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ABSTRACT

This paper surveys some statistical models of survival data. Competing risks models are described;
the unidentifiability of net decrements suggests a sceptical approach to the use of underlying single
decrement tables. Approaches based on observations of complete lifetimes (with censoring) are
surveyed including the Kaplan-Meier and Nelson-Aalen estimates. Regression models for lifetimes
depending on covariates are discussed, in particular the Cox model and partial likelihood estimation.
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INTRODUCTION

Part I, Sections 1-4 of this paper described some models used to analyse
survival data over short segments of lifetimes. In this part, Section 5 describes a
statistical model for multiple decrement data, the competing risks model, and
compares it with the multiple state models of Part I. Sections 6 and 7 describe
approaches to the analysis of complete lifetime data. Section 6 discusses non-
parametric methods, including the widely-used Kaplan-Meier or product-limit
estimate, while Section 7 describes semi-parametric methods, with emphasis on
the Cox proportional hazards model.

AH of the material in this part is standard in the statistical literature, and it
might usefully be included in the actuary's toolkit. Acknowledgements and
references were given in Part I.

Part I appears in British Actuarial Journal, Volume 2, Part I and Part III in
B.A.J. 2, III.

5. COMPETING RISKS MODELS

5.1 Specification of the Model
In this section we consider the extension of models for one decrement to two

or more decrements. It should be clear from Part I, Section 3 that multiple
decrements can be handled simply within the multiple state framework. There is,
however, an extensive literature on a different approach known as competing
risks models; see Gail (1975) or David & Moeschberger (1978). These models
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430 Statistical Models for Decrement and Transition Data II

lead to the so-called dependent and independent rates of decrement, long familiar
to actuaries.

One formulation of a model for several decrements is a pair of random
variables, say T and J. T records the time spent under observation, and J is an
integer-valued random variable indicating the reason for the cessation of
observation. For example J = 0 might indicate censoring at the end of the
investigation, J = 1 death and J = 2 withdrawal. See Bowers et al. (1986) for an
example of this approach, and note also that the data for the two state model in
Part I, Section 3 were of this type. More generally, let there be M decrements,
and let J = l, 2,..., M indicate the observed decrement or J = 0 censoring at a
fixed time.

A competing risks model associates a failure time random variable with each
decrement. Let T; (for j =1, 2,..., M) be the time to failure (from the start of
observation) under the yth decrement. Let To be a fixed time at which censoring
will occur (To could be °°). Then we observe:

T = min(T0,T1,T2,...,TM)

J = { ; :T y =T}.

In some cases, the failure times Tj, T2,..., TM have an obvious physical
representation. The time to failure of a machine with several components, or the
time to the first death of several lives, might naturally be modelled as the
minimum of several failure times, but if the T[, T2,..., TM are 'lifetimes' in
respect of one person, more imagination is needed. For example, if J = 1
represents death and J = 2 represents withdrawal from insurance, it is difficult to
give any meaning to the event T2 > T\.

5.2 Crude and Net Hazards
Associated with each decrement 0 = 1, 2,..., M) are two forces. In actuarial

notation, the dependent force of decrement (known as the crude hazard rate to
statisticians) is:

i = lim nt<T^ + dtJ = jlT>t
+ dt

and the independent force of decrement (known as the net hazard rate to
statisticians) is:

Pit >tPit <T: <t + dtT: >t
J = lim, '— '—. (2)dl->0* dt

The net hazards correspond to each decrement acting alone, while the crude
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hazards correspond to each decrement acting in the presence of the others. In
many problems, the mathematics is simplified if the crude and net hazards are
equal. It can be shown that independence of the failure times Tu T2,--., TM is
sufficient (though not necessary) to give equality of the crude and net hazards.
For sufficiency, note that:

P[t <T<t + dt, J = j\T>t]<p\t<Tj<t + dt, f]%>t\T>t\

_ P[t<Tj<t + dt]

= P[t <Tj<t + dt\Tj > t]

and, on dividing by dt and taking right limits, we have (afiy,< fi{. Also:

P[t<T<t + dt, J = j\T>t]>p\t<Tj<t + dt,
< • * ;

<Tj<t+dt] x r u j P[T, > t

By the right-continuity of distribution functions:

lim P[T> t + dt] = P[T >t]

so dividing by dt and taking right limits gives {a/d){ > \i\. This point is often
glossed over in textbooks; for example Neill (1977) said:

" . . . the force of decrement in the multiple-decrement table is not based on a time interval and
is not affected by the other decrements, giving (a/i)* =\i\."

