplies perishable inventories, such as a blood bank+ Another would be to
determine the value of a particular perishable product+ Inventory valuation is straight-
forward for nonperishables, but it is more subtle for perishables, since some items
may ultimately satisfy demands and some may perish+ The methodology of this
article provides a means of valuing a specific line of perishable goods+

This above-described basic model as well as several extensions have been stud-
ied in previous articles~see, e+g+, @3,8–12# ! in which also various applications to
real-life systems such as blood banks, food storage places, and so forth are exhib-
ited+ Here, we are interested in determining the stationary economic value of the
system, which is the combination of the stationary expected purchase value of the
items present in the system and the net income generated in the future+

The purchase cost of a fresh item is fixed ascmonetary units+On the other hand,
the price of each item while aging on the shelf decreases+ Let R~x! be its price at
shelf agex+We suppose thatR~x! is nonincreasing on~0,1# andR~0! . c+ It is natural
but not necessary to assume thatR~1! 5 0+ Based onR, we will determine the sta-
tionary value of the items in the system+

Regarding future profits and cost, we introduce discounting by the discount
factorb . 0+ The net expected gain of the system is composed of four functionals:

1+ The total expected income from selling items to demands
2+ The total expected purchase cost
3+ The total expected penalty cost due to outdatings of items
4+ The total expected penalty cost due to unsatisfied demands

Our main tool for determining the eventual expected value of the items on the shelf
and the functionals 1–4 is thevirtual outdating time~VOT! processW 5 $W~t !:
t $ 0% + First define theextended ageprocessX 5 $X~t !: t $ 0% + If at timet the system
is not empty, thenX~t ! is the age of the oldest item present on the shelf; if the system
is empty, then2X~t ! is the time until the next item arrival+Now, setW~t !512X~t !+
Clearly,W~t ! can be interpreted as the time fromt until the next outdating~removal
from the shelf! of an item provided that there are no demand arrivals until then+W
is a regenerative Markov process with state space@0,`!+WheneverW hits zero, an
item reaches shelf age 1 and is therefore outdated+ Then, the second oldest item
becomes the oldest one or, in case the system is now empty, W jumps above 1,
indicating the time until the item arriving next would be outdated if it is not used to
satisfy some demand+ The time intervals between two visits at zero can be taken as
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the regerative cycles ofW+ Any demand arriving as long asW . 1 will not be
satisfied and is lost+ For more details, see@10# + A typical sample path ofW is de-
picted in Figure 1+

A little reflection shows thatW can also be described as the workload~virtual
waiting time! process of a specialM0M01 queuing system+ This queue has arrival
ratem, service ratel, and impatient customers in the sense that any of them that
would have to wait for more than one time unit do not enter the line; moreover, the
idle periods are deleted, so that whenever the system becomes empty a new cus-
tomer immediately enters+ This interpretation is often helpful+

The models in this article are based on the assumption that the arrival times of
the perishable items are random and form a renewal process+ We do not consider
controlling the input by ordering policies+ The study of such policies and their op-
timization is the subject of the second main strand of perishable inventory theory
~see, e+g+, @5–7# and the more recent papers@2,4,14# where further references can be
found!+

The article is organized as follows+ First,we derive the stationary distribution of
W in Section 2+ In Section 3, we express the Laplace transform~LT !, and the ex-
pected value, of the price of the current inventory and the functionals 1–4 in terms
of this distribution+ In Sections 4 and 5,we consider two generalizations of the basic
model: batch demands of random i+i+d+ sizes and general interarrival times for the
demands+ The first extension leads to the consideration of a modified Markovian
queuing system with phase-type service times; the second one can be treated by a
certain transformation ofW including time reversal that leads to anM0G01-type
finite dam+ In both cases, all functionals of interest can be computed in a closed form
involving infinite series of convolutions+

2. STATIONARY DISTRIBUTION OF W

Being a regenerative process with finite expected cycle length,W possesses a sta-
tionary distribution+ By level-crossing theory~see, e+g+, @1# !, the stationary density
f ~x! is given as the rate of downcrossings of levelx+ Since in steady state this rate is

