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STRUCTURAL NONLINEAR
CONTINUOUS-TIME MODELS
IN ECONOMETRICS

CLIFFORD R. WYMER

Economic theory indicates the need for nonlinear structural models to study
medium-term and long-run dynamic behavior of an economy. This paper argues that
economic systems can be better specified and estimated using differential-equation rather
than difference-equation systems and briefly reviews the estimators of continuous models.
This approach of specifying structural models on the basis of economic theory and
institutional structure explicitly and then testing the underlying hypothesis to verify the
structural form is contrasted with a general-to-specific approach of successively more
restricted VARMAX processes. Previous analyses of stability about the steady state or
fixed point in phase space are extended to more general attractors to allow an investigation
of complexity in economic systems. The critical dependence of some attractors, and
particularly strange attractors, on parameter values emphasizes the need for consistent,
efficient estimation. A structural approach provides a rigorous alternative to using single
time series to determine whether economic systems exhibit aperiodic or chaotic
dynamical behavior.

Keywords: Nonlinear Structural Models, Continuous-Time Models, VARMAX Process,
Differential-Equation Systems, Strange Attractors

1. INTRODUCTION

This paper discusses the need for nonlinear structural models to study the medium-
term and long-run behavior of economic systems and reviews recent developments
in the analysis of nonlinear models. This work on the continuous-time approach to
econometrics is directed toward the development and testing of economic theory,
particularly in the macroeconomic field and in commodity and financial markets,
and the study of the implications of that theory. It provides an integrated approach
to the specification, estimation, and analysis of economic models incorporating
several features: the use of relatively small, highly overidentified models based
on economic theory and specified as differential-equation systems, the use of
full-information maximum likelihood or Gaussian estimators to estimate discrete
models that are stochastically equivalent to the differential-equation system, and
derivation of the properties of these models. This approach is discussed by Wymer
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(1993, 1995, 1996), who gives extensive reference; its advantages are reviewed by
Gandolfo (1993).

The aim of this research is to allow the study of more realistic models, based
on economic theory, to obtain a better understanding of economic behavior, and
especially dynamic behavior. The models are often such that some long-run be-
havior, such as a steady state, can be studied analytically although, of course, this
depends on the complexity of the model. The structural properties of models that
have strange attractors, for example, depend crucially on parameter values. Models
are generally too complex to allow short-to medium-term behavior to be studied
analytically but it is possible to derive results that, although numerical, provide
information of a nature similar to that which can be obtained from very small
theoretical models.

In the physical sciences and in engineering, the properties of complex systems
can be investigated using values of parameters found either by direct measurement
or from experiments. This is seldom possible in economics, and so, simultaneous
estimation is required. Although parameter values of economic models may be
assumed, the relevance of these models and the theory on which they are based
and their implications for economic behavior and policy cannot be substantiated
without estimation.

A characteristic of the continuous models is that an observationally equivalent
discrete model can be derived independently of the observation interval of the
sample being used for estimation so that the differential-equation model can be
specified independently of the observation interval. The discrete model then can
be estimated using discrete data. Because the parameters of the discrete model are
those of the underlying continuous model and are estimated subject to all of the
restrictions inherent in the continuous model and in the derivation of the discrete
models, these estimators provide asymptotically unbiased and efficient estimates
of the continuous model.

Although the continuous-time estimators discussed here have been developed
within the past 30 years, the advantages of using differential-equation models were
foreseen; Koopmans (1950), for example, argued in favor of such models and
Marschak (1950) stated that “if proper mathematical treatment of [continuous]
stochastic models can be developed, such models promise to be a more accurate
and more flexible tool for inference in economics than the discrete models used
heretofore.” The mathematical and statistical theory on which these estimators are
based has a longer history and is discussed by Bergstrom (1988). Many of the key
papers in which these estimators and their properties were developed are reprinted
in Bergstrom (1976, 1990).1

The long-run properties of these models, their dynamic and structural stability
and the question of whether they have fixed-point (steady state) or more complex
attractors in the neighborhood of the parameter estimates can be examined using
eigensystem analysis and by calculating the Lyapunov exponents of the system. If
the system has a strange attractor, it will exhibit aperiodic or chaotic behavior. A
distinction must be made between dissipative and conservative systems; although a
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Hamiltonian system, for example, does not have an attractor (but see note 7), it can
exhibit chaotic behavior in the neighborhood of the Hamiltonian orbit, but this is
really local turbulence and hence of a different nature from that which arises from
strange attractors. It is not unusual for some parts of economic models to be based
on Hamiltonian optimization, but learning processes, adaptive adjustment to partial
equilibrium when there is risk and transaction costs, and price, wage, interest, and
exchange-rate behavior are not Hamiltonian and could give rise to a dissipative
system. Usually a model will be known to be Hamiltonian by construction.

Although the size and complexity of the models means that much of the analysis
must be numerical, many of the results are of a more qualitative nature. Thus a great
deal of information can be compressed into relatively few numbers. For example,
calculation of the eigensystem and the Lyapunov exponents of a model gives a
great deal of information about the medium- and long-run properties of a model.
So does looking at the largest partial derivatives of the eigenvalues with respect
to the parameters; although there may be several hundred or many more partial
derivatives, often only the largest few (which can be seen immediately) will be
relevant.

During the past 20 years, there has been an increasing divergence between
economic theory on one hand and estimation of economic models on the other.
Although economic theorists continue to develop structural models, the models
are seldom subjected to rigorous testing or verification; the hypotheses incorpo-
rated within these models often requires full-information procedures because the
same parameters may occur in several equations. The estimators discussed here
are designed to estimate a wide range of such models. On the other hand, much of
the research in econometrics is directed toward time-series analysis using vari-
able autoregressive, moving-average error with exogenous variables (VARMAX)
processes, often in the context of a single equation. This research is essentially
atheoretical and is founded in the belief that it is possible to go from the general to
the specific, that is, to derive an economically plausible structural model from the
unrestricted VARMAX estimates. Section 3.3 shows that, if the system generating
the data is continuous, this methodology is invalid even for linear systems. The im-
plications of a continuous system for structural VAR processes also are discussed
in Section 3.3.

The need for nonlinear structural models is discussed in Section 2 and the
estimation of these models in Section 3; Section 3 also comments on the implica-
tions of the continuous-time research for other econometric methodologies. Anal-
ysis of the dynamics and the long-run properties of these models is discussed in
Section 4. A suite of computer programs has been developed to implement most
of the estimators and analytical methods discussed in this paper.

2. STRUCTURAL MODELS

The rationale for using continuous-time models in econometrics is founded on
the assumption that the underlying economic system is continuous and dynamic.
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Although individual decisions may be made at regular or irregular intervals, the
information on which those decisions are based is likely to be largely continuous
and the decisions themselves are likely to concern a broadly continuous path of
production, consumption, and transactions in commodities and financial assets.
The lags in this process may be much shorter than the observation period of data
used for estimation. Because macroeconomic behavior is the result of the action
and interaction of individual economic agents, aggregation of the microvariables
across sectors or markets will produce macrovariables that will tend to be contin-
uous, so that the macroeconomic process can be treated as continuous. Although
some of these variables are observed almost continuously, most data available for
economic analysis are obtained from observations of the continuous trajectory of
these variables at discrete intervals, ranging from daily or even less to quarterly or
annual.

From an econometric point of view, the distinction between continuous and
ordinary discrete models is important.2 In a discrete model the stochastic errors in
successive observations are usually assumed to be independent but that assumption
is valid only if the lags in the system are integral multiples of the time unit of the
discrete model. Because most economic systems do not have a natural time unit
and because the minimum lag in any macrosystem will be much smaller than
the observation period, this assumption cannot be justified in models involving
aggregate variables.

An important feature of continuous-time models is that they can be estimated
using a discrete model that is satisfied by the observations generated by the
differential-equation system irrespective of the observation interval of the sam-
ple so that the properties of the parameters of the differential-equation system
may be derived from the sampling properties of the discrete model. This allows a
more satisfactory treatment of distributed lag processes and of the disturbances in
the model. In particular, the minimum lag in the economic system can be much
smaller than the observation interval and tend to zero, and the lag functions of an
aggregate model may be specified in a way that allows the length of the lag to
be estimated rather than assumed. Thus a continuous-time model, unlike ordinary
discrete models, can be specified and analyzed independently of the observation
interval of the sample to be used for estimation, and the forecasting interval is also
independent of the observation interval.

Another feature of these estimators is that they allow stock–flow models to be
handled correctly, because they expressly recognize that although variables such
as stocks and prices can be measured instantaneously, other variables such as
flows or averages cannot; those variables are observed only as an integral over the
observation period. Because many behavioral functions in economics involve the
interaction between stocks and flows, it is essential that these be treated correctly;
this cannot be done in an ordinary discrete model.