Unfortunately this would imply that crude and net hazards are always equal,
which is false. The equality of (afi)f and jij is not a fact; it is either an
assumption (Makeham, 1874) or the consequence of some other assumption.
Bailey & Haycocks (1946, Section 11; 1947) gave a clear treatment of this point,
albeit not a statistical one; their emphasis on the forces of decrement as the
fundamental quantities of the model and probabilities as derived quantities
anticipated some modern developments. The assumption of independent failure
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times is often very strong and even unrealistic, an obvious example being a
selective decrement such as withdrawal from assurance.

5.3 Identifiability
Turning to inference, the fact that we only observe T and J leads to a major

problem; the joint distribution of the failure times T,, T2,..., TM cannot be
identified from these data. This is perhaps not surprising, since we have specified
a model in terms of random variables which we cannot observe directly. In terms
of the hazard rates, only the crude hazards are observable; the net hazards are
intrinsically unobservable.

Let STi Tu{tx,...tM) be the joint survivor function:

STt TM(t,,...,tM)=?\' r | T y > J . (3)

Associated with this are the marginal survivor functions for each decrement:

and the overall survivor function:

ST(t)=P[T>t] = (5)

The overall survivor function is observable, but, in general, the marginal survivor
functions are not. It is easily shown that, in the absence of simultaneous failures,
{ajji)\+ ••• + (a/Xff is the overall hazard associated with ST(t), and on integrating
we have:

(6)
;='

We have made no assumption about the independence of the failure times; they
may be dependent; but now define a set of independent failure times Uy, for
j = 1,..., M, by specifying their survivor functions as:

(7)

and define Uo = To, then these new failure times define a competing risks model
under which the minimum failure time U = min(U0, U,,..., UM) and the type of
failure K = {k:Uk - U} have the same joint distribution as T and J. Therefore, we
cannot tell from any amount of data whether the process being observed is
represented by independent or dependent competing risks. This is the
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identifiability problem; see Tsiatis (1975), Elandt-Johnson & Johnson (1980,
Chapter 9), Kalbfleisch & Prentice (1980, Chapter 7) or Cox & Oakes (1981,
Chapter 9). Robinson gave a simple example in the discussion of Broffit (1984).
Crowder (1991) showed that, even if it is possible to observe each cause of exit
in the absence of the others as well as in their presence, knowledge of all these
survival functions still does not allow the model to be identified. Carriere (1994)
gave an example of the wide range of possibilities resulting from the
(hypothetical) elimination of deaths from heart/cerebrovascular disease, all of
which were consistent with the data.

It is sometimes possible to obtain lifetime distributions which can be identified
from the observed minimum by imposing greater structure upon the model, such
as a given parametric form. For example, Arnold & Brockett (1983) showed that
the bivariate Makeham model with survival function given by:

S(x,y) = exp(-c^ - c2y - c3 max(*,y) - d, exp(s,x) - d2 exp(s2_y)) (8)

is identifiable; that is, the observable S(t,t) and crude (dependent) survival
distributions allow all the parameters c,, c2, c3, dx, d2, s1; s2 to be estimated. (The
model can be interpreted as the joint lifetimes of two lives with simultaneous
deaths modelled by a Poisson process with parameter c3; without the last two
terms it is the bivariate exponential model of Marshall & Olkin (1967).)

Arnold & Brockett (1983) also showed that if the underlying lifetime
distributions depend on a structure variable W, but conditional on W = X, are
independent with proportional hazard rates (a(i)/ ~ X8j h(t), then knowledge of
h(t) or knowledge of the distribution of W results in an identifiable model.
Heckman & Honore (1989) showed identifiability in a family of proportional
hazards models with covariates. Proportional hazards are important in survival
analysis, and will be discussed in Section 7.

5.4 Multiple State or Competing Risks ?
Competing risks models have attracted considerable criticism in the statistical

literature:
(a) They are founded on unobservable quantities — the underlying lifetimes or

the net hazards — with the consequent problem of identifiability. Sometimes
the lifetimes have a physical interpretation, especially in reliability studies of
systems of components, but in survival analysis this is less usual.

(b) The assumption of independent failure times is often made in order to
simplify the mathematics, even if it is manifestly unreasonable. The actuarial
assumption (aft)/ = /i/ is a case in point.

Aalen (1987) described the approach as leading to "distortion of the statistical
analysis, and to artificial problems, like the question of identifiability". He also
pointed out the infeasibility of a competing risks approach to more general
transitions. Prentice et al. (1978) said:
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"It therefore seems important to concentrate on the [crude hazard] functions for statistical
modelling as they lead to procedures that have a clear interpretation regardless of the
interrelation between causes of failure and yet are identical with the more traditional results,
based upon independent latent failure times, in circumstances in which an independence
assumption is justifiable. ... It is perhaps surprising that this approach has received so much
attention in the literature."

