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Similarity models for unsteady free convection
flows along a differentially cooled
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A class of unsteady free convection flows over a differentially cooled horizontal
surface is considered. The cooling, specified in terms of an imposed negative buoyancy
or buoyancy flux, varies laterally as a step function with a single step change. As
thermal boundary layers develop on either side of the step change, an intrinsically
unsteady, boundary-layer-like flow arises in the transition zone between them. Self-
similarity model solutions of the Boussinesq equations of motion, thermal energy,
and mass conservation, within a boundary-layer approximation, are obtained for flows
of unstratified fluids driven by a surface buoyancy or buoyancy flux, and flows of
stably stratified fluids driven by a surface buoyancy flux. The motion is characterized
by a shallow, primarily horizontal flow capped by a weak return flow. Stratification
weakens the primary flow and strengthens the return flow. The flows intensify as the
step change in surface forcing increases or as the Prandtl number decreases. Simple
formulas are obtained for the propagation speeds, trajectories and the evolution of
velocity maxima and other local extrema. Similarity-model predictions are verified
through numerical simulations in which no boundary-layer approximations are made.
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1. Introduction
When a horizontal surface underlying a quiescent fluid is cooled, diffusion

communicates the state of the surface to the fluid, and a statically stable thermal
field develops. If the cooling varies along the surface, buoyancy variations arise
in the fluid, and the associated pressure variations drive a shallow, primarily
horizontal flow. Following Amin & Riley (1990), we refer to such flow types as
horizontal free convection. A distinguishing feature of these flows is the action of
the buoyancy force in a direction perpendicular to the principal motion. Although
not studied as extensively as plumes, thermals, or convection flows along vertical
surfaces, horizontal free convection flows are, nevertheless, ubiquitous. Horizontal free
convection flows along cooled upward-facing horizontal surfaces or, equivalently, along
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FIGURE 1. Schematic of a horizontal free convection flow in a stably stratified fluid. The
motion is independent of the y (into-page) coordinate.

heated downward-facing horizontal surfaces are of long-standing interest in the heat
transfer community (reviewed in § 5.3.4 of Gebhart et al. 1988). In the atmosphere,
differential cooling of the underlying surface gives rise to internal boundary layers,
land breezes and other local circulations (Atkinson 1981; Garratt 1990; Simpson 1994).
The role of surface heterogeneities in generating local circulations and promoting
transport of heat, moisture, and contaminants is of fundamental interest for boundary-
layer meteorology, air pollution meteorology, and numerical weather prediction.

Although numerical simulations are standard in studies of free convection flows,
analytical models such as similarity models, when available, can provide valuable
qualitative descriptions of flow behaviour. Such approaches have proved particularly
useful in the study of plumes and thermals (Morton, Taylor & Turner 1956; Turner
1962; Fanneløp & Webber 2003; Scase et al. 2006; Kaye 2008; Hunt & van den
Bremer 2010; Woods 2010) and flows along heated vertical surfaces (Ostrach 1953;
Sparrow & Gregg 1958; Ede 1967; Merkin 1985; Gebhart et al. 1988). Our present
study provides one of the few similarity descriptions of unsteady horizontal free
convection flows.

We consider a particularly simple class of horizontal free convection flows
schematized in figure 1. Initially quiescent fluid overlies an infinite horizontal
boundary placed at z = 0. At time t = 0, a surface forcing in terms of a negative
buoyancy or buoyancy flux is suddenly imposed and thereafter maintained in a steady
state. The forcing is spatially constant (piecewise) with a step change at x = 0. The
thermal boundary layers that arise on either side of the step change develop at
different rates, and lateral pressure variations in the transition zone between them
drive an intrinsically unsteady, boundary-layer-like flow.

Our study proceeds in a boundary-layer framework, with x-derivatives in the viscous
stress and diffusion terms neglected, and the hydrostatic approximation invoked.
Steady-state versions of these equations were used to study horizontal free convection
flows along semi-infinite plates (single edge) (Stewartson 1958, with sign error
corrected by Gill, Zeh & del Casal 1965, Rotem & Claassen 1969, Pera & Gebhart
1973, Chen, Tien & Armaly 1986, Deswita et al. 2009 and Samanta & Guha 2012),
and along finite strips (two edges) (Clifton & Chapman 1969; Singh & Birkebak 1969;
Fujii, Honda & Morioka 1973; Dayan, Kushnir & Ullmann 2002; Neufeld, Goldstein
& Worster 2010). The single-edge studies considered flows along heated upward-
facing surfaces or cooled downward-facing surfaces. Such flows became unstable at
some distance from the edge, but exhibited a boundary-layer structure up to the
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separation point. The double-edge studies considered flows along heated downward-
facing surfaces or cooled upward-facing surfaces. These laterally spreading flows were
reminiscent of stagnation point flows.

However, very few analyses have been reported for unsteady horizontal free
convection problems. Ingham, Merkin & Pop (1986) considered the response of a
heated boundary layer to the sudden cooling of a semi-infinite horizontal upward-
facing plate. The initial state satisfied the Stewartson (1958) and Gill et al. (1965)
similarity model for steady flow along a heated semi-infinite upward facing plate.
Higuera (1998) examined the flow induced by the sudden application of a line heat
source (singularity at x = 0) along an infinite horizontal downward-facing adiabatic
surface. Amin & Riley (1990) studied the boundary layer over an infinite horizontal
surface whose temperature varied quadratically with x (singularities as x→±∞). A
steady state could be achieved if the surface temperature increased away from the
plane of symmetry, but if the surface temperature decreased away from the plane of
symmetry, the solution became singular throughout the boundary layer at a finite time.