The ability to estimate these models is important. Economic theory uses struc-
tural models to formalize some aspect of economic behavior under a set of as-
sumptions chosen, at least in part, to allow an analytical solution to the model. The
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properties of the model and its implications then can be investigated. Although
these models may capture the essence of some part of economic behavior, the un-
derlying assumptions, by necessity, are often very restrictive and the complexity
of the model is strictly limited. This may prevent it from being a plausible rep-
resentation of economic behavior. Once a theoretical model moves from a static
to a dynamic formulation, perhaps because of intertemporal rather than atemporal
optimization, the introduction of expectations or owing to information, decision,
or production lags, purely qualitative analysis becomes strictly limited by the diffi-
culty or impossibility of obtaining analytical solutions to the model. For instance,
once a model involves more than two or three first-order differential equations, or
a second-order one, it becomes difficult to obtain useful analytical results and such
results rapidly become impossible. Thus much of economic theory, particularly
dynamic theory, must necessarily use models that are very small. Simplifications
may include assuming away certain feedbacks or assuming some aspects of the
economy always to be in equilibrium. Although this may be useful for studying
some properties of the model, those properties are conditional on the assumptions
being made and often these are not realistic. Such models, however, can provide
the foundation for a more complete system.

These models are often highly nonlinear.3 Not only does economic theory lead
to nonlinear functions, but the use of a nonlinear model may be necessary to
represent certain features of an economy or market as it allows dynamic behavior,
including the possibility of limit cycles, which is precluded by a linear system.
Nonlinearities may be due to the basic theoretical structure, such as the form of a
utility or production function that is assumed to be underlying the economic system
or due to the institutional or market structure in which the utility or production
functions are imbedded. Behavioral functions derived, implicitly or explicitly,
by the optimization of some objective function subject to constraint will have a
functional form determined by the constrained objective function and will often
by subject to homogeneity, symmetry, and curvature conditions as in Donaghy and
Richard (1993, 1995).4 The institutional or market structure also may be nonlinear,
and so, the dynamic model must be able to incorporate such functions and rigidities.
These nonlinearities may have significant implications both in the long run and in
the adjustment from one state to another.

Theoretical models must be validated by appropriate testing if they are to provide
a basis for further investigation. Moreover, the properties of even some of the
simplest models vary qualitatively depending on the values of the parameters.
The study of structural stability of complex dynamic systems shows that their
asymptotic behavior is not generic and may depend crucially on the values of
parameters. Thus it is necessary to obtain estimates of these parameters to allow
the theory to be more fully developed and to provide a guide to the implications
of the theory for economic agents.

These models are likely to be heavily overidentified, with parameters often
occurring nonlinearly within and across equations. The aim in developing more
sophisticated estimators is to allow these functional forms and restrictions on the
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parameters to be maintained during estimation so that the estimates of the model
are consistent with its theoretical formulation.

For the purposes of this paper and for simplicity, but without loss of generality,
it is assumed that the economic system can be represented by a recursive system
of mixed second-order mixed stock–flow nonlinear differential equations

D2y1(t) = ψ1{Dy1(t), y2(t), y1(t), Dz(t), z(t),θ} + u1(t),
(1)

Dy2(t) = ψ2{Dy1(t), y2(t), y1(t), Dz(t), z(t),θ} + u2(t),

where theyi (t) are vectors ofmi continuous endogenous variables withy(t) =
[ y1(t) y2(t)]′, z(t) is a vector ofn continuous exogenous variables, andθ a vector
of p parameters.D is the differential operatord/dt and theψi are continuous
and differentiable functions. It is assumed that theui (t) are vectors of white-
noise disturbances so that the integralζ(t) = ∫ t

0 u(s) ds is a homogeneous random
process with uncorrelated increments. A rigorous definition of the disturbances is
given by Bergstrom (1983). The variablesy(t) andz(t) may be stocks or flows; this
distinction becomes important for estimation. In this model, they1(t) are called
second-order variables in that this is the highest order in whichy1(t) appears in
the model; similarly, they2(t) are called first-order variables. Some equations may
be identities, in which case the correspondingu(t) are zero. Also, the model
may include zero-order equations, that is, equations defining zero-order variables,
which need not be recursive although in many models they are also likely to have a
causal interpretation. For the purposes of this paper and for simplicity, it is assumed
below that any zero-order equations have been eliminated from the model.5

Defining additional variables such asDyi (t) = y j (t), (1) can be written as a
general first-order model of the form

Dy∗(t) = ψ∗{ y∗(t), z∗(t),θ} + u∗(t), (2)

wherey∗(t) = [Dy1(t) y2(t) y1(t)]′ is the vector ofm∗ = 2m1 + m2 endogenous
variables,z∗(t) = [Dz(t) z(t)]′ andu∗(t) = [u1(t) u2(t) 0]′. System (1) can be
extended immediately to mixedr th-order mixed stock–flow systems and these
can be reduced in the same way by the definition of additional variables to the
first-order system (2).

This framework can be extended to allow boundary-point constraints to be
imposed so that, for example, some dynamic equations can define forward-looking
variables. A simple example is a model that includes the present value of a future
income stream. Let the (discounted) income stream be given byf [ y(t), t ] so that
its present value is given by

yp(t) =
∫ Th

t
f { y(s), s} ds,

where TH is the required horizon andyp(TH ) = 0. Although yp(t) is not ob-
served, it is defined by the dynamic equationDyp(t) = −f [ y(t), t ] with the end-
or boundary-point conditionyp(TH ) = 0 and hence may be included as one of the
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endogenous variablesy(t) in the model. Hamiltonian systems, rational expecta-
tions processes, some forms of game theory models, and models including other
forms of boundary constraint such as the European Union Maastricht conditions
can be represented in a similar way.

3. ESTIMATION

To provide an outline of the properties of the estimators of these models, assume
that the general nonlinear model is a recursive system of first-order stochastic
differential equations of the form

dy(t) = ψ{ y(t), z(t),θ} dt + ζ(dt), (3)

wherey(t), z(t),θ, andψ{ y(t), z(t),θ} are defined as in (1); this is the same as
(1) whenm1 = 0 but can be extended to the general system (2). The termζ(dt) is a
vector of white-noise innovations such thatE[ζ(dt)] = 0,E[ζ(dt)ζ ′(dt)] = |dt|Ä,
whereÄ is a positive definite matrix of orderm, andE[ζi (11)ζ

′
j (12)] = 0 for any

disjoint sets11 and12. Some equations may be identities with the corresponding
elements ofζ(dt) andÄ zero; in this case the submatrix ofÄ corresponding to
stochastic equations will be positive definite. For instance, if the first-order model
(3) has been derived from a higher-order system such as (1), then

E[ζ ∗(dt)ζ ∗′(dt)] = |dt|Ä∗, whereÄ∗ =
[

Ä 0

0 0

]
is a matrix of orderm∗ andÄ is of orderm1 + m2.

Although the parameters of the nonlinear model may be estimated directly using
either an approximate discrete or exact estimator, as discussed below, the costs are
high and the properties of the exact estimator are not well known and have to
be inferred heuristically. On the other hand, the estimators of linear models are
well developed and their asymptotic properties well known, so that the nonlinear
model can be approximated by a Taylor-series expansion about some appropriate
point, such as the sample mean, or some path, such as the steady state, to give
a linearized model that then can be estimated subject to all of the restrictions
inherent in the nonlinear model and in the linearization. This provides estimates
of the parametersθ of the nonlinear model and those estimates can be used for
hypothesis testing, analysis, and forecasting. The approximation error inherent in
the linearization means, however, that even if the white-noise innovations or their
integrals are Gaussian, this may not be true of the disturbances in the linearized
model. These issues are discussed by Wymer (1993b).

The exact discrete estimator of linear (or linearized) models is discussed in
Section 3.1 and the corresponding estimator for nonlinear models, which uses
numerical integration, is discussed in Section 3.2. Approximate discrete estimators,
which provide a simpler form of the discrete model and are hence easier and faster
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to estimate, are not discussed in this paper; these estimators are discussed by
Wymer (1993, 1996) who provides full references.

3.1. Linear Estimators

The linear, or linearized, model corresponding to (3) can be written

dy(t) = A(θ)y(t) dt + B(θ)z(t) dt + ζ(dt), (4)

where the elements of the matricesA andB are functions ofθ, and in the linearized
case, the point or path around which the system has been linearized. The solution
to (4) is then

y(t) = eδA(θ)y(t − δ) +
∫ t

t−δ

e(t−s)A(θ) B(θ)z(s) ds+
∫ t

t−δ

e(t−s)A(θ)ζ(ds). (5)

Assume that the continuous variables are observed everyδ time units (so that
δ is the length of the observation interval in terms of the basic time unit of the
model) and letxτ = x(τδ) be the discrete observation of the continuous variable
at timet . The exact discrete model is then

yτ = eδA(θ)yτ−1 +
∫ τδ

(τ−1)δ

e(τδ−s)A(θ)B(θ)z(s) ds+ ωτ ,

where

ωτ =
∫ τδ

(τ−1)δ

e(τδ−s)A(θ)ζ(ds). (6)

If the z(t) are analytic functions of time, the integral of the term involving exoge-
nous variables can be evaluated exactly, but otherwise, approximating thez(t) by
a second-order polynomial in the neighborhood of each observation point allows
the integral to be approximated by a linear function ofzt , zt−1, andzt−2 with coef-
ficients that are explicit functions ofθ. The error in this approximation is ofO(δ4)

asδ tends to zero and under suitable regularity and smoothness conditions leads to
an asymptotic bias in the parameter estimates obtained by a maximum likelihood
procedure ofO(δ3).

