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ARTICLES

INFORMATION, STABILIZATION,
AND WELFARE: THE CASE
OF SUNSPOTS

SuBIR CHATTOPADHYAY
Universidad de Alicante

The stationary sunspot equilibria of a simple overlapping generations economy with
heterogeneous agents are considered. These equilibria are known to be suboptimal. The
focus of the paper is on the efficacy, based on welfare economic considerations and
informational requirements, of government policy in such an environment. The main
result is that knowledge of the sunspot equilibrium net trades, weak interval-type
information on two parameters, and weak set-type information on the location of some
optimal stationary allocation is sufficient to induce a competitive equilibrium that is a
Pareto optimal Pareto improvement over the sunspot allocation, which has the further
property of reaching a Pareto optimal stationary allocation in finite time. The results are
interpreted as demonstrating that, in a simple model with a sunspot environment, policy is
very effective and welfare economic considerations lead to stabilization.

Keywords: Stationary Sunspots, Overlapping Generations, Pareto Optimal
Improvements, Golden Rule, Stabilization

1. INTRODUCTION

This paper evaluates the potential for policy intervention in a simple overlap-
ping generations (OLG) economy undergoing sunspot fluctuations. We show that
interventionist policy is effective in the strong sense that it can lead to Pareto im-
proving, Pareto optimal allocations, which can be induced using relatively weak
information.

1.1. The Model and the Results

The class of economies considered are multiagent, stationary, pure-exchange OLG
economies in which one good is traded during each period. Money is used to
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transfer income across periods. Agents maximize expected utility and are risk
averse. The only other assumption is that consumption, when old, is a normal good.

There is a government in the economy that does not produce or consume any
goods; however, the government can level real lump-sum taxes and controls the
guantity of money in the economy by making lump-sum transfers and interest
payments. So, it is in a position to affect the allocations that agents receive by ap-
propriate choice of its fiscal-monetary policy. We assume that the government does
not have costless access to information about agents’ preferences and endowments.

We are concerned with the stationary sunspot equilibria (SSE) of this model. A
sunspot equilibrium, following Cass and Shell (1983), is a rational-expectations
equilibrium in which uncertainty matters only because agents believe that it does
even though preferences and endowments are deterministic. It is well known that
SSE exist in the class of economies considered in this paper [see, e.g., Azariadis
(1981)]; furthermore, under a standard criterion of efficiency, they are suboptimal
[see, e.g., Peck (1988)].

The policy problem treated in this paper now can be described. We postulate
that the economy is already in an SSE with two states and, given the suboptimality
of this equilibrium, the objective is to give an axiomatic characterization of the
kind of information necessary to induce an allocation that is Pareto optimal and
Pareto improving over the SSE allocation.

As a preliminary to our main results, we prove the existence of two parameters
that are defined for each economy and each SSE allocation. In terms of interpre-
tation, the first parameter gives an upper bound on the maximum amount of either
commodity that agents of every type of every generation would be willing to give
up to avoid the sunspot lottery, i.e., something like a uniform risk premium. The
second parameter is used to define a lower bound on the period beyond which all
generations would prefer, in comparison to the sunspot lottery, the consumption
vector corresponding to a particular stationary allocation, which is near the con-
sumption vector corresponding to an optimal stationary allocation. Each of these
parameters defines one boundary of an interval where the other boundary is known
a priori. We say that we have interval-type information if we know of some point
in the interval specified by each of these two parameters.

Theorem 1 says that (a) the information that is contained in the time series of the
SSE net trades, together with (b) interval-type information, and (c) approximate
knowledge about the location of the net trade associated with an optimal stationary
allocation is sufficient to compute a Pareto improvement that has the property of
giving all but a finite number of agents a stationary consumption vectoie(ties).

Now, allowing agents to trade in competitive loan markets only (so we look at the
nonmonetary equilibria), with the previously computed Pareto improvement as the
endowment stream, necessarily gives a Pareto optimal allocation. In this way we
achieve the goal of inducing a Pareto optimal allocation that also Pareto improves
over the initial SSE. In the special case in which there is only one type of agent
and the exact location of the Golden Rule is known, the Golden Rule consumption
vector serves as the tardet.
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1.2. Discussion of the Results and the Model

The results of this paper show that, given the structure of the economy considered,
interventionist policy can be effective, and that stabilization could have foundations
in welfare economics. We base our conclusion on our belief that policies should be
evaluated on the basis of (i) the existence of allocations that are both Pareto optimal
and Pareto improving, and (ii) an axiomatic characterization of the information
required to implement these allocations. To evaluate the work, however, we need
to discuss alternative specifications of information that might deliver the result;
we also need to discuss the way in which we have modeled the government.

In our framework, the informational requirements for computinty Pareto im-
provements, oonly Pareto optimal allocations, are fairly weak; the problem gets
interesting when one wants both. Notice that improvements typically require local
information (or a global property of preferences such as risk aversion used locally)
such as local recoverability of preferences from demand functions, whereas opti-
mality is a global notiorf. The informational requirements in Theorem 1 provide
the right mix of local and global information; whether they are weak or otherwise
is subjective, but it is obvious that some preference information must be given to
the government because it uses a Pareto criterion, and easy counterexamples can
be given when one or the other requirement of Theorem 1 is dropped.

