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We consider linear waves propagating over periodic topographies of arbitrary
amplitude and wave form, generalizing the method in Howard & Yu (J. Fluid
Mech., vol. 593, 2007, pp. 209–234). By a judicious construction of a conformal
map from the flow domain to a uniform strip, exact solutions of Floquet type can be
developed in the mapped plane. These Floquet solutions, in an essentially analytical
form, are analogous to the complete set of flat-bottom propagating and evanescent
waves. Therefore they can be used as a basis for the solutions of boundary value
problems involving a wavy topography with a constant mean water depth. Various
concrete examples are given and quantitative results are discussed. Comparisons with
experimental data are made, and qualitative agreement is achieved.
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1. Introduction
In 2007 we published a paper (Howard & Yu 2007, hereafter referred to as HY07),

showing how exact solutions can be constructed for linear waves over large periodic
bottom corrugations, capable of describing both the slowly and fast varying aspects of
the flow. This was to some degree extended in Yu & Howard (2010, hereafter referred
to as YH10). In both of these papers, we made use of a particular family of bottom
profiles because of the existence of simple familiar formulas for a conformal map of
the flow domain to a uniform strip. The question has been raised since then of whether
these exact solutions are restricted to the special choice of the bed form. The purpose
of this paper is to generalize the exact theory, considering periodic topographies of
arbitrary amplitude and wave form.

Wave propagation over variable topographies has long been of interest to scientists
and engineers, due to its importance in coastal and oceanographic applications. The
mathematical difficulty for problems of this kind is evident: even for linear waves
over a simple regular periodic topography, there are few exact analytical solutions.
Consequently, a wide range of approximate theories has been developed, using
various techniques and making various hypotheses, such as small bottom amplitude
(or other geometry constraints), slowly varying waves, etc.; for large bottom amplitude,
numerical, or semi-numerical, methods have generally been sought (see the discussion
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in Athanassoulis & Belibassakis 1999, and references therein). Problems involving
periodic topographies have been extensively studied, in particular since the work
of Davies (1982) and Heathershaw (1982), due to the interest in Bragg resonance
(when the water wavelength is twice the bottom wavelength). For rapidly varying
topographies, one approach is to discretize the bottom into small pieces of horizontal
steps, on each of which the solution is represented as a linear combination of the
flat-bottom waves and evanescent modes appropriate to the local depth. The proportion
coefficients are solved numerically by matching the flow conditions at the boundaries
between the sections, together with suitable conditions at the ends of the variable bed
region: see Devillard, Dunlop & Souillard (1988), O’Hare & Davies (1992) and Rey
(1992), among many others. The computational cost can be high depending on the
discretization and the number of modes needed. A similar approach is to superpose the
flat-bottom modes with spatially varying proportion coefficients, which are coupled
and described by a system of ordinary differential equations (upon applying a
variational principle or Galerkin method, for example). A significant improvement to
this method has been provided by Athanassoulis & Belibassakis (1999), who included
a sloping-bottom mode to amend the shortcoming in satisfying the bottom boundary
condition by the flat-bottom modes.

In an approach superficially similar to the piecewise bed approach in its use of
transfer matrices to combine individual sections, Porter & Porter (2003) formulated
a series of problems for scattering by a single bed period. The extended scattering
matrix for linking N periods of the bed involves the solution to a system of integral
equations, which arises from the use of flat-bottom propagating and evanescent waves
to construct the Green’s function for a bed period. The computation of particular
solutions is done by numerically solving the integral equations using the Galerkin
approximation. Results are given for particular cases of (i) scattering by a finite length
of periodic bed, (ii) waves analogous to Bloch waves in a crystal (which exist on
an infinite domain), and (iii) a low normal mode of a rectangular tank with periodic
bottom. (HY07 also treats normal modes of such a tank, but emphasizes relatively high
modes where effects of Bragg resonance are significant.)

In this paper, we extend the idea of HY07 to develop an exact theory for linear
time periodic motions over a general periodic topography without any constraint
on the undulation amplitude and shape, seeking the Floquet type of solutions in a
conformally mapped plane. Making use of the periodicity of the problem, we represent
the required conformal map as a Fourier series. The coefficients of the series are
computed iteratively, given a bed profile. The algorithm used in the present paper is
very effective for smooth functions, but becomes less so for non-smooth functions with
large bottom amplitude, for instance the square-wave bottom profile (with rounded
corners: see § 3). More efficient algorithms for extreme cases can certainly be found,
but we do not pursue them here.

The Floquet solutions, of Laplace’s equation and vertical boundary conditions,
consist of a family of two wave modes and two infinite families of evanescent
modes. These are completely analogous – but not identical – to the propagating
and evanescent waves on a flat bottom. They can be used to construct solutions to
various boundary value problems involving a wavy seabed (with a constant mean water
depth), in a way similar to the use of the flat-bottom solutions. Applications of the
solutions in HY07 and YH10 have been made there to the normal mode problem of
a tank with a corrugated bottom, and more recently to wave propagation over a patch
of bottom corrugations in an otherwise flat seabed (Yu & Zheng 2012; see also Zheng
2011).
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It should be mentioned that Nachbin (1995) used a numerical conformal
transformation of Schwarz–Christoffel type to consider randomly rapidly varying
topographies, extending the earlier work on linear waves in shallow water (Nachbin
& Papanicolaou 1992). Evans & Linton (1994) considered conformal transformation
to a uniform strip prior to applying a discretization technique essentially similar to
Devillard et al. (1988).

This paper is organized as follows. In § 2 the formulation of the problem is
presented, including the construction of the conformal transformation functions and
the Floquet solutions for time periodic motions in the mapped plane. The analogy
and connection of the Floquet solutions to the flat-bottom propagating and evanescent
modes are discussed in § 3, where quantitative results are also shown and discussed
using examples of bottom profiles, such as the doubly sinusoidal and square wave
(with rounded corners) bottoms. Remarks on water wave Bragg reflections are made
in § 4, clarifying the interpretation of higher-order (m> 1) reflections (occurring when
the water wavelength is close to 2/m times the bottom wavelength, m = 2, 3, . . .) and
the so-called first-order (m = 1) reflection of the mth Fourier components of a bed
profile. Comparisons with experimental data are also attempted. Summarizing remarks
follow in § 5.