Given the properties of the disturbancesζ(dt), it can be shown that

E[ωt ] = 0, E[ωt ω′
t ] =

∫ δ

0
es A(θ)Äes A′(θ) ds,

(7)
E[ωt ω′

s] = 0 for all t, s, t 6= s;
thus even ifÄ is a diagonal matrix, this will not be true of the variance matrix
of errors of the exact discrete modelE[ωt ω′

t ] so that theωt are not independent
but, given the properties of the innovation processζ(dt), they will be serially

https://doi.org/10.1017/S1365100597003106 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003106


             

526 CLIFFORD R. WYMER

uncorrelated. For this reason, and because of the cross-equation restrictions on the
coefficients of the system, it is necessary to use a simultaneous equation estimator.

Observations generated by the continuous model (4) will satisfy the exact dis-
crete model (6) irrespective of the observation intervalδ, so the sampling prop-
erties of the parametersθ can be derived from the sampling properties of (6). A
full-information maximum-likelihood estimator of (6) allows all of the restrictions
inherent in the underlying continuous model, and in any linearization of that model,
to be imposed, and thus provides consistent and asymptotically efficient estimates.
Moreover, as shown by Bergstrom (1983), Gaussian estimators can be obtained
under the assumption that the integral of the white-noise innovation process is a
Gaussian process without the need to assume that the innovations themselves have
that property. The generality of these assumptions allows the innovations to be
a mixture of Brownian motion and Poisson processes, thus allowing for a more
plausible representation of economic behavior in that the innovations may come as
discrete jumps at random intervals. Thus the use of a continuous system, and corre-
sponding estimator, does not preclude discontinuities in the paths of the variables.

Assume that the model is to be estimated using a sample ofT + 1 equispaced
observations of the variablesy(t) andz(t) with an observation length ofδ; for
estimation purposes, and without loss of generality, the basic time unit is usually
chosen such thatδ = 1. Although many parameters will be independent of the basic
time unit, some parameters, such as rates of adjustment or their reciprocal, may
vary in accordance with the basic time unit and must be defined in terms of this
unit. In deriving some of the properties of these estimators the basic time unit will
be fixed so that the limit asδ tends to zero can be considered. For simulation and
prediction,δ may take on any value irrespective of the observation length used in
estimation.

Exact estimators of mixed-order mixed stock–flow models also can be derived
but are much more complex because flow variables, and derivatives of other vari-
ables, cannot be observed at a point but only as an integral over the observation
period, that is

y0
τ =

∫ τδ

(τ−1)δ

y(s) ds.

As an illustration, consider a second-order differential-equation system in variables
that can be measured instantaneously at a point in time, such as stocks and prices,

dDy(t) = A1(θ)Dy(t) dt + A2(θ)y(t) dt + B1(θ)Dz(t) dt

+ B2(θ)z(t) dt + ζ(dt), (8)

wherey(t), z(t),θ, andζ(dt) are as in (3). LetE[ζ(dt)ζ ′(dt)] = |dt|Ä(µ), with µ

being the set of parameters that defineÄ. This parameter set would havem(m+1)/2
elements ifÄwere unrestricted but would have onlymelements ifÄwere diagonal.
If some equations in (8) are identities, the corresponding rows and columns ofÄ

would be zero and the number of elements inµ reduced accordingly.
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The solution to (8) can be written

y(t) = F1(θ, δ)y(t − δ) + F2(θ, δ)y(t − 2δ) + 9(t) + ω(t), (9)

where

9(t) =
∫ t

t−δ

P1(t − s)[B1Dz(s) + B2z(s)] ds

+
∫ t−δ

t−2δ

P2(t − δ − s)[B1Dz(s) + B2z(s)] ds,

and

ω(t) =
∫ t

t−δ

P1(t − s)ζ(ds) +
∫ t−δ

t−2δ

P2(t − δ − s)ζ(ds);

the Fi andPi are functions of the elements of the matrixeA(θ) where

A(θ) =
[

A1(θ) A2(θ)

I 0

]
,

F1 = [eδA]21[e
δA]11[e

δA]−1
21 + [eδA]22,

F2 = [eδA]21[e
δA]12 − [eδA]21[e

δA]11[e
δA]−1

21 [eδA]22,

P1(s) = [es A]21, and P2(s) = [eδA]21[e
s A]11 − [eδA]21[e

δA]11[e
δA]−1

21 [es A]21,

where the [es A] i j are thei , j partitions of orderm of the matrixes A(θ);

E[ω(t)ω′(t)] = δ

∫ δ

0
P1(s)ÄP′

1(s) ds+ δ

∫ δ

0
P2(s)ÄP′

2(s) ds,

E[ω(t)ω′(t − δ)] = δ

∫ δ

0
P2(s)ÄP′

1(s) ds, and E[ω(t)ω′(t − kδ)] = 0

for all |k| > 1.

Again, by taking discrete observations of the continuous variablexτ = x(τδ)

and choosing the basic time unit such thatδ = 1, the exact discrete model becomes

yt = F1(θ)yt−1 + F2(θ)yt−2 + 9t + ωt for integert, (10)

where9t andωt are defined as in (9). If the exogenous variablesz(t) are not ana-
lytic functions of time, the integral9t may be approximated in a way similar to the
corresponding term in (6) and this approximation will be exact if thez(t) are poly-
nomials of order no more than two. The error of approximation is again ofO(δ4).

The conditions onωt imply that there exists a set of random vectorsεt such that
ωt can be written as the moving-average process

ωt = εt + Gεt−1, (11)
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whereG is a matrix of orderm, the exact discrete model can be represented by
the open autoregressive moving-average (VARMAX) process

yt = F1(θ)yt−1 + F2(θ)yt−2 + E1(θ)zt + E2(θ)zt−1

+ E3(θ)zt−2 + εt + G(θ, µ)εt−1, (12)

whereE(εt ) = 0, E(εt ε′
t ) = 4(θ, µ) andE(εs ε′

t ) = 0, for all t ands, s 6= t .
More generally, a mixedr th-order differential-equation system, in which all

variables can be observed instantaneously, that is, at a point in time, has anr th-
order autoregressive,(r − 1)th-order moving-average discrete representation that
is stochastically equivalent to the continuous model. The coefficients of this model,
corresponding to theFi , Gi , in (12) will be even more complicated functions of
the coefficient matrices of the differential model.

The restrictions inherent in the VARMAX process equivalent to a mixed stock–
flow model are even more complex because flow variables are only observable as an
integral over the observation interval; the exact discrete models equivalent to stock–
flow systems are discussed by Bergstrom (1986) and reviewed by Wymer (1996).
In this case, a mixedr th-order, mixed stock–flow differential-equation system in
which a flow variable is defined by anr th-order equation has anr th-order autore-
gressive,r th-order moving-average discrete representation that is stochastically
equivalent to the continuous model but with coefficients of the moving-average
process that are not constant; if point observations are available for all variables
defined byr th-order equations, the moving-average process is of order(r − 1).
Thus, observations of continuous variables generated by a differential-equation
system will be serially correlated and incorporate a moving-average error process
even though the disturbance process of the continuous model has uncorrelated
increments, except in the case of a first-order system in which all variables can be
observed at a point in time.

The serial correlation in the observations of continuous variables arising from
the moving-average process (11) or its equivalent in more general systems must
be taken into account during estimation in order to prevent asymptotic bias in the
estimators. Exact estimators of mixed-order, mixed stock–flow models have been
derived and used as by Bergstrom et al. (1992) but these are extremely complex. To
avoid the complications that arise from (11) or its generalizations, an approximation
to this moving-average process that is independent of the parameters of the system
may be derived forr th-order models as by Wymer (1972). This approximation,
which has fixed coefficients, is of the same order as the moving average in the
exact model. This approximate moving average can be inverted and truncated
after a few terms and used to transform all of the series in the sample to eliminate
the serial correlation inherent in the observations given by (10), at least to an
approximation. This provides a system similar to the exact discrete model (12) but
where the disturbances can be treated as serially uncorrelated.

https://doi.org/10.1017/S1365100597003106 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003106


           

STRUCTURAL NONLINEAR CONTINUOUS MODELS 529

3.2. Nonlinear Estimators

Although most of the theoretical development of continuous-time estimators has
been within the context of linear models, in practice most of the models being
estimated have been linearizations of some underlying nonlinear system. This
approach is justified in that the estimated parameters are those of the nonlinear
system and the linear model is estimated subject to all of the restrictions inherent
in the theoretical structure and in the linearization. This does, however, introduce
an approximation into the models being estimated and may cause serial correlation
in the disturbances of the linearized model. These issues are discussed by Wymer
(1993b, 1995).

