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Abstract

We study the extragradient method for solving quasi-equilibrium problems in Banach spaces, which
generalizes the extragradient method for equilibrium problems and quasi-variational inequalities. We
propose a regularization procedure which ensures strong convergence of the generated sequence to a
solution of the quasi-equilibrium problem, under standard assumptions on the problem assuming neither
any monotonicity assumption on the bifunction nor any weak continuity assumption of f in its arguments
that in the many well-known methods have been used. Also, we give a necessary and sufficient condition
for the solution set of the quasi-equilibrium problem to be nonempty and we show that, in this case,
this iterative sequence converges strongly to a solution of the quasi-equilibrium problem. In other words,
we prove strong convergence of the generated sequence to a solution of the quasi-equilibrium problem
without assuming existence of a solution of the problem. Finally, we give an application of our main result
to a generalized Nash equilibrium problem.
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1. Introduction

Let E be a real Banach space with norm ‖ · ‖; E∗ will denote the topological dual of E.
The duality mapping J : E → P(E∗) is defined by

J(x) = {v ∈ E∗ : 〈x, v〉 = ‖x‖2 = ‖v‖2}.

Let C ⊆ E be a nonempty closed and convex set and K(·) be a multivalued mapping
from C into itself such that for all x ∈ C, K(x) is a nonempty closed and convex subset
of C, and let f : E × E → R be a bifunction. The quasi-equilibrium problem QEP
( f , K) consists of finding x∗ ∈ K(x∗), that is, a fixed point x∗ of K(·), such that

f (x∗, y) ≥ 0, ∀y ∈ K(x∗). (1-1)

© 2020 Australian Mathematical Publishing Association Inc.

90

https://doi.org/10.1017/S1446788720000233 Published online by Cambridge University Press

http://dx.doi.org/10.1017/S1446788720000233
https://orcid.org/0000-0001-8645-8773
https://orcid.org/0000-0002-0151-0825
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1446788720000233&domain=pdf
https://doi.org/10.1017/S1446788720000233


[2] Extragradient methods for quasi-equilibrium problems in Banach spaces 91

The set of solutions of QEP ( f , K) will be denoted as S( f , K). We also denote the
set of fixed points of the multivalued mapping K(·) by Fix(K). The associated Minty
quasi-equilibrium problem, denoted by MQEP ( f , K), can be expressed as finding
x∗ ∈ K(x∗) such that f ( y, x∗) ≤ 0 for all y ∈ K(x∗). The set of solutions of MQEP ( f , K)
will be denoted by MS( f , K). When the constraint set K(x) is equal to C for every x ∈ C,
the quasi-equilibrium problem QEP ( f , K) becomes a classical equilibrium problem
EP ( f , C), and the associated Minty quasi-equilibrium problem becomes a classical
Minty equilibrium problem.

An example of a quasi-equilibrium problem is a quasi-variational inequality
problem. Let K(·) be a multivalued mapping from C into itself such that for all x ∈ C,
K(x) is a nonempty closed and convex subset of C, consider a map T : E → E∗ and
define f (x, y) = 〈T(x), y − x〉, where 〈·, ·〉 : E∗ × E → R denotes the duality pair, that is,
〈z, x〉 = z(x). Then QEP ( f , K) is equivalent to the quasi-variational inequality problem
QVIP (T , K), consisting of finding a point x∗ ∈ K(x∗) such that 〈T(x∗), x − x∗〉 ≥ 0
for all x ∈ K(x∗). Usually for approximating solutions of the equilibrium problems,
some monotonicity assumptions on the bifunction f are needed. We recall next
two such properties for future reference: the bifunction f is said to be monotone
if f (x, y) + f ( y, x) ≤ 0 for all x, y ∈ E and pseudo-monotone if for any pair x, y ∈ E,
f (x, y) ≥ 0 implies that f ( y, x) ≤ 0.

The equilibrium problem encompasses, among its particular cases, convex opti-
mization problems, variational inequalities (monotone or otherwise), Nash equilibrium
problems and other problems of interest in many applications. The study of equi-
librium problems goes back to Fan [11]. Subsequently, Brézis et al. [6] studied the
problem with a coercivity assumption on f. Blum and Oettli [5] proved the existence
of solutions to EP ( f , C) with a monotonicity condition on f. Later, the equilibrium
problems were studied extensively for existence of solutions (see, for example, [13]
and the references therein). Recently, much research was devoted to the approximation
of solutions to equilibrium problems (see, for example, [18, 19, 26] and the references
therein). Equilibrium problems with monotone and pseudo-monotone bifunctions
were studied extensively in Hilbert, Banach as well as in topological vector spaces
by many authors (for example, [4, 7, 8, 13, 15, 19]). Also, the quasi-equilibrium
problems were studied in [3] and [33]. Recently, the second author and Iusem have
studied the extragradient method with linesearch for solving nonsmooth equilibrium
problems in Banach spaces. They proved weak and strong convergence of the generated
sequence to a solution of the equilibrium problem, under standard assumptions on the
bifunction (see [15, 16]). Other variants of the extragradient method can be found
in [10, 12, 14, 17, 22, 24, 25, 31]. In this paper, we perform some modifications
on the extragradient method in order to introduce and analyze the extragradient
method with linesearch for solving quasi-equilibrium problems in Banach spaces,
and we prove the strong convergence of the generated sequence to a solution of the
quasi-equilibrium problem, under rather mild assumptions on the bifunction. Our
convergence results hold without any monotonicity, smoothness and weak continuity
assumptions on f. Also, we give a necessary and sufficient condition for the solution set
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of the quasi-equilibrium problem to be nonempty, and we show that in this case, this
iterative sequence converges strongly to a solution of the quasi-equilibrium problem.
In particular, our results contain the case where the bifunction is the sum of two (or
finitely many) pseudo-monotone bifunctions or even the sum of a pseudo-monotone
bifunction and a monotone bifunction. As we know, in this case, the sum need not
be any more pseudo-monotone, where the pseudo-monotone case was studied by
previous authors. One of the main reasons for studying quasi-equilibrium problems
lies in the relation between them and quasi-variational inequalities, which mirrors
the well-known relation between equilibrium problems and variational inequalities.
Quasi-variational inequalities are themselves relevant because they encompass certain
problems of interest in applications, which do not fall within the scope of variational
inequalities. Perhaps one important instance of such applications is the generalized
Nash equilibrium problem, which models a large number of real-life problems in
economics and other areas (see [27, 28, 30]). In order to illustrate an application of
our main result in this paper, we will give a concrete example of a real-life problem in
Section 4.

