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The aim of this article is to derive the income and cost functionals required to
determine the actuarial value of certain types of perishable inventory sylstéme
basic modelthe arrival times of the items to be stored and the ones of the demands
for those items form independent Poisson procesBes shelf lifetime of every
item is finite and deterministi&€very demand is for a single item and is satisfied by
the oldest item on the shelf available The price of an item depends on its shelf
age For an actuarial valuatigiit is important to know the distribution of the total
value of the items in the system and the expetdéstounteditotal income and cost
generated by the system when in steady stalleof these functionals are deter-
mined explicitly As extensions of the original modeVe also deal with the case of
batch arrivals and general renewal interdemand tjnmeloth casesclosed-form
solutions are obtained

1. INTRODUCTION

We consider a perishable inventory system in which both the arrival and the demand
are independent Poisson proces8rs interestis in thactuarial valueof the system
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defined as the value of items in stock plus the total expected future discounted net
income generated by the systeRtesh stock arrives to the system according to a
Poisson process with rage Without loss of generalitywe assume that the lifetime
of each item is one time unif an item has not been consumed by demand before its
expiration datgit is discardedThe demand arrival times form a Poisson process
with ratew. Demands are satisfied on a FIFO bdgis, oldest items are issued fijst
and the return for a sold item is assumed to depend on its age at issuingitime
demand that arrives when the system is empty is lost

This problem can arise in several conteXse would be to value a concern that
sells or supplies perishable inventotisach as a blood banknother would be to
determine the value of a particular perishable prodangentory valuation is straight-
forward for nonperishablebut it is more subtle for perishablesince some items
may ultimately satisfy demands and some may pefl$te methodology of this
article provides a means of valuing a specific line of perishable goods

This above-described basic model as well as several extensions have been stud-
ied in previous articlegsee e.g., [3,8—12)) in which also various applications to
real-life systems such as blood banksod storage placesnd so forth are exhib-
ited. Here we are interested in determining the stationary economic value of the
system which is the combination of the stationary expected purchase value of the
items present in the system and the net income generated in the future

The purchase cost of a fresh item is fixedasonetary unitsOn the other hand
the price of each item while aging on the shelf decrealsesR(x) be its price at
shelf agex. We suppose th&(x) is nonincreasing of0,1] andR(0) > c. Itis natural
but not necessary to assume tR4t) = 0. Based orRR, we will determine the sta-
tionary value of the items in the system

Regarding future profits and costie introduce discounting by the discount
factorB > 0. The net expected gain of the system is composed of four functionals

1. The total expected income from selling items to demands

2. The total expected purchase cost

3. The total expected penalty cost due to outdatings of items
4. The total expected penalty cost due to unsatisfied demands

Our main tool for determining the eventual expected value of the items on the shelf
and the functionals 1-4 is thertual outdating time(VOT) processW = {W(t):

t= 0}. First define theextended agprocessX = {X(t): t= 0}. If at timet the system

is not emptythenX(t) is the age of the oldest item present on the slifeltie system

is emptythen—X(t) is the time until the next item arrivallow, setW(t) =1 — X(t).
Clearly, W(t) can be interpreted as the time framntil the next outdatingremoval
from the shelj of an item provided that there are no demand arrivals until.thén

is a regenerative Markov process with state spage). WhenevelW hits zerg an

item reaches shelf age 1 and is therefore outdatbdn the second oldest item
becomes the oldest one,@n case the system is now empiy jumps above 1
indicating the time until the item arriving next would be outdated if it is not used to
satisfy some demandhe time intervals between two visits at zero can be taken as
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the regerative cycles diV. Any demand arriving as long a& > 1 will not be
satisfied and is lost~or more detailssee[10]. A typical sample path ofV is de-
picted in Figure 1

A little reflection shows thatV can also be described as the worklgaiitual
waiting time) process of a specidll/M/1 queuing systemnilhis queue has arrival
rate u, service rater, and impatient customers in the sense that any of them that
would have to wait for more than one time unit do not enter the limereovesthe
idle periods are deletedo that whenever the system becomes empty a new cus-
tomer immediately enter3 his interpretation is often helpful

The models in this article are based on the assumption that the arrival times of
the perishable items are random and form a renewal pro@éssslo not consider
controlling the input by ordering policie$he study of such policies and their op-
timization is the subject of the second main strand of perishable inventory theory
(seee.g., [5-7] and the more recent papé&s4,14] where further references can be
found).