Alternatively, one could ask whether welfare improvements can be induced only
on the basis of aggregate information regarding certain statistics of the distribution
of agents’ characteristics. Unfortunately, when one uses the Pareto criterion, almost
by definition one is forced to ask for some individual specific information; this
usually means that, at the very least, we need to know the agents’ net trades and
usually a little more. In this paper, we have heterogeneous households but the only
information that we need that is specific to the households is (i) information about
their net trades and (ii) information about the location of an optimal stationary net
trade for their type; the rest of the information that we use is uniform in nature in
the sense that it can be obtained once one knows the broad outlines of the agents
characteristics, hence our claim that the informational requirements of the result
we obtain are relatively mild given the objective with which we start.

We find that stabilization is a result of our objective, which was to find easily
induced Pareto optimal improvements. This is an insight that appears to be robust
to model specification because, given the incomplete information environment
that we are considering, and the fact that the First Welfare Theorem fails in OLG
economies, it is natural to use a stationary allocation as a target to be reached in
finite time; this is about the only robust way of guaranteeing optimality of the
entire allocation by converting the economy into one in which the infinite horizon
does not matter.

Turning to the model, one could say that, in such a simple environment, the
government will not suffer from incompleteness of information because it will
be composed of the agents who populate the economy. A first answer to this
criticism is that the model and results can be extended (see Section 1.3); but a
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more reasonable answer is that those who design macroeconomic policies clearly
suffer from the type of lack of information that has been modeled in this paper, and
to gauge whether they can be successful in designing desirable policies in realistic
environments, one should start with simple, possibly unrealistic, specifications,
which is what we do.

Overall, we view the paper as exploratory and hope that it will stimulate interest
in a systematic approach to the problem of the role of policy intervention in actual
economies. One would guess that analysis of more general models will lead to
the conclusion that the goals of interventionist policy should be less lofty, not
because no-intervention is the best of all worlds, but because the potency of policy
is severely limited by informational consideratichs.

1.3. Extensions and Drawbacks

Our analysis applies to all SSE, local or otherwise, and also to the case of SSE with
more than two states, under a standard mixing condition on the Markov process.
Also, under mild additional conditions, it is possible to define the two parameters
that we use uniformly across different equilibria and different economies.

An extension to multigood economies is desirdbléhe problem is more diffi-
cult relative to the one good case because the conditions for optimality are much
more stringent. However, it might be possible to replicate the strategy that we use
in the one good case of computing improvements that reach a stationary target
in finite time and then allow markets to operate, with the new endowments, in
order to obtain optimality. Clearly, such allocations exist; the question of interest
is whether there are acceptable informational requirements that will let us compute
the initial improving allocation.

It is also of interest to identify conditions under which one can reach the target
stationary allocation in an optimal and improving manner without explicit knowl-
edge about its location. Such a result can be obtained by using the monetary policy
rule proposed by Grandmont (1985).

There are two problems with our approach. We do not ask how the government
could possibly know that the economy is caught in an SSE, nor do we ask how
the government learns about the structure of the economy, which we formalize as
assumptions.

1.4. Related Literature

A problem that is related to the problem treated in this paper is that of stabilizing
sunspots|[e.g., Grandmont (1985, 1986) and Woodford (1986)]. The objective there
is to neutralize sunspots; consequently, welfare issues typically are not considered.
The resultis usually in the form of a policy rule that often has the property that if the
rule is announced before economic activity begins, and the initial conditions are
suitable, then interference by the governmentis never actually necessary. However,
if the economy is already undergoing sunspot fluctuations, then interference would
be necessary and the resulting allocations need be neither improving nor optimal.
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Furthermore, the informational requirements of the policies proposed are often
quite stringent.

The paper is organized as follows: Section 2 introduces the economy, its perfect
foresight equilibria, and the existence and welfare properties of SSE. Section 3.1
introduces two parameters that are used in our construction of optimal improve-
ments. Section 3.2 presents the main result and its proof. Other proofs are collected
in Section 4.

2. THE ECONOMY
2.1. The Model®

Consider a simple OLG economy. Time is discréte,0, 1, 2, ..., and there is

one good in each period. At eathk» 1, H “types” of agents are born and live

for that and the next period. Types are assumed to be identical across generations.
Denote the consumption vector of agkiif generatior as(Cn.1.t, Ch.2.t) € Rﬁ and

call it anoutcome The preferences of every type are assumed to be representable
by a von Neumann-Morgenstern utility functiaf[cp. 1+, Ch:2,t] defined onRer.
Endowments are denoted @s.1, wh.2).

Assumption 1. For everie H, U": R2 — Ris C? with DU" >» 0 andD2U"
negative definite, orRi +» the closure of every indifference curve that passes
throughR? , is contained iR , .

Assumption 2. For alh € H, (wn.1, wn;2) € RZ,.

Assumption 3. (Second-period consumption is a normal good.)
UP[Ch1. Ch2lUblChia. Chiz] > U [Chit. ChialUi[Chia. Cizl.  V(Chit. Chi2) € RZ,.

Assumptions 1 and 2 are standard technical requirements and are treated as
maintained hypotheses. Assumption 3 is necessary to prove our results.

Also, let the agents born &t=0 have a monotone increasing utility function
Uh(Ch;Q’o) and second-period endowmedy ,.

