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Abstract

Let F be a class of finite groups and G a finite group. Let LF(G) be the set of all subgroups A of G
with AG/AG ∈ F. A chief factor H/K of G is F-central in G if (H/K) o (G/CG(H/K)) ∈ F. We study
the structure of G under the hypothesis that every chief factor of G between AG and AG is F-central in G
for every subgroup A ∈ LF(G). As an application, we prove that a finite soluble group G is a PST-group
if and only if AG/AG ≤ Z∞(G/AG) for every subgroup A ∈ LN(G), where N is the class of all nilpotent
groups.
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1. Introduction

Throughout this paper, all groups are finite and G always denotes a finite group.
Moreover, L(G) denotes the lattice of all subgroups of G and Ln(G) is the lattice of all
normal subgroups of G. We use AG to denote the normal closure of the subgroup A in
G and set AG =

⋂
x∈G Ax. If L ≤ T are normal subgroups of G, then we say that T/L

is a normal section of G. Finally, F is a class of groups containing all identity groups
and N denotes the class of all nilpotent groups.

Wielandt [12] proved that the set Lsn(G), of all subnormal subgroups of a finite
group G, forms a sublattice of the lattice L(G). Later, Kegel [7] proposed a
generalisation of the lattice Lsn(G) based on the theory of group classes. The papers
[7, 12] motivated many studies to find and apply sublattices of the lattices L(G) and
Lsn(G) (see, for example, [1, 6, 11], [4, Chapter 6] and the recent paper [10]).

In this paper, we discuss a new approach that allows us to locate two new classes
of sublattices in the lattice L(G) and we give some applications of these sublattices in
the theory of generalised T -groups.
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Let ∆ be any set of normal sections of G. We say that ∆ is G-closed provided that,
for any two G-isomorphic normal sections H/K and T/L where T/L ∈ ∆, we have
H/K ∈ ∆. If L ≤ T are normal subgroups of G, then we write T/L ≤ Z∆(G) (or simply
T ≤ Z∆(G) if L = 1) provided either L = T or L < T and H/K ∈ ∆ for every chief factor
H/K of G between L and T .

Now let L∆(G) be the set of all subgroups A of G such that AG/AG ≤ Z∆(G),
and let LF(G) be the set of all subgroups A of G such that AG/AG ∈ F. Then
Ln(G) ⊆ L∆(G) ∩ LF(G).

Before continuing, we recall some notation and concepts of the theory of group
classes. The symbol GF denotes the F-residual of G, that is, the intersection of all
normal subgroups N of G with G/N ∈ F, and GF denotes the F-radical of G, that
is, the product of all normal subgroups N of G with N ∈ F. The class F is said to
be normally hereditary if H ∈ F whenever H E G ∈ F, saturated if G ∈ F whenever
GF ≤ Φ(G), a formation if every homomorphic image of G/GF belongs to F for any
group G and a Fitting class if every normal subgroup of GF belongs to F for any
group G.

Our first observation is the following theorem.

Theorem 1.1.

(i) If ∆ is a G-closed set of chief factors of G, then L∆(G) is a sublattice of the lattice
L(G).

(ii) If F is a normally hereditary formation, then the set LF(G) is a lattice (a meet-
sublattice of L(G) [8, page 7]).

(iii) If F is a Fitting formation, then LF(G) is a sublattice of the lattice L(G).

A subgroup M of G is called modular in G if M is a modular element (in the
sense of Kurosh (see [8, page 43])) of the lattice L(G). From [8, Theorem 5.2.3], for
every modular subgroup A of G, all chief factors of G between AG and AG are cyclic.
Consequently, despite the fact that in the general case the intersection of two modular
subgroups of G may be nonmodular, the following result holds.

Corollary 1.2. If A and B are modular subgroups of G, then every chief factor of G
between (A ∩ B)G and (A ∩ B)G is cyclic.

A subgroup A of G is said to be quasinormal (respectively, S -quasinormal or S -
permutable [3]) in G if A permutes with all subgroups (respectively, with all Sylow
subgroups) H of G, that is, AH = HA. For every quasinormal subgroup A of G,
we have AG/AG ≤ Z∞(G/AG) [3, Corollary 1.5.6]. In general, the intersection of
quasinormal subgroups of G may be nonquasinormal. Nevertheless, the following
fact holds.