The article is organized as followirst, we derive the stationary distribution of
W in Section 2 In Section 3we express the Laplace transfofirl ), and the ex-
pected valugof the price of the current inventory and the functionals 1-4 in terms
of this distribution In Sections 4 and,5ve consider two generalizations of the basic
modetl batch demands of randoni.d. sizes and general interarrival times for the
demandsThe first extension leads to the consideration of a modified Markovian
gueuing system with phase-type service tintes second one can be treated by a
certain transformation dfV including time reversal that leads to MyG/1-type
finite dam In both casesll functionals of interest can be computed in a closed form
involving infinite series of convolutions

2. STATIONARY DISTRIBUTION OF W

Being a regenerative process with finite expected cycle lejtpossesses a sta-
tionary distribution By level-crossing theoryseg e.g., [1]), the stationary density
f(x) is given as the rate of downcrossings of lexebince in steady state this rate is

W(t)

FIGURE 1. Atypical sample path o#V.
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equal to that of upcrossingsxfwe immediately arrive at the Pollaczeck—Khintchine
integral equation

X

pf e M -9f () dw + f(0)e ™™ x=1
0
f(X) = . (21)
uf e 9 () dw + f(0)e™ x> 1.
0

Indeed the arrival rate of upward jumps ig, and when starting fronw &
(0,min[x,1]) the probability to jump aboveise **~“); the ternf (0)e ** accounts
for jJumps to( x,o0) just after outdating6.e., at hittings of zerg. It follows from (2.1)
thatf is of the form

kpe (WX x<1
f(x) = { (2.2)

k,e x>1

for certain constants; andk,. As f is continuous or0, o), we havek, = k;e. By
the normalizing conditiod,;” f(x) dx = 1, we find that

% if A#p

ki = N (2.3)
\m ifA=p
)\)\:)\——pf:)A if A# 1

ke=1)" o (2.4)
a+1 if A=W

By (2.2), ky = f(0), so thaf by level-crossing theory

def

kl = /\4<
is the long-run average rate of outdatings per unit time

Remark: It is straightforward to show that the outdating procéss, the arrival

times of outdatings as well as the unsatisfied demand procass delayed renewal
processedn fact, these two renewal processes are dual to each other in the sense
that the law of the latter is equal to that of the formex &ndu are interchanged.et

1* be the rate of the unsatisfied demand proc@hat means that/J* is the mean

time between unsatisfied deman@ the one handve have by renewal theory

W =pn— A+ A (2.5)
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becausgon the averagehe net input is equal to the net outgtite long-run time
average of satisfied demands coincides with the long-run time average of arriving
items that have not been outdate@n the other handve have by PASTA

p= p{l—f f(x) dx]. (2.6)
1
It can be easily verified that the right-hand sideg25) and(2.6) are equal

3. THE ACTUARIAL VALUATION

We now assume that the systemis in steady st&te/ be the total value of all items
presentin the systeriVe start by determining the LT &f. Let W be the steady state
variable of the VOT processote thatW has density. If W> 1, the shelf is empty

If W=1, then 1—- Wis the age of the currently oldest itemhich is the time elapsed
since its arrivalln this caselet N be the number of items that have arrived after the
oldest item and denote by =---= T the times elapsed at their arrivals since the
oldest item has entered the systamthat their ages are- AW — T,...,1 - W-—T,.
The current prices of the items on the shelf are tih — W),R(1 — W —
T1),...,R(1—W— Ty), respectivelyHence

0, wW>1

N 3.1
SRA-W-T), W=1, 1)
i=0

whereTy = 0. By conditioning onN andW, we obtain

E(e V) = E(E (exp{—a % R1-W- Tj)} Lw=y|N, )) (3-2)
i=o

Since the item arrival process is Poisstime conditional joint distribution of
Ty, Ta, .., T, givenNandW, is the same as that of the order statistiss 0y = --- =
Un) < 1 — W derived from an independent sample,...,Uy of sizeN of the
uniform distribution on the intervaD,1 — W). Obviously

N N
1= 1=

Let U, be a random variable having the uniform distribution(6yu) and let

u

1
G(a,u) = E(e @RU~Uw) = GJ e *RY) dy,

0

Then (3.2) yields
E(e V) = E(e R WIG(a,1 — W)L jy=yy).
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GivenW = w, N has a Poisson distribution with parameiét — w). Thus