2. Linear irrotational motions on a periodic seabed
Consider ideal fluids in the vertical plane (x, z). Let the seabed be at z=−h0+hb(x),

where h0 is a constant, and let the undisturbed free surface be z= 0. For linear inviscid
irrotational motions, the velocity potential φ is described by the following equations:

∇2φ = 0 for −h0 + hb(x)6 z 6 0, −∞< x<∞, (2.1)
φz = φxhb,x at z=−h0 + hb(x), (2.2)

φtt + gφz = 0 at z= 0. (2.3)

We consider hb(x) to be a periodic function of arbitrary shape and amplitude. The only
constraint is that hb(x) has zero average in x, so that the mean water depth is given by
h0. Let λbar be a period such that hb(x + λbar) = hb(x), hence the bottom wavenumber
kbar = 2π/λbar . (Although λbar may often be chosen to be the fundamental period, i.e.
the shortest distance that the bed form repeats, it is not required.) We define a water
wavenumber

kB = π/λbar , (2.4)

i.e. kB = kbar/2. We shall use kB for normalization to make the bottom undulations
π-periodic, following the general practice in Mathieu’s equation. Even though it does
not appear explicitly, the solution to linear motions over bottom corrugations has
features similar to those of solutions of Mathieu’s equation (YH10). Specifically, the
general idea of Floquet solutions applies here as well, as will be seen in § 2.2.

2.1. The conformal map
As in HY07, we wish to find a conformal transformation which maps the undisturbed
flow domain −h0 + hb(x) 6 z 6 0, −∞ < x <∞ onto a uniform strip −kBh 6 η 6 0,
−∞ < ξ < ∞, where η = −kBh is the flat bottom in the mapped plane. Since
the velocity potential is still given by a Laplace equation, exact solutions become
attainable in the mapped plane due to the simple geometry of the boundaries (straight
lines).
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Suppose we write the mapping functions x(ξ, η) and z(ξ, η) in Fourier series,

kBx= ξ − εkBh
∞∑

j=1

(
bj sin 2jξ − cj cos 2jξ

)
cosh(2jη)/ sinh(2jkBh), (2.5)

kBz= η − εkBh
∞∑

j=1

(
bj cos 2jξ + cj sin 2jξ

)
sinh(2jη)/ sinh(2jkBh), (2.6)

where bj and cj are both real, yet to be determined. The dimensionless parameter ε
is a measure of the bottom amplitude relative to the mean water depth h0, and is not
necessarily small. The Cauchy–Riemann conditions, ∂x/∂ξ = ∂z/∂η, ∂x/∂η =−∂z/∂ξ ,
can be verified by inspection; so this is indeed a conformal transformation. It is clear
that z = 0 is mapped onto η = 0. By requiring the seabed z = −h0 + hb(x) to be
mapped onto η =−kBh, we obtain from (2.5) and (2.6)

hb(x)= (h0 − h)+ εh
∞∑

j=1

(
bj cos 2jξ + cj sin 2jξ

)
, (2.7)

kBx = ξ − εkBh
∞∑

j=1

(
bj sin 2jξ − cj cos 2jξ

)
coth 2jkBh, (2.8)

which is a parametric representation of the bottom profile hb(x). This enables us to
determine the Fourier coefficients bj and cj, given a function hb(x), hence finding the
conformal transformation (2.5) and (2.6) with the designated purpose. For a periodic
function of arbitrary shape and amplitude, such a parametric representation in (2.7)
and (2.8) can always be found, as long as hb(x) can be represented by a Fourier series.
It is clear that hb(x) is π-periodic both in ξ and in kBx. The water depth h in the
mapped plane is determined by requiring the right-hand side of (2.7) to have a zero
mean in kBx, i.e.

h+ ε2kBh2
∞∑

j=1

j
(
b2

j + c2
j

)
coth(2jkBh)= h0. (2.9)

Clearly, h < h0. Figure 1 shows the geometry of an undisturbed flow domain in the
physical plane (x, z), and the corresponding uniform strip in the mapped plane (ξ, η),
indicating the water depths h0 and h. It is also seen from (2.7) and (2.8) that when
cj = 0, the bottom profile is symmetric in ξ , as well as in kBx. An example of a
symmetric profile can be seen in the cusp-like bottom corrugations in HY07 and
YH10.

It follows from the Riemann mapping theorem that any strip-like region, such as the
flow domain under consideration here (with a flat top and undulating bottom), can be
conformally mapped onto the strip of uniform depth and with a suitable normalization
in a unique way (Ahlfors 1953). When the bottom is periodic, so that it can be
(with very mild restrictions) represented by a Fourier series, this representation can
always be used to construct the conformal map, as described above. Given a profile
hb(x), we can solve for bj and cj from (2.7) and (2.8), using an iterative method
which involves applying the discrete Fourier transform in ξ repeatedly. Details of the
numerical scheme are given in appendix B.
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z

x

(a) (b)

FIGURE 1. A sketch of the undisturbed flow domain, showing relevant parameters in (a) the
physical plane (x, z) and (b) the mapped plane (ξ, η).

2.2. The Floquet solutions

For a time periodic solution, φ = ϕe−iωt + c.c., where ω is the angular frequency of the
simple harmonic waves. In the mapped plane (ξ, η), we write from (2.1)–(2.3)

ϕξξ + ϕηη = 0 for − kBh 6 η 6 0, −∞< ξ <∞, (2.10)
ϕη = 0 at η =−kBh, (2.11)

ϕη = σ 2

(
1− 2εkBh

∞∑
j=1

(
bj cos 2jξ + cj sin 2jξ

)
j

sinh(2jkBh)

)
ϕ at η = 0, (2.12)

where

σ = ω/√gkB (2.13)

is the dimensionless frequency. The solutions to (2.10)–(2.12) are of Floquet type
(HY07), i.e.