Further assume that an agent of tyyd@orn at daté receives a lump-sum transfer
(possibly negative) of fiat money from the government whensld, A monetary
policy is given by a collection of sequences of transfer$ }i_,; th.o=M #0,
=0, forallhe H and forallt =1, 2, 3, ..., then we have aonstant money

supply

2.2. Golden Rules

We say that(@Mnen) € Rﬂ is adistribution of the endowmenifs

th = Za)h;l + Za)h;z.

heH heH heH
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Given such an((e@")nen)€RY, let (CGR@M), i R(@")hen) € R2™ denote the
Golden Rule allocatiorthe allocation that solves the problem

maxU"[ch.1, Ch2] SUbjectto (Ch.1, Cn2) € R2 and Chi+Chp = .

So, the Golden Rule gives maximal utility to the different agent types in the
class of stationary allocations which respect the given distribution of the total
endowment among the different types; the MRS at the Golden Rule is one.

2.3. Perfect Foresight

Under perfect foresight, all future prices and transfers are known with certainty.
A sequence of prices such that agents optimize and markets clear at each date is
called aperfect foresight equilibriunPFE) sequence:

> Chntra(Prats Prizi Thiess) + Y Gzt (Pro Preai The)
heH heH

=Y ona+ Y ony foral t=0,1,23 ...
heH heH

Remark 1. Under Assumptions 1 and 2, a PFE exists. Also, the Second Welfare
Theorem holds for the class of economies considered; in particular, any Golden
Rule allocation can be supported as a monetary steady state, provided that the
initial distribution of money holdings (different components of which could be
positive or negative depending on the allocation that we choose to support) is
appropriately chosen.

2.4. Stationary Sunspot Equilibria®

Existence. Consider a time-homogeneous Markov process with two states,

sef{a, B}
T 1— oo
m=1;_ aBB BB

is the transition matrix, wheress is the probability of being in stat in the next
period conditional on being in stasan the current period. The process describes
the evolution of an “extrinsic” state, i.e., preferences and endowments continue
to be deterministic, but agents believe that the random variable affects prices.
We focus on equilibria in which prices depend only on the current realization
of the extrinsic state. An SSE is a pair of prices and associated allocations such
that agents’ beliefs about prices are fulfilled and their optimizing demands clear
markets.
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Given today’s states € {«, 8}, the agents act so as’to

max  7U"[c},, %] + 7¥UM e, ¢F,],  subjectto
, max 1 Cn; 10 Cn;
Chi12Chi2>Cni2o Mh

S AS S S So S
P°Ch.y + My = Pwn1, P Chp = P wn2+ My,

pﬁcﬁ'?z = pPonz + m;.

Goods market clearing requires that, fo¢ {«, 8},

S Gt D= Yonet Yone= Yt ki

heH heH heH heH heH heH
. . . . s _ Bs ._ s
with the implication thad -, ., 8% = D oy Chn '= G, S€ {a, B

DEFINITION 1. Given preferenceendowmentsand a constant money supply
M 0, the tuple(p*, p#; (ciy, Ch.q, €%, ChlyChsy, cfy)ner) will constitute an SSE
for IT if

(i) the demands expressed by the agents at those prices clear the markets
(i) p*+#pf£0andnt#m{ forallh e H,
i) 8 9.

The second condition rules out SSE that are trivial for some agent (it holds
generically). The third condition essentially rules out deterministic cycles of period
2 from being labeled as SSE. Sufficient conditions for the existence of SSE are
well known [see, e.g., Azariadis (1981) for the case with only one type of agent].

Welfare properties. Before we can analyze the welfare properties of SSE, we
need to specify a criterion of dominance and optimality. We propose to use the
weakest criterion that renders all SSE inefficient; this ensures that the problem
that we wish to treat is nonvacuotfsThe criterion is of the ex-ante sort and
dominance is defined by comparing the sequence of conditional expected utility
levels, conditional on the state in some initial period. Without loss of generality
the initial period is taken to be period 1. Optimality is defined as usual, i.e., the
nonexistence of dominating allocations. We refer to stochastic allocations in our
definitions without defining them formally; it suffices to take them to be contingent
on the sunspot process (see Remark'2).

We need some notation first. Roe 2, letI]; := (1‘[’)“l be the matrix that gives
the probabilityntSg of being in states’ in periodt, given that the economy started
in states in period 1, i.e., the conditional probability distribution.

Consider a particular stochastic allocatifiey. 1 ;, ch;z,t)heH}{zf’o. We can
define the sequence obnditional ex-ante expected utiligvels,

EU[{(Cot, Codnen =1 ] = {(EUH{(Ch;l,t,Ch;z,t)heH}iiroo])heH :::roo,
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from this allocation wher& UJ-h[{(ch;Lt, Ch:2.t)heH }ifw] is the expected utility of
the agent of typé born in periodj, where the expectation is taken relative to the
conditional distribution (conditional on information availablet at 1) generated
by the process on which the allocation under consideration is contingent.

DEFINITION 2. A feasible allocation is a sequence(pbssibly randomvec-
torsin R, {(Ch.v.t. Chiz.)her Jiz1 - @nd(Ch.2.0)nen € RY, suchthal ",y chat
+ > hen Chi2t—1 = Y hen @hi1 + D open @h;2 for each realization andt = 1,
2,3,....

DEFINITION 3. A feasible allocatiorf(Ch.1.t, Ch:2.t)heH Ji=7 *> and(Ch.2.0)heH
dominates the feasible aIIoc;atior(t“:h;l,t,c~:h;2,t)h€H}{§1“‘>o and (€n.2.0)hen, If
UM (Chi2.0) = U"(En20) for all heH and EW[{(Chat. Chizodhenhi=i™] =

EUjh[{(Eh;l,t,éh;z,t)heH}{j“] forallh € H and forall j = 1,2,3,... with
strict inequality for at least one agent type h at some por

DEFINITION 4. Afeasible allocatiorf(ch.1., ch;z,t)heH}ij“’ and(Ch.2.0)heH
is Pareto optimal if there is no other feasible allocatifin.1 1, Ch.2.)heH =1 ™
and (€n.2.0)hen that dominates it.