Even when the disturbances of the nonlinear model are Gaussian, this need not
be true of the disturbances of the linearized model. In addition, linearization may
prevent some parameters from being identified, although they are identified in the
nonlinear model, so that estimates of those parameter must be obtained in some
other way and these estimates usually will be inconsistent. Even where parameters
are formally identified in the linear model, however, the way in which they enter
the linearized model may mean that they are poorly determined and the nonlinear
model may provide more robust, and more precise, estimates of these param-
eters.

For these reasons, full-information maximum likelihood estimators analogous
to the estimators of linear models have been developed to estimate the parame-
ters of nonlinear systems directly as discussed by Wymer (1993b, 1995). Both
a nonlinear exact discrete estimator and approximations to it are available. Al-
though some asymptotic properties of these estimators are known, others have to
be inferred heuristically from the properties of the linear estimators. Although the
exact discrete estimator for linear models is derived using the analytical solution to
the differential-equation system, for nonlinear models the system must be solved
by numerical integration, but the principle is the same in both cases. In the pure
case, for instance, where all variables are observed at a point in time, the estimator
will be consistent and efficient and is analogous to the exact discrete estimator for
linear models that provides estimates that are superefficient. If this estimator were
applied to a linear model, the estimates would be the same as with the exact linear
discrete estimator.

The derivation of the exact estimator of the nonlinear model (3) is analogous
to that of the linear estimator. Letω(t) be the vector of errors in the trajectories
of the system such thatω(t) = y(t) − ŷ(t) wherey(t) is the solution to (3) given
initial conditionsy(t−δ) andŷ(t) satisfiesDŷ(t) = ψ{ ŷ(t), z(t),θ} given the same
initial conditions.E[ω(t) ω′(t)] is then the integral of an (unknown) function of
the ζ(dt) over the interval(0, δ) and it follows from the properties of the error
processζ(dt) that the errorsω(t) are interdependent but serially uncorrelated.
In the pure case, the endogenous variablesy(t) are assumed to be observable at a
point in time, such as stocks, prices, interest, and exchange rates, and the exogenous
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variables to be given analytic functions of time. For a given set of initial values of
the parametersθ and a set of initial values for the variables at the pointt − 1, the
solution trajectories of (3) can be found by a numerical integration procedure. Let
the vector of solution trajectories att given the observedy(t − 1) as initial values
and the given set ofθ beŷ(t;θ). The residuals corresponding toω(t) then can be
calculated and used to form the likelihood function that then can be maximized to
give full-information maximum likelihood estimates of the parameters.

This pure exact nonlinear discrete estimator requires the exogenous variables
(or forcing functions) to be analytic functions of time so that the integration pro-
cedure is exact. Under those conditions the exact linear and nonlinear discrete
estimators are the same for linear models but this will not be true for more gen-
eral exogenous variables. In most econometric models [Bergstrom and Wymer
(1976), for example, is an exception] the exogenous variables are defined only by
a series of discrete observations. As in the linear estimators, the continuous path
of exogenous variables may be approximated using a polynomial fitted to nearby
observations. Although this introduces an asymptotic bias into the estimator, this
bias is known to be small in the linear case and a similar result can be expected in
nonlinear systems.

The underlying economic model may include flows and higher-order variables.
Thus the functionsψ∗ in the first-order system (2) or (3) will contain variables for
which point observations are unavailable. The exact nonlinear estimator can be
extended to such stock–flow and higher-order models but, as in the linear stock–
flow model, the covariance functionE[ω(s) ω′(t)], s 6= t , will contain the product
of terms in the disturbancesζ(ds) where theζ(ds) are not disjoint, and thus the
ω(t) will be serially correlated. Although serial correlation in the linear estimators
may be eliminated, at least to an approximation, by transforming the data with
the inverse of the moving-average process, such a transformation is not strictly
applicable in a nonlinear system. Heuristically, however, it would seem that such
a transformation would be useful, and this question is being examined. Without
such a transformation, however, the estimator is no longer exact, but the analogy
with the corresponding estimator of linear stock–flow models suggests that the
asymptotic bias of the nonlinear stock–flow estimator will be small.

The exact nonlinear estimator has been used by to estimate macroeconomic
models of the United Kingdom, the United States [see Donaghy (1993)], and Italy
[see Gandolfo et al. (1996)]. Donaghy and Richard (1995) also have used the
same estimator to estimate and test highly constrained, and highly nonlinear, cur-
rency substitution models involving homogeneity, symmetry, and curvature condi-
tions.

A comparison of the linear and nonlinear estimators shows that, although many
parameter estimates are not significantly different, some estimates are quite dif-
ferent; this occurs particularly with parameters that appear to be poorly identified
in the linearized model. Although the costs can be high in terms of computing
time, especially if the model is defined in the implicit form rather than the recur-
sive form (3), the estimates suggest that there are substantial benefits in using the
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nonlinear estimator in that the asymptotic standard errors are very small relative
to those of the estimators of the linearized model and to the approximate discrete
estimator of the nonlinear model. The mean-square residuals are also smaller. It
is considered that these results are due partly to the use of an exact rather than
approximate estimator, which would be consistent with the estimators of linear
models, but also because the specified relationships, and especially identities, are
estimated directly without introducing errors of linearization and, perhaps more
importantly, eliminating and serial correlation arising from linearization.

The use of full-information maximum-likelihood or Gaussian estimators allows
the estimates to be used both for testing the overall structure of the continuous
model and specific hypotheses. The stochastic equivalence between differential-
equation systems and a VARMAX process makes a general VARMAX model a
useful basis for such a test.

The exact discrete model (11) corresponding to the second-order differential-
equation system (8), can be compared to the unrestricted second-order discrete
VARMAX process

yt = F̄1(θ)yt−1 + F̄2(θ)yt−2 + Ē1(θ)zt + Ē2(θ)zt−1 + Ē3(θ)zt−2 + εt + Ḡ1εt−1.

(13)

Although it would be useful to be able to test this VARMAX process against
a higher-order one, the size of samples commonly available prevents this except
in studies of some markets, especially financial markets, in which high-frequency
data are available. Such a test would indicate whether the order of the continuous
model was consistent with the data. Other tests that can be used to indicate whether
the equations of the system are of the correct order are discussed by Wymer (1993a,
1996).

Under the assumption that the order of the continuous model, and the cor-
responding VARMAX process, is correct, the exact discrete model then can be
tested against an unrestricted VARMAX process of the same order. This test, or
sometimes variants of it with a partially restricted VARMAX process in which the
F̄ i and Ēi are unrestricted but where thēGi are restricted in some general way,
are used routinely in continuous-time studies.

The issues of cointegration and its relevance for continuous-time models are
discussed by Wymer (1996). In such models, integration in the series is often auto-
matically taken into account owing to the recursive nature of continuous systems
in which the rate of change of a variable is a function of levels of itself and other
variables and the tight specification of the structural model. The effects on esti-
mation or testing of a model that contains integrated series is largely eliminated
if the model is heavily overidentified as in the models considered in this paper. If
testing shows that the residuals in the model are serially correlated, the approach
suggested here is to look at this from the point of view of economic theory, to
find whether there is a deficiency or misspecification in the structural model and
to modify it accordingly, rather than to consider it as a statistical problem that can
be eliminated by using a more sophisticated estimator.
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3.3. Comparison with Ordinary Discrete Models

The fact that a linear continuous model has an exact VARMAX representation pro-
vides a link between the estimation of continuous-time models, ordinary discrete
models, and time-series analysis. It is here that the distinction between the continu-
ous-time approach to econometrics becomes apparent. For the purposes of this sec-
tion, the exact discrete model (12) is compared with the unrestricted VARMAX
process of the same order (13).

First, even if the vectorsθ andµ are distinct in the continuous model, the coef-
ficients of the vector moving-average error process in the stochastically equivalent
discrete model are highly nonlinear functions of all elements ofθ andµ. More-
over, even ifÄ were a diagonal matrix, so thatµ contained onlym elements, the
error covariance matrix4 in (12) still would be a full matrix. Thus, simultaneous
equation estimators are necessary to estimate the discrete model. Because such
estimators are seldom used to estimate ordinary discrete models, the estimates of
those models will be asymptotically biased if the data are generated by a continuous
model.

Second, a comparison of the exact model (12) and the unrestricted VARMAX
process (13) throws serious doubt on the validity, or even feasibility, of the general-
to-specific methodology that has developed in econometrics over the past 15 years
and which postulates that the starting point of econometric analysis should be the
unrestricted process (13). Such a comparison makes it clear that there is no pos-
sibility of deriving the parameters, and the restrictions, inherent in the continuous
model (8) from the coefficients of (13) even in simple systems, let alone in more
complex models. The problem that arises with attempting to derive a sequence
of successively more parsimonious models is that, if the underlying system is
continuous, all coefficients of the VARMAX representation are functions of all
parametersθ of the underlying model owing to the wayeA(θ) enters the discrete
form. Thus, eliminating some coefficients of the unrestricted model (13) immedi-
ately leads to bias in subsequent estimates of more parsimonious systems and this
problem will be cumulative.

