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ABSTRACT

This paper presents a statistical model underlying the chain-ladder technique. This is related to
other statistical approaches to the chain-ladder technique which have been presented previously. The
statistical model is cast in the form of a generalised linear model, and a quasi-likelihood approach is
used. It is shown that this enables the method to process negative incremental claims. It is suggested
that the chain-ladder technique represents a very narrow view of the possible range of models.
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1. INTRODUCTION

This paper is concerned with the estimation of outstanding claims. For ease of
exposition, and without loss of generality, consider a triangle of data classified
according to an index for accident year i, and an index for reporting delay j .
Denote the claim amounts reported with accident year index i and delay index j
by yij. Suppose that data have been collected for i = 1, 2, ..., n and j = 1, 2, ...,
n. Then the complete set of data is:

{y0 : / = 1, 2, ..., n; j = 1, 2, ..., n - i +1}

which may be presented as a run-off triangle:

yn yn y\n

Denote the cumulative claim amounts with accident year index i reported up
to, and including, delay index j by Cy, so that:
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904 A Stochastic Model underlying the Chain-Ladder Technique

*=1 (1.1)

Thus, we may either consider the increases in the claim amounts with each
delay index, as above, or the cumulative claim amounts:

CXn

c 2 ] c22

The aim is to obtain estimates of [Cin : i = 2, 3, ..., n}.
The chain-ladder technique was conceived as a deterministic method for

predicting claim amounts. It is applied to cumulative claim amounts, and is
designed to predict future incremental claim amounts in the empty cells of the
well-defined triangular region to the immediate south-east of the run-off triangle.
We call this region the target triangle. The run-off triangle may be truncated on
its eastern fringes. It is also possible to generalise the geometrical configuration
further through the removal of a symmetric triangular region in the north west
corner of the run-off triangle and to allow for inflation. We also remark that, for
the purposes of this paper, we are not expressly concerned with projections to the
east of the run-off triangle.

Notwithstanding certain well-known shortcomings, the technique continues to
occupy a prominent position with many practitioners as a claims reserving tool.
There would appear to be some doubt as to the precise origin of the chain-ladder
technique, but claims reserving techniques, in general, have generated a large
body of research literature in the intervening years. One substantial strand of this
literature is concerned with the development of stochastic claims reserving
techniques which have clear advantages over deterministic techniques, such as
provision for conducting diagnostic checks and the production of confidence
intervals.

This paper identifies a statistical procedure which is exactly equivalent to the
chain-ladder technique, in almost all circumstances. It should be noted that the
method cannot be applied if the column sum of incremental claims for any
development year is negative (this will be discussed in more detail in Section 2).
We have always held the view that it is vital to subject any claims reserving
procedure to a full statistical review, and we believe that the model presented in
this paper provides an important framework to do this for the chain-ladder
technique.

Broadly speaking, a stochastic claims reserving process involves three stages:
— stage one: the specification of a flexible parameterised model structure;
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— stage two: a means of fitting the structure to the run-off data coupled with
the means to conduct diagnostic checks on the fitted model; and

— stage three: a means of projecting the fitted structure into the target triangle.

Note that we assign the specification of a modelling distribution to stage two,
since this leads to the construction of a likelihood or quasi-likelihood function
which is maximised to obtain parameter estimates.

Thus, we are confronted with a wide choice of possibilities which is reflected
in the number of published works on the subject. For the specific purpose of this
paper, we find it both helpful and informative to relate the stochastic claims
reserving process, whenever possible, to the generalised linear modelling
technique, especially in relation to the first two stages described above.