Corollary 1.3. If A and B are quasinormal subgroups of G, then

(A ∩ B)G/(A ∩ B)G ≤ Z∞(G/(A ∩ B)G).
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A chief factor H/K of G is said to be F-central in G if (H/K) o (G/CG(H/K))
belongs to F [9]. This leads to our next result.

Theorem 1.4. Let F be a normally hereditary saturated formation containing all
nilpotent groups and ∆ the set of all F-central chief factors of G.

(i) If the F-residual D = GF of G is soluble and LF(G) = L∆(G), then D is an
abelian Hall subgroup of odd order of G, every element of G induces a power
automorphism in D/Φ(D) and every chief factor of G below D is cyclic.

(ii) Let G be soluble and let ∆ be the set of all central chief factors H/K of G, that
is, H/K ≤ Z(G/K). If LN(G) = L∆(G), then every element of G induces a power
automorphism in GN.

Now we consider some applications of Theorem 1.4 in the theory of generalised
T -groups. Firstly recall that G is said to be a T-group (respectively, a PT-group or a
PST-group) if every subnormal subgroup of G is normal (respectively, permutable or
S -permutable) in G. Theorem 1.4 allows us to give a new characterisation of soluble
PST-groups.

Theorem 1.5. Suppose that G is soluble. Then G is a PS T-group if and only if
LN(G) = L∆(G), where ∆ is the set of all central chief factors of G.

Since clearly LN(G) ⊆ Lsn(G) and, in the general case, the lattices LN(G) and
Lsn(G) do not coincide, Theorem 1.5 allows us to strengthen the following known
result.

Corollary 1.6 (Ballester-Bolinches and Esteban-Romero [2]). If G is soluble and
A/AG ≤ Z∞(G/AG) for every subnormal subgroup A of G, then G is a PST-group.

From Theorem 1.4, we also derive the following well-known result.

Corollary 1.7 (Zacher (see [3, Theorem 2.1.11])). If G is a soluble PT-group, then G
has an abelian normal Hall subgroup D of odd order such that G/D is nilpotent and
every element of G induces a power automorphism in D.

Finally, Theorem 1.5 and [3, Corollary 2.1.12] yield the following result.

Corollary 1.8. Suppose that G is soluble. Then G is a PT-group if and only if
LN(G) = L∆(G), where ∆ is the set of all central chief factors H/K of G, and every
two subgroups A and B of any Sylow subgroup of G are permutable, that is, AB = BA.

2. Proof of Theorem 1.1

Direct verification gives the following two lemmas.

Lemma 2.1. Let N,M and K < H ≤G be normal subgroups of G, where H/K is a chief
factor of G.
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(1) If N ≤ K, then

(H/K) o (G/CG(H/K)) ' ((H/N)/(K/N)) o ((G/N)/CG/N((H/N)/(K/N))).

(2) If T/L is a chief factor of G and H/K and T/L are G-isomorphic, then
CG(H/K) = CG(T/L) and

(H/K) o (G/CG(H/K)) ' (T/L) o (G/CG(T/L)).

Lemma 2.2. Let ∆ be a G-closed set of chief factors of G. Let K ≤ H, K ≤ V, W ≤ V
and N ≤ H be normal subgroups of G, where H/K ≤ Z∆(G).

(1) KN/K ≤ Z∆(G) if and only if N/(K ∩ N) ≤ Z∆(G).
(2) If H/N ≤ Z∆(G), then H/(K ∩ N) ≤ Z∆(G).
(3) If V/K ≤ Z∆(G), then HV/K ≤ Z∆(G).

Proof of Theorem 1.1. Let A and B be subgroups of G such that A, B ∈ L∆(G)
(respectively, A, B ∈ LF(G)).

