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Abstract

Let I be a zero-dimensional ideal in the polynomial ring K[x1, . . . , xn] over a field K. We give a bound for

the number of roots of I in Kn counted with combinatorial multiplicity. As a consequence, we give a proof

of Alon’s combinatorial Nullstellensatz.
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1. Introduction

Let R = K[x1, . . . , xn] denote the ring of polynomials in variables x1, . . . , xn over a field

K. Consider a system of polynomial equations


























f1(x1, . . . , xn) = 0,
...

fs(x1, . . . , xn) = 0,

where f1, . . . , fs are s polynomials in R.

The solutions in Kn of this system are the set of zeros of the ideal I = ( f1, . . . , fs)

in R, that is,

Z(I) = {(p1, . . . , pn) ∈ Kn | f (p1, . . . , pn) = 0 for all f ∈ I}.
If this system has only a finite number of solutions, then the number of solutions can

be bounded by Bézout’s theorem (see [4, Theorem 2.10]):

|Z(I)| 6 dimK(R/I), (1.1)

where dimK(R/I) is the dimension of the vector space R/I over K. Moreover, if K is an

algebraically closed field, the equality holds if and only if I is a radical ideal.

Thus, we can find the exact number of solutions if we know the radical of I

because Z(I) = Z(
√

I). For a general ideal I ⊂ R, it is more difficult to find
√

I, though

algorithms are known and have been implemented in some computer algebra systems
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(for example, Macaulay2 [8]). Fortunately, when I is zero dimensional, computing

the radical of I is much easier (see [4, Proposition 2.7] for more details). But, this

computation requires that we know almost all solutions Z(I). It means that in many

cases, we cannot always consider radical ideals. Thus, the bound (1.1) is still very

important in both theory and practice. This bound can be used to estimate and

determine the minimum distance and generalised Hamming weights for a class of

error-correcting codes obtained by evaluation of polynomials at points of an algebraic

curve (see, for instance, [6, 7] and the references given there).

It is worth mentioning that when we count solutions with algebraic multiplicity, the

bound (1.1) becomes equality if the field K is algebraically closed (see [4, Corollary

2.5]). We can compute the algebraic multiplicity using techniques from local rings, but

the computation is quite complicated.

The aim of this paper is to introduce the combinatorial multiplicity for solutions of

I in a combinatorial way. In practice, this invariant is easy to compute. Then we prove

that the bound (1.1) still holds when the roots are counted with this multiplicity. Before

stating our result, we need some terminology and notation.

For f =
∑

β∈Nn aβx
β ∈ R and α ∈ Nn, we define the Hasse derivative Dα f ∈ R by

Dα f =
∑

β∈Nn

aβ

(

β1

α1

)

· · ·
(

βn

αn

)

x
β1−α1

1
· · · xβn−αn

n .

For simplicity of notation, we write a vector α ∈ Nn to mean α = (α1, . . . ,αn) and for

p = (p1, . . . , pn) ∈ Kn we let (x − p)α stand for (x1 − p1)α1 · · · (xn − pn)αn . So, xα is the

monomial x
α1

1
· · · xαn

n and the Taylor expansion of f at p is (see [11])

f =
∑

α∈Nn

Dα f (p)(x − p)α. (1.2)

We say that f vanishes to order β at p if the Hasse derivatives Dα f (p) vanish

whenever α 6 β, that is, αi 6 βi for i = 1, . . . , n. Set

mvp( f ) = {β ∈ Nn | f vanishes to order β at p}

and, for an ideal I ⊆ R, set

mvp(I) = {β ∈ Nn | f vanishes to order β at p for all f ∈ I}.

By definition, if I = ( f1, . . . , fs), then mvp(I) = mvp( f1) ∩ · · · ∩mvp( fs).

We now define the combinatorial multiplicity (or multiplicity if there is no

confusion) of the ideal I of R at the point p by

multp(I) = |mvp(I)|.