A significant landmark in the development of stochastic versions of the chain-
ladder technique was made by Kremer (1982), in which, in our opinion, he
establishes the nature of the parameterised model structure which is inherent in
the chain-ladder technique. This is equivalent to stage one of the stochastic claims
reserving process, but it should be noted that Kremer only identified one of two
possible ways of building the structure into the process as a whole. The structure
is comprised of the linear predictor:

7].. = fj. + a, +Pj (1.2)

based on parameters corresponding to accident year i and delay j , which is
connected to the logged incremental claim amounts. Section 3 contains more
details of the theory of generalised linear models, including linear predictors.
Implicit in Kremer's work is the suggestion that the log transformation should be
applied to the incremental claim amounts. The other possibility is to apply the log
transformation to the expected values. Thus, Kremer, in specifying stage two of
the stochastic claims reserving process, elects to model the incremental data by
imposing the log-normal distribution. Renshaw (1989), Verrall (1989, 1990,
1991a, 1991b), motivated by Kremer (1982), have investigated many different
facets of a stochastic claims reserving process based on the log-normal
assumption, taken in conjunction with the predictor (1.2).

Mack (1994) has criticised certain aspects of this work. This criticism is
justified in so far as the model referred to above, derived by Kremer (1982), is
not exactly equivalent to the chain-ladder technique. In Section 2 of this paper we
will derive a generalised linear model which is exactly equivalent to the model
which underpins the chain-ladder technique (noting the exception mentioned
above). We believe that this equivalence is well known to a number of actuaries,
but has not before been expressed in terms of generalised linear models. The
contributions that this paper makes are to relate the chain-ladder technique
directly to a generalised linear model, to show that it is not the most appropriate
model for claims data, and to show how the model may be adapted in a
straightforward way in order to be appropriate for claims data.
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906 A Stochastic Model underlying the Chain-Ladder Technique

2. THE MODEL UNDERLYING THE CHAIN-LADDER TECHNIQUE

In this section we describe the connection between the chain-ladder technique
and the following statistical model for incremental claims y^ :

Y;J ~ Poisson with mean m-, independently \/i,j (2.1)

where:

log m,j = li + a, + fy (2.2)

and a, = /?, = 0.
We assume throughout that:

->0 for all y. (2.3)

The reason for this assumption will become clear after equation (2.5). Note that
we do not assume that all the incremental claims are non-negative, but just that
the column totals are non-negative. Note that the incremental claims are random
variables, which is the reason for using upper case for y-. There are a number of
points which should be made about this model. Firstly, the structure is the same
as that used by Kremer (1982), except that it is embedded in a different
modelling distribution; Kremer used a lognomal distribution. Secondly, it may
seem strange to use a Poisson distribution for modelling claim amounts; it is
strange, and this is reflected in the results. Thirdly, the specification of the
Poisson modelling distribution does not mean that the model can only be applied
to data which are positive integers; it is easy to write down a quasi-likelihood
which has all the characteristics of a Poisson likelihood, without actually referring
directly to the probability function for the Poisson random variable. This means
that the model can be applied to negative incremental claims, etc., and the results
are always the same as those by the chain-ladder technique (when X"=-j+1;y,-/ > 0 for
all j). More details of this are contained in Sections 3 and 4. We also need to
state that we have elected to present a different approach, in establishing the
transition from the chain-ladder technique to the Poisson modelling distribution,
to that which appears in Mack (1991).

We find it easiest to retain the assumption that the data have a Poisson
distribution at the moment, although in all that follows in this section it is only
the form of the likelihood which is important. Obviously, this model is very
reasonable when the triangle consists of numbers of claims, rather than claim
amounts. In order to show the equivalence with the chain-ladder technique, we
first assume that the triangle consists of the numbers of claims, classified
according to accident year /, and reporting delay /
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The maximum likelihood estimates for the model given by (2.1) and (2.2) may
be obtained using GLIM (Francis, Green & Payne, 1993). The estimates of the
total number of claims in each accident year may be obtained from the sums:

^ ^ ( / = 2,3,...,n). ( 2 . 4 )

j=n-i+2

where /}, a, and J3j are the maximum likelihood estimates of the parameters.
The same estimates of {Cin : i = 2, 3, ..., n] are obtained using the following

conditional likelihood. Denote the conditional probability that a claim with
accident year index i, which we know has been reported, is reported with delay
index j by p^. For accident year i, this is the probability that the delay index is

j , given that it is less than, or equal to, n-i+l. The usual assumption of
stationarity for the reporting process implies that the probability that a claim is
reported in each delay year does not depend on the accident year. Then:

where pj is the (unconditional) probability that a claim is reported in delay year j
and I|J=1p t =1 .