Figure 1. A typical sample path ofW+
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equal to that of upcrossings ofx,we immediately arrive at the Pollaczeck–Khintchine
integral equation

f ~x! 5 5µE
0

x

e2l~x2v! f ~v! dv 1 f ~0!e2lx, x # 1

µE
0

1

e2l~x2v! f ~v! dv 1 f ~0!e2lx, x . 1+

(2.1)

Indeed, the arrival rate of upward jumps ism, and when starting fromv [
~0,min@x,1# ! the probability to jump abovex ise2l~x2v! ; the termf ~0!e2lx accounts
for jumps to~x,`! just after outdatings~i+e+, at hittings of zero!+ It follows from ~2+1!
that f is of the form

f ~x! 5 Hk1e2~l2µ!x, x # 1

k2e2lx, x . 1
(2.2)

for certain constantsk1 andk2+As f is continuous on~0,`!, we havek2 5 k1eµ+ By
the normalizing condition*0

` f ~x! dx5 1, we find that

k1 5 5
l~l 2 µ!

l 2 µe2~l2µ!
if l Þ µ

l

l 1 1
if l 5 µ

(2.3)

k2 5 5
l~l 2 µ!

l2µ 2 µe2l
if l Þ µ

lel

l 1 1
if l 5 µ+

(2.4)

By ~2+2!, k1 5 f ~0!, so that, by level-crossing theory,

k1 5
def

l*

is the long-run average rate of outdatings per unit time+

Remark: It is straightforward to show that the outdating process~i+e+, the arrival
times of outdatings!, as well as the unsatisfied demand process, are delayed renewal
processes+ In fact, these two renewal processes are dual to each other in the sense
that the law of the latter is equal to that of the former ifl andm are interchanged+ Let
µ* be the rate of the unsatisfied demand process+ That means that 10µ* is the mean
time between unsatisfied demands+ On the one hand, we have, by renewal theory,

µ* 5 µ2 l 1 l* (2.5)
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because, on the average, the net input is equal to the net output~the long-run time
average of satisfied demands coincides with the long-run time average of arriving
items that have not been outdated!+ On the other hand, we have, by PASTA,

µ* 5 µF12E
1

`

f ~x! dxG + (2.6)

It can be easily verified that the right-hand sides of~2+5! and~2+6! are equal+

3. THE ACTUARIAL VALUATION

We now assume that the system is in steady state+ Let V be the total value of all items
present in the system+We start by determining the LT ofV+ Let Wbe the steady state
variable of the VOT process; note thatWhas densityf+ If W. 1, the shelf is empty+
If W#1, then 12 W is the age of the currently oldest item,which is the time elapsed
since its arrival+ In this case, let N be the number of items that have arrived after the
oldest item and denote byT1 #{{{# TN the times elapsed at their arrivals since the
oldest item has entered the system, so that their ages are 12 W2 TN , + + + ,12 W2 T1+
The current prices of the items on the shelf are thenR~1 2 W!,R~1 2 W 2
T1!, + + + ,R~12 W2 TN !, respectively+ Hence,

V 5 5
0, W . 1

(
j50

N

R~12 W2 Tj !, W# 1,
(3.1)

whereT0 5 0+ By conditioning onN andW, we obtain

E~e2aV! 5 ESESexpH2a (
j50

N

R~12 W2 Tj !J1$W#1% 6N,WDD+ (3.2)

Since the item arrival process is Poisson, the conditional joint distribution of
T1,T2, + + ,TN , givenNandW, is the same as that of the order statistics 0, U~1! # {{{ #
U~N! , 1 2 W derived from an independent sampleU1, + + + ,UN of size N of the
uniform distribution on the interval~0,12 W!+ Obviously,