Net hazards are motivated by the wish to compute the effect of each decrement
acting alone, or the effect of the removal of one or more decrements. They are,
therefore, included in the model specification, despite the fact that they are
unobservable and irrelevant for inference. For inference, it is sensible to restrict
attention to what is observable, and estimate the crude hazard rates {(a/j)/}. Then
the multiple state model seems to be the most natural approach. If we must
compute unobservable quantities, it seems better to treat the resulting calculations
as hypothetical. The example by Carriere (1994) made this point very clear.

5.5 Multiple Decrements and the Actuarial Estimate
Our treatment of the actuarial estimate in Part I, Section 4 was based on a

single decrement. In practice, there are usually at least two decrements and the
effect of using the actuarial estimate is to treat deaths as exposed until the end of
the year of death and all other exits, including 'enders', as exposed until the time
of exit. The unequal treatment of one of the decrements arises, essentially, from
an attempt to estimate the so-called single decrement table associated with the
chosen decrement (see Benjamin & Pollard (1980, Chapter 6) or Bowers et al.
(1986, Chapter 9)). In terms of the competing risks model, this is equivalent to
estimating one of the marginal survival functions given by equation (4), but the
unidentifiability of these functions makes this impossible. It is hardly surprising
that the calculation of initial exposed to risk has been a source of boundless
confusion to students over the years. Redington was reported to say, in the
discussion of Bailey & Haycocks (1947), that:

"in the ordinary census formula, \P at the beginning of the year and \P' at the end of the
year were obvious and easily remembered; but when adjustments had to be made to give the
deaths a full year's exposure the fog descended."

The fact that such problems simply do not arise in the multiple state approach
supports our view that it should be the actuary's model of choice.

6. NON-PARAMETRIC ESTIMATION

6.1 The Kaplan-Meier (Product-Limit) Estimator
Non-parametric estimation for uncensored data was described in Part I, Section

2, namely to estimate the survivor function by the proportion still alive at each
future time. In this section we develop this important idea to allow for censoring.

We will consider lifetimes as a function of time t without mention of a starting
age x. The following could be applied equally to newborn lives, to lives aged x
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at outset, or to lives with some property in common at time t = 0, for example
diagnosis of a medical condition. Medical studies are often based on time since
diagnosis or time since the start of treatment, and if the patient's age enters the
analysis it is usually as an explanatory variable in a regression model.

Suppose we observe a population of N lives in the presence of non-informative
censoring, and suppose we observe m deaths. Let:

be the ordered times at which deaths were observed. We do not assume that
k = m, so more than one death might be observed at a single failure time. Suppose
that dj deaths are observed at time t, (l<j<k), so that d{+d2+ ... +dk = m.
Observation of the remaining N - m lives is censored; suppose that cy- lives are
censored between times tj and tj + v (Q<j<k) where we define to = O and
tk + ! = oo to allow for censored observations after the last observed failure time;
then c0 + cx + ... + ck = N - m. Strictly, we regard all the c} censored observations
as falling in the open interval (t,, tj + )). Suppose that the times at which
observations are censored within this interval are tjl7 tj2,..., tJc. (which need not
be distinct). It will also be convenient to define «y to be the number of lives who
are alive and at risk at time tj, that is, just before the jth observed lifetime
(1 <j<k). To obtain the likelihood of these observations, without making any
prior assumptions about the form of F(t), proceed as follows:
(a) Deaths. The probability that a death occurs at time tj is F(tj) - F(tj~).
(b) Censored observations. The probability that a life should survive to be

censored at time fj7 is 1 - F(tjj), under non-informative censoring.

Therefore the total likelihood is:

(1-^;,))- (9)
y=l 7=0'=1

We ask what function F(t) will maximise this likelihood, constrained only by the
requirement that it should be a distribution function. Since any distribution
function is non-decreasing, each factor (1 — F(tjj)) will be maximised if
F(tjD = F(tj), while we must have F(tj) > F{tj) at each observed lifetime or the
likelihood will be zero. Therefore any maximum likelihood estimate of F(i) will
be a step function, with jumps at each observed lifetime.

It is convenient to extend to discrete distributions the definition of a hazard
function given in Part I, Section 2 for continuous distributions. Suppose F(t) has
probability masses at the points tv t2,... tk. Then define:

j < k). (10)
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This definition is valid for discrete or mixed distributions. If we assume that T
has a discrete distribution then:

so that, with the conventions that F(0) = 0 and d0 = 0, the likelihood (9) can be
written:

(11)

This is proportional to a product of independent binomial likelihoods, so that the
maximum is attained by setting:

ni

This is the Kaplan-Meier or product-limit estimate (Kaplan & Meier, 1958). It
can be viewed in several ways:
(a) In studying the probability of death over small age intervals, we can choose

to divide up the time axis in any way we like. A convenient choice is to have
a very short time interval containing each tj (short enough to exclude any of
the censored times fy) and longer time intervals containing only censored
observations. The only information gained from the latter is that there were
no deaths, so there is no reason to assume anything except that F(f) is
constant within these intervals, while the former contribute Binomial
estimates of the hazard at the observed lifetimes.