It is obvious by definition that multp(I) ≥ 1 if and only if p ∈ Z(I).

The main result of the paper is the following version of Bézout’s theorem with

combinatorial multiplicity.
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THEOREM 1.1. Let I ⊆ R be an ideal of R such that Z(I) is a finite set. Then
∑

p∈Kn

multp(I) 6 dimK(R/I).

As an application, we use this theorem to give a simple proof for Alon’s Nullstel-

lensatz for multisets (Theorem 3.3).

The paper is organised as follows. In Section 2 we prove Theorem 1.1. In Section 3

we apply this theorem to give a simple proof for the well-known theorem, usually

called Alon’s Nullstellensatz for multisets (Theorem 3.3), and we also give a slight

generalisation of Alon’s Nullstellensatz for multisets (Theorem 3.4).

2. The number of solutions

Let p = (p1, . . . , pn) ∈ Kn. The maximal ideal mp = (x1 − p1, . . . , xn − pn) of R is

called the ideal of p. For β = (β1, . . . , βn), put

mp,β = ((x1 − p1)β1 , . . . , (xn − pn)βn ).

On the set Nn we define the natural partial order:

(α1, . . . ,αn) 6 (β1, . . . , βn) if and only if αi 6 βi for all i

and we write α < β to mean αi < βi for all i.

For f ∈ R = K[x1, . . . , xn], from the Taylor expansion of f (see (1.2)), we deduce

that f ∈ mp,β if and only if

Dα f (p) = 0 for all α < β. (2.1)

LEMMA 2.1. Let m,m1, . . . ,ms be pairwise distinct maximal ideals of R. Assume that

Q, Q1, Q2, . . . , Qs are ideals of R such that
√

Q = m,
√

Q1 = m1, . . . ,
√

Qs = ms. Then

Q1 ∩ · · · ∩ Qs * Q.

PROOF. Assume on the contrary that Q1 ∩ · · · ∩ Qs ⊆ Q. This would imply that

m1 ∩ · · · ∩ms =

√

Q1 ∩ · · · ∩
√

Qs =

√

Q1 ∩ · · · ∩ Qs ⊆
√

Q = m.

By [3, Proposition 1.11(ii)], we havemr ⊆ m for some 1 6 r 6 s. Butm andmr are two

different maximal ideals of R, so that the inclusion mr ⊆ m is impossible. Thus, the

lemma follows. �

We are now in the position to restate and prove the main result of this paper.

THEOREM 2.2 (= Theorem 1.1). Let I ⊆ R be an ideal of R such that Z(I) is a finite

set. Then
∑

p∈Kn

multp(I) 6 dimK(R/I).

PROOF. If Z(I) = ∅ or dimK(R/I) = ∞, the theorem obviously holds. Therefore, we

may assume that Z(I) , ∅ and dimK(R/I) < ∞.
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Let Z(I) = {p1, . . . , ps} and let mi = multpi
(I) for i = 1, . . . , s. Then

∑

p∈Kn

multp(I) = m1 + · · · + ms.

Since dimK(R/I) < ∞, by [5, Theorem 6, page 234], there is a gi ∈ K[xi] ∩ I for

each i = 1, . . . , n. Let di = deg(gi) and gi = aix
di

i
+ (terms of lower orders), where each

ai ∈ K and ai , 0. It follows that Ddiei (gi) = ai , 0, where ei ∈ Nn has ith coordinate

1 and its other coordinates zero. Since Z(I) , ∅, we have di > 0 for every i. Let γ =

(d1, . . . , ds). It follows that

β < γ and β ∈ mvpi
(I) for i = 1, . . . , s. (2.2)

Letm1, . . . ,ms be the maximal ideals of p1, . . . , ps, respectively. For i = 1, . . . , s and

α ∈ Nn, put

mi,α = mpi,α = ((x1 − pi1)α1 , . . . , (xr − pin)αn ),

where pi = (pi1, pi2, . . . , pin). Obviously,
√
mi,α = mi if αi > 0 for all i.