In this paper, we study an extragradient method which improves upon [15] and [33]
in the following ways.

(a) We deal with an extragradient method for solving quasi-equilibrium problems in
Banach spaces, while [15] considered classical equilibrium problems. Also, [33]
is restricted to finite-dimensional Euclidean spaces.

(b) We prove the strong convergence of the generated sequence to a solution of the
quasi-equilibrium problem, without assuming the existence of a solution to the
problem, while in [15] and [33] the authors assumed the existence of a solution
for their equilibrium problems.

(c) The convergence analysis of the method in [15] requires the weak upper semi-
continuity of f (·, y) for all y ∈ E and the Lipschitz continuity of the bifunction f
on bounded sets, which are quite restrictive conditions. Here we use neither Lip-
schitz continuity nor weak upper semicontinuity assumptions on the bifunction.
Moreover, since the algorithm in [33] works only in finite-dimensional spaces, it
is not even possible to get the weak convergence of the generated sequence in a
Banach space by their algorithm.

(d) We deal with a rather general class of bifunctions, while [15] only considered
pseudo-monotone bifunctions. On the other hand, [33] considered a multival-
ued mapping K(·) : C → P(C) which is �-nonexpansive and bounded valued,
whereas we assume that K(·) is quasi-φ-nonexpansive, which is a weaker
assumption, and we do not use the boundedness of K(·).

We also mention another difference between our algorithm and those of [15] and
[33], regarding the step required for getting the strong convergence. Note that [33]
considered only finite-dimensional Euclidean spaces with a different extragradient
algorithm, and [15] dealt with Halpern’s algorithm, which consists of a convex
combination in E∗ of the current iterate with a given point in E∗. Our method, instead,
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takes the projection of the initial iterate onto the intersection of three half spaces
(see (3-10)). Although the projections may present some computational complexity in
Banach spaces, they are needed for the convergence analysis of the generated sequence,
especially when K(·) is quasi-φ-nonexpansive. In fact, the half space Mk defined in
(3-12) helps us to prove the convergence of the generated sequence to a fixed point of
K(·), and the half spaces Lk and Nk defined in (3-11) and (3-13) help us to prove the
strong convergence of the sequence.

The paper is organized as follows. In Section 2, we introduce some preliminary
material related to the geometry of Banach spaces. In Section 3, we introduce
and analyze the extragradient method with linesearch for solving nonsmooth
quasi-equilibrium problems in Banach spaces, and we prove the strong convergence of
the generated sequence to a solution of the quasi-equilibrium problem. Also, we give a
necessary and sufficient condition for the solution set of the quasi-equilibrium problem
to be nonempty. Finally, in Section 4, we give an application of our main result to a
generalized Nash equilibrium problem, which is formulated as a quasi-equilibrium
problem.

2. Preliminaries

A Banach space E is said to be strictly convex if ‖(x + y)/2‖ < 1 for all x, y ∈ E
with ‖x‖ = ‖y‖ = 1 and x � y. It is said to be uniformly convex if for each ε ∈ (0, 2],
there exists δ > 0 such that for all x, y ∈ E with ‖x‖ = ‖y‖ = 1 and ‖x − y‖ ≥ ε, we have
‖(x + y)/2‖ < 1 − δ. It is known that uniformly convex Banach spaces are reflexive and
strictly convex.

A Banach space E is said to be smooth if

lim
t→0

‖x + ty‖ − ‖x‖
t

(2-1)

exists for all x, y ∈ S = {z ∈ E : ‖z‖ = 1}. It is said to be uniformly smooth if the limit in
(2-1) is attained uniformly for x, y ∈ S. It is well known that the spaces Lp(1 < p < ∞)
and the Sobolev spaces Wk,p (1 < p < ∞) are both uniformly convex and uniformly
smooth.

It is well known that when E is smooth the duality operator J is single valued. Let
E be a smooth Banach space. We define φ : E × E → R as

φ(x, y) = ‖x‖2 − 2〈x, J( y)〉 + ‖y‖2. (2-2)

This function can be seen as a ‘distance-like’ function, better conditioned than the
square of the metric distance, namely ‖x − y‖2; see, for example, [1, 21, 22].