(
j50

N

R~12 W2 U~ j ! ! 5 (
j50

N

R~12 W2 Uj !+

Let Uu be a random variable having the uniform distribution on~0,u! and let

G~a,u! 5 E~e2aR~u2Uu! ! 5
1

u
E

0

u

e2aR~ y! dy+

Then, ~3+2! yields

E~e2aV! 5 E~e2a~R~12W!!G~a,12 W!N1$W#1% !+
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GivenW5 w, N has a Poisson distribution with parameterl~12 w!+ Thus,

E~e2aV! 5 P~W . 1! 1E
0

1

exp$2aR~12 w!%

3 (
n50

`

G~a,12 w!ne2l~12w!
~l~12 w!!n

n!
f ~w! dw

5 k1eµe2l 1 k1E
0

1

e2aR~12w!2l~12w!@12G~a,12w!#2~l2µ!w dw, (3.3)

where the second step follows from~2+2! andk1 is given in ~2+3!+ Equation~3+3!
provides an explicit expression for the LT ofV+ In particular, the expected total price
of the items on the shelf is

E~V ! 5 k1E
0

1

e2~l2µ!wSR~12 w! 1 lE
0

12w

R~ y! dyD dw+ (3.4)

Remark: One possible assumption on the price functionR is that it is related to some
deterioration rate function r~x! $ 0 of the shelf agex via the relation

R~x! 5 5pS12E
0

x

r ~ y! dyD, 0 , x # 1

0 otherwise+

Then, the sale price of a fresh item isR~0! 5 R~01! 5 p ~. c!+ It is natural to assume
that*0

1 r ~x! dx51,which means that an outdated item is of no value+ If this integral
is smaller than one, the scrap value of outdated items has to be taken into account, as
it will decrease the penalty due to outdatings+

Now let us turn to the functionals characterizing the long-run profits and cost of
the inventory system+ Let N1 5 $N1~t !: t $ 0%,N2 5 $N2~t !: t $ 0%,M 1 5 $M2~t !:
t $ 0% , andM 2 5 $M2~t !: t $ 0% be the counting processes of item arrivals, demand
arrivals, outdatings, and unsatisfied demands, respectively, and letb . 0 be the
discount factor+ Then, N1 andN2 are Poisson processes~of ratesl andm, respec-
tively! andM 1 andM 2 are stationary renewal processes with interarrival ratesl*5
k1 andµ*5l2µ1k1, respectively+ LetS1 , S2 , {{{ be the item arrival times; they
are consecutive sums of i+i+d+ exp~l!-distributed random variables+ The total ex-
pected discounted purchase cost of items is

cESE
0

`

e2bt dN1~t !D 5 c (
n51

`

E~e2bSn ! 5
cl

b
+ (3.5)
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By PASTA, the total expected discounted income from selling the items to incoming
demands is

E~R~12 W!1$W#1% !ESE
0

`

e2bt dN2~t !D 5
E~R~12 W!1$W#1% !µ

b
+ (3.6)

Now, let a be the penalty on the outdating of an item and lett1 , t2 , {{{ be the
interoutdating times+ Then, t2,t3, + + + have the same distribution function, say F,
while t1 has the densityl*~12 F!+ Denote byc~a! the LT oft2+ Clearly, t1 has LT
l*~12 c~a!!0a+ The total expected penalties on outdatings is, therefore,

aESE
0

`

e2bt dM1~t !D 5 a (
n51

`

E~e2b (
i51

n

ti !

5 a (
n51

` l*~12 c~b!!

b
c~b!n21

5
ak1

b
+ (3.7)

Finally, let b be the penalty on an unsatisfied demand+ Proceeding as above, we find
that the total expected discounted penalties on unsatisfied demands are given by

bESE
0

`

e2bt dM2~t !D 5
b~l 2 µ1 k1!

b
+ (3.8)

All functionals of interest have now been computed+

Examples:Let l Þ µ+ In the following, we need the formulas

P~W . 1! 5 k1eµ2l, (3.9)

E~W1$W#1% ! 5
k1

~l 2 µ!2 @12 e2~l2µ! 2 ~l 2 µ!e2~l2µ! # , (3.10)

E~W21$W#1% ! 5
k1

~l 2 µ!3 @2 2 ~~l 2 µ!2 1 1!e2~l2µ! # , (3.11)

which follow from ~2+2!+

~a! Consider the price function associated withr ~x![1+ Then,R~ y!5p~12y!
and we get

E~R~12 W!1$W#1% ! 5 pE~W1$W#1% !