This last assumption implies that we are assuming that all claims are reported
by the end of delay year n. It is in line with the assumption made in Section 1,
and by the chain-ladder technique generally, that we are not concerned with
forecasting beyond C,n, i.e. beyond the latest delay year already observed. It also
explains why the restriction (2.3) is necessary, since otherwise we could not use
probabilities.

The conditional likelihood Lc for these data can be obtained using the
multinomial distribution, and is given by:

This is a conditional likelihood, since it conditions on the latest row totals,
Q n-i+i- The fact that this is a conditional likelihood and is equivalent to the
Poisson model is an important point, and it has often been noted that the chain-
ladder technique conditions on the latest row totals. Maximising this likelihood
gives the following estimates for the total number of claims:

l-i.n-i+1

(2.7)
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908 A Stochastic Model underlying the Chain-Ladder Technique
where pj is the estimate of pj obtained by maximising Lc.

It can be shown that the Poisson model gives the same estimates as the
conditional likelihood; i.e. that equations (2.4) and (2.7) give the same results.

It is sometimes easier to consider the estimate for the accident year which has
been reported up to delay index j instead of equation (2.7). The estimate of
ultimate cumulative claims for accident year n-j+l is:

< - I I - ; - H . » = 7 - ^ ; — — • (2.8)

This can be compared with the chain-ladder estimates:

C — C 1 /I 1 (7 91

where:

xrr/' (2.10)

Rosenberg (1990) derived a simple technique for obtaining the estimates
{pj; j ' = l ,2 , . . . ,n} , which is recursive. This can be stated simply as follows.
Suppose that we have estimates of pn, pn_x, ..., pi+l. Then the estimate of p- is
Pj, where:

Pj=
r i C2-"-' i a. C»-y+1-> (2.11)

1"P»

(2.12)

Note that pn = -pr2-, which begins the recursion.

It is straightforward to show that the resulting estimates {pj: j = 1,2, ...,n} are
the maximum likelihood estimates for the likelihood Lc.
This is proved in Theorem 1 of the Appendix.

We now show that Rosenberg's technique is equivalent to the chain-ladder

https://doi.org/10.1017/S1357321700000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700000222


A Stochastic Model underlying the Chain-Ladder Technique 909

technique. This will show that the chain-ladder technique is just a simple way to
find the maximum likelihood estimates for the conditional likelihood Lc, and thus
also for the Poisson model (2.1) and (2.2). It can be seen from equations (2.8)
and (2.9) that:

A 1

and

AiAi+\ '"K =~,—: x ~ - (2.14)

Thus:

(2-15)

and

*;• = - ? I- r - (2-i6)

We show, by backwards induction, that the estimate of Ay, obtained from

equation (2.16) using pj from equation (2.12), is the same as that given by
equation (2.10). This is certainly true for j = n, since:

An = — — from (2.16)
l~Pn

= l- from (2.12) with j = n

cln

= c,B
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910 A Stochastic Model underlying the Chain-Ladder Technique

which is the same as equation (2.10) when j - n.
Now suppose that the result holds for j + \, ,/ + 2, ..., n. We may thus write

equation (2.11) as:

Qn l,n\K nj+ljA.j+1 ...Xn

Substituting into equation (2.16):

J
i + 2 . . i n (2.17)

Theorem 2 from the Appendix, proves that:

„ n-j+l

Q n + ^2,n-\An + • • • + ^n-j+\,jAj+l • • • An ~ Aj+l ••• A ,

Hence, equation (2.17) may be rewritten as:

1

•••An

~ yn-y + 1 c

which is the chain-ladder estimate. Hence, it has been proved by induction that
Rosenberg's technique is equivalent to the chain-ladder technique.