It is easy to see that

0 ≤ (‖x‖ − ‖y‖)2 ≤ φ(x, y) (2-3)
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for all x, y ∈ E. In Hilbert spaces, where the duality mapping J is the identity operator,
we have φ(x, y) = ‖x − y‖2. In the following, we will need the following three properties
of φ, proved in [21].

PROPOSITION 2.1. Let E be a smooth and uniformly convex Banach space. Take two
sequences {xk}, {yk} ⊂ E. If limk→∞ φ(xk, yk) = 0 and either {xk} or {yk} is bounded, then
limk→∞ ‖xk − yk‖ = 0.

PROPOSITION 2.2. Let E be a reflexive, strictly convex and smooth Banach space.
Take a nonempty, closed and convex set C ⊂ E. Then, for all x ∈ E, there exists a
unique x0 ∈ C such that

φ(x0, x) = inf{φ(z, x) : z ∈ C}.

We define PC : E → C by taking PC(x) as the unique element x0 ∈ C given by
Proposition 2.2. The projection PC is called the generalized projection onto C. When
E is a Hilbert space, PC is just the metric projection onto C.

The third result taken from [21] is the following proposition.

PROPOSITION 2.3. Consider a smooth Banach space E and a nonempty, closed and
convex set C ⊂ E. Let x ∈ E and x0 ∈ C. Then x0 = PC(x) if and only if

〈z − x0, J(x) − J(x0)〉 ≤ 0

for all z ∈ C.

We also need the following result from [29].

PROPOSITION 2.4 [29]. Suppose that f and g are convex, proper and lower semicon-
tinuous functions on the Banach space E and that there is a point in D( f ) ∩ D(g) where
one of them is continuous. Then

∂( f + g)(x) = ∂ f (x) + ∂g(x), x ∈ D(∂ f ) ∩ D(∂g).

We continue this section with a notational comment: when {xk} is a sequence in E,
we denote strong convergence of {xk} to x ∈ E by xk → x and weak convergence by
xk ⇀ x. In the following definitions, suppose that C ⊂ E is a nonempty, closed and
convex set.

DEFINITION 2.5. We say that T : C → C is a quasi-φ-nonexpansive mapping when-
ever Fix(T) � ∅ and φ(p, Tx) ≤ φ(p, x) for all (p, x) ∈ Fix(T) × C.

DEFINITION 2.6. Let K(·) be a multivalued mapping from C into itself such that for
all x ∈ C, K(x) is a nonempty, closed and convex subset of C. We say that K(·) is
quasi-φ-nonexpansive whenever the mapping T(·) = PK(·)(·) is quasi-φ-nonexpansive,
where P is the generalized projection.

DEFINITION 2.7. The multivalued mapping K(·) from C into itself is called lower
semicontinuous at each x̄ ∈ C if, whenever we have {xk} ⊂ C and xk → x̄, then for any
ȳ ∈ K(x̄), there is a sequence {yk} with yk ∈ K(xk) for all k such that yk → ȳ as k → ∞.
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In the following, we give an example of a multivalued mapping which is lower
semicontinuous at each x̄ ∈ C.

EXAMPLE 2.8. Define K(·) : C → P(C) by K(x) = B(0, ‖x‖), where B(0, ‖x‖) denotes
the closed ball of radius ‖x‖ centered at 0. Suppose that x k → x̄ and ȳ ∈ K(x̄). Then, if
x̄ = 0, we have ȳ = 0 and hence we can choose y k = 0 for all k, where y k ∈ K(x k). If
x̄ � 0 and ȳ ∈ K(x̄), we choose y k = (〈x k, Jx̄〉/‖x̄‖2)ȳ. It is easy to see that y k ∈ K(x k).
Therefore, in both cases we have y k ∈ K(x k) and y k → ȳ.

DEFINITION 2.9. The multivalued mapping K(·) from C into itself is said to be
demiclosed if, whenever xk ⇀ x̄ and limk→∞ d(xk, K(xk)) = 0, then x̄ ∈ Fix(K).

Note that when T is a quasi-φ-nonexpansive mapping, it is well known that Fix(T)
is convex. Also, if T is demiclosed, then Fix(T) is closed (see Remark 3.2).

Now we introduce some conditions on the bifunction f and the multivalued mapping
K that we will need for the convergence analysis.

B1: f (x, x) = 0 for all x ∈ E.
B2: f is continuous on E × E and uniformly on bounded subsets of E with respect to

the second argument, and f is bounded on bounded subsets of E × E.
B3: f (x, ·) : E → R is convex for all x ∈ E.
B4: K(·) : C → P(C) is a multivalued mapping with nonempty, closed and convex

values, quasi-φ-nonexpansive, demiclosed and lower semicontinuous at each
x ∈ C.

Regarding B4, we mention that some demiclosedness-like property is needed for
convergence of all variants of approximation methods of fixed point problems. Also,
lower semicontinuity of K(·) is used to show that the sequence generated by the
algorithm SEML in Section 3 converges strongly to a solution of QEP ( f , K). We
mention also that for the sequences generated by our algorithm in Section 3 to be well
defined and bounded, we will assume that

DS( f , K) := {x ∈ K(x) : f ( y, x) ≤ 0, ∀y ∈ C} � ∅.