(b) Alternatively, we might choose finer and finer partitions of the time axis, and
estimate (1 - F(t)) as the product of the probabilities of surviving each sub-
interval. Then, with the above definition of the discrete hazard, we obtain the
Kaplan-Meier estimate as the mesh of the partition tends to zero. This is the
origin of the name 'product-limit' estimate, by which the Kaplan-Meier
estimate is sometimes known.
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Only those at risk at the observed lifetimes {tj} contribute to the estimate. It
follows that it is unnecessary to start observation on all lives at the same time or
age; the estimate is valid for data truncated from the left, provided the truncation
is non-informative in the sense that entry to the study at a particular age or time
is independent of the remaining lifetime. (Note that left-truncation is not the same
as left-censoring.)

6.2 Comparing Lifetime Distributions
Since Kaplan-Meier estimates are often used to compare the lifetime

distributions of two or more populations — for example, in comparing medical
treatments — their statistical properties are important. Approximate formulae for
the variance ofF(f) are available. Greenwood's formula (Greenwood, 1926):

(14)

is reasonable over most t, but might tend to understate the variance in the tails of
the distribution. An alternative given by Peto et al. (1977) was:

n(t)

where n(t) is the number of lives at risk at time t. This approximation overstates
the variance. These formulae can be used to estimate confidence intervals forF(f)
or of transformations of F(t), using a Normal approximation. For example, it is
common to calculate confidence intervals of log( — log(l —F(t))), since this has an
unrestricted range, and then to transform back to obtain confidence intervals of
F(f). The results depend on the transformation of F(f) which is chosen. For
examples and further discussion, see Collett (1994) and Cox & Oakes (1984).

For testing differences between two estimated lifetime distributions, logrank
tests are commonly used. These are based on the differences between the actual
deaths in one population at the observed lifetime tj, say </,-, and those expected
on the basis of the combined observations, say e, •. The simplest logrank statistic
is H(dy — e1;-), where the summation is over all the observed lifetimes in the
combined sample. Other logrank statistics can be calculated by weighting the
terms in this sum to give more emphasis to early deaths or later deaths; for
example a generalised Wilcoxon statistic (Gehan, 1965) is Y/iy(dy - e];). Both
statistics, when standardised, have for large samples an approximate unit Normal
distribution. See Collett (1994) for further details.

A difficulty only recently resolved is that the variances of the logrank and
Wilcoxon statistics are calculated by summing the variances of the (dy - exj) over
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all the observed lifetimes, assuming independence; for example the variance of
the logrank statistic with two samples is taken to be:

n^n2jdj{nj-dj)

All lifetimes nj (nj ~ 1)

where now dj = dy + d2j and so on. This cannot be strictly correct, since the
expected deaths at each observed lifetime depend on the number then at risk,
which is not independent of the preceding numbers of deaths. It is, therefore, not
clear that approximations based on the central limit theorem, which lead to the
asymptotic Normal distribution of the standardised statistic, are applicable; but a
problem caused by conditioning on previous events suggests a stochastic process
approach, and in Part III, Section 8 it is shown that stochastic processes provide
the most natural setting for most of the topics discussed in this paper. In passing,
we should note that these and other difficulties have never prevented statisticians
from applying useful results in a pragmatic way while waiting for the probabilists
to clean up the theory.

Breslow (1993) gave a useful summary of developments since Kaplan & Meier
(1958) introduced their estimate.

6.3 The Actuarial Estimate Revisited
Sometimes the data are provided in grouped form, so that the {fy} do not

represent observed lifetimes, but simply partition the observation period. We
change the notation slightly; let 0 = t0 < t{ < ... < tk < tk + , = °° be such a partition;
let dj be the number of deaths and c; the number of right-censored observations
in the interval (/,_], /,] (1 <j<k + 1); finally let n; be the number of lives at risk
just after time tj_v Then an 'actuarial' non-parametric estimate of F(t), along the
lines of equations (39) and (40) of Part I, Section 4 is:

= 1 - n ' - ^

Greenwood's formula, and other tests for comparing survival curves, are adapted
(approximately) by substituting n- = nj — c12 for Wy where appropriate. See
Benjamin & Pollard (1980) or Collett (1994) for details.