ϕ(ξ, η;µ)= eµξP(ξ, η;µ), (2.14)

and

P(ξ, η;µ)=
∞∑

n=−∞
Dneinξ cosh [(n− iµ) (η + kBh)]

cosh [(n− iµ) kBh]
(2.15)

is the periodic factor with period of π or 2π in ξ . The Floquet exponent µ and Fourier
coefficients Dn(µ) satisfy

LnDn =
∞∑

j=1

Dn−2jΘ
−
j + Dn+2jΘ

+
j , (2.16)

Θ±j = j
(
bj ± icj

)
sinh(2kBh)/ sinh(2jkBh), (2.17)

Ln := (εkBh)−1 sinh(2kBh)
{

1− σ−2 (n− iµ) tanh [(n− iµ) kBh]
}
. (2.18)

The recurrence relation (2.16) comes from the free surface condition (2.12), where the
effects of the bottom on the wave are seen upon the transformation to (ξ, η). It is of
course also the periodic coefficients in (2.12) that make the Floquet theory relevant
here.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

43
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.432


456 J. Yu and L. N. Howard

The individual terms of the sum (2.15) are obviously solutions of the Laplace
equation (2.10) and the bottom boundary condition (2.11). They are not individually
solutions of the top boundary condition (2.12), but the sum is (together with the
factor eµξ ), provided the Fourier coefficients Dn(µ) and the Floquet exponent µ satisfy
(2.16) with the definitions (2.17) and (2.18). Although it is superficially similar to the
elementary separation of variables techniques, which can be used for the flat-bottom
case (ε = 0), we cannot obtain here the ordinary type of Sturm–Liouville eigenvalue
problem in the vertical direction. This is because the top boundary condition (2.12)
contains the horizontal variable ξ when ε 6= 0. Instead, we get the problem of finding
µ so that the homogeneous system (2.16) has non-trivial solutions. This leads to Hill’s
determinant and associated ideas discussed in § 2.3. A few points are worth making.

First, we note that Θ+j and Θ−j are complex conjugates and completely determined
by the properties of the map, being independent of the frequency σ and Floquet
exponent µ. The definition of Ln is the same as in HY07, and Ln(−µ) = L−n(µ) for
any µ.

Second, from (2.16) it is seen that Dn for even and odd n do not couple. This is due
to the fact that the coefficients in (2.12) are π-periodic, a common feature in Mathieu’s
equation. One can choose to use either an even or odd representation in (2.14). An
even representation can be made into an odd representation by replacing µ with µ − i
or µ + i, and vice versa. Without any loss of generality, and to suppress this apparent
non-uniqueness in representing the solution, we shall require −1< Im(µ)6 1 (HY07).

Third, there are some symmetry properties which can be used to advantage in
computation. For real µ, L−n(µ) = L∗n(µ) and Dn(µ) = D∗−n(µ), where ∗ stands for
complex conjugate; hence ϕ(µ) is real. For pure imaginary µ, Ln(µ) are real and
D∗n(−µ) = D−n(µ); thus ϕ(−µ) = ϕ∗(µ). For symmetric bottom profiles, cj = 0 and
Θ+j = Θ−j , and are real. In this case, Dn(−µ) = D−n(µ) for real µ and the periodic
factor for −µ is the complex conjugate of that for µ; for pure imaginary µ, Dn are
real (or can be scaled to be so) and Dn(−µ) = D−n(µ), so the periodic factor is the
same for µ and −µ.

2.3. The ‘dispersion relationship’ µ(σ)
The crux of the problem is to determine the Floquet exponents µ. Let X be the vector
whose elements are Dn. The homogeneous system (2.16) is written as AX = 0, where
A is a square matrix. For example, for n= odd and

X = [· · · D−3 D−1 D1 D3 · · · ]T, (2.19)

where T stands for transpose,

A=



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · L−3 −Θ+1 −Θ+2 −Θ+3 · · ·
· · · −Θ−1 L−1 −Θ+1 −Θ+2 · · ·
· · · −Θ−2 −Θ−1 L1 −Θ+1 · · ·
· · · −Θ−3 −Θ−2 −Θ−1 L3 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


. (2.20)

The infinite determinant of A is a function of σ and µ, given the properties of the
map. Denoting ∆(µ, σ)≡ det(A), the determinantal equation

∆(µ, σ)= 0 (2.21)
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determines the possible Floquet exponents µ given a frequency σ . This relationship
is similar to that for Hill’s equation, from which Hill’s infinite determinants are
named. (In Mathieu’s equation, A is tri-diagonal.) For a typical Hill’s determinant,
the issues of convergence and the solutions are well studied (Whittaker & Watson
1927). Convergence of such an infinite determinant is not particularly relevant here,
because the determinant can be made to converge by multiplying rows and columns by
suitable non-zero factors, which will affect neither the roots of (2.21) nor the method
of the solutions (Jeffreys & Jeffreys 1950). In the present problem,

∑
Θ±j is absolutely

convergent, as bj and cj are the Fourier coefficients of the bottom profile. In fact, the
behaviour of Θ±j at large j is dominated by 1/ sinh(2jkBh): see (2.17). Even if the bed
profile has a jump discontinuity, bj and cj converge as 1/j. It is then seen from (2.17)
that an overall bound of at worst Θ±j ∼ e−2jkBh can be expected. The diagonal elements
Ln behave as (n − iµ) for large n. To solve (2.21), we can normalize the diagonal
elements to be 1 for the convergence. For pure imaginary µ and µ = 0, ∆(µ, σ) is
real since A is Hermitian. For real µ, ∆(µ, σ) is also real due to the symmetry in
A: see appendix A. Once µ is determined, the Dn are given by the vector in the null
space of A.

We shall refer to (2.21) as the ‘dispersion relation’ for linear modes over a wavy
bottom. In both the elementary water wave theory and for Floquet solutions over
a periodical bed, we are dealing with temporally sinusoidal motions of a definite
frequency ω. But the Floquet solutions cannot really be said to have a ‘wavenumber’,
unless µ = 0. They are not spatially sinusoidal, nor are they usually even spatially
periodic. The Floquet form of the solutions is, however, analogous to the ordinary
planar wave theory, and it seems appropriate to call the relation between temporal
frequency and the exponent µ by the same name.