All elements of the matricesFi , Ei , andGi are functions of the elements of
the matrixeA(θ) in the exact model. Even if the continuous system (8) were linear
in parameters and no parameter occurred in more than one equation, the discrete
models, whether exact or approximate, would still involve highly nonlinear and
cross-equation restrictions, thus requiring the use of full-information techniques.
In fact, the coefficients of the differential-equation systems being estimated are
generally heavily restricted, and highly nonlinear, functions of the set of parame-
tersθ, with restrictions applying both within and across equations.

In contrast, the elements of̄Fi and Ēi in an ordinary discrete model often
are unrestricted, or the restrictions are of a simple and usually within-equation
nature. An indication of the scale of this difference can be seen by comparing
the estimators of the Bergstrom and Wymer (1976) model of the United Kingdom,
which is a relatively small macroeconomic system. The model is a nonlinear mixed
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second-order system with 2 second-order and 11 first-order equations, one of which
is an identity, and in which the only exogenous variables are time and a constant.
The parameter vectorθ has 31 elements and the parameter vectorµ defining the
matrixÄ has 55 elements;Ä(µ) is assumed to be a full matrix of order 10, allowing
for the identity. As the identity is linearized, however, the error covariance matrix
4 is assumed to be unrestricted and thus has 66 elements to be estimated. The
unrestricted VARMAX model (13) has 264 elements in the matricesFi andEi and
121 elements inG whereas the error covariance matrix again has 66 elements to be
estimated. Thus, even assuming that the economic behavior is linear, it is simply
not conceivable that, beginning with the unrestricted model, 233 overidentifying
restrictions inF̄ i and Ēi and 121 inḠi could be found that would allow all
coefficients to be defined in terms of 31 parameters. The scale of this problem
increases exponentially with larger models.

If economic behavior is nonlinear, the situation becomes even worse. There is no
way that estimation of an unrestricted linear model could lead to the overidentifying
restrictions inherent in a nonlinear system and the linearization of that system. An
alternative of using a power-series approximation to the economic system, say to
the second order, would not help. Using the same example, there would be 120
terms inyi , zj , andyi zj alone in each equation of the continuous model plus the
error process; thus, the unrestricted form of this expansion would have over 3,000
coefficients to be estimated even leaving aside the error process. In the continuous-
time approach, these coefficients are functions of only the 31 parameters that are
to be estimated.

If the economic system is, in fact, continuous, a continuous model will provide
not only a consistent, but far more efficient estimator of the parameters of the sys-
tem relative to an unrestricted VARMAX process. This allows more powerful tests
of the theory inherent in the model. The exact estimators provide asymptotically
unbiased and efficient estimates of the parameters and predictors of postsample
data so that a large gain can be expected in the efficiency of the exact continuous
estimates compared with unrestricted VARMAX estimates, and the use of a par-
simonious VARMAX model as an approximation for prediction purposes would
lead to a biased predictor.

Continuous-time models have serious implications for research on discrete struc-
tural VAR processes, independently of the critiques by Cooley and LeRoy (1985)
and Pagan (1987) of the structural VAR methodology.

A general autoregressive process is defined such that

xt =
q∑

i =1

Ai xt−i + ui , (14)

where xt is a vector of variables andut is a vector of disturbances such that
E[ut ] = 0, E[ut u′

t ] = V , andE[ut u′
s] = 0 for all t ands 6= t . Owing to the in-

terpretation of this process as structural, the VAR is defined to be stationary,
but as Pagan (1987) notes, this is unnecessary for the purpose of estimation. In
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applications such as those of Sims (1980) or Blanchard and Quah (1989), either
a time trend is included in each equation, or deviations about trends are used, or
the xt are defined as first differences. The value ofq is chosen, perhaps by a se-
quence of likelihood ratio tests, and the model is estimated either unrestrictedly or
to achieve some smoothness criterion. The model then is transformed to provide a
process with orthogonal innovationset by premultiplying by a matrixK such that
K V K ′ = I . Thuset = Kut and (14) may be written

q∑
i =0

Bi xt−i = et , (15)

whereB0 = K andBi = K Ai for i = 1 · · · q. The process (15) then is inverted to
give the innovations representation

xt =
∞∑

i =0

Ci et−i . (16)

In general, the matrixK is not unique and requires at least one assumption
to make it just-identified. Various identifying assumptions have been made: for
example, Sims (1980) assumedK was lower triangular with positive diagonal
elements, giving results that depend crucially on the order of variables inxt ,
whereas Blanchard and Quah (1989) assumed that monetary innovations have no
permanent effect on real output, so that if the first elements ofxt andet refer to
the output and real innovations and the second elements to the monetary variable
and nominal innovations,K is chosen such that

∑∞
i =0[Ci ]12 = 0. The coefficients

of theCi provide an impulse response function but, as pointed out by Cooley and
LeRoy (1985) and emphasized by Pagan (1987), this requires prior assumptions
on the causal structure of the economic model.

If the underlying economic system is continuous, the use of structural VAR
processes for determining the properties of the system becomes invalid. The
differential-equation models discussed here have an immediate causal interpre-
tation but, as shown in (7) or (9), even if innovations in the continuous model are
orthogonal so that the matrixÄ is diagonal, this will not be true of the errors of the
equivalent discrete model even in a first-order system, whether or not restrictions
are placed on the structural matricesAi (θ). The reason for this can be seen from
the definition ofω(t) in (6) or (9). The problem becomes even more complex in
second- or higher-order systems, or in flow or mixed stock–flow models. If im-
pulse functions are required, it is necessary to estimate an appropriately restricted
structural model (4) and to use that to derive the impulse functions. The question
of whether an assumption of orthogonal innovations can be justified economically,
and the interpretation of such innovations, remains.

Another problem arises with discrete models if the data are generated by a con-
tinuous process. If the sample observations on the variables in an ordinary discrete
model are found to beI (1), for example, it is now common for the equations
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to be estimated with the variables first-differenced and an error correction term
added to satisfy long-run equilibrium. If the economic system generating the data
is continuous, however, it can be seen from the exact discrete model (11) that
differencing discrete observations of the path of the continuous variables will not
remove the moving average inherent in those observations and any estimates will
be biased.

Thus an atheoretical approach is not a satisfactory alternative to rigorous spec-
ification of a structural model on the basis of economic theory and the estimation
of the parameters of that model using the exact discrete model, or some approx-
imation to it, subject to all of the restrictions imposed by the theory. This allows
hypotheses incorporated in the specification to be tested and modified or extended
accordingly.

3.4. Models with Boundary Conditions

The exact nonlinear estimator is being extended to allow the estimation of non-
linear two-point boundary problems (or even multipoint), which would cover
Hamiltonian systems, rational expectations, differential games, and other prob-
lems with forward-looking variables. The numerical solution of such models, some
of which are highly nonlinear, with given parameters is now well developed and
is being used routinely. Such a procedure could be embedded in the nonlinear
estimator discussed above. The question of whether the parameters are identified
would remain, especially in the case of data generated by an optimally controlled
differential-equation system.

Assume that the basic time unit in the system is chosen such thatδ = 1, so that
the sample consists of a set of observationsy(t) = yt , t = 1 · · · T . An essential
part of the nonlinear estimation procedure above is the integration of system (3)
to find the solutionŷ(t) that satisfiesDŷ(s) = ψ{ ŷ(s), z(s), θ} given initial
conditionsy(t −1) = yt−1. The vector of errorsω(t) = y(t)− ŷ(t) in the estimated
trajectories of the system then can be used to derive the error covariance matrix of
the system and to calculate Gaussian or quasi-maximum likelihood estimates of
the parameters.

Instead of solving the system over each observation interval given initial con-
ditions only, the solution could be obtained subject to more general boundary
conditions defined at(ta, tb); let these points be(t − 1, t + Tb) whereTb is fixed
and often will be large. Exogenous variables must be defined over the interval
(0, T + Tb), perhaps as analytical functions of time. Assume that the first-order
system (3) consists ofma endogenous variablesya(t) for which initial values are
assumed to be given andmb endogenous variablesyb(t) defined by the endpoint
conditions. Thus, the first-order system becomes

dya(s) = ψa{ ya(s), yb(s), z(s),θ} ds+ ζa(ds),
(17)

dyb(s) = ψb{ ya(s), yb(s), z(s),θ} ds+ ζb(ds),
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which can be solved numerically for the vector{ ya(t) yb(t)} for eacht = 1 · · · T
given ya(t − 1) and an appropriate set of boundary-point conditions defined at
t + Tb. For simplicity, it is assumed that any zero-order equations, such as those
that arise in optimal control problems, have been eliminated but the estimation and
solution procedures being used do not require this. The errors in the trajectories
can be calculated and used to give a quasi-maximum likelihood estimator of the
parameters of the system. It must be emphasized that the properties of the errors,
particularly their serial correlation properties, and the properties of the estimator
have not been investigated at this stage. It also must be emphasized that to obtain
consistent estimates it is necessary to reinitialize the solution procedure for each
observation and that the horizonTb should be constant; if appropriate, estimates
with different values ofTb may be used to test whetherTb is sufficiently large.