Claim 1: A ∩ B ∈ L∆(G) (respectively, A ∩ B ∈ LF(G)).
First note that (A ∩ B)G = AG ∩ BG. On the other hand, from the G-isomorphism

(AG ∩ BG)/(AG ∩ BG) = (AG ∩ BG)/(AG ∩ BG ∩ AG) ' AG(BG ∩ AG)/AG ≤ AG/AG,

we see that (AG ∩ BG)/(AG ∩ BG) ≤ Z∆(G) (respectively, (AG ∩ BG)/(AG ∩ BG) ∈
F since F is normally hereditary). Similarly, (BG ∩ AG)/(BG ∩ AG) ≤ Z∆(G)
(respectively, (BG ∩ AG)/(BG ∩ AG) ∈ F). Then

(AG ∩ BG)/((AG ∩ BG) ∩ (BG ∩ AG)) = (AG ∩ BG)/(AG ∩ BG) ≤ Z∆(G)

by Lemma 2.2(2) (respectively, (AG ∩ BG)/(AG ∩ BG) ∈ F since F is a formation). But
(A ∩ B)G ≤ AG ∩ BG, so

(A ∩ B)G/(AG ∩ BG) = (A ∩ B)G/(A ∩ B)G ≤ Z∆(G)

(respectively, (A ∩ B)G/(A ∩ B)G ∈ F). Therefore, A ∩ B ∈ L∆(G) (respectively,
A ∩ B ∈ LF(G)).

Claim 2: Statement (ii) holds for G.
The set LF(G) is partially ordered with respect to set inclusion and G is the greatest

element of LF(G). Moreover, Claim 1 implies that for any set {A1, . . . , An} ⊆ LF(G),
we have A1 ∩ · · · ∩ An ∈ LF(G). Therefore, the set LF(G) is a lattice (a meet-sublattice
of L(G) [8, page 7]).

Claim 3: Statements (i) and (iii) hold for G.
In view of Claim 1, we only need to show that 〈A, B〉 ∈ L∆(G) (respectively,

〈A, B〉 ∈ LF(G)). From the G-isomorphisms

AG(AGBG)/AGBG ' AG/(AG ∩ AGBG) = AG/AG(AG ∩ BG)

' (AG/AG)/(AG(AG ∩ BG)/AG),
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we see that AG(AGBG)/AGBG ≤ Z∆(G) (respectively, AG(AGBG)/AGBG ∈ F since F
is closed under taking homomorphic images). Similarly, BG(AGBG)/AGBG ≤ Z∆(G)
(respectively, BG(AGBG)/AGBG ∈ F). Moreover,

AGBG/AGBG = (AG(AGBG)/AGBG)(BG(AGBG)/AGBG)

and so AGBG/AGBG ≤ Z∆(G) by Lemma 2.2(3) (respectively, AGBG/AGBG ∈ F since
F is a Fitting formation).

Next, we note that 〈A, B〉G = AGBG and AGBG ≤ 〈A, B〉G. It follows that
〈A, B〉G/〈A, B〉G ≤ Z∆(G) (respectively, 〈A, B〉G/〈A, B〉G ∈ F since F is closed under
taking homomorphic images). Hence, 〈A, B〉 ∈ L∆(G) (respectively, 〈A, B〉 ∈ LF(G)).
The theorem is proved. �

3. Proofs of Theorems 1.4 and 1.5

Remark 3.1. If G ∈ F, where F is a formation, then every chief factor of G is F-central
in G by a well-known result of Barnes and Kegel (see [5, Chapter IV, Lemma 1.5]).
On the other hand, if F is a saturated formation and every chief factor of G is F-central
in G, then G ∈ F by [9, Theorem 17.14].

Proof of Theorem 1.4. (i) Assume that the assertion is false and let G be a
counterexample of minimal order. Let D = GF be the F-residual of G and let R be
a minimal normal subgroup of G.

Claim 1: Statement (i) holds for G/R.
Let ∆∗ be the set of all F-central chief factors of G/R. By [4, Proposition 2.2.8],

(G/R)F = RGF/R = RD/R ' D/(D ∩ R) is soluble. Now let A/R ∈ LF(G/R). From the
G-isomorphism

AG/AG ' (AG/R)/(AG/R) = (A/R)G/R/(A/R)G/R,

we see that AG/AG ∈ F, so A ∈ LF(G) and, by hypothesis, A ∈ L∆(G), that is, AG/AG ≤

Z∆(G). By Lemma 2.1(1), it follows that

(A/R)G/R/(A/R)G/R ≤ Z∆∗(G/R).