We have thus shown in this section that the chain-ladder technique gives
exactly the same estimates as the model (2.1) and (2.2), under assumption (2.3).
We have a number of different ways of obtaining the same estimates of
{Cin : / = 2, 3, . . . , « } : the chain-ladder technique; Rosenberg's technique; and
maximum likelihood estimation in the generalised linear model. We would be
justified in calling this generalised linear model the chain-ladder linear model,
under assumption (2.3). However, we choose to relax the assumption that the data
have a Poisson distribution while retaining the same form for the model and the
likelihood. Thus, we obtain the same results, but we avoid specifying the
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distribution of the data. This means that it is possible to apply the chain-ladder
linear model to claim amounts (rather than just claim numbers). Further, the
linear model can then handle negative incremental claims, under condition (2.3).
This is covered more fully in Sections 3 and 4.

Note also that column parameters in the various models are related as well.
The parameters for the chain-ladder technique {X]:: j = 2, 3, ..., n] are related to
those of the conditional likelihood {pj: j - 1, 2, ..., «} recursively via:

A A +1... An = - .

It should be noted that there are other ways of expressing this relationship; see
Kremer (1982) or Verrall (1991b). The column parameters of the generalised
linear model are related to the parameters of the chain-ladder technique and the
conditional likelihood via:

Pi=—* W a n d ^ / = 1 + :

These relationships are derived in Verrall (1991b). Since we are using maximum
likelihood estimation, the estimates of the parameters for any of the models can
be obtained directly from the estimates for the linear model by substitution. cin

can be obtained from either (2.4), (2.8) or (2.9) — the same results are obtained
in all cases.

The main point to be noted from this section is that we have identified a
generalised linear model which gives exactly the same results as the chain-ladder
technique, under assumption (2.3).

3. GENERALISED LINEAR MODELS AND CLAIMS RESERVING

This section gives an outline of the theory of generalised linear models relevant
to claims reserving. A complete exposition of the statistical background can be
found in McCullagh & Nelder (1989). A generalised linear model (GLM) is
comprised of two components, one statistical, the other deterministic. The
statistical component involves independent response variables:

{Yu: ueS]

together with the specification of their first two moments:

co,,

https://doi.org/10.1017/S1357321700000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700000222


912 A Stochastic Model underlying the Chain-Ladder Technique

where 0(>O) denotes a scale parameter, cou prior weights and V(.) the variance
function. In this case, the set S consists of {(/, j) : i= 1, 2, ..., n; j=\, 2, ...,
n-i+l). The deterministic component consists of a linear predictor:

involving a known covariate structure (xuv) with unknown parameters 9V, which is
linked to the mean response through a monotonic differentiable link function g,
where:

Parameter estimates for the dvs are needed to implement these models.
Commonly these are determined by maximising the quasi log-likelihood
expression:

We are expressly concerned in this paper with GLMs with power variance
functions of the type:

Specific cases to note are the normal or Gaussian distribution (£=0, with
mu=\ V u, 0>O), the Poisson distribution ( f= l , with (ou=\ V u, 0=1) and the
gamma distribution (f =2, with cou = 1 V «, 0>O). It is a trivial exercise to verify
that the quasi log-likelihood expression (3.1) reduces to the appropriate log-
likelihood expression for these three cases, with the implication that maximum
likelihood estimators of the 9vs are the same as quasi-likelihood estimators for
these three cases. The properties of this class of power variance function GLMs
are discussed in more detail in Renshaw (1993, 1994a, 1994b). In particular, we
note that the case f > 2 gives the class of power variance models most suitable for
modelling claim amounts.

It should be noted that it is not necessary to name a distribution; all that is
needed is a specification for £, a>u and 0. Thus, the same estimates as would be
obtained if the Poisson modelling distribution were specified can be obtained by
setting f = l , with cou-\ V u, 0 = 1.