1

E(e ) = P(W> 1) + f exp{—aR(1— w)}
(A(1—w))"

X D Gla,1—w)"e 1w
n=0 n!

f(w) dw

1

— klepe—/\ + klf e—aR(l—w)—/\(1—w)[1—G(oz,1—w)]—(/\—p)w dW, (33)
0

where the second step follows frof®.2) andk; is given in(2.3). Equation(3.3)

provides an explicit expression for the LT\éfIn particular the expected total price
of the items on the shelf is

E(V) = k1JO g (AHw <R(1— w) + )\fo

Remark: One possible assumption on the price funciiathat it is related to some
deterioration rate function (x) = 0 of the shelf age via the relation

ROX) = p(l—J; r(y)dy), 0<x=1

0 otherwise

1-w

R(y) dy) dw. (3.4)

Then the sale price of a fresh itemiR0) = R(0+) = p (> c). Itis natural to assume
thatfo1 r(x) dx= 1, which means that an outdated item is of no valtihis integral

is smaller than onehe scrap value of outdated items has to be taken into accmint
it will decrease the penalty due to outdatings

Now let us turn to the functionals characterizing the long-run profits and cost of

the inventory systemLet N; = {N;(t): t = 0}, N, = {Ny(t): t = 0}, M1 = {My(t):

t= 0}, andM, = {M,(t): t = 0} be the counting processes of item arrivalsmand
arrivals outdatings and unsatisfied demandsespectivelyand letg > 0 be the
discount factarThen N, andN, are Poisson process@s ratesA and u, respec-
tively) andM ; andM , are stationary renewal processes with interarrival rates

ki, andu® = A — u+ kq, respectivelyLetS, < S, < --- be the item arrival timgshey

are consecutive sums af.d. exp(A)-distributed random variable3he total ex-
pected discounted purchase cost of items is

CcA

cE<JOo eﬁthl(t)> =c i E(e #%) = E (3.5)
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By PASTA the total expected discounted income from selling the items to incoming

demands is

E(R(L- vv>1{W<1}>E< i we’“sz(t)) - EREZ \;V”W”)“. (3.6)

Now, let a be the penalty on the outdating of an item andrlek 7, < --- be the
interoutdating timesThen 75, 73,... have the same distribution functiosay F,
while 7, has the density*(1 — F). Denote by («) the LT of 7,. Clearly 7, has LT
M (1— ¢(a))/a. The total expected penalties on outdatingshsrefore

aE(fm eﬁ‘dMl(t)> = a% E(e’ﬁéﬁ')

LS NOUB) s
n=1 :3

_ (3.7)
B . .

Finally, letb be the penalty on an unsatisfied demaibceeding as aboyvere find
that the total expected discounted penalties on unsatisfied demands are given by

bE(F eﬁthZ(t)> - w. (3.8)

All functionals of interest have now been computed

Examples:Let A # L. In the following we need the formulas

P(W>1) =k, et (3.9)

E(Wlw=1) = W [1-e W — (A — e * ], (3.10)
ky

E(W?Lw=y) = e [2—((A—w?+De M H], (3.11)

which follow from (2.2).

(a) Consider the price function associated wiflt) =1. Then R(y) =p(1—-vy)

and we get
E(R(1- W)l{Wsl}) = pE(Wl{Wsl})
k
= (AFiL)Z [1 — e_(/\_p) — ()\ — u)e_()\_li)]_
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A quick calculation shows tha®(«,u) = (apu) (e 1~ — e=2P) and
(3.3) yields

1

E(e V) = k,et * + klf exp{—(ap+ A — pw

0
—A[1-w— (ap) (e — e *P)]} dw.
(b) Letr(y) =2y. Then R(y) = p(1—y?), so that
E(R(1 = W)Lw=y) = p(1 - E((1 - W)*Ljyeyp))
= p[P(W> 1) + 2E(Wly=y) — E(Wzl{wgl})],

and the terms on the right-hand side are givef3#)—(3.11). Furthermore
we obtainG(a,u) = u™* ¥ e**V*~V dy. Thus by (3.3),

E(eiav) = klep*/\ + klf

0

eXp{—(ap(Zw —w?) — (A — pw)

1-w
- ){1 - W —J R dy” dw.
0

We now extend the original model by assuming that demands arrive in batches of
random sizeXq, K,,.... TheK; are ii.d. random variables with common distribu-
tion P(K; = k) = py, k=1,2,..., and generating functioK(z) = X, p.z*. We
suppose that each demand can be either