6.4 The Nelson-Aalen Estimate and the Product Integral

An alternative non-parametric approach is to estimate the integrated hazard:

t

o t<t

where the integral deals with the continuous part of the distribution and the sum
with the discrete part. Then an estimate of F(t) can be based on the relationship:
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(Some authors define the integrated hazard instead as:

A, = |^*-Xlog( l -A J )
0 tfit

so that F(t) can be written as 1 - e"A'; see for example, Cox & Oakes (1984).)
The Nelson-Aalen estimate of the integrated hazard is:

A, = I -*-• (17)

A

The Kaplan-Meier estimate can be approximated in terms of A,:

(18)

(19)

In a broad sense, estimation of A( instead of F(t) corresponds to the use of a
multiple state model instead of a Binomial-type model; attention is focused on the
hazard function instead of on the probabilities.

The link between the Nelson-Aalen and Kaplan-Meier estimates is expressed
neatly in terms of product integrals. Regarded as interval functions (i.e. functions
from a suitably defined space of intervals of the real line to the real numbers) A,
is additive and S(t) = 1 — F(t) is multiplicative. Additive and multiplicative
interval functions are related by suitable integrals. Let a(d) be an additive interval
function on the positive real line (for simplicity), and l e t ^ be any partition of an
interval S, the longest member of which has length S<^). Then it can be shown
that the product integral:

11(1-«(«*))

exists and is a multiplicative interval function. If a([0,f]) is a continuous function
of t then the product integral has the form:
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The familiar equation tpx — exp(-J0 \ix+sds) is, therefore, an example of a product
integral; or, if a([0, t]) is a step function of t, with jumps Aa, at some set of jump
points {/,}, then:

is a multiplicative interval function. Applying these results to the Nelson-Aalen
and Kaplan-Meier estimates, and noting that the former is a step function, we see
that equation (18) is the exact representation ofF(/) and equation (19) is an
approximation based on continuity. The Kaplan-Meier estimate is simply the
product integral of the Nelson-Aalen estimate. For a survey, see Gill & Johansen
(1990).

7. REGRESSION MODELS

7.1 Covariates
Non-parametric approaches are limited in their ability to deal with some

important questions in survival analysis, such as the effect of covariates on
survival. A covariate is any quantity recorded in respect of each life, such as age,
sex, type of treatment, level of medication, severity of symptoms and so on. If
the covariates partition the population into a small number of homogeneous
groups, it is possible to compare Kaplan-Meier or other non-parametric estimates
in respect of each population, but a more direct and transparent method is to
construct a model in which the effects of the covariates on survival are modelled
directly; a regression model. In this section, we will assume that the values of the
covariates in respect of the iih life are represented by a 1 xp vector, z,.

The most widely used regression model in recent years has been the
proportional hazards model, also known as the Cox model (Cox, 1972), and most
of this section is devoted to that model.

7.2 Fully Parametric Models
In a fully parametric model, the strong assumption is made that the lifetime

distribution belongs to a given family of parametric distributions, and the
regression problem is reduced to estimating the parameters from the data.
Distributions commonly used are the exponential (constant hazard), Weibull
(monotonic hazard), Gompertz-Makeham (exponential hazard) and log-logistic
('humped' hazard). The same distributions are often used as loss distributions
with insurance claims data (Hogg & Klugman, 1984), but censored observations
complicate the likelihoods considerably and numerical methods are usually
required. For the distributions above the likelihoods can be written down (though
not always solved) explicitly, which is not the case for some other well-known
loss distributions such as the log-normal.
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Parametric models can be used with a homogeneous population (the one-
sample case) instead of the approaches of Section 6, or can be fitted to a
moderate number of homogeneous groups, in which case confidence intervals for
the fitted parameters give a test of differences between the groups which should
be better than non-parametric procedures. However, fully parametric models are
difficult to apply without foreknowledge of the form of the hazard function,
which might be the very object of the study; for that reason a semi-parametric
approach is more popular.

7.3 The Cox Model
The Cox model (Cox, 1972) proposes the following form of hazard function

for the ith life (where, in keeping with statistical habit, we denote hazards by X
rather than fi):

A(r;z,) = A0(0exp(i32,O. (20)

P is a l x p vector of regression parameters, so that through the scalar product
)3z,r the influence of each factor in z, enters the hazard multiplicatively. X^t) is
the baseline hazard. In this simple formulation only Xt)(t) depends on time, but
the model can also be formulated with time-dependent covariates.

Under the Cox model, the hazards of different lives with covariate vectors zx

and z2 are in the same proportion at all times:

X(t;z{){) =

=

X(t;z2) exp(/?zD
giving rise to the name proportional hazards model. Cox's formulation is not the
only model with proportional hazards, we could formulate a model X(t; z,) =
Xa(t)g(z^) where g(z) is any function of z, but not t. However, Cox's model
ensures that the hazard is always positive, and gives a linear model for the log-
hazard which is very convenient in both theory and practice.