Diagnostic checks of any fitted structure should include a graphical scrutiny of
residuals as a basic requirement. There is a choice of residuals, based on the
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different statistics available to monitor goodness-of-fit. Denote the fitted values
under the current model by mu. The (unsealed) deviance statistic is:

d(y, m) = JJdll=JJ 2cou P" ̂ f^-ds {= -20q(y; m)}

and gives rise to the deviance residuals:

while the generalised Pearson statistic:

gives rise to (generalised) Pearson residuals:

r,, —

The stochastic claims reserving technique stemming directly from Kremer
(1982) is underpinned by the model:

log(y;>)~N(/i + a , + Pj,(J2) independently \/ ij.

Expressed as a GLM with power variance function, this is equivalent to
modelling independent logiy^) responses with m ^ E f l o g ^ ) ] , £=0, 6^=1 and
0 =o2 in combination with the identity link so that:

As an alternative to this formulation, we consider the class of GLMs with
power variance function based on independent y- responses with mean »»,•,• = E(y,-,-)
in combination with the log link and the same linear predictor, so that:

l3j. (3.2)

This alternative formulation models the incremental claim amounts y,y directly,
while preserving the basic structure associated with the chain-ladder technique
established by Kremer (1982), by encapsulating it in the predictor-link
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914 A Stochastic Model underlying the Chain-Ladder Technique

relationship. It is also more general, since it offers the choice of values for £(>0),
0(>O) and the prior weights co,y. In particular, to reproduce the chain-ladder
technique results exactly, we specify £=1, 0=1, w^=l. Whether this is a sensible
approach is discussed further in Sections 4, 5 and 6.

A further landmark in the development of this general theme is due to Mack
(1991), in which the chain-ladder predictor-link structure (3.2) is modelled in
combination with gamma distributed incremental claim amount (£=2, 0>O). For
a comparison of aspects of the relative merit of using the gamma distribution as
opposed to the log-normal distribution, the reader is referred to Firth (1988). We
have noted that a further generalisation is possible, by resorting to the class of
power variance function GLMs with £>2, 0>O, discussed in Renshaw (1994a,
1994b). This includes the inverse-Gaussian distribution as a special case (£=3).

4. A STOCHASTIC CHAIN-LADDER MODEL

In this section we consider a well-defined square set of units {(/,/) : ( = 1, 2,
..., n; y = l, 2, ..., n] formed by the union of a run-off triangle and its associated
disjoint target triangle. Denote exposures, if present, by et. The exposure is a
quantity relating to accident year, which can be used to introduce a standardising
measure of the volume of business, such as premium income. Define the set of
augmented incremental claim amounts Y-, to be:

[incremental claim amount if (/, 7) £ run-off triangle
ij [0 if(/,7) £ target triangle.

We stress that this is purely a matter of computational convenience, and that
all entries in the target triangle are weighted out of the ensuing calculations. Then
a chain-ladder generalised linear model is defined as follows.

Definition. A stochastic chain-ladder model consists of a GLM in which the
augmented incremental claim amounts y- are modelled as independent responses
with:

mean mij='E(yij) variance function W(mij) = mij scale parameter 0>O

{1 ifO',7) £ run-off triangle

0if((, 7) £ target triangle

in combination with the predictor-link:
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The parameter estimates fi, a^fij are determined by maximum quasi-likelihood
estimation and the predicted claim amounts in the target triangle are provided by
the matching values:

There are some technical points to note. Firstly, the exposures e, appear as the
offset terms log(e,) in the linear predictor, the default setting being e, = IV units
(i,j). Secondly, it is well known that predictors of this type are over-
parameterised in a technical sense, so that it becomes necessary to set two
constraints, typically a, = /}]=(). Thirdly, note that it is not essential to pre-specify
the value of the scale parameter 0, since the parameter estimates, and hence the
predicted claim amounts, are invariant to the value of 0. In addition, the
definition generalises to include the other possible geometric configurations
described in Section 1. Implementation of the definition can be automated using
the interactive facility of the GLIM software package (Francis, Green & Payne,
1993).