The boundary-layer equations for horizontal free convection flows are presented in
§ 2. Similarity models for flows of unstratified fluids driven by a step change in surface
buoyancy or surface buoyancy flux are obtained by a group-theoretic approach in § 3.
A corresponding analysis in § 4 for stratified fluids yields a similarity model only
for the flux-forced case. Examples of similarity model predictions are presented in
§ 5. The predictions are verified using data from numerical simulations in which no
boundary-layer approximations are made.

2. Governing equations
Consider the two-dimensional flow of a viscous fluid over a horizontal plate

(surface) placed at z = 0 (figure 1). Within a Boussinesq boundary-layer framework,
the governing equations are

∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z
=−∂π

∂x
+ ν ∂

2u

∂z2
, (2.1)

0=−∂π
∂z
+ b, (2.2)

∂b

∂t
+ u

∂b

∂x
+ w

∂b

∂z
=−γw+ κ ∂

2b

∂z2
, (2.3)

∂u

∂x
+ ∂w

∂z
= 0. (2.4)

Here u is the lateral (x) velocity component; w is the vertical (z) velocity component;
π ≡ (p − p̄)/ρr, where p is pressure, p̄(z) is the pressure in a motionless reference
state, and ρr is a constant reference density; b ≡ g (θ − θ̄ )/θr is buoyancy, where θ is
temperature (of a liquid) or potential temperature (of a gas), θr is a constant reference
value of θ , θ̄ (z) is the initial profile of θ , and g is the acceleration due to gravity.
The stratification parameter γ ≡ (g/θr) dθ̄/dz, and the coefficients of viscosity ν and
thermal diffusivity κ are considered constant.

Taking ∂/∂z (2.1) − ∂/∂x (2.2) yields(
∂

∂t
+ u

∂

∂x
+ w

∂

∂z

)
∂u

∂z
=−∂b

∂x
+ ν ∂

3u

∂z3
. (2.5)
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Introducing the streamfunction ψ defined by u = ∂ψ/∂z, w = −∂ψ/∂x, (2.4) is
automatically satisfied, while (2.3) and (2.5) become(

∂

∂t
+ ∂ψ
∂z

∂

∂x
− ∂ψ
∂x

∂

∂z

)
b= γ ∂ψ

∂x
+ κ ∂

2b

∂z2
, (2.6)(

∂

∂t
+ ∂ψ
∂z

∂

∂x
− ∂ψ
∂x

∂

∂z

)
∂2ψ

∂z2
=−∂b

∂x
+ ν ∂

4ψ

∂z4
. (2.7)

We suppose b, π and ∂u/∂z vanish as z→∞. We do not assume the velocity
vanishes as z→∞ but will look to the solution for its behaviour. The pressure
gradient force near the leading edge of an advancing low-level flow will push parcels
upward, out of the way of the flow. In an unstratified fluid (γ = 0), a vertical velocity
−∂ψ/∂x = h(x, t) 6= 0 that persists as z→∞ (while b→ 0) is a solution of (2.6)
and (2.7), but in a stratified fluid (γ > 0), (2.6) shows that if b→ 0 as z→∞
then the vertical velocity also vanishes as z→∞. This result is not surprising since
stratification suppresses vertical motions.

We suppose ∂b/∂x, u and w vanish as x→±∞. In this case all terms in (2.7)
vanish, and (2.6) reduces to the diffusion equation, with solutions for a suddenly
imposed surface temperature perturbation and surface heat flux given in Carslaw &
Jaeger (1959, (10) on p. 60, and (7) on p. 75). In terms of buoyancy, these solutions
are, respectively,

b(x→±∞, z, t)= b±0 erfc
(

z

2
√
κt

)
, (2.8)

b(x→±∞, z, t)=−2
db±

dz

∣∣∣∣
z=0

[√
κt

π
exp

(
− z2

4κt

)
− z

2
erfc

(
z

2
√
κt

)]
, (2.9)

where a superscript ± denotes x→ ±∞. Equation (2.9) shows that the surface
buoyancy in the flux-forced case varies as t1/2. In both cases the depth of the
disturbance increases with time.

We solve (2.6) and (2.7) subject to remote (z→∞) conditions of vanishing ∂u/∂z
and b, surface conditions of no-slip, impermeability, and specified b or ∂b/∂z, and the
condition that results from evaluating (2.1) at z = 0, with the surface π obtained from
integration of (2.2),

∂2u

∂z2

∣∣∣∣
z=0

=−1
ν

∂

∂x

∫ ∞
0

b dz. (2.10)

We non-dimensionalize variables with an eye on minimizing the number of free
parameters. A buoyancy scale bs > 0 is defined in terms of a surface buoyancy or
surface buoyancy flux as

bs ≡max |b|z=0 (prescribed surface buoyancy), (2.11)

bs ≡max κ1/2 (db/dz|z=0 )
3/4 (prescribed surface buoyancy flux). (2.12)