4. DYNAMIC BEHAVIOR AND STRUCTURAL STABILITY

A study of the properties of the system includes not only determining its stability
for the estimated or given parameter values, but also the question of whether
it is structurally stable over some relevant range of parameter values such as the
confidence intervals of the parameter estimates. Essentially, a model is structurally
stable if small changes in parameters do not produce a qualitative change in its
dynamic properties; points at which parameter changes do have a qualitative effect
are bifurcation points. In very simple models with few parameters, bifurcation
points can be found by an increasingly fine grid search of the relevant intervals for
the parameter set. In larger models, sensitivity analysis can be used to determine the
parameters that crucially affect the dynamics of the system and that are likely to be
relevant. This may have policy implications. For example, if a model is structurally
unstable for some parameter values, and if this can lead to some behavior of the
system that is undesirable, it may be possible to introduce policies that will shift
the relevant parameters away from critical values.

In previous work the asymptotic properties of the nonlinear system (1) have been
studied by deriving some transformation of the variables, such as deviations about
the steady state, which allows the model (2) to be written as an autonomous system
as in (18). Thus if (1) has a steady state such thaty(t) = y∗eρt , assuming that the
exogenous variables are analytical functions of time, the system may be solved
for y∗ andρ as functions of the parametersθ. It then may be possible to define
a set of variables [sayx(t), perhaps as deviations ofy(t) about its steady state]
to produce an autonomous system. Differentiation of the equilibrium pointy∗(θ)
with respect to the parametersθ allows an analysis of the steady state itself, and
dynamical behavior in the neighborhood of the steady state may be investigated
using the eigenvalues and eigenvectors of a linearization about the steady state.
The structural stability of the model, that is, the effect on the dynamic properties
of changes in the parameter values, may be studied using sensitivity analysis by
differentiating the eigenvalues (and eigenvectors if required) with respect to the
parameters. These techniques can be extended directly to a study of more general
dynamical behavior in nonlinear systems.
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4.1. Attractors

More complex properties of nonlinear systems may be considered by using phase
space to define an attractor; a stable equilibrium solution or fixed point is a special
case. For these purposes, assume that some transformation of system (2) can be
written as the set of autonomous, first-order, nonlinear differential equations,

ẋ = f {x(t),θ}, (18)

wherex(t) is a vector ofn variables, f is a vector function, andθ is a vector
of p parameters. In the following, the solution path or orbit of the system with
initial point x(t0) is denotedφ{x(t0), t} or, where necessary,φ{x(t0), t,θ}; usually,
t0 = 0. The parametersθ are omitted where they are fixed.6

System (18) is assumed to be coupled in that it is not separable into two inde-
pendent systems. Because the system is autonomous, given an initial pointx(t0),
the system determines a set of solution curvesx(t) = φ{x(t0), t} in phase space
such thatx(t0) = φ{x(t0), t0}; in effect, this is a mapping of the trajectories in
time-state space onto phase space, wheret can be considered a parameter in phase
space. Since the vector field is invariant with respect tot , solutions based att0 6= 0
can be translated tot0 = 0.

An attracting setA exists if there is an invariantn-dimensional neighborhood
of A such that, ifx(0) is an initial point in the neighborhood of the attractor, the
trajectoryφ{x(0), t} will remain in that neighborhood and will converge on the
attractorA ast → ∞. An attractor then can be defined as an attracting set with a
dense orbit; the requirement of a dense orbit, that is, an orbit that covers the whole
of the attractor, ensures that the attractor is not the union of two or more smaller
attractors. Because an attractor is a surface, it has zero volume in phase space.

Classical attractors, such as fixed points, limit cycles, and tori, lie on manifolds
that are the analog of a surface. The dimension of these attractors can be seen by a
suitable mapping of the attractor, so that a fixed point is of dimension 0, whereas
a limit cycle, which can be mapped onto a line, has dimension 1 and is thus a
T1 torus, and aT2 torus has dimension 2 because it can be mapped onto a plane.
These attractors have integer dimensions.

A strange attractor belongs to a class of attractors that do not lie on manifolds. It
is defined as an attractor that has a sensitive dependence on initial conditionsx(0)

in a neighborhood of the attractor, and which is indecomposable in that it does not
degenerate into two (or more) distinct attractors. Thus, for an initial point in some
neighborhood of the attractor, the trajectoryφ{x(0), t} approaches and remains
arbitrarily close to the attractor for sufficiently larget , whereas small variations
in the initial value ofx(0) lead to essentially different time paths of the system
after some time interval. Although a strange attractor is strictly not a surface, it can
be visualized as a surface consisting of a folded structure with an infinite number
of very close layers with a finite volume of phase space between the layers. The
attractors are not a closed curve (even of a complicated form) but consist of an
aperiodic trajectory. Strange attractors have noninteger or fractal dimensions; it can
be shown that the dimension of such attractors must be less than that of the phase

https://doi.org/10.1017/S1365100597003106 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003106


                

538 CLIFFORD R. WYMER

space but greater than two. For given parameter values, a dynamical system will
exhibit aperiodic or chaotic behavior if it possesses a strange attractor, providing
that the trajectory passes through the neighborhood of the attractor as defined
above. Although the system is deterministic, and hence given initial conditions
lead to uniquely defined trajectories, the sensitivity of the system to those initial
conditions means that the behavior of the system is apparently random.

Analysis of the stability of fixed-point attractors, and conditions for the existence
and stability of other attractors, is based on a Taylor-series expansion of the system
about an appropriate point or path. Assume that the system has an equilibrium or
fixed pointx∗, so thatẋ = f {φ(x∗, t),θ} = 0. Let x̃ = x − x∗, and expand (18)
to give

Dx̃ = J(x,θ)|x=x∗ x̃ + h(x̃, x∗,θ) whereJ(x,θ) =
(

∂ fi
∂xj

)
(19)

andh contains higher-order terms inx̃. The nonlinear system will be asymptotically
stable in the neighborhood ofx∗ if

lim
|x̃|→0

h(x̃, x∗,θ)
|x̃|

is uniformly convergent int and the eigenvalues of the linear term in the expansion
(19), that is, the JacobianJ(x,θ)|x=x∗ , have negative real parts. Because the system
is assumed to be autonomous,h is independent oft , so the question of uniformity
of convergence does not arise.

Let the model linearized about the fixed point or steady state beA(θ) =
J(x∗,θ). If the eigenvalues ofA(θ) areλi , some of which may be complex con-
jugate, the partial derivatives∂λi /∂θ` and∂λi /∂ajk , whereajk are elements of
A, provide compact information on the dynamics of the model. First, these partial
derivatives give an indication of which parameters or coefficients in the model are
critical to its stability; often the number of these parameters is quite small. This
has policy implications if those parameters are policy parameters or are such that
they could be affected by policy. Second, if|∂λi /∂θ`| is large, it may be useful to
examine the effects on the dynamics of the model of allowingθ` to vary within its
asymptotic confidence interval; this gives an indication of whether effort should
be made to get more precise estimates of that parameter. Third, knowledge of
these partial derivatives often allows certain parameters and variables, or certain
feedbacks, to be associated with particular cyclical behavior within the system,
thus giving information on the overall dynamic properties of the system.

4.2. Lyapunov Exponents and the Dimension and Nature of Attractors

The analysis of models with fixed-point attractors can be extended to more com-
plex systems. In doing so, a distinction must be made between conservative and
dissipative systems; the latter always possesses attractors or repellers, such as fixed
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points, tori, or strange attractors, whereas conservative or Hamiltonian systems do
not but have an infinity of closed orbits so that any initial point always will lie
on one of these orbits. The two types of systems can be distinguished using the
generalized divergence off . Let a set of initial conditions be contained in a van-
ishingly small hyperellipsoidV in n-dimensional space. This volume will change
as a function oft asx(t) changes, so that

dV

dt
=
∫
V

∫
· · ·
∫ ( n∑

i =1

∂ fi
∂xi

)
dx1 · · · dxn. (20)

The summation term is the generalized divergence or Lie derivative off ; dis-
sipative systems are characterized by contracting volumes, that is,dV/dt < 0,
whereas, in conservative or Hamiltonian systems,V is constant. This term, which
is the trace of the Jacobian, is thus equal to the sum of the eigenvalues ofJ(x,θ).
The Jacobian of a Hamiltonian system can be written as a block diagonal matrix
with one block being the negative of another.

Any trajectory of a dissipative system will approach an attractor ast → ∞. For
systems exhibiting chaos in the neighborhood of a strange attractor, the trajecto-
ries have a sensitive dependence on the initial conditions, so that the separation of
two nearby trajectories increases exponentially with time. This means that there
is a stretching of the hyperellipsoidV in one direction, which is more than com-
pensated by a contraction in other directions, so that the volume defined by the
arbitrary initial conditions decreases with time. The hyperellipsoid cannot always
be stretched in the same direction but must be folded such that it is located in the
specified neighborhood of the initial conditions.