The utility of this model arises from the fact that the general 'shape' of the
hazard function for all individuals is determined by the baseline hazard, while the
exponential term accounts for differences between individuals. So, if we are not
primarily concerned with the precise form of the hazard, but with the effects of
the covariates, we can ignore X0{t) and estimate /} from the data irrespective of
the shape of the baseline hazard; this is termed a semi-parametric approach. So
useful and flexible has this proved, that the Cox model now dominates the
literature on survival analysis, and it is probably the tool to which a statistician
would turn first for the analysis of survival data.

To estimate ft it is usual to maximise the following partial likelihood. Let R(tj)
denote the set of lives which are at risk just before the /th observed lifetime, and
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for the moment assume that there is only one death at each observed lifetime, that
is dj= 1 (1 <j<k). The partial likelihood (Cox, 1972, 1975) is:

(21)

Intuitively, each observed lifetime contributes the probability that the life
observed to die should have been the one out of the R(tj) lives at risk to die,
conditional on one death being observed at time t-f Note that the baseline hazard
cancels out and the partial likelihood depends only on the order in which deaths
are observed. (The name 'partial' likelihood arises because those parts of the full
likelihood involving the times at which deaths were observed and what was
observed between the observed deaths are thrown away.) Maximisation of this
expression has to proceed numerically, and most statistics packages have
procedures for fitting a Cox model; see Collett (1994) for a recent review.

In practice there might be ties in the data, that is:
(a) some dj> 1; or
(b) some observations are censored at an observed lifetime.

It is usual to deal with (b) by including the lives on whom observation was
censored at time f in the risk set R(tj), effectively assuming that censoring occurs
just after the deaths were observed. Accurate calculation of the partial likelihood
in case (a) is messy, since all possible combinations of dj deaths out of the R(tj)
at risk at time tj ought to contribute, and an approximation due to Breslow (1974)
is often used, namely:

fi "^) (22)

where s; is the sum of the covariate vectors z of the dj lives observed to die at
time tj. For some other approximations see Collett (1994). Kalbfleisch & Prentice
(1973, 1980) also discussed estimation of (S based on marginal likelihood.

Remarkably, the partial likelihood behaves much like a full likelihood (Cox,
1975); it yields an estimator for j3 which is asymptotically (multivariate) Normal
and unbiased, and whose asymptotic variance matrix can be estimated by the
inverse of the observed information matrix. The efficient score function, namely
the vector function:
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plays an important part; in particular solving u(fi) = 0 furnishes the maximum
likelihood estimate J3. The observed information matrix ^(fi) is then the p x p
matrix of second partial derivatives:

A

evaluated at /?. This 'good behaviour' on the part of the partial likelihood function
is a consequence of the fact that it arises naturally in a counting process
framework (see Part III, Section 8) and an even more remarkable fact is that the
same counting process framework also brings together multiple state models and
non-parametric estimation.

A useful feature of most computer packages for fitting a Cox model is that the
information matrix evaluated at j8 is usually produced as a by-product of the
fitting process (it is ĵ ised in the Newton-Raphson algorithm) so standard errors of
the components of ft are available. These are helpful in evaluating the fit of a
particular model.

7.4 Model Fitting
In a practical problem, several possible explanatory variables might present

themselves, and part of the modelling process is the selection of those which have
significant effects. Therefore criteria are needed for assessing the effects of
covariates, alone or in combination.

A common criterion is the likelihood ratio statistic. Suppose we need to assess
the effect of adding further covariates to the model. In general, suppose we fit a
model with p covariates, and another model with p + q covariates which include
the p covariates of the first model. Each is fitted by maximising a likelihood; let
Lp and Lp + q be the maximised log-likelihoods of the first and second models
respectively. The likelihood ratio statistic is then - 2(Lp — Lp + q), and it has an
asymptotic %2 distribution on q degrees of freedom, under the hypothesis that the
extra q covariates have no effect in the presence of the original p covariates.
Strictly this statistic is based upon full likelihoods, but when fitting a Cox model
it is used with partial likelihoods.

For example, suppose we have considered a model for the effect of
hypertension on survival, in which z has two components, with the level of z,
representing sex and the level of z2 representing blood pressure. Suppose we want
to test the hypothesis that cigarette smoking has no effect, allowing for sex and
blood pressure. Then we could define an augmented covariate vector z' = (Zj,z2,z3)
in which z3 is a factor (say, 0 for non-smoker and 1 for smoker) and refit the
model. The likelihood ratio statistic - 2(L2 - L3) then has an asymptotic %2

distribution on 1 degree of freedom, under the null hypothesis (which is that the
new parameter /J3 = 0).
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The likelihood ratio statistic is the basis of various model-building strategies,
in which:
(a) we start with the null model (one with no covariates) and add possible

covariates one at a time; or
(b) we start with a full model which includes all possible covariates, and then try

to eliminate those of no significant effect.