In terms of the non-dimensional variables,

X ≡ b1/3
s x/ν2/3, Z ≡ b1/3

s z/ν2/3, T ≡ b2/3
s t/ν1/3, B≡ b/bs, Ψ ≡ ψ/ν, (2.13)
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equations (2.6) and (2.7) become(
∂

∂T
+ ∂Ψ
∂Z

∂

∂X
− ∂Ψ
∂X

∂

∂Z

)
B= Γ ∂Ψ

∂X
+ 1

Pr

∂2B

∂Z2
, (2.14)(

∂

∂T
+ ∂Ψ
∂Z

∂

∂X
− ∂Ψ
∂X

∂

∂Z

)
∂2Ψ

∂Z2
=−∂B

∂X
+ ∂

4Ψ

∂Z4
, (2.15)

where Pr ≡ ν/κ is the Prandtl number and Γ ≡ γ ν2/3b−4/3
s is a stratification parameter.

With the larger forcing put to the left of the step change, (2.11) and (2.12) become

B(X, 0,T)=
{
−1, X 6 0,
−ε, X > 0,

(2.16)

∂B

∂Z

∣∣∣∣
Z=0

=
{

Pr2/3, X 6 0,
εPr2/3, X > 0,

(2.17)

where ε (0 6 ε 6 1) is a reduction factor. The remaining conditions become

Ψ (X, 0,T)= 0,
∂Ψ

∂Z

∣∣∣∣
Z=0

= 0,
∂3Ψ

∂Z3

∣∣∣∣
Z=0

=− ∂

∂X

∫ ∞
0

B dZ, (2.18)

∂2Ψ

∂Z2
,B→ 0 as Z→∞, (2.19)

∂2Ψ

∂Z2
(X,Z, 0)= 0, B(X,Z, 0)= 0, (Z > 0). (2.20)

Only three parameters appear in the non-dimensional problem: Pr, Γ and ε.

3. Similarity model for the unstratified fluid case (Γ = 0)
We use a group-theoretic approach (e.g. Bluman & Cole 1974; Dresner 1983, 1999;

Barenblatt 1996) to obtain similarity solutions of (2.14) and (2.15). Our focus on step
changes in the buoyancy and buoyancy flux is motivated by the fortuitous outcome of
the group analyses.

3.1. Invariance to the stretching transformation

Consider the one-parameter group of stretching transformations

T ′ = µ T, X′ = µmX, Z′ = µqZ, Ψ ′ = µrΨ, B′ = µsB, (3.1)

where µ is a continuous parameter and µ = 1 is the identity element. Equations
(2.14) and (2.15) with Γ = 0 are invariant to (3.1) provided m = r + 1/2, q = 1/2,
s = 2r − 3/2, where r is arbitrary. Equation (3.1) maps any solution B = g(X,Z,T),
Ψ = f (X,Z,T) of (2.14) and (2.15) to another solution of (2.14) and (2.15). We
consider special cases for which the solutions themselves are invariant to (3.1), that is,
µsg(X,Z,T) = g(µmX, µqZ, µT) and µrf (X,Z,T) = f (µmX, µqZ, µT). Differentiating
these equations with respect to µ, and setting µ = 1, yields partial differential
equations for g and f whose general solutions yield

Ψ = T−σ−1/2F(ξ, η), B= T−2σ−5/2G(ξ, η), (3.2)
ξ ≡ XTσ , η ≡ ZT−1/2, (3.3)
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where σ ≡−r − 1/2. In view of (3.2) and (3.3), (2.14) and (2.15) reduce to(
−2σ − 5

2
+ σξ ∂

∂ξ
− 1

2
η
∂

∂η
+ ∂F

∂η

∂

∂ξ
− ∂F

∂ξ

∂

∂η

)
G= 1

Pr

∂2G

∂η2
, (3.4)(

−σ − 3
2
+ σξ ∂

∂ξ
− 1

2
η
∂

∂η
+ ∂F

∂η

∂

∂ξ
− ∂F

∂ξ

∂

∂η

)
∂2F

∂η2
=−∂G

∂ξ
+ ∂

4F

∂η4
, (3.5)

while the surface conditions (2.18) become

F(ξ, 0)= 0,
∂F

∂η

∣∣∣∣
η=0

= 0,
∂3F

∂η3

∣∣∣∣
η=0

=− ∂

∂ξ

∫ ∞
0

G dη, (3.6)

and the remote conditions (2.19) and the initial conditions (2.20) conflate to

∂2F

∂η2
,G→ 0 as η→∞. (3.7)

We next identify values of σ that yield surface forcings that satisfy (2.16) or (2.17).

3.2. Step change in surface buoyancy

For B(X, 0,T) = T−2σ−5/2G(ξ, 0) to be in a steady state, the time dependence implicit
in G(ξ, 0) must cancel the T−2σ−5/2 factor. This constrains G(ξ, 0) to the form
C ξ 2+5/(2σ) (so B(X, 0,T) = C X2+5/(2σ)), where C is constant or piecewise constant
with a step change at X = 0. Thus, for (2.16) to be satisfied, C is piecewise constant
and σ is −5/4. In this case,

G(ξ, 0)=
{
−1, ξ 6 0,
−ε, ξ > 0,

(3.8)

while (3.2) and (3.3) become

Ψ = T3/4F(ξ, η), B= G(ξ, η), (3.9)
ξ ≡ XT−5/4, η ≡ ZT−1/2. (3.10)