However, if the sequence {vk} generated by the algorithm SEML is well defined and
bounded, then the above condition is automatically satisfied. It is easy to see that
DS( f , K) ⊆ MS( f , K) ⊆ S( f , K) (see Remark 3.3 in Section 3).

3. Extragradient method with linesearch and strong convergence

In this section, we study the strong convergence of the sequence generated by a
strongly convergent variant of the extragradient method with linesearch (SEML) to
approximate a solution of the quasi-equilibrium problem. We also propose a regular-
ization procedure on the extragradient method which ensures the strong convergence
of the generated sequence to a solution of QEP ( f , K). We will assume in the following
that E is uniformly smooth and uniformly convex, that C ⊆ E is nonempty closed
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and convex, that f : E × E → R is a bifunction, that K(·) : C → P(C) is a multivalued
quasi-φ-nonexpansive mapping and that the assumptions B1–B4 are satisfied. For the
sake of definiteness and boundedness of the iterative sequence {vk} generated by the
following algorithm, we assume that DS( f , K) � ∅. However, we will show later that
if the sequence {vk} generated by the algorithm is bounded, then S( f , K) � ∅. First we
give the formal definition of the algorithm SEML.

1. Initialization: Fix v0 ∈ E and consider a sequence γk ∈ [ε, 1/2] for some ε ∈
(0, 1/2] and k = 0, 1, 2, . . . . Take δ, θ ∈ (0, 1), β̂, β̃ satisfying 0 < β̂ ≤ β̃ and a sequence
{βk} ⊆ [β̂, β̃].

2. Iterative step: Given vk, define

xk = PK(vk)(v
k), (3-1)

zk ∈ Argminy∈K(vk)

{
f (xk, y) +

1
2βk
‖y‖2 − 1

βk
〈y, Jxk〉

}
. (3-2)

If zk = vk, stop. Otherwise, let


(k) = min
{

 ≥ 0 : βk f ( y
, xk) − βk f ( y
, zk) ≥ δ

2
φ(zk, xk)

}
, (3-3)

with

y
 = θ
zk + (1 − θ
)xk. (3-4)

Set

αk := θ
(k), (3-5)

yk := y
(k) = αkzk + (1 − αk)xk. (3-6)

Take hk ∈ ∂ f ( yk, ·)(xk) and define

Hk = {y ∈ E : 〈y − xk, hk〉 + f ( yk, xk) ≤ 0}. (3-7)

If k = 0, set C0 = C ∩ H0. Otherwise, let

Ck = Ck−1 ∩ Hk, (3-8)

wk = PCk (x
k). (3-9)

Determine the next approximation vk+1 as

vk+1 = PLk∩Mk∩Nk (v
0), (3-10)

where

Lk = {z ∈ E : 〈z − xk, Jxk − Jwk〉 ≤ −γkφ(xk, wk)}, (3-11)

Mk = {z ∈ E : 〈z − vk, Jvk − Jxk〉 ≤ −γkφ(vk, xk)}, (3-12)

Nk = {z ∈ E : 〈z − vk, Jv0 − Jvk〉 ≤ 0}. (3-13)
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The above backtracking procedure for determining the right αk is sometimes called
an Armijo-type search (see [2]). It has been analyzed for VIP( T , C) in [23] and [20].

REMARK 3.1. In the above algorithm, it is worth mentioning that if we remove the
steps (3-10)–(3-13) and replace Ck and wk in (3-9), respectively, by Ck ∩Mk and vk+1,
then with additional conditions such as the weak upper semicontinuity of f with respect
to the first argument, the weak continuity of the duality mapping J and the weak lower
semicontinuity of the multivalued mapping K at each x̄ ∈ C, we can get the weak
convergence of the generated sequences {vk} and {xk} to a solution of the problem.
However, since these are rather strong conditions to be imposed on the problem, we
preferred to avoid this approach.

We proceed now to the convergence analysis of the algorithm SEML. We first
give our strong convergence result for the algorithm SEML. The proof of the main
theorem is divided to several lemmas and propositions. In order to establish the
strong convergence of the sequence generated by the algorithm SEML, we need some
intermediate results.

THEOREM 3.1. Assume that E is a uniformly convex and uniformly smooth Banach
space, f is a bifunction, K(·) is a multivalued quasi-φ-nonexpansive mapping and the
assumptions B1–B4 are satisfied.

(i) If DS( f , K) � ∅, then the sequence {vk} generated by the algorithm SEML is well
defined and bounded.

(ii) If the sequence {vk} is well defined and bounded, then the sequences {vk} and
{xk} generated by the algorithm both converge strongly to an element of S( f , K),
which is therefore nonempty.

We will give the proof of Theorem 3.1 at the end of this section, after proving the
intermediary steps needed for the proof.

PROPOSITION 3.2. Assume that f satisfies B1–B3. Take a closed and convex set C ⊆ E,
x ∈ E, β ∈ R+. If

z ∈ Argminy∈C

{
f (x, y) +

1
2β
‖y‖2 − 1

β
〈y, Jx〉

}
, (3-14)

then 〈y − z, Jx − Jz〉 ≤ β[ f (x, y) − f (x, z)] for all y ∈ C.

PROOF. Let NC(z) be the normal cone of C at z ∈ C, that is,

NC(z) = {v ∈ E∗ : 〈y − z, v〉 ≤ 0, ∀y ∈ C}.