In addition, it is necessary to test for interactions between covariates, in case
their effects should depend on the presence or absence of each other. Some
examples of model building strategies, and the interpretation of likelihood ratio
statistics, are given by Collett (1994).

The likelihood ratio statistic is a standard tool in model selection; for example
Forfar, McCutcheon & Wilkie (1988) used it to choose members of a Gompertz-
Makeham family of functions for parametric graduations.

7.5 Further Aspects of the Cox Model
The Cox proportional hazards model has been intensively studied since it was

proposed, and the methodology has been extended and applied to a wide range of
problems. Here we can only list a few interesting points about its use; many of
these were suggested by Cox (1972).
(a) The Cox model is flexible because it can be used without estimating the

baseline hazard \±{i). If we want an estimate of the hazards ~k(t;x) however,
A must be estimated. One approach is to assume a parametric form for

) . The Weibull distribution is often used, since, for the addition of only
two parameters, it encompasses a range of decreasing and increasing hazards,
and it includes the exponential distribution as a special case. The Weibull
distribution with scale parameter a and shape parameter y has the hazard
rate:

A(t;a,r) = aytr-\ (25)

Different values of a result in different Weibull distributions, but with the
same shape. If we model a multiplicatively in the covariates z:

then we can fit OQ, y and the vector ft simultaneously to obtain the entire
hazard function X(t; z). Put another way, if the baseline hazard is assumed to
be Weibull, then any hazard proportional to it is the hazard of a Weibull
distribution with the same parameter y. This is the proportional hazards
property of the Weibull distribution.
An alternative approach, possibly more suitable if there is no reason to
assume a Weibull baseline hazard, is to estimate the vector ft, as before, and
then apply the same reasoning as in the derivation of the Kaplan-Meier
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estimate to find a non-parametric estimate of Xo(t). See Kalbfleisch &
Prentice (1980) for details.

(b) The Cox model can be used with covariates which change over time. This
might be necessary if the outcome were thought to depend more on the
current value of a covariate than on its value at the start of observation. In
this case, the hazards of different lives are no longer proportional, but the
baseline hazard cancels out in the partial likelihood for fi, as before, so the
model retains its usefulness. Although not more difficult to handle in theory,
time-varying covariates introduce some practical difficulties. If, in equation
(21), the covariate vectors z; are made functions of time, it is clear that their
values must be known at each observed lifetime tjt not just for the life who
dies at that time, but for all the R(tj) lives then at risk. This imposes fairly
stringent requirements on the observational plan, or requires approximate
solutions. See Collett (1994) for suggested approaches.

(c) The proportional hazards assumption can be tested by finding Kaplan-Meier
estimates of the lifetime distributions of groups of lives with different values
of the covariates, and then for each group plotting - log(l -F(t)) against
logt. Under proportional hazards, these plots should be parallel.
Alternatively, fit a time-varying covariate zp+l; if the hazards are
proportional the fitted parameter fip +, should be zero. Non-proportional
hazards might be the result of the aggregation of several groups, within each
of which the assumption is valid, but each of which has a different baseline
hazard. (Actuaries will recognise this as a species of spurious selection.) If
the groups can be identified, a stratified analysis might be possible, in which
the parameter vector /? is fitted to all groups simultaneously, but each group
contributes a separate factor to the partial likelihood. The procedure was
described by Kalbfleisch & Prentice (1980).

(d) Several residuals are available to assist in model checking. The Cox-Snell
residual in respect of the ith life in an uncensored sample is simply:

exp(jfe/')A,(=-logSI.(O (26)

where fi and the integrated baseline hazard A, are represented by their
estimates, and 5,(0 is the survival function in respect if the ith life. It is
easily shown that 5,-(T,-) has an exponential distribution with mean 1, so the
Cox-Snell residuals should be close to a sample from that distribution, if the
model is adequate. If observation of the ithA lifê  is censored at time tf, the
Cox-Snell residual can be modified to exp(0zi

r)Ati
c+ 1, which represents the

expected value of the residual at the (unobserved) actual lifetime, since the
exponential distribution is 'memoryless'.
Alternatives to the Cox-Snell residuals are martingale residuals, deviance
residuals and score residuals. In each case (as with ordinary linear regression)
the residuals are statistics whose distribution is known in a correct model and
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which should display no dependence on the covariates or pattern over time;
evidence of any such feature suggests that the model is inadequate.