4. BATCH DEMANDS

(i) fully satisfied which happens if there are at least as many items on the
shelf as demanded
(i) partially satisfiedif more is demanded than available which case the
shelf is emptied
(i) or fully unsatisfiedif the shelf is found empty

(We might have to consider an additional actuarial functional if the penalty on par-
tially satisfied demands is different from that of fully unsatisfied ohes
Formulag(3.4)—(3.8) for the actuarial functionals still holdbut the law ofWis
no longer the one given i2.2) because the jump sizes are no more exponential with
rateA. A demand ok items if fully satisfiable takes away th& oldest items in the
system Since the interarrival times arge.d. and exg A)-distributed the jump ofw
generated by this demand is composed ekponential phasesiowever if a de-
mand is only partially satisfiedV upcrosses level,land by the lack-of-memory
property of the jump size distributiorihe overshoot above level 1 is e¥p-
distributed(independent of everything that has happened in the;paste that this
overshootis equal to the time until the next item arri¥ddo, just after a moment of
outdating(whenW hits zerg, the second oldest item becomes the new oldest one
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and the upward jump is again ep-distributed It is now clear that the level-
crossing equation for the stationary densityéfis given by

pfx[l— H(Xx— )] f(w)do + f(0)e™ x=1
0]

f(x) = (4.1)

ke % x> 1,
whereH is the distribution function having the density

o ef)ty(/\y)kfl)t

h(y)=k§lpk k= 1)
Hence
oo Ay/\ k oo
1-Hy =1- 3 S ( > pk>
k=0 - n=k+1
and

k= pe"fl[l—H(1—w)]f(w)dw+f(0)

1 o Al—w) A 1— k o)
= p.e"f (1— > € (kl( @) ( > pk>> f(w) dw + (0).
0 k=0 .

n=k+1
On[0,1], we can write(4.1) as

u
AE(K)

f(x) = f(0)e ™ + ( he * f)(x), (4.2)

whereh, denotes the equilibrium density associated witmd: denotes convolu-
tion. Note thatA\E(K) is the mean associated withDefinep = p/(AE(K)) and let
hi" = hgx- - - hg (n-fold convolution. Solving forfin (4.2) for x € [0,1], we obtain

f(x) = f(0)e ni_o‘,(),r)“h;”(x). (4.3)
By the continuity off (x) atx = 1, we get
k=103 phe(),
and by the normalizing conditiofy” f (x) dx = 1, we find the constarft(0) to be
f(0) = (fom e M iop”h;”(x) dx+ A1 iop”h;”(l)e‘)‘>l.

Substitutingf (0) in (4.3), we havef (x).
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Example: In the case thak is geometrically distributed.e., p, = (1 — )% 0 for
somef € (0,1)), no convolution series are necessdrys straightforward to show
that for allx = 0,

h(x) = Age

Then (4.1) transforms into

uf e MO (m)dw + f(0)e™ x=1
f(x) = 0

ke X x> 1
for some constark. Assume thai@ # . Solving forf (x), we get

o f(0)e~ (M Wx 4 - f(0)e % x=1
f(x)=9ATH A+ U

ke x> 1.
The two constantk andf (0) can be computed using the continuityf¢k) atx = 1
(i.e, f(1) = f(1+)) and the normalization equatidij” f(x) dx = 1. We find that
1 _ ef()‘efu) A 1 _ ef)\(GJrl) eA -1
fio) = (& ), A L2
A+WA0—pw  QA+wae+1) A
k = e*f(0).

If A0 = 1, we obtain the solution by taking limits

5. RENEWAL DEMAND ARRIVAL TIMES

We now consider the case that the arrival times of the demands form a general
renewal process with distribution functigafor the interarrival timesLet 1/p =

Jo” x dA(x). In this G/M/1-type modelthe VOT proces¥V is, in generalnot Mar-

kov but of coursestill regenerativeEquation(2.1) holds so that

E(e V) = Pr(W> 1) + E(e «(RA-W)-A0-WA-Glal-Wip, 1)

o5} 1
=f f(w) dw+f @@ (RA=W)=AQ=-WA=C(e,1=W)f () dlwy, (5.1)
1 0

where thaime-averagelensityf (x) = fgv/1(X) satisfies the Pollaczeck—Khintchine
integral equation
i f e -9 f () dw + f(0)e ™™ x=1
0

fomn(X) = i (5.2)
1 f e -9 f () dw + f(0)e ™™ x> 1.
0
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Here f(-) is thePalmdensity which is different fromfgv,1(X) because PASTA is
not applicable for th&l/M/1 model Therefore fg,1(X) has to be computed by
other meansOur approach is based ortime-reversatechniquewhich has been
described rigorously in previous papées., [1,13]). The GI/M/1 model is trans-
formed into anM/G/1 dam whose stationary density can be derived by level-
crossing argument$Ve proceed in steps