5
pk1

~l 2 µ!2 @12 e2~l2µ! 2 ~l 2 µ!e2~l2µ! # +
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A quick calculation shows thatG~a,u! 5 ~apu!21~e2ap~12u! 2 e2ap!, and
~3+3! yields

E~e2aV! 5 k1eµ2l 1 k1E
0

1

exp$2~ap 1 l 2 µ!w

2 l@12 w2 ~ap!21~e2apw 2 e2ap!#% dw+

~b! Let r ~ y! 5 2y+ Then, R~ y! 5 p~12 y2!, so that

E~R~12 W!1$W#1% ! 5 p~12 E~~12 W!21$W#1% !!

5 p@P~W . 1! 1 2E~W1$W#1% ! 2 E~W21$W#1% !# ,

and the terms on the right-hand side are given by~3+9!–~3+11!+ Furthermore,
we obtainG~a,u! 5 u21 *0

u eap~ y221! dy+ Thus, by ~3+3!,

E~e2aV! 5 k1eµ2l 1 k1E
0

1

expH2~ap~2w 2 w2! 2 ~l 2 µ!w!

2 lF12 w 2E
0

12w

eap~ y221! dyGJ dw+

4. BATCH DEMANDS

We now extend the original model by assuming that demands arrive in batches of
random sizesK1,K2, + + + + TheKi are i+i+d+ random variables with common distribu-
tion P~Ki 5 k! 5 pk, k 5 1,2, + + + , and generating functionK~z! 5 (k51

` pk zk+ We
suppose that each demand can be either

~i! fully satisfied, which happens if there are at least as many items on the
shelf as demanded,

~ii ! partially satisfied, if more is demanded than available, in which case the
shelf is emptied,

~iii ! or fully unsatisfied, if the shelf is found empty+

~We might have to consider an additional actuarial functional if the penalty on par-
tially satisfied demands is different from that of fully unsatisfied ones+!

Formulas~3+4!–~3+8! for the actuarial functionals still hold, but the law ofW is
no longer the one given in~2+2! because the jump sizes are no more exponential with
ratel+A demand ofk items, if fully satisfiable, takes away thek oldest items in the
system+ Since the interarrival times are i+i+d+ and exp~l!-distributed, the jump ofW
generated by this demand is composed ofk exponential phases+ However, if a de-
mand is only partially satisfied, W upcrosses level 1, and by the lack-of-memory
property of the jump size distribution, the overshoot above level 1 is exp~l!-
distributed~independent of everything that has happened in the past!; note that this
overshoot is equal to the time until the next item arrival+Also, just after a moment of
outdating~whenW hits zero!, the second oldest item becomes the new oldest one,
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and the upward jump is again exp~l!-distributed+ It is now clear that the level-
crossing equation for the stationary density ofW is given by

f ~x! 5 5µE
0

x

@12 H~x 2 v!# f ~v! dv 1 f ~0!e2lx, x # 1

Dke2lx, x . 1,

(4.1)

whereH is the distribution function having the density

h~ y! 5 (
k51

`

pk

e2ly~ly!k21l

~k 2 1!!
+

Hence,

12 H~ y! 5 12 (
k50

` ely~ly!k

k! S (
n5k11

`

pkD
and

Dk 5 µelE
0

1

@12 H~12 v!# f ~v! dv 1 f ~0!