7.6 Regression using GLIM
Renshaw (1988) applied the Cox model to the Prudential impaired lives data

set. Since the data were in respect of insured lives, a natural baseline hazard was
one based on the Continuous Mortality Investigation Bureau (CMIB) analyses of
assured lives without impairment. Renshaw formulated a proportional hazards
model as follows:

X(t;z) = X0(t)exp(pzT) (27)

where X*0(t) was based upon extrapolation of the A1967-70 mortality table. This
method lies between the Weibull proportional hazards model, in which the
baseline hazard has a parametric form which is estimated along with /?, and Cox's
original formulation, in which the baseline hazard is unknown and P alone is
estimated. X*0(t) is a known baseline hazard which, of course, need not be
estimated; its inclusion in the regression might be expected to improve the
estimation of )3.

Data for each major impairment were analysed separately. Values of possible
covariates were recorded for each life in each analysis, allowing the data for each
impairment to be split into homogeneous cohorts according to the possible
factors. The contribution to the likelihood for ft from the ith life in the yth cohort,
assuming that observation extends from age xis to age xVj + T,y is then:

• = 0*o(-v (28)

where Dfj is the usual indicator of death or censoring, and the covariate vector z;

is indexed by j alone because, by definition, it is constant within the /th cohort.
We can write this conveniently as:

exp[-)XtJ(s)cxp(pzJ)ds) (29)

where ^(t) = ^(x^ + t) exp(/3zp is the hazard in the jth cohort measured from
age Xjj. As is usual in medical studies, age enters the hazard as a factor in z. The
unusual feature of this model is that the baseline hazard is also a function of age,
since acceptance of the risk, not just time since acceptance of the risk. From
equation (29), the total log-likelihood over all cohorts is:
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logL(P) = constant + J1(dj(log nij +/Jz|)-exp(log/n ;. + fizj)) (30)

where dj = £, dtj is the total number of deaths in the ;th cohort and

is the aggregated integrated hazard in the jth cohort. Therefore, if we define
(j>j = nij exp(j3zy), we can write:

logL(P) = constant + JJ(dj log0y - 0 ; ) . (31)

Renshaw (1988) derived equation (31) and pointed out that it was identical in
form to a log-likelihood of independent Poisson random variables {D;} with
means {ty}. Whitehead (1980) obtained the same result in the more general case
of an unknown baseline hazard. In the generalised linear model (GLM) approach,
the {Dy} are modelled as Poisson response variables with means {ty} and a log-
link function log0; = lognij + f}zjT. This is one of the simplest GLMs, and the
regression process can be carried out by standard computer packages for GLMs
such as GLIM or GENSTAT. For an example, including a discussion of model
selection, see Renshaw (1988), and for a comprehensive analysis of a large part
of the Prudential data set see England (1993).

The significance of this work lies in the application of sound statistical
methodologies to actuarial data. Renshaw (1988) was able to extend considerably
the previous analysis of Clarke (1978), using tools which are very much in the
mainstream of practical statistics. England (1993) compared multiplicative models
with the additive models generally used for underwriting impaired lives, and
found them to be superior. Statistical methods such as the Cox model and GLMs
have developed as computing power has made them useable; thus they are new
and unfamiliar to actuaries; but much data which used to defy analysis can now
be modelled within a sound statistical framework, and as time passes these
methods should be added to the actuary's toolbox.

7.7 Other Regression Models
Alternative models have been proposed in case a fully parametric model is not

justified, or the proportional hazards property appears not to hold. We describe
briefly two of the more important examples; the accelerated lifetime model and
the discrete logistic model.

The accelerated lifetime model supposes that the covariates act multiplicatively
on the lifetime itself, which can be expressed as:

Si(t) = S0(g{zi)t) or equivalent^ \(t;zi) = g(zi)Xo{g{zi)t). (32)
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As with the Cox model, the choice g(zt) — exp(j3z;
7) is often convenient. In

reliability testing, where items are tested to destruction under different operating
conditions, the model has a direct physical interpretation. In medical studies also,
the idea that a disease proceeds at different speeds in different individuals is
easily understood. Application of the model does not introduce any new
principles, and we omit further details except to observe that the Weibull
distribution is the most general parametric family which is closed under both the
proportional hazards and the accelerated lifetime properties.

The discrete logistic model (Cox, 1972) is equivalent to the Cox model when
the lifetimes are distributed on a discrete set. It is specified by:

(33)

where the hazards here are the discrete hazards of equation (10). (The
denominators are needed because exp(/?z[) is unbounded.) Trie partial likelihood
is the same as that suggested by Cox (1972) for tied data in the continuous
model, and in the limit as the distances between the points of support of the
discrete lifetimes tend to zero, the Cox model is obtained.
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