Since the minimand of (3-14) is convex by B3, and C is closed and convex, z satisfies
the first-order optimality condition, given by

0 ∈ ∂
{

f (x, ·) + 1
2β
‖ · ‖2 − 1

β
〈·, Jx〉

}
(z) + NC(z).
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Thus, in view of the definition of J and by Proposition 2.4, there exist w ∈ ∂ f (x, ·)(z)
and w̄ ∈ NC(z) such that

0 = w +
1
β

Jz − 1
β

Jx + w̄.

Therefore, since w̄ ∈ NC(z), we have 〈y − z,−w − (1/β)Jz + (1/β)Jx〉 ≤ 0, so that, using
the fact that w ∈ ∂ f (x, ·)(z),

1
β
〈y − z, Jx − Jz〉 ≤ 〈y − z, w〉 ≤ f (x, y) − f (x, z). (3-15)

COROLLARY 3.3. Assume that f satisfies B1–B3. Let {xk} and {zk} be the sequences
generated by the algorithm SEML. Then 〈y − zk, Jxk − Jzk〉 ≤ βk f (xk, y) − βk f (xk, zk)
for all y ∈ K(vk).

PROOF. Follows from Proposition 3.2 and (3-2).

PROPOSITION 3.4. Assume that f satisfies B1–B3. If the algorithm SEML stops at the
kth iteration, then xk is a solution of QEP(f , K).

PROOF. If the algorithm stops at the kth iteration, then zk = vk and hence zk = xk by
(3-1). Now the result follows from Corollary 3.3.

PROPOSITION 3.5. Assume that f satisfies B1–B3. The following statements hold for
the algorithm SEML.

(i) 
(k) is well defined, (that is, the linesearch for αk is finite) and consequently the
same holds for the sequence {yk}.

(ii) If xk � zk, then f ( yk, xk) > 0.

PROOF. (i) If xk = zk, then 
(k) = 0; therefore, let xk � zk. Assume by contradiction
that

βk[ f ( y
, xk) − f ( y
, zk)] <
δ

2
φ(zk, xk) (3-16)

for all 
. Note that the sequence {y
} is strongly convergent to xk. In view of B2, taking
limits in (3-16) as 
 → ∞,

βk[ f (xk, xk) − f (xk, zk)] ≤ δ
2
φ(zk, xk). (3-17)

Since xk ∈ K(vk) by (3-1), we apply Corollary 3.3 with y = xk in (3-17), obtaining

〈xk − zk, Jxk − Jzk〉 ≤ δ
2
φ(zk, xk). (3-18)

In view of the definition of φ, (3-18) implies that

φ(zk, xk) + φ(xk, zk) ≤ δφ(zk, xk). (3-19)

Since δ ∈ (0, 1), we get φ(xk, zk) < 0, contradicting the nonnegativity of φ.
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(ii) Assume that f ( yk, xk) ≤ 0. Note that, using B1, B3 and (3-6),

0 = f ( yk, yk) ≤ αk f ( yk, zk) + (1 − αk) f ( yk, xk).

Hence, f ( yk, zk) ≥ 0. On the other hand, by (3-3)–(3-6),

f ( yk, xk) ≥ f ( yk, zk) +
δ

2βk
φ(zk, xk) > f ( yk, zk) ≥ 0, (3-20)

in contradiction with the assumption. Note that the strict inequality in (3-20) is due to
the fact that xk � zk.

In order to prove the convergence theorem of the sequence generated by the
algorithm, we need the following remarks and lemmas.

REMARK 3.2. If K : C → P(C) is a multivalued mapping satisfying B4, then Fix(K)
is closed and convex.

PROOF. Let p1, p2 ∈ Fix(K) and define pt = tp1 + (1 − t)p2, where t ∈ [0, 1]. In order
to prove the convexity of Fix(K), we must show that pt ∈ K(pt). Let T pt := PK(pt)(pt),
where P is the generalized projection. Note that by (2-2) and (2-3),

0 ≤ φ(pt, T pt) = ‖pt‖2 − 2〈pt, J(T pt)〉 + ‖T pt‖2

= ‖pt‖2 − t‖p1‖2 − (1 − t)‖p2‖2 + t(‖p1‖2 − 2〈p1, J(T pt)〉 + ‖T pt‖2)

+ (1 − t)(‖p2‖2 − 2〈p2, J(T pt)〉 + ‖T pt‖2)

= ‖pt‖2 − t‖p1‖2 − (1 − t)‖p2‖2 + tφ(p1, T pt) + (1 − t)φ(p2, T pt)

≤ ‖pt‖2 − t‖p1‖2 − (1 − t)‖p2‖2 + tφ(p1, pt) + (1 − t)φ(p2, pt)

= ‖pt‖2 − 2t〈p1, Jpt〉 − 2(1 − t)〈p2, Jpt〉 + ‖pt‖2 = φ(pt, pt) = 0.

Therefore, φ(pt, T pt) = 0. Now Proposition 2.1 shows that T pt = pt. Since T pt =

PK(pt)(pt), pt ∈ K(pt), that is, Fix(K) is convex.
Now we show that Fix(K) is closed. Let {pk} ⊂ Fix(K) be such that pk → p. Since

we have pk ∈ K(pk), then limk→∞ d(pk, K(pk)) = 0. Now the demiclosedness of K
implies that p ∈ Fix(K), that is, Fix(K) is closed.