The stochastic sequence corresponding to the SSE allocation is denstgd as
and the sequence of ex-ante expected utility levels from the SSE is denoted as
EU"[s(.)], where

EUf[s()] = 7U"(@) + " U"(B),
UM@) i= m*U" et y, %] + 7 PUN [, i)
UN(B) = UM ] cfa] + 7P UM ey, ).
Consider a given SSE and define tepectedallocation as
Chi2.0 '=Cppi  Chit =7 "Chy + ﬂ?ﬂcﬁ;l;

L)

Cor = & (e + 1P eyly) + iy (mPochy + nPPefl,) vi=1,23,..

wherex$$ =0 or 1 as the state in period 1 is known. Note that the Expected
allocation is dunctionof the state in period 1.

Following Cass and Shell (1983) and Peck (1988), we have that the SSE allo-
cation is not Pareto optimal because it is dominated by the Expected allocation.
Formally,

PROPOSITION 1.If s(.) is an SSE allocatiorthen it is not Pareto optimal.

Remark 2. Clearly, any feasible stochastic allocation can be dominated by the
corresponding “certainty” or “expected” allocation. Hence, the search for Pareto
optimal allocations can be restricted to the class of certainty allocations.
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We definer®, n#, andE*U"[s(.)] as

1— b
o . B ._ _
b4 Sl Sprr—" e =01 -n%),

E*UMs()] := 7*UMN ) + 7PUN(B).

3. PARETO OPTIMAL IMPROVEMENTS

In this section, we prove Theorem 1. We state a set of informational assumptions
that is sufficient tdnducea competitive allocation that is Pareto optimal, that is
Pareto improving over the SSE, and exhibits a form of stationarity after finite time.
In particular, if a certain “target” Golden Rule net trade vector is known then that
Golden Rule vector is reached in finite time.

But first, in Section 3.1, we prove some preliminary results and state the infor-
mational assumptions made.

3.1. Preliminaries

Lemma 2 in Section 4 studies the limiting behaviour of the Expected allocation
sequence and the sequence of ex-ante expected utilities from the SSE. It shows
that the sequence of probabilities defined in Section 2.4 under “Welfare properties”
(7, nts’g), convergestor®, w#), alimit stationary distribution that is independent

of the starting state; that because of linearity in the probabilities, the Expected
allocation,(cp.1t, Ch.2.t), and the sequence of ex-ante expected utilities from the
SSE allocationE U{"[s(.)], converge to the stationary outcon@.(, C;..,) and to
E*UMs(.)], respectively; and that Jensen’s inequality continues to hold in the
limit. We use these properties to prove the existence of a parameter that will be
used in our construction.

PROPOSITION 22 There exists a finite numb&t > 0such thatuniformly in
t, ¥6e(0,8*], VYheH, (Cni, Cn2)€Bs(@CnvtCnat)=U"Cha,Cha]l >
EUMs()].

The paramete$* can be interpreted as the largest amount (in termeitbér
commodity) of the Expected outcome that agenevafrytype ineverygeneration
will be willing to forego to avoid the ex-ante SSE lottery.

In what follows, it is useful to have some notation to distinguish net trades from
consumption vectors (outcomes). So, from now @n,z) denotes net trades for
some agent typk, i.e., (Y, 2) ‘= (Ch.1 — n1, Chiz — @n:2).

We turn to a formal statement of a set of informational assumptions.

Informational Assumption I.1. “Market’p®, p?, IT, and((M§)sc (o, 5).heH) Are
known numbers.

Remark 3. 1.1 allows the computation of the net trades for the entire Expected

=+00

) _ & h >
allocation, {((Ch;1,t — ®h:1, Ch;2t — @h:2)heH) =1 and ((Ch.20 — ®h:2)heH)
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because the SSE net trades can be computed from the state-dependent money
demands and the SSE prices (using the agents’ budget constraints); 1.1 also al-
lows the computation of the invariant distribution of the Markov process (using
Lemma 2). Notice that the transition probabilities can be estimated given data on
SSE prices.

Informational Assumption I.2. “Sufficient statistic3:e (0, §*], wheres* sat-
isfies the requirements of Proposition 2, is known.

Before stating the remaining informational assumptions, we give an intuitive
description of their content. For each type of adeatH , we consider two disjoint
subsets of the set of net trades, where the first of these subsets, to beAgalled
gives a utility level that is “almost” the same BSU "[s(.)], whereas the second, to
be calledA,, contains the Golden Rule net trade corresponding to the distribution
of endowments induced by the limiting value of the Expected allocation. Lemma
1 shows that there is a period, to be caldsuch that for alh € H, the agent
of typeh born at dates later thaN would preferany outcome inAy, to his SSE
lottery.