The dimensional variables corresponding to this flow are

u= ν1/4b1/2
s t1/4 ∂F

∂η
, w=−ν1/2t−1/2 ∂F

∂ξ
, b= bsG. (3.11)

From (3.11) we see that local extrema in u are located at points ξ = ξc, η = ηc

satisfying ∂2F/∂η2 = ∂2F/∂ξ∂η = 0, and thus propagate along trajectories given by

dX

dT
= 5

4
ξcT

1/4, (X = ξcT
5/4),

dZ

dT
= 1

2
ηcT

−1/2, (Z = ηcT
1/2). (3.12)

More generally, the trajectory of any extremum of any order of u, w, or b satisfies
(3.12). Since Z ∝ T1/2 and X ∝ T5/4, the extrema radiate outward on paths Z ∝ X2/5

(except for paths along the Z-axis). Since the lateral spread 1X between any two
extrema not on the Z-axis varies as 1X ∝ T5/4, while the vertical spread 1Z varies
as 1Z ∝ T1/2, the lag of any extremum of any variable behind any other extremum
increases with time.

It can also be noted from (3.9) that B is itself constant along curves defined by
constant values of ξ and η. Thus, the B field propagates according to (3.12).
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Since ξ and η are constant along the trajectories of the extrema, (3.9)–(3.11) and
(2.13) can be used to deduce the evolution of the amplitudes of these extrema. We
obtain, for example,

umax ∝ ν1/4b1/2
s t1/4, wmax ∝ ν1/2t−1/2, (3.13a)

∂u/∂zmax ∝ ν−1/4b1/2
s t−1/4, ∂u/∂xmax ∝ t−1, ∂b/∂zmax ∝ ν−1/2bst

−1/2. (3.13b)

3.3. Step change in surface buoyancy flux
For ∂B/∂Z|Z=0 = T−2σ−3∂G/∂η|η=0 to be in a steady state, the time dependence in
∂G/∂η|η=0 must cancel the T−2σ−3 factor. In view of (3.2) and (3.3), this can
only happen if ∂G/∂η|η=0 = Dξ 2+3/σ [∂B/∂Z|Z=0 = DX2+3/σ ], where D is constant or
piecewise constant. Thus, for (2.17) to be satisfied, D is piecewise constant and σ is
−3/2. In this case,

∂G

∂η

∣∣∣∣
η=0

=
{

Pr2/3, ξ 6 0,
εPr2/3, ξ > 0,

(3.14)

while (3.2) and (3.3) become

Ψ = TF(ξ, η), B= T1/2G(ξ, η), (3.15)
ξ ≡ XT−3/2, η ≡ ZT−1/2. (3.16)

The corresponding dimensional variables are

u= b2/3
s ν1/6t1/2 ∂F

∂η
, w=−ν1/2t−1/2 ∂F

∂ξ
, b= b4/3

s t1/2

ν1/6
G. (3.17)

These scalings yield the speeds and trajectories of all local extrema of u, w and b of
any order:

dX

dT
= 3

2
ξcT

1/2, (X = ξcT
3/2),

dZ

dT
= 1

2
ηcT

−1/2, (Z = ηcT
1/2), (3.18)

where ξc and ηc identify a particular extremum. Since Z ∝ T1/2 and X ∝ T3/2, the
extrema travel along paths Z ∝ X1/3 (except for paths along the Z-axis). The spread
between any two local extrema not on the Z-axis varies according to 1X ∝ T3/2 and
1Z ∝ T1/2.

Equation (3.17) also shows that the vorticity ∂2Ψ/∂Z2 and ∂B/∂Z are themselves
constant on curves for which ξ and η are constant. Thus, these patterns also propagate
according to (3.18).

The similarity scalings again reveal the evolution of the amplitudes of the local
extrema. Using (3.17) together with (3.15), (3.16) and (2.13), we find that

umax ∝ b2/3
s ν1/6t1/2, wmax ∝ ν1/2t−1/2, (3.19a)

∂u/∂zmax ∝ ν−1/3b2/3
s , ∂u/∂xmax ∝ t−1, ∂b/∂zmax ∝ ν−2/3b4/3

s . (3.19b)

4. Similarity model for the stably stratified fluid case (Γ > 0)
For a stably stratified fluid (Γ > 0), we find that (2.14) and (2.15) are invariant

to (3.1) provided q = 1/2,m = 3/2, s = 1/2, r = 1(σ = −3/2). There is no arbitrary
exponent as there was in § 3.1 for the case of an unstratified fluid. Thus, (3.2) and
(3.3) become

Ψ = TF(ξ, η), B= T1/2G(ξ, η), (4.1)
ξ ≡ XT−3/2, η ≡ ZT−1/2, (4.2)
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which are identical to (3.15) and (3.16) for a step change in the surface buoyancy flux
in an unstratified fluid. Thus, the only acceptable surface thermal boundary condition
in this case is the flux condition (3.14).

Since (4.1) and (4.2) are identical to (3.15) and (3.16), the propagation of any local
extremum of u, w and b of any order is again described by (3.18), and the amplitudes
of selected extrema satisfy (3.19). Again we see that the lateral spread between any
two local extrema that are not on the Z-axis varies as 1X ∝ T3/2, while the vertical
spread varies as 1Z ∝ T1/2.