For each i = 1, . . . , s and each α ∈ mvpi
(I), we choose a polynomial fi,α as follows.

By Lemma 2.1,

m1,γ ∩ · · · ∩mi−1,γ ∩mi+1,γ · · · ∩ms,γ * mi,

so we can take

gi,α ∈ m1,γ ∩ · · · ∩mi−1,γ ∩mi+1,γ · · · ∩ms,γ\mi.

Since gi,α < mi = (x1 − pi1, . . . , xn − pin), we can represent gi,α as

gi,α = aα + h1 · (x1 − pi1) + · · · + hn · (xn − pin),

where h1, . . . , hn ∈ R, aα ∈ K with aα , 0. Let fi,α = gi,α · (x − pi)
α. Then

fi,α ∈ m1,γ ∩ · · · ∩mi−1,γ ∩mi,α ∩mi+1,γ · · · ∩ms,γ (2.3)

and

fi,α = aα(x − pi)
α
+

n
∑

j=1

hj · (xj − pij)(x − pi)
α. (2.4)

In particular,

Dα fi,α = aα , 0. (2.5)

For f ∈ R, denote the image of f in the quotient ring R/I by [ f ]. Now we claim that

the set {[ fi,α] | i = 1, . . . , s and α ∈ mvpi
(I)} is linearly independent in the K-space R/I.

Indeed, assume that
∑

ai,α[ fi,α] = 0

in R/I, where ai,α ∈ K. Back in R, this means that g =
∑

i,α ai,α fi,α ∈ I. In particular,

Dβg(pi) = 0 and β ∈ mvpi
(I) for i = 1, . . . , s. (2.6)

We now prove that ai,α = 0 for all i,α. By symmetry, it suffices to show that a1,α = 0

for α ∈ mvp1
(I).
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For i > 2,

Dβ fi,ρ(p1) = 0 for all ρ ∈ mvpi
(I) and β ∈ mvp1

(I) (2.7)

because fi,ρ ∈ m1,γ and β < γ by (2.2). In the case i = 1,

Dβ f1,α(p1) = 0 for all α ∈ mvp1
(I) and β < α (2.8)

because f1,α ∈ m1,α.

Now we assume that a1,α , 0 for some α ∈ mvp1
(I). Let α ∈ mvp1

(I) be such that

a1,α , 0 and |α| is minimal. By (2.4), Dα f1,ρ(p1) = 0 if either |ρ| > |α| or |ρ| = |α| and

ρ , α. Together with (2.7) and (2.8) and the fact that a1,ρ = 0 for all ρ ∈ mvp1
(I) with

|ρ| < |α|,

0 = Dαg(p1) =
∑

i,ρ

ai,ρD
α fi,ρ(p1) =

∑

ρ

a1,ρD
α f1,ρ(p1) = a1,αDα f1,α(p1).

On the other hand, Dα f1,α(p1) , 0 by (2.5). Thus, a1,α = 0 and the claim follows.

By our claim, we have m1 + · · · + ms 6 dimK(R/I). The proof of the theorem is

complete. �

For a polynomial f ∈ R and a point p ∈ Kn, we say that f vanishes to order at least

m at p if the Hasse derivatives Dα f (p) vanish whenever |α| = α1 + · · · + αn < m. The

largest m for which this occurs is called the order of f at p and will be denoted ordp( f )

(see [11] for the detail). Note that ordp( f ) > 0 if and only if f (p) = 0. By convention,

we set ordp( f ) = ∞when f is the zero polynomial. It is obvious that ordp( f ) 6 deg( f )

whenever f is a nonzero polynomial. We define the order of an ideal I of R at the point

p ∈ Kn to be

ordp(I) = min{ordp( f ) | f ∈ I}.
This shows that ordp(I) = min{ordp( f1), . . . , ordp( fs)} if I = ( f1, . . . , fs).