When there are any negative incremental claims, we would strongly advise
using the (generalised) Pearson residuals, which, unlike the deviance residuals,
are uniquely defined for negative as well as positive values of y^. This is because
the formal evaluation of the integral expression (3.1), on which the values of the
deviance residuals are based, gives rise to terms in log y^ which are given zero
default settings for negative y^ values. This alone does not inhibit the
optimisation of expression (3.1) in the quasi-likelihood parameter estimation
procedure, provided also that the logm,-, terms are well defined, that is
my>0 V i,j. Because of the specific nature of the parameterised structure of the
linear predictor (1.2), this condition is met, provided that all the column (and
row) sums in the incremental claims run-off triangle are positive. This is
consistent with assumption (2.3).

The precise technique encapsulated by the definition has been known to the
authors since 1990, when it was brought to our attention by our colleague Steven
Haberman through his work into AIDS. Specifically, the technique has been
applied to AIDS surveillance data comprising head counts for reporting delays.
While it is perfectly natural to use the Poisson distribution in this context, it is
quite a radical departure from accepted wisdom if precisely the same stochastic
technique is to be applied to incremental claims amounts. These findings,
therefore, represent yet one further hurdle which practitioners of the chain-ladder
technique will need to reconcile.

5. ILLUSTRATION

In order to effect a comparison, we use the same data as Mack (1994), taken
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916 A Stochastic Model underlying the Chain-Ladder Technique

Table 1. Predicted claim amounts; Poisson-type response model

Total

5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172
2,111.4 4,221.4 3,948.6 2,785.1 2,243.2 1,735.9 714.8 590.8 310.8 172.0 0.

106 4,179 1,111 5,270 3,116 1,817 -103 673 535
1,889.9 3,778.5 3,534.4 2,492.9 2,007.8 1,553.8 639.8 528.8 278.2 154.0 154.

3,410 5,582 4,881 2,268 2,594 3,479 649 603
2,699.9 5,398.0 5,049.2 3,561.4 2,868.4 2,219.7 914.0 755.4 397.4 219.9 617.

5,655 5,900 4,211 5,500 2,159 2,658 984
3,217.8 6,433.4 6,017.7 4,244.5 3,418.6 2,645.5 1,089.4 900.3 473.7 262.1 1,636.

1,092 8,473 6,271 6,333 3,786 225 -
3,242.8 6,483.6 6,064.6 4,277.6 3,445.3 2,666.1 1,097.9 907.4 477.4 264.2 2,746.

1,513 4,932 5,257 1,233 2,917 - -
2,186.2 4,370.9 4,088.5 2,883.8 2,322.6 1,797.4 740.1 611.7 321.8 178.1 3,649.

557 3,463 6,926 1,368 - - -
1,989.8 3,978.3 3,721.2 2,624.7 2,114.0 1,635.9 673.6 556.8 292.9 162.1 5,435.

1,351 5,596 6,165 - - - -
2,692.7 5,383.6 5,035.7 3,551.9 2,860.8 2,213.8 911.6 753.4 396.4 219.4 10,907.

3,133 2,262 - - - - _ _ _ _
1,798.7 3,596.3 3,363.9 2,372.7 1,911.0 1,478.8 609.0 503.3 264.8 146.5 10,650.

2,063 - - - - - _ _ _ _

2,063.0 4,124.7 3,858.2 2,721.3 2,191.8 1,696.1 698.4 577.2 303.7 168.1 16,339.

Total 52,135.

Root mean squared error of prediction 17,603.

from the Historical Loss Development Study, 1991 Edition, published by the
Reinsurance Association of America.