The Lyapunov exponents provide information on the relative rates of expansion
or contraction of this hyperellipsoid in each dimension and hence on the asymptotic
properties of a system. Let an initial point byx0. Consider the solution of the system

φ̇(x0, t) = f {φ(x0, t), t}, φ(x0, t0) = x0 (21)

and differentiate with respect tox0 to give the variational (matrix) equation

Φ̇(x0, t) = J{φ(x0, t)}8(x0, t) where8(x0, t) = ∂φ(x0, t)

∂x0
and 8(x0, t0) = I ,

(22)

which is the linearization of the vector field along the orbitφ(x0, t). Thus if δx0

is a small perturbation aboutx0, thenδx(t) = 8(x0, t)δx0. Let the eigenvalues of
8(x0, t) beµ1(t), . . . , µn(t). The Lyapunov exponents then can be defined as

λi = limsup
t→∞

(1/t)log|µi |, for i = 1, . . . , n.

For simplicity, it is assumed that the exponents are arranged in descending order
such thatλ1 ≥ λ2 ≥ · · · ≥ λn. Let the corresponding generalized eigenvectors be
η1 · · · ηn.
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The Lyapunov exponents are a generalization of the eigenvalues at an equilib-
rium point. Letx0 be an equilibrium point so thatJ{φ(x0, t)} is time-invariant and
(22) becomes8(x0, t) = eJ{8(x0,t)}t . If λ∗

i are the eigenvalues ofJ(x∗), then the
Lyapunov exponents of the equilibrium point are given by the real part ofλ∗

i , that
is,λi = R(λ∗

i ) because(1/t)log|µi | = R(λ∗
i ). Thus the Lyapunov exponents indi-

cate the rate of expansion or contraction of the hyperellipsoid in the neighborhood
of the equilibrium point, or the average rate at whichx0 6= x∗, and the subspace
within which this occurs is defined by the corresponding eigenvectors.

Calculation of the Lyapunov exponents is by no means trivial owing to the
numerical properties of the solutionφ(x, t) in (21) and the variational equation
(22). Because at least one Lyapunov exponent is positive in chaotic systems, the
solutions8(x0, t) are unbounded ast → ∞ and the matrix is ill-conditioned.
Thus, some form of orthonormalization of these solutions is necessary to maintain
precision for calculating all Lyapunov exponents.

The Lyapunov exponentsλi may be used to classify and help determine the
form of the attractor.7 For an attractor to exist, the volume of the hyperellipsoid
defined by the generalized divergence must contract so that

∑n
i =1 λi < 0. It can

be shown that for attractors other than an equilibrium point, at least one Lyapunov
exponent must be zero. Thus, for nonchaotic attractors, for an asymptotically stable
equilibrium pointλi < 0 for all i , while for an asymptotically stablek-torus,k
exponents must be zero and the remainder negative; thus, a limit cycle orT1

torus has only one zero exponent and the rest negative. A nonchaotic attractor is
nondegenerate or hyperbolic if its dimension equals the number of zero Lyapunov
exponents. For chaotic attractors, at least one of the Lyapunov exponents must be
positive and at least one zero. In addition, the dimension of a chaotic attractor must
be a noninteger.

Lyapunov exponents and other measures such as the Hausdorff dimension and
the correlation dimension may be used to determine the dimension of the attractor
and hence the degree of order in the system. Let the set of points defining a surface
in n-dimensional space be covered withn-dimensional hypercubes of lengthε.
The Kolmogorov capacity dimension of the object then can be defined as

DK = liminf
ε→0

log N(ε)

log(1/ε)
,

whereN(ε) is the minimum number of hypercubes necessary to cover all points;
this is closely related to the Hausdorff dimensionDH as defined by Guckenheimer
and Holmes (1986, p. 285), withDH ≤ DK and, for the purposes of this paper,
no distinction is made between these dimensions. The Hausdorff dimension is
identical to the Euclidean dimension for surfaces in Euclidean space and defines the
noninteger or fractal dimension of objects associated with Cantor sets as discussed
by Lorenz (1989). Kolmogorov entropyK , which measures the degree of disorder
or randomness in the system, can be defined for the purposes of this paper as
DK log(1/ε) for small ε; a precise definition is given by Eckmann and Ruelle
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(1985). The extreme cases are limit cycles for whichK is zero, whereas if the
system is purely random,K is infinite. As noted by Lorenz (1989), a chaotic
system has finite entropy so that 0< K < ∞.

The correlation dimension is defined for a single time series. Letxt , t = 1 · · · T
be an observed time series of a variable generated by the dynamical system but
possibly observed with measurement error, and define itsmhistory to bex(m, i ) =
(xi xi −1 · · · xi −m+1) for i = m · · · T . Because eachm history is a point inm-
dimensional space defining the delayed observed values ofxt in x(m, i ), m is
called the embedding dimension. Takens (1981) showed that (i) if the variables
of the true dynamical system are located on an attractor, that is, there are no
transients, (ii) if the dynamical system and measurement function are smooth, and
(iii) if m > 2n − 1, wheren is the dimension of the system, then the behavior of
the dynamical system can be identified from the series.

Let Cm(ε) be the correlation integral (or correlation function) of the time se-
ries with embedding dimensionm defined such that for a small positive number
ε,

Cm(ε) = lim
Tm→∞

1

T2
m

Tm∑
i, j =1

H(ε − ‖x(m, i ) − x(m, j )‖),

whereTm = T − m + 1 is the number ofm histories,‖ ‖ is the Euclidean norm,
and H is the Heaviside functionH(y) = 1 if y > 0, H(0) = 1

2, and 0 oth-
erwise. The correlation dimension in embedding dimensionm then is defined
as

DC(m) = lim
ε→0

logCm(ε)

logε
and the correlation dimension asDC = lim

m→∞ DC(m).

If required, the structural model can be used to generate long series of observa-
tions, which then can be used to calculate the correlation integral and correlation
dimension. Following Eckmann and Ruelle (1985), the correlation dimension can
be estimated by finding a constant ratio of

logCm(ε)

logε
,

that is, independent ofm whenm is large. The correlation integral and correlation
dimension form a link between time-series analysis and the structural approach
discussed in this paper.

The Lyapunov dimension is defined as

DL = k +

k∑
i =1

λi

|λk+1| ,
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wherek is the largest number of eigenvalues such that the sum is positive, that is,
k is such that

∑k
i =1 λi > 0 and

∑k+1
i =1 λi < 0. Hence,

k∑
i =1

λi

|λk+1| < 1

and so, if an attractor exists and at leastλ1 is positive, the Lyapunov dimension is
a fractal.

The Lyapunov dimension and the correlation dimension provide upper and lower
bounds on the Hausdorff dimension. Teman (1988) proved thatDH ≤ DL , whereas
Grassberger and Procaccia (1983) showed thatDC ≤ DH ; Kaplan and Yorke
(1979) conjectured thatDH = DL . Because positive Lyapunov exponents indicate
the expansion of an initial hyperellipse in one or more directions and Kolmogorov
entropy measures the average expansion in all directions, Kolmogorov entropy
K ≤ ∑

i λi for λi > 0. An approximation to Kolmogorov entropy proposed by
Grassberger and Procaccia (1983) and discussed by Eckmann and Ruelle (1985) is

K2 = lim
m→∞ lim

ε→0

1

δ
log

Cm(ε)

Cm+1(ε)
,

whereδ is the observation period of a continuous seriesx(t). BecauseK2 ≤ K ,
these two measures provide upper and lower bounds for Kolmogorov entropy cor-
responding to the bounds on the Hausdorff dimension. For a limit cycleCm(ε) =
Cm+1(ε) and henceK2 = 0, whereas if the series is purely random,K is infinite;
thus in terms of the correlation integral,K2 approaches a finite, positive value from
above as the embedding dimension is increased.

The approach of this paper provides more information about the asymptotic
behavior of an economic system and the nature of its attractor than measures such as
the correlation integral, correlation dimension, and the largest Lyapunov exponent
that can be estimated from a single time series. These measures are discussed,
for example, by Brock and Dechert (1988) and Barnett and Chen (1988). The
amount of noise in some economic time series makes some of these tests quite
poor at distinguishing between different types of behavior as shown in Barnett
et al. (1994). One problem that may arise here is that if data are generated by a
continuous stochastic system, the observations will be serially correlated for the
reasons discussed above and this needs to be taken into account in calculating
the correlation integral and associated functions. This problem does not arise,
of course, with data generated by deterministic systems. Moreover, whereas the
largest Lyapunov exponent being negative shows that the system will converge on
some attractor, being positive is only a necessary condition for a strange attractor.
Estimation of all, or at least several, of the largest exponents is required to find
whether the sum of all exponents is negative and whetherDL is noninteger and
to find an upper bound to Kolmogorov entropy. Essentially, the structural model,
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providing that it can be verified, imposes a degree of order on the data. Thus,
rather than an atheoretical single time-series approach, the approach described
here harnesses economic theory and time series for all variables to investigate the
properties of the system.