3. Discussion
The Floquet solution, given in (2.14) and (2.15), is not a particular solution. It

represents a set of solutions, individually identified by the Floquet exponents µ. The
behaviour of these Floquet solutions as ε→ 0 can be followed either numerically or
by treating (2.12) as a perturbation in ε, taking either a flat-bottom propagating or
evanescent mode as the zero state. Alternatively, one can carry out the perturbation
in ε of the matrix A and (2.21). This is the approach adapted in YH10, in which A
is tri-diagonal and det(A) can be written as a continued fraction due to the simple
conformal transformation associated with the bottom profile used.

For a given temporal frequency ω there is a Floquet exponent µ (and its negative),
which tends to zero as ε→ 0 while the associated solution approaches a flat-bottom
propagating wave (or standing wave if ω is a flat-bottom Bragg resonance frequency).
It thus seems appropriate to refer to these motions as wave modes. For these modes,
µ is found to be either real or pure imaginary, depending on whether ω is inside or
outside a resonance wedge (HY07, YH10). In addition to these, for the given ω we
also find an infinite family of µ (and their negatives) which are real and approach
the eigenvalues (non-zero) of evanescent waves of a flat bottom as ε→ 0. These are
referred to as Floquet evanescent modes. It should be noticed that for wave modes
with real µ, the wave amplitude modulates exponentially in space due to the factor eµξ ,
but much more slowly. This is quite different from the evanescent modes, which are
characterized by rapid exponential variation in ξ due to the large values of µ.

It is well known that the complete set of flat-bottom eigenfunctions consists of two
wave modes (left- and right-propagation) and two families of evanescent modes, each
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of which has infinite numbers. These modes form the basis for constructing solutions
to various boundary value problems. Using the Floquet solutions in (2.14)–(2.18), a
complete set of analogues can be found: that is, as ε→ 0, the set of Floquet solutions
approaches the complete set of the flat-bottom linear modes for the given frequency ω.
It is therefore clear that the Floquet solutions in (2.14)–(2.18) can be used as the basis
for solutions to boundary value problems involving a wavy bottom.

Of particular interest are the frequencies for µ = 0, at which the velocity potential
is entirely given by the periodic factor and has spatial period λbar or 2λbar . These
frequencies are also the boundaries separating the wave modes with real and
pure imaginary µ, corresponding to exponential and oscillatory modulation of the
wave amplitude in space. Given kBh0, we can always write the flat-bottom (ε = 0)
frequencies ωBm for waves with wavenumber kBm ≡ mkB, i.e. wavelength λ= (2/m)λbar ,
m = 1, 2, 3, . . . . For the given kBh0, and for ε 6= 0, two frequencies for µ = 0 can be
found, ωc−

m and ωc+
m , both approaching ωBm as ε→ 0. In the plane (ω, ε), the regions

bounded by ωc−
m (ε) and ωc+

m (ε) are referred to as the mth resonance tongues, after the
vertex points (ωBm, 0). For ω inside a resonant tongue, µ is real for the wave modes
and the wave amplitudes are modulated exponentially in x. Since such waves cannot
exist in an open domain −∞ < x <∞, these frequencies are said to be unstable
(or ‘forbidden’ in physics). Such waves, however, have physical meaning on a finite
domain of indefinite length, and are important for the phenomena of Bragg resonances
in water waves (not the primary topic of this paper, but some remarks will be made
in § 4). For ω outside a resonant tongue, µ is pure imaginary for the wave modes and
the wave amplitudes are modulated sinusoidally. These are sometimes also viewed as
‘quasi-periodic’ in space.

Along the boundaries of the mth resonance tongue where µ = 0, the motion has
spatial period 2λbar or λbar , but as ε→ 0 these waves approach the flat-bottom wave of
wavelength λ= (2/m)λbar (corresponding to ωBm), which for m> 2 is shorter than λbar .
One might naturally ask if these waves actually have the shortest period λ= (2/m)λbar
along the boundaries of the mth tongue. This seems not to be case when m > 2. As
will be seen in the examples that follow, for m > 2 there appear to be m cycles of
a wave within a period of the periodic factor, all with ‘local’ wavelengths close to
λ = (2/m)λbar but none of them repeating the waveforms of others. It is only in the
limit ε→ 0 that they become identical.

We have considered a number of examples of bottom profiles with various
ε and kBh0. Some profile functions are given in appendix C. The conformal
maps are found using the method in appendix B and the resonant tongues for
m = 1, 2, 3 and 4 are computed. Three cases are discussed here: (i) a simple
sinusoidal profile hb(x) = εh0 cos 2kBx with kBh0 = 1.0; (ii) a doubly sinusoidal profile
hb(x) = εh0 (sin 4kBx+ sin 6kBx) with kBh0 = 0.6545; (iii) a square wave profile with
rounded corners, hb(x) in (C 1) with kBh0 = 0.5. To fix the idea, we define the
crest-to-trough height of bottom undulations as 2ab = hb,max − hb,min and refer to ab

as the bottom amplitude. Thus, ab/h0 = ε, 1.9057ε and 1.2810ε for cases (i)–(iii),
respectively.

Sample plots of the bottom profiles are shown varying in kBx and in ξ , in
figures 2(a), 3(a) and 4(a) with ab/h0 = 0.5, 0.7623 and 0.4484, respectively. The
graph of hb(ξ) as a function of x(ξ) is included, but is almost indistinguishable from
that of hb(x) versus kBx, indicating the accuracy of the map computed. In the mapping
variable ξ , the bottom profile in general has flattened crests and sharpened troughs.
As ε increases, the troughs become increasingly cusp-like, requiring more sampling
points for applying the discrete Fourier transform in finding the map. The sampling
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FIGURE 2. (a) Graphs of a simple sinusoidal bed hb(x) = εh0 cos 2kBx, for ε = 0.5 and
kBh0 = 1.0: ——, hb(x) versus kBx; – – –, hb(ξ) versus ξ ; · · · · · · , hb(ξ) versus x(ξ)
(indistinguishable from the solid curve). (b) Resonance tongues (unstable frequencies) for
m= 1, 2, 3 and 4: ——, ωc−

m ; – – –, ωc+
m . Frequency is normalized as in (2.13).
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FIGURE 3. (a) Graphs of a doubly sinusoidal bed hb(x) = εh0 [sin(4kBx)+ sin(6kBx)], for
ε = 0.4 and kBh0 = 0.6545: ——, hb(x) versus kBx; – – –, hb(ξ) versus ξ ; · · · · · · , hb(ξ)
versus x(ξ). (b) Resonance tongues (unstable frequencies) for m = 1, 2, 3 and 4: ——, ωc−

m ;
– – –, ωc+

m . Frequency is normalized as in (2.13). Dotted curves, m = 1 resonance tongue for
hb = εh0 sin(4kBx).