REMARK 3.3. Assume that f and K satisfy B1–B4. Then DS( f , K) ⊆ S( f , K). Also,
DS( f , K) is closed and convex.

PROOF. Let x∗ ∈ DS( f , K) and suppose that y ∈ K(x∗) is arbitrary. Define pt = tx∗ +
(1 − t)y, where t ∈ [0, 1). Note that by B1 and B3,

0 = f (pt, pt) ≤ t f (pt, x∗) + (1 − t) f (pt, y). (3-21)

Since f (pt, x∗) ≤ 0, (3-21) implies that f (pt, y) ≥ 0. Now, by using B2 and taking the
limit as t → 1−, we get f (x∗, y) ≥ 0. Since y ∈ K(x∗) is arbitrary, then x∗ ∈ S( f , K).
Finally, it follows from B2 and B3 that DS( f , K) is closed and convex.
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LEMMA 3.6. If DS( f , K) � ∅, then DS( f , K) ⊆ Lk ∩Mk ∩ Nk. Therefore, the sequences
{vk}, {wk} and {xk} are well defined.

PROOF. The proof is by induction. Note that DS( f , K), Lk, Mk and Nk are closed and
convex. We first show that DS( f , K) ⊆ Lk ∩Mk ∩ Nk for all k ≥ 0. Let

Dk = {z ∈ E : φ(z, wk) ≤ φ(z, xk)} = {z ∈ E : 〈z − xk, Jxk − Jwk〉 ≤ − 1
2φ(x

k, wk)}

and

Fk = {z ∈ E : φ(z, xk) ≤ φ(z, vk)} = {z ∈ E : 〈z − vk, Jvk − Jxk〉 ≤ − 1
2φ(v

k, xk)}.

By γk ∈ [ε, (1/2)], Dk ⊆ Lk and Fk ⊆ Mk. Let x∗ ∈ DS( f , K) and note that x∗ ∈ Hk for
all k; we also have wk = PCk (x

k) by (3-9). Now Proposition 2.3 implies that

〈x∗ − wk, Jxk − Jwk〉 ≤ 0

or, equivalently,

φ(wk, xk) + φ(x∗, wk) − φ(x∗, xk) ≤ 0. (3-22)

Therefore,

φ(x∗, wk) ≤ φ(x∗, xk), (3-23)

which implies that DS( f , K) ⊆ Dk for all k ≥ 0.
On the other hand, since xk = PK(vk)(vk) and PK(·)(·) is a quasi-φ-nonexpansive

mapping, that is, K(·) is a quasi-φ-nonexpansive mapping,

φ(x∗, xk) ≤ φ(x∗, vk) (3-24)

for all x∗ ∈ DS( f , K). Therefore, DS( f , K) ⊆ Dk ∩ Fk for all k ≥ 0, which implies that
DS( f , K) ⊆ Lk ∩Mk for all k ≥ 0. Next, by induction, we show that DS( f , K) ⊆ Lk ∩
Mk ∩ Nk for all k ≥ 0. Indeed, we have DS( f , K) ⊆ L0 ∩M0 ∩ N0, because N0 = E.
Assume that DS( f , K) ⊆ Lk ∩Mk ∩ Nk for some k ≥ 0. Since vk+1 = PLk∩Mk∩Nk (v

0), we
have by Proposition 2.3 that

〈z − vk+1, Jv0 − Jvk+1〉 ≤ 0, ∀z ∈ Lk ∩Mk ∩ Nk.

Since DS( f , K) ⊆ Lk ∩Mk ∩ Nk,

〈z − vk+1, Jv0 − Jvk+1〉 ≤ 0, ∀z ∈ DS( f , K).

Now, since 〈z − vk+1, Jv0 − Jvk+1〉 ≤ 0, ∀z ∈ DS( f , K), the definition of Nk+1 implies
that DS( f , K) ⊆ Nk+1 and so DS( f , K) ⊆ Lk ∩Mk ∩ Nk for all k ≥ 0. Finally, since
DS( f , K) is nonempty, Lk ∩Mk ∩ Nk is also nonempty and vk+1 is well defined. Now it
is clear that the sequences {xk} and {wk} are well defined.

LEMMA 3.7. If DS( f , K) � ∅, then the sequence {vk} generated by the algorithm SEML
is bounded.
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PROOF. From the definition of Nk, we have vk = PNk (v
0). For each u ∈ DS( f , K) ⊆ Nk,

since PNk is the generalized projection onto Nk, we have 〈u − vk, Jv0 − Jvk〉 ≤ 0 by
Proposition 2.3; this implies that

φ(vk, v0) ≤ φ(u, v0). (3-25)

Thus, the sequence {vk} is bounded by (2-3).

LEMMA 3.8. Suppose that {vk}, {wk} and {xk} are the sequences generated by the
algorithm SEML. If {vk} is bounded, then the sequences {wk} and {xk} are bounded
and

lim
k→∞
‖vk+1 − vk‖ = lim

k→∞
‖vk − xk‖ = lim

k→∞
‖xk − wk‖ = 0.

PROOF. The definition of vk+1 implies that vk+1 ∈ Nk. Therefore, we have 〈vk+1 −
vk, Jv0 − Jvk〉 ≤ 0 by Proposition 2.3, which implies that

φ(vk, v0) + φ(vk+1, vk) − φ(vk+1, v0) ≤ 0.