4.3. Structural Stability

The second question of interest is the structural stability of the solution of the
differential system (18), that is, whether the asymptotic properties of the system
change qualitatively for different values of the parameters. For example, for some
parameter values, the system may have a stable fixed point, whereas for others
it may have some form of torus as an attractor or perhaps a strange attractor,
whereas for still others it may be unstable. Such structural stability is of crucial
importance when considering the policy implications of a system. A system is
structurally stable when small perturbations produce topologically equivalent sys-
tems. Heuristically, the system will be structurally stable if there is a one-to-one
mapping of the flow of the system for small changes in parameter values; if not,
the system is structurally unstable.

In the dynamical systeṁx = f {x(t),θ}, as the set of parametersθ varies,
the phase portrait of the system usually changes gradually so that the system is
topologically unchanged, but at some values ofθ, called bifurcation points, the
topology may change, perhaps with a change in the number of fixed points or
periodic orbits, or with a change in the nature of a strange attractor; thus the
system becomes structurally unstable at that point. Specifically, a pointθ = θ0 is
a bifurcation point if there exists aθ1 arbitrarily close toθ0 such thatf (x,θ0) and
f (x,θ1) are topologically different. Such bifurcation points are characterized by
a change in the number of eigenvalues of the system with zero real parts at that
point so that the conditions for a point to be a bifurcation point can be defined in
terms of the Jacobian off (x,θ) or its eigenvalues.

The study of bifurcations involves an analysis of the successive terms in the
Taylor-series expansion of (18) or (19), and particularly any degeneracy of those
terms. The behavior of the system in the neighborhood of a bifurcation point can
become even more complex when more than one parameter can lead to bifurcations
or if other secondary parameters take on certain values affecting the nature of
the bifurcation. A succession of bifurcations can lead to a strange attractor and
aperiodic or chaotic dynamical behavior. Although successive bifurcations may
arise as the parameter setθ is slowly changed and chaotic behavior may occur
within some subintervals, yet within these subintervals there may be embedded a
secondary set of subintervals that produce windows of regular behavior. References
to this literature are given by Wymer (1995).

Calculation of the partial derivatives of the Lyapunov exponents with respect
to the parameters of the system using (22) will help to provide information on
whether the system has an attractor in the neighborhood of the parameter values
and the nature and stability of that attractor. This will suggest which parameters

https://doi.org/10.1017/S1365100597003106 Published online by Cambridge University Press

https://doi.org/10.1017/S1365100597003106


      

544 CLIFFORD R. WYMER

may usefully be investigated to find bifurcations and where such bifurcations
might occur. The nature of any attractors, and especially strange attractors, in
the neighborhood of the parameter estimates, perhaps defined as the confidence
ellipsoid of these estimates, would be of particular interest. This is analogous to the
use of sensitivity analysis in the study of the policy implications of linear models
that have a steady state, but the asymptotic behavior of nonlinear models is likely
to be far more complex.

The dynamic behavior and asymptotic properties of (2) may be considered from
two points of view: first, the properties of the solutions for a given set of parameter
valuesθ; and second, the structural stability of the model as one or more of these
parameters varies. Although such analyses have been used routinely with many of
the continuous-time models developed in the past, relatively recent developments
in the study of aperiodic dynamical systems and strange attractors has allowed this
work to be extended to an investigation of more complex dynamical behavior. Thus,
the research discussed in this paper arises as a direct extension of previous work. In
particular, some of the macromodels developed over the past 20 years, such as the
Bergstrom and Wymer (1976) model of the United Kingdom, have eigenvalues that
either are close to zero or are positive. Although this may show that the economic
system is simply unstable, it may be an indication of much more complex behavior,
particularly given the nature of the nonlinear structure these models.

5. CONCLUSION

Differential-equation systems in mathematics and the physical sciences have a very
long history as has the theory of continuous stochastic processes. More importantly,
a great deal of economic theory is continuous. The continuous-time approach in
econometrics binds these together by allowing the theoretical model to be specified
independently of the observation period of the data that are to be used for estimation
and to provide full-information maximum likelihood estimates of the parameters of
that model. The estimates then can be used in deriving the properties of the model
and in forecasting. This approach fits well with the arguments of Frisch (1933) in
an editorial inEconometrica: “each of these three view points, that of statistics,
economic theory, and mathematics, is a necessary, but not by itself sufficient,
condition for a real understanding of the quantitative relations in modern economic
life. It is theunificationof all three that is powerful. And it is that unification that
constitutes econometrics.”

The results of applied research in this field support this view and the expecta-
tions of Koopmans (1950) and Marschak (1950). Extensive references to applied
work are given by Wymer (1993, 1995, 1996). The asymptotic properties of the
continuous estimators appear to be a good indicator of the small-sample proper-
ties. The parameter estimates and forecast errors being obtained with these models
appear to be more precise than those of ordinary discrete models. In particular, the
approximate discrete estimators give estimates quite close to the exact estimators
but the latter are much more precise in that the asymptotic standard errors are
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much smaller. This allows extensive hypothesis testing of the theoretical basis of
the model from an economic point of view. The dynamic behavior of the model
and the structural stability of any attractor then can be investigated.

NOTES

1. References to other work in this area are given by Wymer (1993a, 1996). Other estimators of
continuous systems, often in the frequency domain, have been developed by A.W. Phillips (1959),
Robinson (1976), and Harvey and Stock (1985). Although these estimators often allow more general
disturbance processes than the estimators discussed in this paper, it is often more difficult or not possible
to estimate overidentified systems. The question of identification has been discussed, for example, by
P.C.B. Phillips (1973) and Hansen and Sargent (1983). Estimators of other forms of structural models,
such as the asset pricing model of Lo (1988, 1991) and long-memory models defined by fractional
differential-equation systems as in Chambers (1992), also are not discussed here.

2. It is assumed throughout this paper that the economic system being studied is dynamic and only
dynamic models are considered. The term ordinary discrete model refers to models that are specified
as a set of difference equations without being derived from a differential-equation system, although
some of those models, may, in fact, be consistent with a differential-equation system.

3. Throughout this paper, a nonlinear model means one that is nonlinear in variables; all of the
models discussed here may be nonlinear in parameters because even models linear in variables may
have coefficients that are nonlinear functions of the parameters of the system.

4. For example, a class of models of dynamic demand for world monies has been developed and
estimated by Donaghy and Richard (1993, 1995) to test various functional forms such as the Almost
Ideal Demand System (AIDS) of Deaton and Meulbauer (1980), Modified AIDS (MAIDS), Gener-
alized Modified AIDS (GMAIDS) and Generalized Regular AIDS (GRAIDS) as well as extensions
of these systems incorporating the symmetric generalized McFadden or Barnett aggregator functions
of Diewert and Wales (1987). It is intended that these dynamic functions form part of a more so-
phisticated multicountry dynamic model of interest and exchange-rate determination similar to that
of Richard (1980). As one instance of this class, a model has been derived from a modified price-
independent generalized log-linear (MPIGLOG) indirect utility function as in Cooper and McLaren
(1992) incorporating the Symmetric Generalized Barnett (SGB) aggregator function, which provides
global regularity. Use of the latter results in virtually global regularity as concavity can be imposed
over the entire economic region. This is embedded in a dynamic system. The model was estimated
subject to the homogeneity, symmetry, and regularity conditions using the exact nonlinear estimator
with a sample of Divisia indices of volumes of money for five major countries.

5. In practice, there is no need to eliminate such variables explicitly, and the computer programs that
have been developed to support the work in continuous-time systems usually allow the specification of
models that are more general than those discussed here and that include zero-order equations if desired.

6. Although this paper considers only autonomous systems specifically, a nonautonomous system
can be written as an autonomous system with little loss in generality, but with some change in inter-
pretation. Specifically, if an(n − 1) dimensional nonautonomous system isẋ = g{x(t), θ, t}, defining
ẋn = 1 allows this to be written aṡx = g{x(t), θ, xn(t)}, ẋn = 1, which has the same form as the
n-dimensional autonomous system (18).

7. Only dissipative systems are considered here. (Undiscounted) Hamiltonian or conservative sys-
tems withm state variables (and hencem degrees of freedom or costate variables, so that the system as
defined above has dimension 2 m) have Lyapunov exponents such that

∑2m
i =1 λi = 0, at least two expo-

nents are zero, andλi = −λ2m−i +1 for i = 1, . . . , m. All conservative systems are structurally unstable
and do not possess attractors, but chaotic behavior can arise as local turbulence in the neighborhood of
the Hamiltonian orbit when the system is perturbed.

Although the orbit of a discounted Hamiltonian system collapses onto a (saddle-path stable) fixed
point, that point does not satisfy the conditions for an attractor. In particular, the Hamiltonian orbit
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is a function of the initial values of the known (backward-looking) variables and the trajectory does
not converge on that point for arbitrary initial values of the unknown (forward-looking) variables in
the neighborhood of that point. The Lyapunov exponents of these systems will be zero; the Ramsey
model, for example, is a special case in that it has only two differential equations and hence two zero
Lyapunov exponents.

The question of whether Hamiltonian systems in macroeconomics should be discounted or not is
debatable and depends on the particular application. Although discounting greatly simplifies analysis
of these systems, it precludes long-run behavior that may be more interesting and more relevant to an
understanding of the economic system and macroeconomic policy than a fixed point.
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