5 µelE
0

1S12 (
k50

` el~12v!~l~12 v!!k

k! S (
n5k11

`

pkDD f ~v! dv 1 f ~0!+

On @0,1# , we can write~4+1! as

f ~x! 5 f ~0!e2lx 1 S µ

lE~K !
he * fD~x!, (4.2)

wherehe denotes the equilibrium density associated withh and* denotes convolu-
tion+ Note thatlE~K ! is the mean associated withh+ Definer 5 µ0~lE~K !! and let
he
*n 5 he*{{{*he ~n-fold convolution!+ Solving forf in ~4+2! for x [ @0,1# , we obtain

f ~x! 5 f ~0!e2lx (
n50

`

rnhe
*n~x!+ (4.3)

By the continuity off ~x! at x 5 1, we get

Dk 5 f ~0! (
n50

`

rnhe
*n~1!,

and by the normalizing condition*0
` f ~x! dx5 1, we find the constantf ~0! to be

f ~0! 5 SE
0

`

e2lx (
n50

`

rnhe
*n~x! dx1 l21 (

n50

`

rnhe
*n~1!e2lD21

+

Substitutingf ~0! in ~4+3!, we havef ~x!+
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Example: In the case thatK is geometrically distributed~i+e+, pk 5 ~12 u!k21u for
someu [ ~0,1!!, no convolution series are necessary+ It is straightforward to show
that for allx $ 0,

h~x! 5 lue2lux+

Then, ~4+1! transforms into

f ~x! 5 5µE
0

x

e2lu~x2v! f ~v! dv 1 f ~0!e2lx, x # 1

Dke2lx, x . 1

for some constantDk+ Assume thatlu Þ µ+ Solving for f ~x!, we get

f ~x! 5 5
µ

l 1 µ
f ~0!e2~lu2µ!x 1

l

l 1 µ
f ~0!e2l~u11!x, x # 1

Dke2lx, x . 1+

The two constantsDk andf ~0! can be computed using the continuity off ~x! at x 51
~i+e+, f ~1! 5 f ~11!! and the normalization equation*0

` f ~x! dx5 1+We find that

f ~0! 5 S µ~12 e2~lu2µ! !

~l 1 µ!~lu 2 µ!
1

l~12 e2l~u11! !

~l 1 µ!l~u 1 1!
1

el

l
D21

,

Dk 5 el f ~0!+

If lu 5 µ, we obtain the solution by taking limits+

5. RENEWAL DEMAND ARRIVAL TIMES

We now consider the case that the arrival times of the demands form a general
renewal process with distribution functionA for the interarrival times+ Let 10µ 5
*0
` x dA~x!+ In thisG0M01-type model, the VOT processW is, in general, not Mar-

kov but, of course, still regenerative+ Equation~2+1! holds so that

E~e2aV! 5 Pr~W . 1! 1 E~e2a~R~12W!!2l~12W!~12G~a,12W!!1$W#1% !

5E
1

`

f ~w! dw1E
0

1

e2a~R~12w!!2l~12w!~12G~a,12w!! f ~w! dw, (5.1)

where thetime-averagedensityf ~x!5 fG0M01~x! satisfies the Pollaczeck–Khintchine
integral equation

fG0M01~x! 5 5µE
0

x

e2l~x2v! Zf ~v! dv 1 Zf ~0!e2lx, x # 1

µE
0

1

e2l~x2v! Zf ~v! dv 1 Zf ~0!e2lx, x . 1+

(5.2)
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Here, Zf ~{! is thePalmdensity, which is different fromfG0M01~x! because PASTA is
not applicable for theGI0M01 model+ Therefore, fG0M01~x! has to be computed by
other means+ Our approach is based on atime-reversaltechnique, which has been
described rigorously in previous papers~e+g+, @1,13#!+ TheGI0M01 model is trans-
formed into anM0G01 dam whose stationary density can be derived by level-
crossing arguments+We proceed in steps+

1+ The VOT processW can be interpreted as thevirtual waiting time~VWT !
process of a special variant of theGI0M01 queue in which the idle periods are
deleted and arriving customers do not enter the system if they have to wait in
line for more than one time unit+ Recall Figure 1, which shows a typical
sample path, but note that the times between jumps now have the general
distribution functionA+