Formally, for each type of agehte H, define the se#; to be

5= {(Ch1, On2) € R2 | E*UMS()] — € < UMch1, Cn]
< E'U"SO] + €'} — {(@n1, on2),
a closed set irR? wheree' is sufficiently small so as to ensure that
(ChG;lR((_:*h;l +Ch2) — @n1, Cr%zR((?ﬁh;l +Cho) —on2) ¢ A

Informational Assumption 1.3. “Golden Rule”: For edele H, a setA, ¢ R?
is known where

(i) Ay is closed and convex,
(i) AwN A, =0, and
(ii)) (CSR@Ey + Chp) — @nit. CER@hy + Grp) — hi2) € Ap13

From now on, lefQy, be the compact square

—wh1 Y=< Z(wh;l +Cl)h;2),
heH

Qnh = {(y, 2)eR?

— Wh;2 <Z< Z(wh;l + wh;Z)}-

heH

Let(y*, zA) be aleast-preferredhet trade for the agent of tyjhen the compact
setAp N Qh.l4
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LEMMA 1. Given((An)nen), Where each set Asatisfies Informational As-
sumption 1.3, there exists ahsuchthatforallhe H, U"[y*"+wp.1, Z%4-wn.2] >
EUM[s()] forallt > N.

Informational Assumption 1.4. “Preferences’N < (0, 1/N] is known.

Remark 4. We have directly imposed the condition that a number greateh?lthan
is known. We note that one can provide informational assumptions on preferences
that allow for the computation dfl; however, we do not present them because
doing so would call for a lot of additional notation without adding much that is
conceptually novel.

3.2. Finite Pareto Optimal Improvements

We are now ready to prove Theorem 1. Before doing so, we give an informal sketch
of the argument.

We construct a particular Pareto improvement by (i) following the Expected
allocation until some period later tha, then (i) modifying the Expected allo-
cation by transfering a net amount of, at ma@$tfrom the present young to the
present oldvithin each type of agent (Assumption 3 and Proposition 2 guarantee
that we have an improvement), and finally (iii) “jumping” to a “target” stationary
allocation, a point in the seA, for each typeh. The informational assumptions
guarantee that the net trades of this improvement can be computed; we think of
it being implemented by real lump-sum taxes and transfers. Now agents are al-
lowed to trade in competitive markets with their new endowments, i.e., post-tax
endowments. We show that the induced nonmonetary perfect foresight equilibria
(so equilibria with loan markets only usually called the “inside money” case) are
Pareto optimal because (i) the target is reached in a finite number of periods, and so,
the optimality of the allocation essentially is determined by the “tail behavior” of
the allocation; (ii) once every agent type receives the target stationary net trade as
endowment, the continuation competitive allocation is necessarily Pareto optimal;
and (i) intragenerational trade gives intratemporal efficiency.

Essentially, the result calls for a variety of policy interventions in the various
phases of the move to the Pareto improvement because item (i), above, corresponds
to introducing a risk-sharing arrangement across types of agents and across gener-
ations, item (ii) corresponds to an income transfer scheme within types; and item
(iii) cuts the Gordian knot of the infinity. Finally, trade in competitive loan markets
by the different types of agents exhausts any remaining gains fron trade in each
phase.

Remark 5. For generic economies, the set of loan market equilibria when every
agent type receives his target stationary net trade as endowment is finite. The con-
tinuation equilibrium prices are a selection from this set. Hence, if this set reduces
to a singleton, we get an optimal stationary allocation in all but a finite number
of periods; otherwise, we get what could be called a quasi-stationary allocation in
the sense that it is a sequence with finite range. Trivially, the equilibrium is unique
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if either the target Golden Rule vector is known for each type or if the target itself
is Pareto optimal, i.e., the gradients of the different agents’ utility functions point
in the same direction.

Remark 6. Notice that we restrict our attention to nonmonetary equilibria
(the “inside money” case). We also could consider the monetary equilibria of
the model (the “outside money” case) with the redefined endowments or with the
original specification of endowments. In this case, because of the well-known in-
determinacy problem that crops up in OLG economies (that occurs in one-good
economies only when there is money), we would get a plethora of equilibria.
In particular, we would lose the quasi-stationarity property of the continuation
equilibrium and would not be able to assert that every competitive equilibrium
leads to a Pareto optimal allocation. Of course, by the Second Welfare Theo-
rem, the allocations that we obtain in Theorem 1 can be supported as monetary
equilibria with the original specification of endowments; but, as we noted, we
cannot guarantee that a Pareto suboptimal allocation will not obtain at a monetary
equilibrium® So we demonetize the economy with good reason because there
is no other way of guaranteeing Pareto optimality of the improvement that we
construct.

THEOREM 1. Given Assumptionk, 2, and3, the information summarized in
Informational Assumptionkl, 1.2, 1.3, and I.4, allows the computation of the
net trades of the Uniform allocation constructed below. The honmonetary per-
fect foresight equilibriaobtained when endowments are specified by the Uni-
form allocation are Pareto optimal Pareto improvements over the SSE allo-
cation.

Proof.

Step 1. We begin by specifying the Uniform allocation. The construction is based upon
the Expected allocation, which was defined earlier, and is the same for the
different types of agents. Hence, we carry out the construction for a generic
type.