5. Examples
Similarity model predictions are presented for flows of unstratified fluids (Γ = 0)

forced by a step change in surface buoyancy (case UB) and buoyancy flux (case
UF), and flows of stratified fluids (with Γ = 0.5) forced by a step change in surface
buoyancy flux (case SF) – all with default settings of ε = 0.5 and Pr = 1. Results
are then shown for other values of ε and Pr. Predictions are verified using data from
numerical solutions of governing equations in which no boundary-layer approximations
are made.

5.1. Generation of verification data by numerical simulation
Verification data are obtained by solving the Boussinesq equations of motion, the
thermal energy equation, and the elliptic equation for π that results from taking the
divergence of the equations of motion. No boundary-layer approximations are made in
those equations. The numerical procedures are similar to those used in Fedorovich &
Shapiro (2009a,b). The computer code was originally designed for three-dimensional
simulation, but was adapted for use in a two-dimensional mode: to simulate a laminar
flow that is independent of y, one allocates four grid points in the y direction and
imposes periodicity in that direction.

The model equations are discretized on a staggered Cartesian grid with uniform grid
spacing. The prognostic variables are integrated using a leapfrog scheme. The equation
for π is solved using a fast Fourier transform technique over horizontal planes, and
a tridiagonal matrix inversion in the z direction, with ∂π/∂z at the surface calculated
as a residual from the vertical equation of motion. At the domain top, the vertical
gradients of all variables are set to zero. Periodic conditions are imposed on the lateral
boundaries.

Although periodicity in x is not strictly consistent with flow driven by a single step
change, such flows can be emulated in a periodic framework with a top-hat forcing
(two anti-symmetric step changes) provided the steps are far from each other and the
x-boundaries. After a sufficiently long time, however, flows arising from the steps will
interact. A top-hat simulation can only serve as a proxy for a single step change flow
prior to the onset of that interaction.

With the top-hat forcing centred on the mid-point of the computational domain and
extending across half the domain, we need only consider results in the right half of
the domain. The origin x = 0, z = 0 coincides with the step change in that part of the
domain. Case UB is run with

b(x, 0, t)=
{
−0.2 m s−2, x 6 0,
−0.1 m s−2, x> 0,

(5.1)

while UF and SF are run with

∂b

∂z

∣∣∣∣
z=0

=
{

0.002 s−2, x 6 0,
0.001 s−2, x> 0.

(5.2)
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FIGURE 2. Non-dimensional profiles of the horizontal velocity function ∂F/∂η for cases UB
(a), UF (b), and SF (c). Profiles are shown at ξ = −0.2 (long-dashed line), ξ = 0 (solid line),
and ξ = 0.2 (short-dashed line).

The domain is 8192 m long and 800 m tall, the grid spacing is 1x = 1z = 1 m, γ
is zero in UB and UF, and 0.001 s−2 in SF, and the default values of ν and κ are
1 m2 s−1.

5.2. Similarity model solution
Pseudo-time-derivative terms are introduced into (3.4) and (3.5), which are integrated
(iterated) on an unstaggered Cartesian (ξ , η) grid using a leapfrog scheme. During
each iteration, (3.5) is solved for a vorticity function µ(≡∂2F/∂η2), and F
is diagnosed from the recursion relation Fk+1 = 2Fk − Fk−1 + µk(1η)

2 obtained
from ∂2F/∂η2 = µ (1η is the grid spacing of the η coordinate, k is the η-grid index).
With the lowest two grid points straddling the surface, the no-slip and impermeability
conditions yield F1 = F2 = 0. Those values are used to start the upward sweep of the
recursion relation. The procedure is deemed to have converged when G and µ barely
change between iterations.
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FIGURE 3. Evolution of maximum horizontal velocity component Umax from numerical
simulations of cases UB (circles), UF (squares), and SF (triangles). Solid lines depict the
corresponding two-parameter fits of the similarity power laws for Umax: 0.256 T1/4 − 0.255
(case UB), 0.160 T1/2 − 0.168 (case UF), and 0.105 T1/2 − 0.128 (case SF).
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FIGURE 4. Trajectories of two selected points on a buoyancy isoline (B = −0.5) from case
UB; (a) XQ, X-component of trajectory of point Q as it moves along (slightly above) the
surface, and (b) ZP, Z-component of trajectory of point P as it moves along the vertical axis.
Numerical simulation results are indicated by circles. Solid lines are the corresponding two-
parameter fits of the similarity power laws: XQ = 0.0234T5/4 + 1.51, ZP = 0.655T1/2 + 0.293.

Equations (3.4) and (3.5) are solved subject to (3.6) and (3.7), and either (3.8) (for
UB) or (3.14) (for UF and SF) with Pr = 1 and ε = 0.5. The stratification parameter
Γ is set to zero in UB and UF, and to 0.5 in SF (consistent with values of ν, κ , γ ,
and buoyancy flux used to generate the SF verification data). The computational grid
η ∈ [0, 12], ξ ∈ [−1.5, 1.5], is discretized with a spacing of 1η = 0.01, 1ξ = 0.001.
Preliminary tests were hampered by build-up of 21ξ noise that led to instability. This
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FIGURE 5. Vertical cross-sections of b (a; in m s−2) and u (b; in m s−1) in case UB from the
similarity model at t = 905 s. The thick line marks the zero contour for u. Coordinates are in
metres.

noise was suppressed by applying a fourth-order filter (Skamarock 2004; Jablonowski
& Williamson 2011) in the ξ direction in (3.4) and (3.5). The results shown here were
obtained with a filter constant large enough to mitigate the noise but small enough that
the main features of interest are relatively unaffected.