LEMMA 2.3. Let I be a nonzero ideal of R and p ∈ Kn. Then ordp(I) 6 multp(I).

PROOF. We may assume that p ∈ Z(I). Let m = ordp(I). If m = 0, the lemma is obvious

and so we assume that m > 1. Then there is a β ∈ Nn such that Dβ f (p) , 0 and |β| = m.

Moreover,

Dαg(p) = 0 for all g ∈ R and all α ∈ Nn with |α| < m. (2.9)

Since m > 1, we may assume that β1 > 1. Let γ = (β1 − 1, β2, . . . , βn). By (2.9), we

deduce that γ ∈ mvp(I). Therefore,

multp(I) > (γ1 + 1) · · · (γn + 1) = β1(β2 + 1) · · · (βn + 1).

Together with (β2 + 1) · · · (βn + 1) > 1 + β2 + · · · + βn, this yields

multp(I) > β1(1 + β2 + · · · + βn) > β1 + β2 + · · · + βn = ordp(I),

as required. �

In general, the inequality in Lemma 2.3 is strict.
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EXAMPLE 2.4. Let n > 2 and I = (xn, yn) ⊂ R = Q[x, y]. Then

Z(I) = {p = (0, 0)}, multp(I) = n2 and ordp(I) = n.

Together, Theorem 2.2 and Lemma 2.3 yield the following result.

COROLLARY 2.5. Let I ⊆ R be an ideal of R such that Z(I) is a finite set. Then
∑

p∈Kn

ordp(I) 6 dimK(R/I).

3. Combinatorial Nullstellensatz

In this section we always assume that S1, . . . , Sn are finite nonempty subsets of K

with si = |Si| and S = S1 × · · · × Sn ⊆ Kn. For f ∈ R = K[x1, . . . , xn], we define

ZS( f ) = {(p1, . . . , pn) ∈ S | f (p1, . . . , pn) = 0}.
The following theorem of Alon, known as the combinatorial Nullstellensatz, has

numerous applications in combinatorics, graph theory and additive number theory (see

[1, 2, 11]). It gives a condition for ZS( f ) , S.

THEOREM 3.1 [1, Theorem 1.2]. Let f be a polynomial in R. Suppose that the

coefficient of x
α1

1
· · · xαn

n in f is nonzero and deg( f ) = α1 + · · · + αn. Then, for any

subsets S1, . . . , Sn of K satisfying |Si| > αi + 1, there is p = (p1, . . . , pn) ∈ S1 × · · · × Sn

so that f (p) , 0.

This theorem can be generalised in various ways. Kós and Rónyai [9, Theorem 6]

formulated Alon’s Nullstellensatz for multisets. For each i = 1, . . . , n, suppose further

that we have a (positive integer) multiplicity mi(s) attached to the elements of s ∈ Si.

We can view the pair (Si, mi) as a multiset which contains the element s ∈ Si precisely

mi(s) times. We shall consider the sum di = d(Si) =
∑

s∈Si
mi(s) as the size of the

multiset (Si, mi). For an element p = (p1, . . . , pn) ∈ S, we set the multiplicity vector

m(p) as (m1(p1), . . . , mn(pn)).

For each p ∈ S and f ∈ R, we define

mvp(m, f ) = {β ∈ Nn | β < m(p) and f vanishes to order β}
and

multp(m, f ) = |mvp(m, f )|,
which we call the multiplicity of f at p with respect to multiplicity m.

By using Theorem 2.2, we obtain the following proposition.

PROPOSITION 3.2. Consider an arbitrary, but fixed, monomial ordering on R. For

a nonzero polynomial f ∈ R, let x
α be the leading monomial of f . Assume that

(S1, m1), (S2, m2), . . . , (Sn, mn) are multisets of K such that the size di of (Si, mi) satisfies

di > αi for every i = 1, . . . , n. Then
∑

p∈S
multp(m, f ) 6 d1 · · · dn − (d1 − α1) · · · (dn − αn). (3.1)
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PROOF. For each i = 1, . . . , n, let

gi(xi) =
∏

s∈Si

(xi − s)mi(s).