Hence, A/R ∈ L∆∗(G/R). Therefore, the hypothesis holds for G/R, so we have
established Claim 1 by the choice of G.

Claim 2: D is nilpotent.
Assume that this is false. Claim 1 implies that (G/R)F = RD/R ' D/(R ∩ D) is

nilpotent. Therefore, if R � D, then D ' D/(R ∩ D) = D/1 is nilpotent. Consequently,
every minimal normal subgroup N of G is contained in D and D/N is nilpotent. Hence,
R is abelian. If N , R, then D ' D/1 = D/((R ∩ D) ∩ (N ∩ D)) is nilpotent. Therefore,
R is the unique minimal normal subgroup of G and R � Φ(G) by [5, Chapter A,
Lemma 13.2]. Hence, R = CG(R) by [5, Chapter A, Theorem 15.6]. If |R| is a prime,
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then G/R = G/CG(R) is cyclic and so R = D is nilpotent. Thus, |R| is not a prime. Let
V be a maximal subgroup of R. Then VG = 1 and VG = R ∈ LF(G) since F contains
all nilpotent groups. Therefore, V ∈ L∆(G). Hence, VG/VG = R/1 is F-central in
G and so G/R = G/CG(R) = G/D, which implies that D = R is nilpotent, which is a
contradiction. This proves Claim 2.

Claim 3: Every subgroup V of D containing Φ(D) is normal in G.

Let V/Φ(D) be a maximal subgroup of D/Φ(D). Suppose that V/Φ(D) is not normal
in G/Φ(D). Then VG = D and V ∈ LF(G) = L∆(G) by Claim 2. Hence, D/VG ≤ Z∆(G)
and so G/VG ∈ F by Remark 3.1. But then D ≤ VG < D. This contradiction shows
that V/Φ(D) is normal in G/Φ(D). Since D/Φ(D) is the direct product of elementary
abelian Sylow subgroups of D/Φ(D), every subgroup of D/Φ(D) can be written as the
intersection of some maximal subgroups of D/Φ(D). Hence, we have Claim 3.

Claim 4: Every chief factor of G below D is cyclic.

This follows from Claim 3 and [5, Chapter IV, Theorem 6.7].

Claim 5: D is a Hall subgroup of G.

Suppose that this assertion is false and let P be a Sylow p-subgroup of D such that
1 < P < Gp for some prime p and some Sylow p-subgroup Gp of G. Then p divides
|G : D|.

(a) D = P is a minimal normal subgroup of G.
Let N be a minimal normal subgroup of G contained in D. Then N is a q-group for

some prime q and NP/N is a Sylow p-subgroup of D/N. Moreover, D/N = (G/N)F is
a Hall subgroup of G/N by Claim 1 and p divides |(G/N) : (D/N)| = |G : D|. Hence,
N = P is a Sylow p-subgroup of D. Since D is nilpotent by Claim 2, a p-complement
V of D is characteristic in D and so it is normal in G. Therefore, V = 1 and D = N = P.

(b) If R , D, then Gp = D × R. Hence, Op′(G) = 1 and R/1 is F-central in G.
Indeed, DR/R ' D is a Sylow subgroup of G/R by Claim 1 and (a) and hence

GpR/R = DR/R, which implies that Gp = D(Gp ∩ R). But then Gp = D × R since
D < Gp by (a). Thus, Op′(G) = 1. Finally, from the G-isomorphism DR/D ' R, it
follows that R/1 is F-central in G.