5.3. Results
Non-dimensional vertical profiles of the similarity-model predicted horizontal velocity
function ∂F/∂η for cases UB, UF and SF are shown in figure 2. The flows are shallow
and jet-like, with peak winds found close to the step change (ξ = 0). The flows are
primarily directed from the colder region to the less cold region, as would be expected
for a hydrostatic forcing mechanism. The profiles at ξ = −0.2 and ξ = 0.2 show that
the flows in UB and UF are slightly asymmetric, with the downstream flow stronger
than the upstream flow. In contrast, the flow in SF is much more symmetric about the
step change. Figure 2 also reveals a notable return flow (∂F/∂η < 0) atop the primary
flow in SF. The return flows in UB and UF are barely discernible.

Very good agreement between the evolution of umax from the similarity theory
((3.13) for UB; (3.19) for UF and SF) and from the numerical simulations (both
rendered non-dimensional) is seen in figure 3. The validity of (3.12) for the
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FIGURE 6. Vertical cross-sections of w (in m s−1) in case UB from the similarity model (a)
and from numerical simulation (b) at t = 905 s. Coordinates are in metres.

propagation of the buoyancy field in UB is confirmed by tracking the trajectories
of two points on a B isoline (figure 4). Point P on the Z-axis is predicted to stay
on that axis and increase its height as T1/2. Point Q, located just slightly above the
surface, is predicted to barely change its height but to be displaced laterally as T5/4.
The similarity-model predicted trajectories agree well with those from the numerical
simulation. Note, however, that the power law fits in these figures include offset
factors accounting for the early period in the numerical simulations during which the
boundary-layer-like nature of the flow was becoming established.

Vertical cross-sections of the similarity-model predicted b, u and w fields for case
UB at t = 905 s are shown in figures 5 and 6. Here, and in the other cases, the
similarity solutions are converted to dimensional form to facilitate comparisons with
the numerically simulated (verification) data. The transition of buoyancy between the
two diffusing background states occurs over a small distance in the vicinity of the step
change. A much broader pattern is seen in the u field. The flow has a boundary-layer
character, with the peak u being an order of magnitude larger than the peak w. Despite
the advection of buoyancy by the primary flow, the close association of the peak
horizontal buoyancy gradient with the step change indicates that diffusion of buoyancy
from the underlying surface dominates the buoyancy-field structure. In this sense, the
flow differs from the more intense gravity currents in nature, where a well-mixed
layer of dense fluid intruding into a less dense environment is associated with sharp
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FIGURE 7. Vertical cross-sections of b (a; in m s−2) and u (b; in m s−1) in case UF from the
similarity model at t = 1612 s. The thick line marks the zero contour for u. Coordinates are in
metres.

horizontal contrasts in momentum and buoyancy in a narrow propagating frontal zone
(Simpson 1987).

Good agreement is found between the similarity-model predicted and numerically
simulated b and u fields (figures not shown). In particular, the peak u in the numerical
simulation (umax ' 0.48 m s−1) is nearly the same as in the similarity prediction
(umax ' 0.49 m s−1). The strength of the return flow in the numerical simulation,
though very weak, is slightly stronger than in the similarity prediction (umin '
−0.020 m s−1 versus umin ' −0.013 m s−1). Although more significant discrepancies
appear between the similarity-model predicted and numerically simulated w fields
(figure 6), the small-scale downdraft/updraft couplet in the vicinity of the step change,
the broad zones of subsidence upstream of ξ = 0 and of ascent downstream of ξ = 0,
as well as the relative weakness of w are similar. The similarity-model predicted
w shows no tendency to vanish far above the surface (recall the discussion in § 2
of the possible behaviour of w as z→∞). In the numerical simulation, w does
decrease with height, but the decrease is gradual, and the w disturbance extends far
above the thermal and momentum boundary layers. Thus, the similarity model at least
qualitatively captures the main features of the vertical motion.
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FIGURE 8. Vertical cross-sections of w (in m s−1) in case UF from the similarity model (a)
and from numerical simulation (b) at t = 1612 s. Coordinates are in metres.

Cross-sections of the b, u and w fields for case UF at t = 1612 s are shown
in figures 7 and 8. The main flow features evident in UB are also seen in UF:
the narrow transition zone in the b field, the broad primary flow, the weak return
flow atop the primary flow, the downdraft/updraft couplet in the vicinity of the step
change, and the tendency for the w disturbance to extend well above the thermal and
momentum boundary layers. There is good agreement between the similarity predicted
and numerically simulated b and u fields. The peak velocity is umax ' 0.25 m s−1 from
both approaches. The (very weak) return flow strength is umin ' −0.015 m s−1 in the
numerical simulation and umin '−0.005 m s−1 in the similarity prediction.