points N = 210 are used for ε > 0.7 (ab/h0 > 0.7) in case (i), N = 212 for ε > 0.35
(ab/h0 > 0.6670) in case (ii) and N = 211 for ε > 0.3 (ab/h0 > 0.3843) in case (iii).
Note that Θ±j can be truncated maximally at j = N/2 because of the truncation of
bj and cj: see (2.5). Therefore, the maximum dimensions of the matrix A obtained
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FIGURE 4. (a) Graphs of a square wave bed with rounded corners, for hb(x) given in (C 1),
and ε = 0.35 and kBh0 = 0.5: ——, hb(x) versus kBx; – – –, hb(ξ) versus ξ ; · · · · · · , hb(ξ)
versus x(ξ). (b) Resonance tongues (unstable frequencies) for m = 1, 2, 3 and 4: ——, ωc−

m ;
– – –, ωc+

m . Frequency is normalized as in (2.13).

from (2.15) using the odd n representation are N/2 × N/2, or (N/2 + 1) × (N/2 + 1)
using the even n; correspondingly, the Fourier coefficients of the periodic factor can
be determined for D±n, n = 1, 3, . . . ,N/2 − 1, or D±n, n = 0, 2, . . . ,N/2. However,
because of the exponential convergence of Θ±j mentioned above, one can reduce the
size of A without significantly affecting the result of (2.21). In various examples we
have explored, we have tried to truncate Θ±j at j = N/2, N/4 and even j = N/8 for
large N, and found essentially same results of (σ, µ) and Dn within the numerical
accuracy.

Given a water depth kBh0, the resonance tongues sweep towards low frequency as ε
increases, due to the decrease of water depth kBh in the mapped plane: see figures 2(b),
3(b) and 4(b). The down-shift of frequency can be so significant that the flat-bottom
resonance frequency ωBm (the vertex of a tongue) can be outside the resonance tongue
even when ε is fairly small. This is consistent with the previous studies of a cusp-like
bottom (HY07, YH10), in which kBh is fixed and the resonance tongues are seen to
bend towards high frequencies as ε increases due to an increase of the corresponding
kBh0. For the sinusoidal bed, the resonance tongues for m > 1 are extremely narrow:
see figure 2(b). Simple sinusoidal bed profiles are often used in asymptotic analyses
considering small ε and slowly varying waves (e.g. Mei 1985; Yu & Mei 2000). Such
analyses are illuminating in physics, but it will be difficult to extend them to higher
orders for studying m > 1 resonances even when ε is small, due to the down-shift of
frequency and the narrowness of the unstable regions.

The resonance tongues do not necessarily become narrower as m increases. For
example, for the doubly sinusoidal bed, the resonance tongue for m = 2 is the largest,
and those for m = 1 and m = 3 are comparable: see figure 3(b). For the square wave
bed in figure 4(b), the resonance tongues for even m are smaller. Furthermore, the
boundaries of the resonance tongue for m = 2 merge together as ε increases, reducing
the tongue width to nearly zero, but become separated again as ε increases further.
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FIGURE 5. Graphs of µ2 as a function of σ for wave modes near the m = 1, 2 and 3
resonance tongues: (a) for the simple sinusoidal bed in figure 2(a); (b) for the doubly
sinusoidal bed in figure 3(a); (c) for the square wave bed in figure 4(a).

Similar behaviour is also seen for m = 4, except that the merging occurs at higher ε.
Although the resonance tongues in this study have some features similar to those for
the typical Mathieu equation, such as the sweeping cusp-like shape, this feature of
merging and separating of the boundaries, to the best of our knowledge, has not been
observed previously. However, for Hill’s equations, it is known that in certain cases
some, or even most, of the resonance tongues (or unstable intervals) may disappear:
see Magnus & Winkler (1979) especially chapter 7.

Figure 5 shows µ2 as a function of the dimensionless frequency σ for the wave
modes. For σ outside a resonance tongue, µ2 < 0 as µ is pure imaginary; when
inside, µ is real and µ2 > 0. To give a general idea, the periodic factors at the free
surface z = 0 (i.e. η = 0) are plotted in figure 6 for the wave modes over the doubly
sinusoidal bed in figure 3(a). The frequencies are σ = 0.5430, 0.5698, 0.6318, 0.6882
(with µ = 0.1049i, 0, 0.1009, 0), corresponding to the outside, left boundary, middle
and right boundary of the m = 1 resonance tongue, respectively. The surface elevation
is eµξP(ξ, 0;µ), using the value of µ for each case. As is pointed out in HY07, the
Floquet exponent µ for ξ is for kBx as well, and the periodic factors in the physical
and mapped plane are related by eµkBxP1(kBx, kBz;µ) = eµξP(ξ, η;µ), with P1 and P
having the same period. When µ = 0, P1 and P are the same. For completeness, the
periodic factors at z = 0 for higher-frequency wave modes (with µ = 0) are shown in
figure 7. Along the boundaries for m = 1 and m = 2 tongues, the waves have exact
wavelengths λbar/m: see figures 6(b,d) and 7(a). For m = 3 in figure 7(b), there are
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FIGURE 6. Periodic factor at η = 0 for the propagating wave mode over the doubly
sinusoidal bed in figure 3(a): (a) σ = 0.5430, µ = 0.1049i; (b) σ = 0.5698, µ = 0;
(c) σ = 0.6318, µ = 0.1009; (d) σ = 0.6882, µ = 0. Lines: ——, P as a function of kBx;
– – –, P as a function of ξ .

three waves in an interval of 2π (period of the motion), all with wavelengths close
to 2π/3, but different. Similarly, for m = 4 in figure 7(c), the local wavelengths of
individual waves are close to 2π/4; as a result, the spatial pattern of the motion
repeats after 2 waves, i.e. in period π of the periodic factor.