Hence, φ(vk, v0) ≤ φ(vk+1, v0). So, the sequence {φ(vk, v0)} is nondecreasing. On the
other hand, {vk} is bounded by the assumptions. Therefore, limk→∞ φ(vk, v0) exists. We
also have

φ(vk+1, vk) ≤ φ(vk+1, v0) − φ(vk, v0).

Passing to the limit in the above inequality as k → ∞,

lim
k→∞
φ(vk+1, vk) = 0.

Now, by Proposition 2.1,

lim
k→∞
‖vk+1 − vk‖ = 0. (3-26)

Since vk+1 ∈ Mk, from the definition of Mk,

γkφ(vk, xk) ≤ 〈vk − vk+1, Jvk − Jxk〉. (3-27)

Therefore, by (2-3) and the Cauchy–Schwarz inequality,

γk(‖vk‖ − ‖xk‖)2 ≤ ‖vk − vk+1‖ ‖Jvk − Jxk‖ ≤ ‖vk − vk+1‖(‖vk‖ + ‖xk‖). (3-28)

Now, regarding boundedness of {vk}, γk ≥ ε > 0 and limk→∞ ‖vk+1 − vk‖ = 0 by (3-26),
it is easy to see that {xk} is bounded. Also, by (3-27), we have

γkφ(vk, xk) ≤ ‖vk − vk+1‖ ‖Jvk − Jxk‖.

Since {xk} and {vk} are bounded, limk→∞ ‖vk+1 − vk‖ = 0 and γk ≥ ε > 0, we have
limk→∞ φ(vk, xk) = 0. Therefore, Proposition 2.1 implies that

lim
k→∞
‖vk − xk‖ = 0. (3-29)
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In the following, note that

‖vk+1 − xk‖ ≤ ‖vk+1 − vk‖ + ‖vk − xk‖

and hence, by (3-26) and (3-29),

lim
k→∞
‖vk+1 − xk‖ = 0. (3-30)

On the other hand, since vk+1 ∈ Lk, from the definition of Lk,

γkφ(xk, wk) ≤ 〈xk − vk+1, Jxk − Jwk〉. (3-31)

Again, by (2-3) and the Cauchy–Schwarz inequality,

γk(‖xk‖ − ‖wk‖)2 ≤ ‖xk − vk+1‖ ‖Jxk − Jwk‖ ≤ ‖xk − vk+1‖(‖xk‖ + ‖wk‖). (3-32)

Once again, due to the boundedness of {xk}, γk ≥ ε > 0 and limk→∞ ‖vk+1 − xk‖ = 0
by (3-30), we can obtain from (3-32) that {wk} is bounded. Also, by (3-31), we have
γkφ(xk, wk) ≤ ‖xk − vk+1‖ ‖Jxk − Jwk‖. Since {xk} and {wk} are bounded,

lim
k→∞
‖vk+1 − xk‖ = 0 and γk ≥ ε > 0,

we have limk→∞ φ(xk, wk) = 0. Again, Proposition 2.1 implies that

lim
k→∞
‖xk − wk‖ = 0.

PROPOSITION 3.9. Assume that E is uniformly convex and uniformly smooth, f is a
bifunction, K(·) is a multivalued quasi-φ-nonexpansive mapping and the assumptions
B1–B4 are satisfied.

(i) If there exists a subsequence {xkn} of {xk} such that xkn ⇀ p, then p ∈ C∞ ∩
Fix(K), where C∞ = ∩∞k=0Ck.

(ii) C∞ ∩ Fix(K) ⊆ Lk ∩Mk ∩ Nk for all k.

PROOF. (i) We first prove that p ∈ Fix(K). Note that we have limn→∞ ‖vkn − xkn‖ = 0
by Lemma 3.8, where, for each n, xkn is the generalized projection of vkn onto K(vkn ).
Therefore, we have limn→∞ d(vkn , K(vkn )) = 0. Now, since K is demiclosed, we obtain
p ∈ K(p), that is, p is a fixed point of K(·). Now we prove that p ∈ C∞. Since C∞ =
∩∞k=0Ck, it is sufficient to prove that p ∈ Ck for all integers k to obtain that p ∈ C∞.
Note that the sequence {Ck} is nonincreasing. Now let N be a fixed integer. Then there
is j > N such that for all n ≥ j,

wkn ∈ Ckn ⊆ CN , ∀n ≥ j,

where wkn = PCkn
(xkn ). Now, since limn→∞ ‖wkn − xkn‖ = 0 by Lemma 3.8, we have

wkn ⇀ p. Consequently, the set CN is closed and p ∈ CN . Since N is arbitrary,

p ∈ ∩∞k=0Ck = C∞.

(ii) The proof is similar to the proof of Lemma 3.6. It suffices to replace DS( f , K)
by C∞ ∩ Fix(K).
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REMARK 3.4. It is easy to see that DS( f , K) ⊆ C∞ ∩ Fix(K). Also, since K is
demiclosed and quasi-φ-nonexpansive, the set C∞ ∩ Fix(K) is closed and convex.