Cross-sections of the b, u and w fields for case SF at t = 994 s are shown in
figures 9 and 10. An updraft/downdraft couplet is still found near ξ = 0, but the
broad zones of subsidence and ascent extending far above the boundary layer in
UB and UF are now almost entirely absent as stratification has suppressed the
vertical motion. Compared to UF, the primary flow in SF is much weaker and the
return flow is much stronger. The ratio of return flow to primary flow intensities
in SF has increased to ∼25 %. Since the peak primary and return flows in each
similarity model evolve according to the same power laws, that is, (3.13) for UB
and (3.19) for UF and SF, their ratio is independent of time. In the SF case there
is not only good agreement between the similarity-model predicted and numerically
simulated b and u fields (figures not shown), but also between the w fields (figure 10).
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FIGURE 9. Vertical cross-sections of b (a; in m s−2) and u (b; in m s−1) in case SF from the
similarity model at t = 994 s. Thick lines mark zero contours for b and u. Coordinates are in
metres.

The values of the peak u and return flow velocity from the numerical simulation
(umax ' 0.12 m s−1, umin ' −0.030 m s−1) are very close to those from the similarity
prediction (umax ' 0.13 m s−1, umin ' −0.028 m s−1). Small-amplitude vertical streaks
evident in the similarity solution for w are a computational artefact (see § 5.2).

We next examine the sensitivity of the flow to changes in the reduction parameter
ε with Pr = 1. The similarity solutions for the maximum primary flow velocity and
the height of the maximum are shown for ε = 0.75, 0.5, 0.25 in figure 11. Apart from
being characterized by more peaked maximum velocity curves, the results for UB are
qualitatively similar to those for UF: the primary flow becomes stronger and more
asymmetric as ε decreases. The leading edges of the flows in the ε = 0.25 cases are
steeper and more front-like than in the larger ε cases. Although the zones of largest
horizontal buoyancy gradient (not shown) are displaced slightly more downstream in
the ε = 0.25 cases, they are still close to the step change and thus notably lag the
momentum fronts. One can also note that the maximum velocity curves exhibit a
peculiar zigzag near ξ = 0, most noticeably in case UB. That feature arises from
a subtle two-lobe structure in the u field near x = 0 (evident in close-up plots, not
shown). The maximum velocity in the stratified fluid case SF also increases with a
decrease in ε. However, unlike UB and UF, there is little tendency for the SF flow to
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FIGURE 10. Vertical cross-sections of w (in m s−1) in case SF from the similarity model (a)
and from numerical simulation (b) at t = 994 s. Coordinates are in metres.

become front-like or develop a significant flow asymmetry as ε decreases. Of the two
flux-forced cases, the flow in UF is significantly stronger than in SF, regardless of ε.

Lastly, we illustrate the Pr-dependence of the flow in the UB case, with ε = 0.5. In
the numerical simulations, Pr was varied by changing κ , with ν fixed. By considering
ν fixed in the similarity model, (2.11) and (2.13) indicate that our interpretations of
the behaviour of the non-dimensional variables should not change with Pr, so the non-
dimensional locations and intensities of flow features at different Pr can be directly
compared. Figure 12 depicts cross-sections of ∂F/∂ξ (related to vertical velocity as
∂F/∂ξ = −ν−1/2t1/2w) for Pr = 0.5 and Pr = 5. The maximum primary flow velocity
and height of the maximum are shown in figure 13. The smaller-Pr flow is much more
vigorous and extensive, both vertically and laterally, than the larger-Pr flow. Similar
behaviour was also found in the flux-forced cases (not shown).

6. Concluding remarks
Horizontal free convection flows are abundant in nature and in engineering

heat transfer problems. We investigated a particularly simple class of these flows:
convection induced by a surface cooling that varied laterally as a step function
with a step change. Similarity model solutions of the boundary-layer equations were
obtained for flows of unstratified fluids driven by a surface buoyancy or buoyancy
flux, and flows of stably stratified fluids driven by a surface buoyancy flux. The
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FIGURE 11. Sensitivity of the primary flow to ε in cases UB (a,b), UF (c,d), and SF
(e,f ). Maximum horizontal velocity component (∂F/∂η)max (a,c,e) and height ηmax of that
maximum (b,d,f ) from the similarity model are shown as functions of the lateral coordinate ξ .

similarity-model predicted horizontal velocity fields were in very good agreement
with the corresponding velocity fields obtained from numerical simulations in which
no boundary-layer approximations were made. A similar comparison of the vertical
velocity fields revealed larger discrepancies, although qualitatively good agreements
were noted.

The fluid motion was characterized by a shallow, primarily horizontal flow capped
by a weak return flow. In the unstratified fluid cases, the vertical motion (albeit weak
compared to the horizontal motion in the primary flow) penetrated far above the
developing momentum and buoyancy boundary layers. Stratification greatly suppressed
this vertical motion. It also weakened the primary flow and strengthened the return
flow.

The similarity models yielded power laws for the propagation speeds, trajectories
and evolution of velocity maxima and other local extrema. For example, the peak
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FIGURE 12. Vertical cross-sections of ∂F/∂ξ in case UB for (a,c) Pr = 0.5 and (b,d) Pr = 5,
obtained from (a,b) the similarity model and (c,d) numerical simulation. The numerical plots
are obtained from data output at t = 975 s in the Pr = 0.5 case and t = 2041 s in the Pr = 5
case.