The Floquet exponents for the first three evanescent modes are listed in table 1 for
σ = 0.5698 and σ = 1.0856. It is clear that the horizontal variation is essentially eµξ

given the large real values of µ (and their negatives). For comparison, we include
the eigenvalues of the flat-bottom evanescent modes for both depths kBh0 and kBh,
i.e. µflat = κn/kB, where ω2 = −gκn tan κnh. The Floquet exponents are fairly close
to the flat-bottom eigenvalues for the water depth kBh in the mapped domain, and
significantly different from the values of µflat for the mean depth kBh0 in the physical
domain (which are the limiting values as ε→ 0).

4. Remarks on Bragg resonances by a periodic bottom
Although the resonance tongues are forbidden zones for waves travelling in
−∞ < x <∞, they are of great interest in studies of wave scattering in a finite
domain. One of the examples is Bragg resonance of water waves by a finite patch of
wavy bottom. In this case, a travelling wave with a frequency inside a resonance
tongue becomes exponentially modulated over the patch due to the cumulative
effects of reflections from successive bottom undulations. The phenomenon has been
extensively studied in the literature because of its implications for coastal morphology
and sediment processes: see Mei, Hara & Yu (2001) and references therein.
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FIGURE 7. Periodic factor at η = 0 for higher-frequency wave mode over the doubly
sinusoidal bed in figure 3(a): (a) σ = 1.0856, µ = 0; (b) σ = 1.5630, µ = 0; (c) σ = 1.9262,
µ= 0. Lines: ——, P as a function of kBx; – – –, P as a function of ξ .

σ = 0.5698 σ = 1.0856

µ µflat1 µflat2 µ µflat1 µflat2

7.510622 7.510825 4.694487 7.221154 7.223535 4.400179
15.179226 15.179253 9.548043 15.041292 15.041564 9.409620
22.812136 22.812144 14.365440 22.720948 22.721027 14.274113

TABLE 1. The Floquet exponents µ of the first three evanescent modes for the doubly
sinusoidal bed in figure 3(a), compared with the eigenvalues of the flat-bottom evanescent
modes: µflat1 is for kBh= 0.4125 and µflat2 is for kBh0 = 0.6545.

A very interesting and careful laboratory study of Bragg resonances was carried out
by Guazzelli, Rey & Belzons (1992), who considered linear water waves propagating
over the doubly sinusoidal beds. One of the bed forms was a sum of two equal-
amplitude sine waves of wavelength 6 and 4 cm, i.e. wavenumbers K1 = π/3 cm−1

and K2 = π/2 cm−1 respectively. The fundamental (shortest) spatial period of the bed
is therefore 12 cm (since 12 is the least common multiple of 6 and 4). Using our
notation, kB = π/12 cm−1, making K1 = 4kB and K2 = 6kB. This is the profile in case
(ii) in § 3. Two sets of parameters were used in the experiments: ε = 0.25 with
kBh0 = 1.0472 and ε = 0.4 with kBh0 = 0.6545.

Guazzelli et al. found three main peaks in the reflection coefficient upwave of a
patch of these beds, near the frequencies corresponding to water waves (on a flat
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bottom of the mean depth) of wavenumbers π/12, π/6 and π/4 cm−1. They referred
to the last two of these as the first-order (m = 1) Bragg reflections corresponding to
K1/2 and K2/2, as if the two individual bed components, sin K1x and sin K2x, were
alone, and interpreted the first peak near (K2 − K1) /2 as a ‘second-order subharmonic
resonance’. Guazzelli et al. used the asymptotic theory of Mei (1985) to compute the
reflection coefficients of the two sine bed components alone, and obtained individual
resonance peaks which agreed fairly well with the last two peaks of the measurements.
This seems to have suggested that the Fourier components of a bed can be viewed as
acting independently. In the earlier literature (Kirby 1986; Mattioli 1990), superposing
the results for individual bed components acting alone has been used. However, Kirby
(1986) remarked that, away from the resonance peaks, the reflection coefficients from
the result of superposition behave quite differently from that for the composite bed,
indicating interactions among the bed components. It is emphasized in YH10 that one
cannot interpret a m > 1 resonance of a general periodic bed as if it were the m = 1
resonance of its mth Fourier components cos(2mkBx) and sin(2mkBx), as there is no
linearity with respect to the bottom shape even when the fluid motion is linear. To
further stress this quantitatively, we include in figure 3 the m = 1 resonance tongue
of hb(x) = εh0 sin(4kBx), comparing with the m = 2 resonance tongue of the doubly
sinusoidal bed. The difference is clear.

Guazzelli et al. also did numerical simulations of the flow over the actual bed form
to calculate the reflection coefficients, and obtained good agreement over the whole
range, in particular at the frequency corresponding to (K2 − K1) /2, the ‘second-order
subharmonic’. It seems pretty clear that if either the K1 or K2 Fourier component
were removed from the actual bed form, one would not expect to see the peak at
(K2 − K1) /2. In other words, one would not expect to produce a peak reflection
close to (K2 − K1) /2 by linearly combining two numerical results, one for bottom
hb1 = sin(K1x) and the other for hb2 = sin(K2x), which is a point emphasized in YH10.
The fact that a peak at (K2 − K1) /2 is found both experimentally and numerically for
a doubly sinusoidal bottom of which (K2 − K1) is not even a component, indicates that
the individual Fourier components indeed do not act independently, and that it is not
appropriate to decompose the scattering problem with respect to the bed components.

Using the Floquet solutions in § 2, we identify the first-order (m = 1) Bragg
resonance wavenumber kB = π/12 cm−1, given by the shortest period of the bottom,
and the second and third resonance wavenumbers kB2 = π/6 cm−1 and kB3 = π/4 cm−1.
The flat-bottom frequencies associated with these wavenumbers, ωBm, are the vertices
of the m = 1, 2 and 3 resonance tongues at ε = 0. These can be readily verified in
figure 3 for kBh0 = 0.6545, recalling that σ = ω/√gkB.