Step 1.1: We start by defining the “target” stationary net trades for the ag&ht R2.
Let F, be a set of restricted feasible stationary net trades specifiéd as
{(Y.2) e R?| y4+ 2= (C.; — wn1) + (G, — @n:2)} N Qn. Also, letr : R? — R!
be a projection functiongz(y, z) =y, and for any closed seA, as specified
in Informational Assumption 1.3, defineﬁ = argminz (A, N Fyp) so that, in
geometric termsA} is the northwest corner of the saf N F,. Denote this net
trade agy}, z}) := Al

Step 1.2: Define the net trades of the Uniform allocation as follows:

Zh0 = Cho — wn2 = Z, Wheresis the starting state
(9h;t? 2h;t) = (Eh;l,t — Wh:1, Eh:2.t - wh;Z)s fOI’ a“ t= 1s 27 ey Th - 17

whereT, > N is defined by the condition
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(i) T is the first date > N at whichCns — wn.2 < zE + 8, in which case the
allocation is given by

(9h;Thv 2h;Th) = (Efl:l,Th — Wh;1, Zﬁ)’

Ine- 200) = (V. 2), forall t> Ty

(i) Tnissuchthatforalt > Ty, Ch2t — wn2 > Z+ + 8 andc;,, + G, —8/4 <
Chi1t + Chizt < Gy + Cip + 8/4, Which, by the convergence result for the
Expected allocation, Lemma 2 (ii), must occur if we are not in case (i). So,
Ty is well defined for each type.
In this second case the allocation is given by

(9hiTh’ 2h;Th) = (Eh;l.Th — 1, Chi2 Ty — Ohi2 — 5),
(yh;t’ 2h;t) = (c_:h;l,t — Wh;1 + (t - Th)aa E|'1;2,t — Wh;2 — (t - Th)(s - 8)7
foralt=Th+1,...,Th—1

(Fnto 20ty) = (Conty — @na+ (Th— Th)8. Zh).
Frer 200 = (Yoo 7). forall t > T,

whereTy, is such that,, ¢, — wn> — (Th +1—Th)s < Z.
Step 2: We check that computation of the Uniform allocation is informationally feasible
given our hypotheses.

The information specified in 1.1 (the state contingent money demands—
equivalently, the SSE net trades—and the transition matrix are known), and
1.3 (some setg(An)nen) are known—this corresponds to some weak infor-
mation regarding the location of the target Golden Rule) allow the computa-
tion of the target net trade vect()yr}, zﬁ). Furthermore, Lemma 3 shows that
(Vi + on1. 2+ wn2) € RZ,. So, Step 1.1 is informationally feasible.

The information specified in 1.1 allows the computation of the net trades of
the expected allocation; that in 1.1 and 1.3 allows the computation of the target
net trade (as indicated above); that in 1.1, the (computed) target net trade, and
1.2 (interval-type information o8*) and 1.4 (interval-type information about a
preference parameter) allows the computatiof,dh both cases, andl, in the
second case. So, Step 1.2 is informationally feasible.

The Uniform allocation that we have constructed is now given to the agents
as their “new” endowment stream; informational feasibility implies that the net
trades of these new endowments can be induced through real taxes.

Step 3: We verify that the Uniform allocation is a Pareto improvement over the SSE.

By Proposition 1, the Expected allocation is an improvement over the SSE
allocation so that the agents of generations 1 thralygh 1 are being improved
by the Uniform allocation. By Lemmas 1 and 3, since the net t(glﬁezﬁ) is
given to agents born after peridg in case (i) wherd}, > N [agents born after
period T, in case (i) where agaifi, > NJ, all of these agents also are being
improved because "[y} + wh.1, Z} 4+ wn.2] = UP[YA + wn.1, 2% + on.o]. Also
in case (i), from monotonicity, the agent of generatignis being improved.
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We now show that in case (ii) the agents of generatnthrough Ty, also are
improved.
We note that our Assumption 3 of normality and Lemma 3 imply that

ULLY + on1, Z+ wn2l -

L > 1
ULy + @h1, Z+ wh:2]

2>z, y<yi=>

= U{][y + Wh:1, Z+ a)h;Z] - UZh[y + Wh;1, Z+ wh;Z] > 0.

This in turn implies that if(z — n§) > z} and(y + ns) < yt, then U"[y +
NS + wn:1, Z— NS + wn.2] > UMY + wh.1, Z+ wn.2], wheren ands are positive
numbers; also, from 1.2 and Proposition 2,

U"Ch.1ts Chzt — 8] = EUM[s()] VYt =1,2,3,....

These two facts taken together imply thatGf.o« — wn.2 — (N + 1)§) > zﬁ and
(Cnirt — @1 + NS < Vi, thenU"[Ch.1c + NS, Chzt — (N + 1)8] > UM[Ch.re,

Ch.2t — 8] = EUM[s(.) ], thus demonstrating that in case (i) we have at least a
weak improvement.

Step 4: We verify that any nonmonetary perfect foresight equilibrium obtained when the
Uniform allocation is used as the endowment specification is a Pareto optimal
allocation.

We start by noting that, beyond a certajrevery agent type gets a stationary
endowment specified by the vect@y: + wn.1, Z + wh.2)nen). This follows
because compactness of the feasible set impliesﬁhﬂ finite [whenever we
are in case (ii)], and by settifify, = T, [in the case of agent types for whom we
are in case (i)].

In any given period, define

Z Chi1t(Q) = Z(yh;t + wn.1), where (Cn.1.¢(q), Cr.2.4(d))

heH heH

Q= {q € Ry

h
< argma)&cl-cz)eREIQ(Cri'h;z*wh;1)+(62*ih;z*wh;z):0)U [c1, 2] }

Itis well known that given Assumptions 1 and@; is nonempty for every> 1,
though it need not be a singleton.