Then {g1, . . . , gn} is a universal Groebner basis for the ideal I = (g1, . . . , gn). For every

p ∈ S, it is obvious that mvp(I) = {β ∈ Nn | β < m(p)}, so mvp(I, f ) = mvp(m, f ). By

Theorem 2.2,
∑

p∈S
multp(m, f ) =

∑

p∈S
multp((I, f )) =

∑

p∈Kn

multp((I, f )) 6 dimK(R/(I, f )).

The leading term of f is of the form lt( f ) = axα for some a ∈ K with a , 0. Note

that lt(gi) = x
di

i
for each i. By [5, Proposition 4, page 232],

dimK(R/(I, f )) = dimK(R/ in(I, f )) 6 dimK(R/(x
d1

1
, . . . , xdn

n , xα)

= d1 · · · dn − (d1 − α1) · · · (dn − αn),

where in(I) is the initial ideal of I with respect to the given order.

Thus,
∑

p∈S
multp(m, f ) 6 d1 · · · dn − (d1 − α1) · · · (dn − αn)

and the proposition follows. �

We now give a version of Alon’s Nullstellensatz for multisets as formulated by Kós

and Rónyai [9, Theorem 6]. We obtain Alon’s result by setting mi(s) = 1 identically.

Here we give a proof by using Proposition 3.2.

THEOREM 3.3 [9, Theorem 6]. Let f ∈ R be a polynomial of degree
∑n

i=1 αi, where

each αi is a nonnegative integer. Assume that the coefficient in f of the monomial

x
α1

1
· · · xαn

n is nonzero. Suppose further that (S1, m1), (S2, m2), . . . , (Sn, mn) are multisets

of K such that the size di of (Si, mi) satisfies di > αi for i = 1, . . . , n. Then there exist

a point p = (p1, . . . , pn) ∈ S1 × · · · × Sn and an exponent vector β = (β1, . . . , βn) with

βi < mi(pi) for each i such that Dβ f (p) , 0.

PROOF. Take any monomial order on R such that the leading monomial of f is xα. By

Proposition 3.2,
∑

p∈S
multp(m, f ) 6 d1 · · · dn − (d1 − α1) · · · (dn − αn).

On the other hand, if β ∈ mvp(m, f ) for every p ∈ S and β < m(p), then
∑

p∈S
multp(m, f ) =

∑

p=(p1,...,pn)∈S
m1(p1) · · ·mn(pn) = d1 · · · dn,

which contradicts the inequality above. Thus, there are p ∈ S and β < m(p) such that

Dβ f (p) , 0, as required. �
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The next theorem is a slight generalisation of Theorem 3.3. The proof uses the

theory of Groebner bases. Let f be a polynomial in R. We define the support of f by

supp( f ) = {α ∈ Nn | the coefficient of xα is nonzero in f }.
An element of supp( f ) is called maximal if it is maximal with respect to the natural

order on Nn.

THEOREM 3.4. Let f ∈ R be a polynomial. Suppose that α = (α1, . . . ,αn) is maximal

in supp( f ). Assume further that (S1, m1), (S2, m2), . . . , (Sn, mn) are multisets of K such

that for the size di of (Si, mi), we have di > αi for i = 1, . . . , n. Then there exist a

point p = (p1, . . . , pn) ∈ S1 × · · · × Sn and an exponent vector β = (β1, . . . , βn) with

βi < mi(pi) for each i such that Dβ f (p) , 0.

PROOF. For a point p ∈ Kn and an exponent vector β ∈ Nn with positive integer

components, we put

I(p,β) = {g ∈ R | Dγg(p) = 0 for all γ < β},
where γ < β means γi < βi for i = 1, . . . , n. This is actually an ideal in R.

Let

I =
⋂

p∈S
I(p, m(p)).