It is particularly interesting to note that a shift towards lower frequency than ωBm

of the experimental resonance peaks was observed by Guazzelli et al. They also
remarked that the shift increases for larger ε. This is consistent with the frequency
down-shifting of resonance tongues as ε increases, which we observe from the Floquet
solutions: see figures 2(b)–3(b). In figure 8 of Guazzelli et al. (1992) for ε = 0.4 and
kBh0 = 0.6545, all three main experimental resonance peaks are noticeably shifted to
the low-frequency side of the corresponding flat-bottom Bragg frequencies (marked
by the arrows labelled f−, f1 and f2). By a close examination of that figure, we have
estimated the frequencies of these experimental peaks. They are listed in table 2,
together with the flat-bottom Bragg frequencies. For the Floquet solutions, it is seen in
figure 3(b) that ωB1, ωB2 and ωB3 are well outside the resonance tongues when ε = 0.4,
on the high-frequency side. It is expected that the peak of reflection coefficients is at
or close to the centre of the appropriate resonance tongue where the maximum value
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fobs (Hz) fexc (Hz) fflat (Hz)

1.68 1.6044 1.9341
2.97 3.0156 3.3539
4.18 4.1045 4.3329

TABLE 2. The frequencies at the first three resonance peaks for the doubly sinusoidal bed,
for ε = 0.4 and kBh0 = 0.6545: fobs, experimental data in figure 8 of Guazzelli et al. (1992);
fexc, the exact Floquet solutions; fflat , the flat-bottom Bragg frequencies.

of µ occurs. These frequencies can be obtained from figure 5(b), and are included
in table 2. The Floquet solutions compare very well with the experimental data at all
three peaks. Furthermore, figure 5(b) predicts that the peak of reflection coefficients
for the m = 2 resonance will be the greatest due to the large magnitude and broad
range of real µ in that region, while the peak for m = 3 resonance will be the
narrowest among the three. These features are similarly seen from the experimental
data in figure 8 of Guazzelli et al.

For more quantitative and detailed comparisons, one must solve the boundary value
problem of wave scattering by a patch of doubly sinusoidal bottom in an otherwise flat
bed, following the method in Yu & Zheng (2012) but using the Floquet solutions in
§ 2.2. This is beyond the scope of this study and will not be pursued here.

5. Concluding remarks
We have developed an exact theory for linear time periodic motions over general

periodic seabeds of arbitrary amplitude and shape. This utilizes a conformal map
of the undisturbed flow domain to a strip with flat surface and bottom, thereby
transferring the effects of a periodic seabed to the mapped free surface boundary
condition. The exact solutions, to the linear problem in the mapped domain, are
constructed as Floquet solutions. The determination of the Floquet exponents µ is
described together with one possible algorithm to obtain the conformal map as a
Fourier series. The latter is a fairly straightforward iteration using the fast Fourier
transform.

We classify the Floquet solutions as ‘propagating-wave-like’ and ‘evanescent-wave-
like’ solutions, based on their behaviours at the limit when the bottom amplitude
ε → 0 (the flat bottom limit). We have indeed found a set of Floquet solutions
which approaches the complete set of linear solutions of a flat bottom for the given
frequency as ε→ 0. Thus, these Floquet solutions are the analogues, for a general
periodic bottom, of the propagating and evanescent waves over a flat bottom, and form
the basis for solutions to various boundary value problems involving a wavy bottom.
The resonance tongues, i.e. unstable frequencies for wave modes, are found to have
some general features similar to those for a typical Mathieu equation, e.g. sweeping
cusp-like shape. Given a mean water depth, the resonance tongues sweep towards low
frequency as ε increases. This is clearly explained by the decrease of water depth
in the mapped domain as ε increases. The detailed structures of resonance tongues,
however, can be quite varied and complex, depending on the bottom topographies.
For instance, for a square wave bed, a resonance tongue may reduce to nearly zero
width as ε increases to a finite value and open up again to a finite width with further
increase of ε. Implications of such behaviours, in particular when the nonlinearity
of the free surface is included, are worth investigating. Fairly good agreement has
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been observed between the exact solutions and experimental data, in particular the
down-shift of resonance frequencies with increasing bottom amplitude. More detailed
comparisons can be carried out once the appropriate boundary value problem is solved
using the exact solutions provided here.
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Appendix A. The reality of ∆(µ, σ) for real µ
For n = odd and the elements of vector X arranged as in (2.19), the matrix A is in

(2.20). Taking the complex conjugate of each element Aij and recalling that Θ+∗j =Θ−j ,
we obtain a new matrix:

Ã=



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · L∗−3 −Θ−1 −Θ−2 −Θ−3 · · ·
· · · −Θ+1 L∗−1 −Θ−1 −Θ−2 · · ·
· · · −Θ+2 −Θ+1 L∗1 −Θ−1 · · ·
· · · −Θ+3 −Θ+2 −Θ+1 L∗3 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


. (A 1)

For real µ, L∗−n(µ)= Ln(µ). Thus, (A 1) becomes

Ã=



. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · L3 −Θ−1 −Θ−2 −Θ−3 · · ·
· · · −Θ+1 L1 −Θ−1 −Θ−2 · · ·
· · · −Θ+2 −Θ+1 L−1 −Θ−1 · · ·
· · · −Θ+3 −Θ+2 −Θ+1 L−3 · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .


. (A 2)

It is readily seen that the system ÃX̃ = 0 , where

X̃ = [· · · D3 D1 D−1 D−3 · · · ]T, (A 3)

represents a set of linear equations identical to AX = 0, except for rearranging the
equations and vector elements Dn. Therefore, Ã and A must have the same set of
eigenvalues. Since the determinant of a matrix equals the product of the eigenvalues
of the matrix, we must have det(A) = det(Ã). However, det(Ã) = det (A)∗, as Ãij = A∗ij.
Thus, det(A)= det (A)∗, implying that det(A) must be real. This proves that ∆(µ, σ) is
real when µ is real.