Let{G:}i>1 be suchthad € Q, forallt > 1,i.e., aselection fromthe sequence
of sets defined above. Now, defifg := p and, fort > 2, 1 := B - (1/G),
inductively. If we consider the price sequeri§g}:>1, we get a perfect foresight
equilibrium with the additional property that

S e

heH

P .
— =§ + + on. forall t>1,
le) - (Yhet h:1)

which is the defining property of inside-money equilibria.
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Now notice that, fott >t, the endowment distribution does not change any-
more, as a consequence of which the agents’ optimization problems are the same,
and so are their excess demand functions,@ng Qr for t > t.

Furthermore, fot > t, the gradient vector at the post-tax endowment is given
by

Pn = U{] [Yﬁ + on;1, Z; + a)h;Z} /UQ [yﬁ; + Wn;1, Z% + a)h:Z] ’

which, by virtue of Lemma 3, satisfies the conditign> 1 forallh € H. Define

0 1= Ma%enpen andp = Minyey ph. SO, 0 > 1. Trivially, there is an excess
demand ifq < p whereas there is an excess supply it- p. By continuity

of the excess-demand function and the intermediate-value theorem, there exists
§ € Qg; furthermore, for alfj € Qr, we havej > 1.

Now we check for Pareto optimality by invoking the Cass criterion [see, e.g.,
Geanakoplos and Polemarchakis (1991)]. Because we have a perfect foresight
equilibrium with no restriction on trades, we have in effect a complete markets
equilibrium; in addition, under our assumptions the monotonicity and uniform
smoothness conditions required in the Cass criterion are satisfied. The result
follows by noting that becaus > 1 fort > t, p1 < P fort > t, as a
consequence of which " _(1/f) diverges, which is precisely the sufficient
condition given in the Cass criterion. |

Remark 7. Clearly, if the objective is to reach the target stationary net trade
(Yt, zt) as quickly as possible in an optimal-improving manner, then it is in the
government’s interest to be able to compdite

Remark 8. 1.1 is a mild informational assumption; I.2 and 1.4 are both interval-
type requirements on information and are, to that extent, relatively weak. Similarly,
for 1.3, we can take a sufficiently small positive number.

4. PROOFS
PROPOSITION 1.If s(.) is an SSE allocatiorthen it is not Pareto optimal.

Proof. We verify that the Expected allocatidfi(Ch.1 ¢, Eh;z’t)heH)}{jw and
((Ch.2.0)nen), Is feasible.

Z Chivt+1 + Z Chi2t = Z Tt Z ToCha

heH heH heH heH

+ Z e (e + n”‘ﬁcﬁé) + Z ? (nﬂ"‘cﬁf‘z + nﬁ’scﬁffz)
heH heH

= (w4 a7 ) Y e+ (e + 77 ) Yy
heH heH

+ n,tsanaa Z Cﬁ;az + ﬂtsﬁn.ﬂtx Z C/sflz + ntsanvtﬁ Z Cﬁ{sZ
heH heH heH
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+ PP Z cffy = n&me (Z Ch1+ Z Cﬁ°‘2>

heH heH heH
4 nate (Z ey cgf;> e (Z s c;:;g>
heH heH heH heH
St (Z s qff;)
heH heH

— (ntsa(r[aot + naﬂ) + JTtSﬂ (ﬂﬂa + ﬂﬁﬂ)) (Z Wh;2 =+ Z (Uh;2>

heH heH
= th;2+zwh;2 s € {a, B},

heH heH
since market clearing implies that

Z Cha + Z o = Z wh2 + Z ®h;2

heH heH heH heH

fors € {«, B} ands’ € {«, B}. Hence, the Expected allocation is feasible.
By Assumption 1 (convexity), and (ii) and (iii) in Definition 1, it is strictly
improving for all agents. ]

LEMMA 2.

(i) im0 18 = 7% = 7% iMoo 1 o= 7% = nf;
(“) |imt*>+00 (Eh;l,h Eh;2,t) = (Eﬁ;l» Eﬁ;z) forall heH;
(i) lim ¢ 0 EUM[S()] = E*UM[s()] forall he H;

(V) UG G0l > E*UM[s()] forall heH.

Proof.

(i) Sincellisastrictly positive stochastic matrix [by Definition 1 (jii)], 1 isits Frobenius
root. The result follows.

(ii) and (iii) The results stated in (ii) and (iii) follow from the fact that the Expected
allocation and the sequence of expected utilities from the SSE are linear in the
conditional probabilities that converge by (i).

(iv) Both sides of the inequality are well defined by virtue of (ii) and (iii), above.
Furthermore the outcorre;,.; , Ci..,) is the expected value of the stochastic outcome
on the right-hand side of the inequality; by Definition 1(ii), it is nondegenerate. The
result follows from Assumption 1 (Jensen’s inequality). |

PROPOSITION 2% There exists a finite numbét > 0 such thatuniformly
in t,Vs e (0: 3*]7Vh € H9(Ch;1’ Ch:2) € B(S(Eh;l,tv Eh;Z,t) = Uh[Ch;lv Ch;Z] =
EUMsO)].
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Proof. Foranyfinité > 0, by Jensen’sinequality,"[Ch.1t, Ch.2t] > EUM[S()].
Define the compact sé&t as

K = {(C]_, C) € Ri

C1< Y (@n1+on2),C2< Y (@hat wh;z)},

heH heH

and defineAn; = {(c1,C2) € R2 | UN[cy, o] < EUN[s()]} N K. Now define
Shit 1= MIiNg,.cpean: |l (Chivts Chizt) — (C1, C2)|l. For allh € H, 8ht > 0 exists
since Ay, is compact.