In order to find the generators of I, for each i = 1, . . . , n, we set

gi(xi) =
∏

s∈Si

(xi − s)mi(s).

Then {g1, . . . , gn} is a universal Groebner basis for I by [9, Corollary 3].

We now turn to the proof of the theorem. Assume on the contrary that for every

β = (β1, . . . , βn) with βi < mi(pi) for each i, we have Dβ f (p) = 0. Then we would have

f ∈ I. Take any monomial order on R. For a polynomial g in R, we denote the leading

term of g by lt(g). Then lt(gi) = x
di

i
for each i.

Since {g1, . . . , gn} is a Groebner basis for I, the remainder of f on division by

(g1, . . . , gn) by using the division algorithm (see [5, Theorem 3, page 64 and Corollary

2, page 82]) is zero. The division algorithm to find the remainder can be described as

follows.

(1) Let r := f .

(2) If r has a term, say aβx
β, which is divisible by lt(gi) for some i, then let

r := r − aβ
xβ

lt(gi)
gi

and repeat this procedure.

If r has no such terms, then r is the remainder.

We now claim that xα is a maximal element in supp(r) in every step of the algorithm

above. Indeed, at the start of the algorithm we have r = f , so the assertion holds.
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Assume that at some step xα is maximal in supp(r). At the next step,

r := r −
aβx

β

lt(gi)
gi,

as in the algorithm above. Observe that xβ is divisible by lt(gi) and xα is not since

lt(gi) = x
di

i
and αi < di. Thus, xβ , xα. On the other hand, every term of (aβx

β/lt(gi))gi

divides xβ. Consequently, every term is not divisible by xα because of the maximality

of xα. This forces xα to be maximal in supp(r) after this step and the claim

follows.

By this claim, we deduce that the remainder of f on division by (g1, . . . , gn) is

nonzero, which is a contradiction. Therefore, Dβ f (p) , 0 for some β = (β1, . . . , βn)

with βi < mi(pi) for each i and the proof is complete. �

A consequence of Theorem 3.4 is the following result of Lasoń [10], which is also

a generalisation of Alon’s Nullstellensatz.

THEOREM 3.5 [10, Theorem 2]. Let f be a polynomial in R. Suppose that (α1, . . . ,αn)

is maximal in supp( f ). Then, for any subsets S1, . . . , Sn of K satisfying |Si| > αi + 1,

there are p1 ∈ S1, . . . , pn ∈ Sn so that f (p1, . . . , pn) , 0.

REMARK 3.6. For each i = 1, . . . , n, put

gi(xi) =
∏

s∈Si

(xi − s).

For a nonzero polynomial f of R, let I = (g1, . . . , gn, f ) ⊆ R. Then ZS( f ) = Z(I). Now

take an arbitrary order on R and let xα be the leading monomial of f with respect to

this order. Assume that αi < si for all i. The inequality (3.1) in Proposition 3.2 becomes

|ZS( f )| 6 s1 · · · sn − (s1 − α1) · · · (sn − αn), (3.2)

which is called the footprint bound by some authors (see [7]), so we may consider (3.1)

as the footprint bound for multisets.

By virtue of Theorem 3.5, it is natural to ask whether the footprint bound (3.2)

holds whenever α is maximal in supp( f ) (that is, not necessarily a leading monomial

of f ). The following example shows that this is not the case.

EXAMPLE 3.7. Let K = F64 be a finite field with 64 elements. Let f = x5
+ y17

+ xy

and S1 = S2 = K, so that s1 = s2 = 64. Observe that the exponent α = (1, 1) of xy is

maximal in supp( f ).

We have s1s2 − (s1 − α1)(s2 − α2) = 127. On the other hand, by using Macaulay2

(see [8]), we can verify that

|ZS( f )| = 316,

where S = S1 × S2. Thus, |ZS( f )| > s1s2 − (s1 − α1)(s2 − α2).
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