1. The VOT proces®V can be interpreted as tivirtual waiting time(VWT)
process of a special variant of t&/M/1 queue in which the idle periods are
deleted and arriving customers do not enter the system if they have to wait in
line for more than one time uniRecall Figure 1which shows a typical
sample pathbut note that the times between jumps now have the general
distribution functionA.

2. Reverse time by the following

(i) Replacing any positive jump by a linear increasing piece of trajectory
with slope 1 on an interval whose length is equal to the jump size
(i) Replacing the pieces &V between jumps by a negative jump whose
size is equal to the interjump time
The reversed procefs={E(t):t= 0} is called theelapsed waiting time
process associated with the sa@®kM/1 queuebecausé(t) can be inter-
preted as the time elapsed since the arrival of the customer being served at
timet. Note thatE is a “conditional” Markov process in the sense that con-
ditional onE = x = 1, E possesses the Markov property but not conditional
onE = x > 1. The times between th@egative jumps are independent and
exp(A)-distributed whereas the jump sizes ared., with common distribu-
tion functionA and mean Au. The sample path dE corresponding to that of
W in Figure 1 is displayed in Figure 2
E is a regenerative process for which each cycle is terminated by a
hitting of level Q

3. Now, define the proces® = {D(t): t= 0} by D(t) = max1— E(t),0]. The

procesd is the finite dam process with constant release rule oM}i&/1

E(t)

FIGURE 2. The sample path dE derived from that oV in Figure 1
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type, the sample path db derived from that ofE in Figure 2 is given in
Figure 3

Clearly the stationary distribution dd has an atom at.Q.et 7 be the proba-
bility of this atom and leffy;,/1(X) be the stationary density @ on (0,o0). By
level-crossing theoryfy,c/1(X) exists and by time reversdll3], we have for all
x>0,

fuse(X) = fom/a(1—x). (5.3)

The Pollaczeck—Khintchine integral equation fgys,1(X) reads as

fM/G/l(X) = )\LX [1 - A(X - W)] fM/G/l(W) da) + )l7T[1 - A(X)], O <X = 1.

(5.4)

Introducingac(x) = u[1— A(x)], the equilibrium density associated withwe can
rewrite (5.4) as

fume/i(X) = (pae * fug/1) (X) + pmras(x), O<x=1 (5.5)

Solving forfy,g/1 in (5.5), we find that

fM/G/l(X) =17 2 p"az(n)(X). (56)
n=1

From the normalizing condition

1
J fwea(X)dx=1—,
0

N AN

N N !

Ll N
N

1

Ficure 3. The sample path db(t) = maxq1— E(t),0].
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it follows that

T = <1 + i paz™(x) dX) . (5.7)

0 n=1
By (5.3), (5.6), and(5.7), we obtainfy,c/1 andfgm/1. The Laplace transform of is
given by
E(e—aV) — Pr(W> 1) + E(e—a(R(l—W))—A(l—W)(l—G(a,l—W))1{WS1})

1 oo

T+ 7 2 efa(R(lfw))7/\(17W)(176(a,1fw))pnaz(n)(l _ W) dw
0 n=1

1 oo

T+ ar 2 efap(R(W))wa(lfe(a,w))pna;(n)(w) dw.
0 n=1

Another possible extension is to the case of gendrdl interarrival times with
distribution functionB, say for the items(keeping the Poisson arrival assumptions
for the demands|n thisM/G/1-type modelW is a Markov process whose station-
ary densityf satisfies(2.1) and is given by

pfx[l— B(x —w)]f(w)dw + f(0)[1—B(x)], x=1
]

f(x) = . (5.8)
pf [1- B(x— w)]f(w)do + f(O[L—B(X)], x>1
0]

which is the direct generalization (2.1). However (3.3) cannot be easily extended
because the conditional distribution of the items on the sg&lén their numbeilis
more complicated than in the Poisson case
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