0.2

0.1

0.20–0.2–0.4–0.6 0.4 0.20–0.2–0.4–0.6 0.4

1.2

0.8

0.4

0

0.3

0

(a) (b)

FIGURE 13. Sensitivity of the primary flow to Pr in case UB. Similarity-model predicted
maximum horizontal velocity component (∂F/∂η)max (a) and height ηmax of that maximum (b)
as functions of the lateral coordinate ξ .
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horizontal velocity component increased as t1/4 in the unstratified buoyancy-forced
case, and as t1/2 in the flux-forced cases, regardless of stratification. In all cases
the peak vertical velocity decreased as t−1/2, and the depths of both momentum and
buoyancy boundary layers grew as t1/2.

The flows were strongly dependent on Pr, with the smaller-Pr flows being more
vigorous and spatially extensive. This can be understood by recalling that, as x→±∞,
the problem reduced to that of diffusion in the vertical. The depth of the thermal
boundary layer grew as (κt)1/2, which in non-dimensional form corresponds to
(T/Pr)1/2. Thus, at smaller Pr, the background buoyancy fields developed more
quickly, and produced a stronger buoyancy contrast near the step change. The smaller-
Pr cases were thus associated with a stronger baroclinic forcing (from a vorticity
dynamics perspective) and a stronger lateral pressure gradient force (from a pressure
perspective).

It can be shown that if provision is made for the Coriolis force, non-hydrostatic
terms, or lateral stress or diffusion terms, the governing equations are no longer
invariant to the stretching transformation, and similarity models (if they exist) are
not apparent. On the other hand, our similarity framework readily extends to flows
of multi-component fluids driven by step changes in constituent concentrations or
concentration fluxes at the surface. A related approach can also be applied to a
description of wind-driven circulations in shallow coastal waters.

R E F E R E N C E S

AMIN, N. & RILEY, N. 1990 Horizontal free convection. Proc. R. Soc. Lond. A 427, 371–384.
ATKINSON, B. W. 1981 Meso-Scale Atmospheric Circulations. Academic.
BARENBLATT, G. I. 1996 Scaling, Self-Similarity, and Intermediate Asymptotics. Cambridge

University Press.
BLUMAN, G. W. & COLE, J. D. 1974 Similarity Methods for Differential Equations. Springer.
CARSLAW, H. S. & JAEGER, J. C. 1959 Conduction of Heat in Solids, 2nd edn. Oxford University

Press.
CHEN, T. S., TIEN, H. C. & ARMALY, B. F. 1986 Natural convection on horizontal, inclined, and

vertical plates with variable surface temperature or heat flux. Intl J. Heat Mass Transfer 29,
1465–1478.

CLIFTON, J. V. & CHAPMAN, A. J. 1969 Natural-convection on a finite-size horizontal plate. Intl J.
Heat Mass Transfer 12, 1573–1584.

DAYAN, A., KUSHNIR, R. & ULLMANN, A. 2002 Laminar free convection underneath a hot
horizontal infinite flat strip. Intl J. Heat Mass Transfer 45, 4021–4031.

DESWITA, L., NAZAR, R., AHMAD, R., ISHAK, A. & POP, I. 2009 Similarity solutions of free
convection boundary layer flow on a horizontal plate with variable wall temperature. Eur. J.
Sci. Res. 27, 188–198.

DRESNER, L. 1983 Similarity Solutions of Nonlinear Partial Differential Equations. Pitman.
DRESNER, L. 1999 Applications of Lie’s Theory of Ordinary and Partial Differential Equations.

Institute of Physics.
EDE, A. J. 1967 Advances in free convection. In Advances in Heat Transfer, 4 (ed. J. P. Hartnett &

T. F. Irvine Jr.), pp. 1–64. Academic.
FANNELØP, T. K. & WEBBER, D. M. 2003 On buoyant plumes rising from area sources in a calm

environment. J. Fluid Mech. 497, 319–334.
FEDOROVICH, E. & SHAPIRO, A. 2009a Structure of numerically simulated katabatic and anabatic

flows along steep slopes. Acta Geophys. 57, 981–1010.
FEDOROVICH, E. & SHAPIRO, A. 2009b Turbulent natural convection along a vertical plate

immersed in a stably stratified fluid. J. Fluid. Mech. 636, 41–57.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

53
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2013.538


Free convection flows along a differentially cooled horizontal surface 463

FUJII, T., HONDA, H. & MORIOKA, I. 1973 A theoretical study of natural convection heat transfer
from downward-facing horizontal surfaces with uniform heat flux. Intl J. Heat Mass Transfer
16, 611–627.

GARRATT, J. R. 1990 The internal boundary layer: a review. Boundary-Layer Meteorol. 50,
171–203.

GEBHART, B., JALURIA, Y., MAHAJAN, R. L. & SAMMAKIA, B. 1988 Buoyancy-Induced Flows
and Transport. Hemisphere.

GILL, W. N., ZEH, D. W. & DEL CASAL, E. 1965 Free convection on a horizontal plate. Z. Angew.
Math. Phys. 16, 539–541.

HIGUERA, F. J. 1998 Natural convection flow due to a heat source under an infinite horizontal
surface. Phys. Fluids 10, 3014–3016.

HUNT, G. R. & VAN DEN BREMER, T. S. 2010 Classical plume theory: 1937–2010 and beyond.
IMA J. Appl. Maths 76 (3), 424–448.

INGHAM, D. B., MERKIN, J. H. & POP, I. 1986 Flow past a suddenly cooled horizontal plate.
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