Choosex, ¢ > 0, which can depend om, sufficiently small so as to construct
An;e andB.¢ (G4, C.,), compact subsets ¢, which are disjoint and for some
largeMp,. : andforallt > My, (UN)~ YEUY, [s( )DNK € AP and(Ch:1.t, Cn:2.t)
€ Bn.e(G.q. C.p), WhereAn, := (UM~ 1([E*Uh[s( )] —e, E*Uh[s( +€eDNK.
That two such sets can be constructed for each yfolows from Lemma 2.

Now defined,, = MiN(,. c,)e A MiNbeB,,. 1D — (C1, C2)||. The compactness of
the sets and the continuity of the metric imply thiats well defined; since the sets
are disjoint 3y > 0. Letsn := min{8n.1, 8h.2, - . . , 8,., n} for someMp > My 2;
hences,, > 0. Now, consider the sed{, 5y.1] and letdp, 1 ;= min{dn.1, ..., dh,7}
Clearly, 5h TE [Sh, dh.1] for all T and the sequendgé. T}T7+°° is weakly mono-
tone decreasing, and so, it has a limit. Finally, defifieo bes}; = limrt_, oo8n. T
and set* := Minpen 8. [ |

_LEMMA 1. Given((An)necH), Where each set Asatisfied.3, there exists an
N such that for all he H, UMy + wh.1, Z* + wn.2] > EU[s()] forallt >N.

Proof. By 1.3(ii) and (iii), and the definition afy”, zA"), U[y* + wh.1, 2 +
wn:2] > E*UMs(.)]. So, Lemma 2(jii) and the continuity dEU[s(.)] in =&
andnfﬂ imply that, for each typé € H, there exists atN*" such thatU "y +
wh;1, Z At wpp] > EUh[s( )] for all t > N The result follows by defining
N = ma¥en NA [ |

LEMMA 3. For all h € H, U[y} + wnh1, Zt 4+ on2l/UDIYE + on1, Z4 +
wn2)] = pn = 1.

Proof. It is easily checked thak, N F, is compact, so thaty?, z}) is well
defined. We now show thatyf + wn1, zt + wn2) € R%, so that by Assump-
tion 1 the MRS aty}, z!) is well defined. By our boundary assumption on prefer-
ences, all of the sunspot outcomes areRh, implying that A + {(wn.1, wh:2)}
stays away from the boundary &2 so thatA; N Fn #9. By 1.3, (cGR(C, +
Cp. 2) — wh:1, ch RChy + G 2) — wh, 2) e AnNFy andAﬂ A* = ¢, implying that
(V¢ + on1, Z} + Wh:2) € R+Jr Now note that by Assumptlon 1 (convexity and
monotomcny)U [yn + ont, Zh + on, 2]/U2[yh + wh1, Zfy + wn, 2] =ph>1=

UTTCS T @t + Crio) CRECha + Gr)l/ U2l el TGy + Cho)s €55 (Gt + G2l
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since(yt, z5) = argmin (AnNFr) and(cS R(C.1 + o) — whi1, Co NGy +Chn) —
wn:2) € An N Fp. |

NOTES

1. As we indicate in Remark 5, for a generic economy, all but a finite number of agents of each
type receive a consumption vector that is one of a finite collection of vectors (none of which need be
the same as the target); as a special case, beyond a certain point in time, each agent of a given type
receives the same vector.

2. For example, Geanakoplos and Polemarchakis (1986) look at a two-period model with in-
complete markets, show that the resulting allocation is generically constrained suboptimal, and ask how
much information a planner will need before she can effect an improvemetar{ optimal improve-
ment). The solution by Geanakoplos and Polemarchakis (1990), is based on conditions guaranteeing
the local recoverability of preferences from demand functions and is quite different from the approach
taken in this paper.

3. Geanakoplos and Polemarchakis (1986) also stress this point.

4. However, note that the one good case often is regarded as the one relevant for macroeconomics.

5. See Chattopadhyay (1997), where such a result is obtained in the classical OLG framework with
one type of household.

6. For details and references on the OLG model, see, e.g., Geanakoplos (1989) and Geanakoplos
and Polemarchakis (1991).

7. If the utility function is assumed to be additively separable, then Assumption 1 implies Assump-
tion 3.

8. See Chiappori and Guesnerie (1991) and Guesnerie and Woodford (1992) for surveys of the
literature.

9. For stationary stochastic variables, superscripts represent the state.

10. We follow Chattopadhyay (1996, Sect. 2.3.2).

11. Deterministic allocations are, as usual, special cases of stochastic allocations.

12. Br (X1, X2) denotes the closed ball of radiusvith center ai(x, x2).

13. From Lemma 2(ii) and (iv), for eadhe H, there issomestationary allocation, satisfying the
endowment distribution conditioth.1 + Ch.2 = ‘?ﬁ;l + 6;;2, which is strictly preferred to the limiting
SSE lottery. Now, the existence of the séig for h € H, follows from the definition of the seta;;.

Also, given Assumption 1, convexity and continuity of preferences, the requirememtitet closed
and convex is without loss of generality.

14. The continuity of the preference relation implies the existence of such an element.

15. This problem is related to the well-known problem about the relation between competitive
monetary equilibria and Pareto optimal allocations; the problem is very difficult in all cases except
when there is only one goahdonly one type of agent.

16. B (X1, X2) denotes the closed ball of radiuswith center at(xy, x2) and| - || is the usual
Euclidean metric.
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