Appendix B. A numerical scheme for computing the conformal map
Let zb ≡−h0+hb(x). Given a seabed zb, we find bn and cn by iterations and applying

the fast Fourier transform (FFT) on zb(x) in ξ at each step. From (2.5) and (2.6), we
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write

kBx = ξ + εkBh
∞∑

n=1

[
1
2

i (bn − icn) ei2nξ − 1
2

i (bn + icn) e−i2nξ

]
coth 2nkBh, (B 1)

kBzb =−kBh+ εkBh
∞∑

n=1

1
2
(bn − icn) ei2nξ + 1

2
(bn + icn) e−i2nξ , (B 2)

using the complex notations for convenience to work with the discrete Fourier
transform.

Let ξj =∆(j−1), j= 1, 2, . . . ,N be the sampling points, where the sampling interval
∆ = π/N. Note that N = 2p for use of the standard FFT. The sampled values are
zbj = −h0 + hb(x(ξj)), where x(ξj) is evaluated from (B 1) at ξj. The discrete Fourier
transform of the N points zbj is

Zn =
N∑

j=1

zbje−i2π(j−1)(n−1)/N =
N∑

j=1

zbje−i2ξj(n−1), (B 3)

and the inverse Fourier transform that recovers the set of zbj exactly from Zn is

zbj = 1
N

N∑
n=1

Znei2π(j−1)(n−1)/N = 1
N

N∑
n=1

Znei2ξj(n−1). (B 4)

Note that Zn = Z∗n+N/2, n= 2, 3, . . . ,N/2, since zb is real; Z1 corresponds to the zeroth
wavenumber and Z1+N/2 is for the Nyquist critical frequency (wavenumber) of the
sampling. Truncating the series in (B 2) and comparing it with (B 4), we get

−kBh= 1
N

Z1,
1
2
(bn − icn) εkBh= 1

N
Zn+1, n= 1, 2, . . .N/2− 1,

(εkBh)bN/2 = 1
N

ZN/2+1, cN/2 = 0.

 (B 5)

The iteration is as follows. At the kth step, we evaluate xk−1(ξj) from (B 1) using bk−1
n

and ck−1
n , and get zk−1

bj =−h0 + hb(xk−1(ξj)). Applying the FFT on zk−1
bj and using (B 5),

we obtain the updates bk
n and ck

n. From the inverse FFT (B 4), we get a set of estimated
values zk

bj. The iteration continues until the mean square error between zk
bj and zk−1

bj
reduces to a prescribed tolerance. We begin the iteration with bn = cn = 0 (i.e. kBx= ξ
initially).

The method described above is an explicit scheme. It converges fairly fast when
hb(x) is smooth or ε is small. For large ε and not-so-smooth functions, modifications
may be needed to improve the convergence, for instance using b̃k

n = (bk
n + bk−1

n )/2 and
c̃k

n = (ck
n + ck−1

n )/2 as the updates for the kth step, or some other forms of weighted
average if necessary. We have tried a number of profiles (some are not included in this
paper) and found the maps for large ε in various water depths. For unsmooth functions
(e.g. the square wave profile) and with large ε, the convergence can be slow due to the
large N needed. The numerical method can be improved to increase the efficiency for
computing the map, but it is beyond the scope of this study.

Appendix C. Bottom profiles
Since hb(x + π) = hb(x), we only give the bottom profile hb(x) in one period for

0 6 x 6 π, as follows.
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FIGURE 8. Graphs of a sawtooth bed profile, for ε = 0.7 and kBh0 = 1.0: ——, hb(x) versus
kBx; – – –, hb(ξ) versus ξ ; · · · · · · , hb(ξ) versus x(ξ).

C.1. Square wave with rounded corners

hb(x)=


c tanh(b2x) for 0 6 x< a/2,
c tanh[b2(a− x)] for a/2 6 x< a,
tanh[b1(a− x)] for a 6 x< (π+ a)/2,
tanh[b1(x− π)] for (π+ a)/2 6 x< π.

(C 1)

The width of the upper square above the mean level is given by a, and thus the width
of the lower square is π − a. The smoothness of the top and bottom corners can be
adjusted, respectively, using b1 and b2. For hb(x) to have zero average in x,

c= b2

b1

ln [cosh (b1(a− π)/2)]
ln [cosh (b2a/2)]

. (C 2)

The crest-to-trough height of the corrugations is 1 + c. For the example used in § 3,
a= 0.4, b1 = b2 = 10 and c= ln [cosh 3π] / ln [cosh 2π], i.e. 1+ c= 2.5620.

C.2. Triangle and sawtooth waves

hb(x)=


x/a− c for 0 6 x< a,
−(x− 2b)/(2b− a)− c for a 6 x< 2b,
−c for 2b 6 x< π.

(C 3)

The width of the triangle elements is 2b; the spacing between two adjacent triangles
(the flat section) is thus π−2b. The skewness, or asymmetry, of the triangle is adjusted
by a. When a = b we have symmetrical triangle elements. For hb(x) to have zero
average in x, c= b/π. The crest-to-trough height of the corrugations (i.e. the height of
triangles) is 1. Note that b 6 π/2. When b= π/2 we have the sawtooth-shaped bottom
corrugations (i.e. zero spacing between triangles), see figure 8 with a = 3π/4. The
dotted curve hb(ξ) versus x(ξ) is indistinguishable from the curve hb(x) versus kBx,
indicating the accuracy of the map computed (with N = 211).

C.3. Half-sine wave
Replacing the symmetric triangle by a half-cycle of a sine function, we have the
half-sine wave profile:

hb(x)=
{

sin(bx)− 2 (πb)−1 for 0 6 x< π/b,
−2 (πb)−1 for π/b 6 x< π.

(C 4)
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–0.5

–1.0

0

0 1 5 62 43

FIGURE 9. Graphs of a half-sine bed profile, for ε = 0.7 and kBh0 = 1.0: ——, hb(x) versus
kBx; – – –, hb(ξ) versus ξ ; · · · · · · , hb(ξ) versus x(ξ).

The width of the half-sine is π/b, where b > 1. The crest-to-trough height of the
corrugations is 1. An example is given in figure 9 with b = 1.5. N = 211 is used. A
special case is b = 1 where the flat section between two adjacent half-sines has zero
width and the corrugations become upside-down cusps.
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