The incremental claim amounts of the run-off triangle appear in Table 1, as the
upper values in each row. This table also gives the predicted incremental claim
amounts, for both the run-off triangle and the target triangle, as the lower values
in each row. The last column shows the predicted reserves per accident year,
determined by using the stochastic chain ladder of Section 4. The latter are in
agreement with the values computed by Mack (1994). It is straightforward to see
that these are the same as those obtained by applying the chain-ladder technique.
It was stated in Section 1 that one advantage of using stochastic models is that
confidence intervals can be produced. For the data in Table 1, the root mean
square prediction error for the reserve, which measures the stochastic error in the
reserve when used to estimate outstanding claims, is 17,603.

The generalised Pearson residual plots associated with the fit are reproduced in
Figures 1, 2 and 3. These show that the pattern of the residuals is satisfactory.
Broadly speaking, in any successful modelling exercise we would be looking for
approximately 95% of (standardised) residuals to lie within the band 0±2.
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1 8

[

10

2 -

1 -

o -

~ 1 "

+

• + +

* •

*

2 3 4 5 6 7
Accident Year

Figure 2. Pearson residuals vs accident year; Poisson-type response model

10

https://doi.org/10.1017/S1357321700000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700000222


918 A Stochastic Model underlying the Chain-Ladder Technique

CD
t—i

ro
Z)

TO
•r—l

cn
QJ
cr
sz
o
cn
c_
ro
CD

CL

TD
QJ

CD
CJ

CO

2 -

1 -

o -

-1 -

-2 -

• +

* +

* *

•

0 60002000 4000
Fitted Values

Figure 3. Pearson residuals vs fitted values; Poisson-type response model

i 1

CD

cn
CD
CL

c
o
cn
c_
ro
OJ

D .

TD
QJ

i—i

ro
u

CO

2 -

1 -

o -

-1 -

-2 -

* + * * *

•

*

_l I 1 I I \ I

1 2 3 4 5 6 7 8 9 10
Delay Yean

Figure 4. Pearson residuals vs delay; gamma-type response model

https://doi.org/10.1017/S1357321700000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700000222


A Stochastic Model underlying the Chain-Ladder Technique 919

en
,—i
ro
D

"O
• r—I

cn
cu

DC

c
o
CD
c_
ro
QJ

CL

XD
QJ

i—i
ro
u

CO

CD

ro
D

TD
i-H
cn
cu

DC

c
o
cn
c_
ro
cu
D_

TD
CU

I—I
ro
u

2 "

1 "

o -

-1

-2 -
1 2 3 a 104 5 6 7

Accident Year
Figure 5. Pearson residuals vs accident year; gamma-type response model

2 -

1 -

0 -

-1 -

-2 -

Figure

0 2400 4800 7200
Fitted Values

6. Pearson residuals vs fitted values; gamma-type response model

https://doi.org/10.1017/S1357321700000222 Published online by Cambridge University Press

https://doi.org/10.1017/S1357321700000222


920 A Stochastic Model underlying the Chain-Ladder Technique

Table 1. Predicted claim amounts; Poisson-type response model

Total

5,012 3,257 2,638 898 1,734 2,642 1,828 599 54 172
2,111.4 4,221.4 3,948.6 2,785.1 2,243.2 1,735.9 714.8 590.8 310.8 172.0 0.

106 4,179 1,111 5,270 3,116 1,817 -103 673 535
1,889.9 3,778.5 3,534.4 2,492.9 2,007.8 1,553.8 639.8 528.8 278.2 154.0 154.

3,410 5,582 4,881 2,268 2,594 3,479 649 603
2,699.9 5,398.0 5,049.2 3,561.4 2,868.4 2,219.7 914.0 755.4 397.4 219.9 617.

5,655 5,900 4,211 5,500 2,159 2,658 984
3,217.8 6,433.4 6,017.7 4,244.5 3,418.6 2,645.5 1,089.4 900.3 473.7 262.1 1,636.