2+ Reverse time by the following:
~i! Replacing any positive jump by a linear increasing piece of trajectory

with slope 1 on an interval whose length is equal to the jump size
~ii ! Replacing the pieces ofW between jumps by a negative jump whose

size is equal to the interjump time
The reversed processE5 $E~t !: t $ 0% is called theelapsed waiting time

process associated with the sameGI0M01 queue, becauseE~t ! can be inter-
preted as the time elapsed since the arrival of the customer being served at
time t+ Note thatE is a “conditional” Markov process in the sense that con-
ditional onE 5 x # 1, E possesses the Markov property but not conditional
onE 5 x . 1+ The times between the~negative! jumps are independent and
exp~l!-distributed,whereas the jump sizes are i+i+d+,with common distribu-
tion functionA and mean 10µ+ The sample path ofE corresponding to that of
W in Figure 1 is displayed in Figure 2+

E is a regenerative process for which each cycle is terminated by a
hitting of level 0+

3+ Now, define the processD 5 $D~t !: t $ 0% by D~t ! 5 max@12 E~t !,0# + The
processD is the finite dam process with constant release rule of theM0G01

Figure 2. The sample path ofE derived from that ofW in Figure 1+
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type; the sample path ofD derived from that ofE in Figure 2 is given in
Figure 3+

Clearly, the stationary distribution ofD has an atom at 0+ Let p be the proba-
bility of this atom and letfM0G01~x! be the stationary density ofD on ~0,`!+ By
level-crossing theory, fM0G01~x! exists, and by time reversal@13# , we have, for all
x . 0,

fM0G01~x! 5 fG0M01~12 x!+ (5.3)

The Pollaczeck–Khintchine integral equation forfM0G01~x! reads as

fM0G01~x! 5 lE
0

x

@12 A~x 2 w!# fM0G01~w! dv 1 lp@12 A~x!# , 0 , x # 1+

(5.4)

Introducingae~x! 5 µ@12 A~x!# , the equilibrium density associated withA, we can
rewrite~5+4! as

fM0G01~x! 5 ~rae * fM0G01!~x! 1 rpae~x!, 0 , x # 1+ (5.5)

Solving for fM0G01 in ~5+5!, we find that

fM0G01~x! 5 p (
n51

`

rnae
*~n!~x!+ (5.6)

From the normalizing condition

E
0

1

fM0G01~x! dx 5 12 p,

Figure 3. The sample path ofD~t ! 5 max@12 E~t !,0# +
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it follows that

p 5 S11E
0

1

(
n51

`

rnae
*~n!~x! dxD21

+ (5.7)

By ~5+3!, ~5+6!, and~5+7!, we obtainfM0G01 andfG0M01+ The Laplace transform ofV is
given by

E~e2aV! 5 Pr~W . 1! 1 E~e2a~R~12W!!2l~12W!~12G~a,12W!!1$W#1% !

5 p 1 pE
0

1

(
n51

`

e2a~R~12w!!2l~12w!~12G~a,12w!!rnae
*~n!~12 w! dw

5 p 1 pE
0

1

(
n51

`

e2ap~R~w!!2lw~12G~a,w!!rnae
*~n!~w! dw+

Another possible extension is to the case of general i+i+d+ interarrival times with
distribution functionB, say, for the items~keeping the Poisson arrival assumptions
for the demands!+ In thisM0G01-type model,W is a Markov process whose station-
ary densityf satisfies~2+1! and is given by

f ~x! 5 5µE
0

x

@12 B~x 2 w!# f ~v! dv 1 f ~0!@12 B~x!# , x # 1

µE
0

1

@12 B~x 2 w!# f ~v! dv 1 f ~0!@12 B~x!# , x . 1,

(5.8)

which is the direct generalization of~2+1!+However, ~3+3! cannot be easily extended
because the conditional distribution of the items on the shelf, given their number, is
more complicated than in the Poisson case+
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