(c) D = R � Φ(G) is the unique minimal normal subgroup of G.
Suppose that R , D. Then Gp = D × R is an elementary abelian p-group by (a) and

(b). Hence, R = 〈a1〉 × · · · × 〈at〉 for some elements a1, . . . , at of order p. On the other
hand, by Claim 3, D = 〈a〉, where |a| = p. Now let Z = 〈aa1 · · · at〉. Then |Z| = p and
ZR = DR = Gp since Z ∩ D = 1 = Z ∩ R and |Gp : R| = p. If Z = ZG is normal in G,
then from the G-isomorphism DZ/D ' Z it follows that Z/1 is F-central in G. Hence,
Gp = ZR ≤ Z∆(G) by Lemma 2.2(3) since R/1 is F-central in G by (b). In the case
when ZG = 1, by hypothesis Z < ZG ≤ Z∆(G) and again Gp = ZR ≤ Z∆(G). But then
G ∈ F by Remark 3.1. This contradiction establishes (c).
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(d) G is supersoluble, so Gp is normal in G.
Since F is a saturated formation, D � Φ(G) and so D = CG(D) by (c) and

[5, Chapter A, Theorem 15.6]. On the other hand, |D| = p by Claim 4 and (a), so
G/D = G/CG(D) is cyclic. Hence, G is supersoluble and so for some prime q dividing
|G| a Sylow q-subgroup Q of G is normal in G. Now (b) implies that, in fact, Q = Gp.
Hence, we have (d).

The final contradiction for Claim 5.
Since Φ(Gp) is characteristic in Gp, (d) implies that Φ(Gp) is normal in G and

so Φ(Gp) ≤ Φ(G) = 1. Hence, Gp is an elementary abelian p-group and it follows that
Gp = N1 × · · · × Nn for some minimal normal subgroups N1, . . . ,Nn of G by Maschke’s
theorem. But then Gp = D by (c). This contradiction completes the proof of Claim 5.

Claim 6: Every subgroup H of D is normal in D.
If HG , 1, then H/HG is normal in D/HG = GF/HG by Claim 1 and so H is

normal in D. Now suppose that HG = 1. Then HG ≤ Z∆(G) by hypothesis and hence
G/CG(HG) ∈ F by [9, Theorem 17.14] and [5, Chapter IV, Theorem 6.10]. It follows
that D ≤ CG(HG), which implies that H is normal in D.

Claim 7: |D| is odd.
Suppose that 2 divides |D|. Then G has a chief factor D/K with |D/K| = 2 by Claims

2 and 4. But then D/K ≤ Z(G/K) and so G/K ∈ F by Remark 3.1, which implies that
D ≤ K < D. This contradiction proves Claim 7.

Claim 8: The group D is abelian.
In view of Claims 6 and 7, D is a Dedekind group of odd order, giving Claim 8.

Conclusion of the proof of Theorem 1.4.
From Claims 3–8, it follows that Statement (i) holds for G, contrary to the choice

of G. This final contradiction completes the proof of (i).
(ii) We have to show that if H is any subgroup of D = GN, then x ∈ NG(H) for

each x ∈ G. It is enough to consider the case when H is a p-group for some prime p.
Moreover, in view of Statement (i), we can assume that x is a p′-element of G.

If HG , 1, then H/HG ≤ D/HG = (G/HG)N and so the hypothesis holds for
(G/HG, H/HG) (see the proof of Claim 1). Thus, H/HG is normal in G/HG by
induction, which implies that H is normal in G. If HG = 1, then HG ≤ Z∞(G) ∩ Op(G)
since H is subnormal in G. But then [H, x] = 1. The theorem is proved. �

Proof of Theorem 1.5. First observe that if LN(G) = L∆(G), then G is a PST-group
by Theorem 1.4 and [3, Theorem 2.1.8].

Now assume that G is a soluble PST-group and let A ∈ LN(G), that is, AG/AG is
nilpotent. Then A is subnormal in G and so A/AG ≤ Z∞(G/AG) by [2, Corollary 2] (see
also [3, Theorem 2.4.4]), which implies that AG/AG ≤ Z∞(G/AG). Hence, A ∈ L∆(G),
so LN(G) ⊆ L∆(G). The inverse inclusion follows from the fact that if A ∈ L∆(G), then
AG/AG ≤ Z∞(G/AG) ≤ F(G/AG). The theorem is proved. �
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