1,092 8,473 6,271 6,333 3,786 225 -
3,242.8 6,483.6 6,064.6 4,277.6 3,445.3 2,666.1 1,097.9 907.4 477.4 264.2 2,746.

1,513 4,932 5,257 1,233 2,917 - -
2,186.2 4,370.9 4,088.5 2,883.8 2,322.6 1,797.4 740.1 611.7 321.8 178.1 3,649.

557 3,463 6,926 1,368 - - -
1,989.8 3,978.3 3,721.2 2,624.7 2,114.0 1,635.9 673.6 556.8 292.9 162.1 5,435.

1,351 5,596 6,165 - - - -
2,692.7 5,383.6 5,035.7 3,551.9 2,860.8 2,213.8 911.6 753.4 396.4 219.4 10,907.

3,133 2,262 - - - - _ _ _ _
1,798.7 3,596.3 3,363.9 2,372.7 1,911.0 1,478.8 609.0 503.3 264.8 146.5 10,650.

2,063 - - - - - _ _ _ _

2,063.0 4,124.7 3,858.2 2,721.3 2,191.8 1,696.1 698.4 577.2 303.7 168.1 16,339.

Total 52,135.

Root mean squared error of prediction 17,603.

By way of contrast, Table 2 gives the corresponding individual predicted
incremental claim amounts and their associated totals, based on the gamma
response model. Similarly, the generalised Pearson residual plots associated with
this fit are reproduced in Figures 4, 5 and 6.

6. CONCLUSIONS

This paper has studied a stochastic model for the chain-ladder technique. It has
been shown that this can be viewed in a number of ways. One of the possible
varieties concerns whether a quasi-likelihood approach is taken. This allows the
strictness of the Poisson modelling assumption to be relaxed in order to process
data which are not exclusively positive integers. Having identified a stochastic
chain-ladder model, it is possible to view the chain-ladder technique within a
wider modelling framework. There are great benefits to be gained from this. It is
essential that the data presented are scrutinised fully, and an important
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contribution to this is the use of residual plots. Other models, within the same
general framework as the chain-ladder model, use more appropriate assumptions
for claims data than the chain-ladder model. It is suggested that the chain-ladder
technique is appropriate for analysing numbers of claims, but unsuitable for claim
amounts on this basis.
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APPENDIX

Theorem 1. The estimates obtained by maximising the conditional likelihood Lc

can be obtained recursively by equation (2.11).

Proof
We require the estimates which maximise:

n \ r I n-i+1 |
LC-ll\ ™-;tl , 11 P(i)j •

It is equivalent to maximise log Lc, and to do this we need only consider the
terms involving p(i)j. Thus, we maximise:

n n-i+1

lc =E X tylog/to;
i=i j=i

n n—i+l n~ i + l

= X I yy(logp;-log £ ft) using (2.5).
; = 1 y = l A = l

Note that ft only occurs in the terms for which / = 1. Thus:

and ~r~ = 0 implies that ft. =—jp 2 — since Zjl, ft =1.
°Pn Y ._, v...

Thus, ft =-p-.

Now assume that the theorem is true for j+1, j+2, ..., n. Differentiating with
respect to ft gives:

n—j+l ( n-i + l 1

n-i+l n-j+l
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and —— = 0 implies that:
dp n-y+l

Pi = •

-j+l

=1

*-'!,« —/ +i + l

n—i+l

Since lfkz\+lpk-l-'Lk=n__i+2pk if i> l and l £ = 1 f t= l , this is equivalent to (2.10).
Thus, the theorem has been proved by induction.

Theorem 2. Cln+ C2<n_X +... + Cn_j+ltJij+1..\ = Xj+l...XnX;=7+1 Cl}.

Proof

_ Qn

Therefore:

since
1 n-l + £2,71-1

=—
--2,7i-2

Hence Cln + C2tn_xin + £3in_2AnAB_1 = in-iKlCu_2 + C2<n_2 + CXn_2] and so on.
By continuing for all terms in a similar way, the theorem is proved.
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