REMARK 3.5. To the best of our knowledge, previous authors who investigated
equilibrium problems first showed the weak convergence of the sequence generated by
their algorithms. However, to show that this limit is a solution to the problem, they had
to assume some strong conditions, such as, for example, the weak upper semicontinuity
of the bifunction f with respect to its first argument. We note that in our algorithm, we
will prove the strong convergence of our scheme to a solution of our quasi-equilibrium
problem without assuming such strong conditions.

In the following proposition, we prove that the sequences {vk} and {xk} generated by
the algorithm SEML converge strongly to an element of C∞ ∩ Fix(K).

PROPOSITION 3.10. Assume that E is a uniformly convex and uniformly smooth
Banach space, f is a bifunction, K(·) is a multivalued quasi-φ-nonexpansive mapping
and the assumptions B1–B4 are satisfied. If the sequence {vk} generated by the
algorithm SEML is bounded, then the sequences {vk} and {xk} are strongly convergent
to an element of C∞ ∩ Fix(K).

PROOF. If the sequence {vk} is bounded, then the sequence {xk} is bounded by
Lemma 3.8. Assume that p is any weak limit point of the sequence {xk}. Then there
exists a subsequence {xkn} of {xk} such that xkn ⇀ p as n→ ∞. Note that Proposition 3.9
shows that p ∈ C∞ ∩ Fix(K) and hence C∞ ∩ Fix(K) � ∅. It is clear that C∞ ∩ Fix(K) is
closed and convex by Remark 3.4 and hence we can define x̄ = PC∞∩Fix(K)(v0), where P
is the generalized projection map onto C∞ ∩ Fix(K). In the following, we first prove the
weak convergence of the sequence {xk}. Finally, we show that xk → x̄ = PC∞∩Fix(K)(v0).
Note that vkn ⇀ p by Lemma 3.8. From the definition of Nk, we have vk = PNk (v

0).
Since C∞ ∩ Fix(K) ⊆ Nk by Proposition 3.9(ii), and PNk is the generalized projection
map onto Nk and hence for x̄ ∈ C∞ ∩ Fix(K) ⊆ Nk, we have 〈x̄ − vk, Jv0 − Jvk〉 ≤ 0 by
Proposition 2.3. This implies that φ(vk, v0) ≤ φ(x̄, v0). Therefore,

‖vk‖2 − 2〈vk, Jv0〉 + ‖v0‖2 ≤ φ(x̄, v0). (3-33)

Note that since vkn ⇀ p, by the weak lower semicontinuity of the norm ‖ · ‖ and
replacing k by kn in (3-33),

φ(p, v0) = ‖p‖2 − 2〈p, Jv0〉 + ‖v0‖2 ≤ lim inf
n→∞

(‖vkn‖2 − 2〈vkn , Jv0〉 + ‖v0‖2) ≤ φ(x̄, v0).

By the definition of x̄ and p ∈ C∞ ∩ Fix(K), we have x̄ = p, that is, xkn ⇀ x̄. Hence,
every weakly convergent subsequence of {xk} converges weakly to x̄. This shows that
xk ⇀ x̄ and therefore vk ⇀ x̄. Taking the liminf in (3-33), we get limk→∞ ‖vk‖ = ‖x̄‖.
Now note that

lim
n→∞
φ(vk, x̄) = lim

n→∞
(‖vk‖2 − 2〈vk, Jx̄〉 + ‖x̄‖2) = 0.
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Therefore, by Proposition 2.1, we have vk → x̄ = PC∞∩Fix(K)(v0). Now, since
limk→∞ ‖vk − xk‖ = 0 by Lemma 3.8, we get xk → x̄ = PC∞∩Fix(K)(v0).

PROPOSITION 3.11. Assume that E is a uniformly convex and uniformly smooth
Banach space, f is a bifunction, K(·) is a multivalued quasi-φ-nonexpansive map-
ping and the assumptions B1–B4 are satisfied. Let {xk}, {yk}, {zk} and {vk} be the
sequences generated by the algorithm SEML. If the sequence {vk} is bounded and the
algorithm does not have finite termination, then: (i) the sequence {zk} is bounded; (ii)
limk→∞ f ( yk, xk) = 0.

PROOF. (i) We get from (3-2),

βk f (xk, zk) + 1
2‖z

k‖2 − 〈zk, Jxk〉 ≤ βk f (xk, xk) + 1
2‖x

k‖2 − 〈xk, Jxk〉 = −1
2 ‖x

k‖2 ≤ 0,
(3-34)

using B1. From (3-34),

‖zk‖2 ≤ −2βk f (xk, zk) + 2〈zk, Jxk〉 ≤ −2βk f (xk, zk) + 2‖zk‖ ‖xk‖. (3-35)

Take now uk ∈ ∂ f (xk, ·)(xk). By definition of the subdifferential of f (xk, ·) evaluated
at xk,

〈y − xk, uk〉 ≤ f (xk, y) − f (xk, xk) = f (xk, y), ∀y ∈ E. (3-36)

Let B1(xk) be the closed ball of radius one centered at xk. Since f is bounded on
bounded sets and xk → x̄ by Proposition 3.10, there is M > 0 such that f (xk, y) < M
for all k and for all y ∈ B1(xk). Then

‖uk‖ = sup
y∈B1(xk)

〈y − xk, uk〉 ≤ sup
y∈B1(xk)

f (xk, y) ≤ M. (3-37)

Therefore, {uk} is bounded. Now, from (3-36),

〈zk − xk, uk〉 ≤ f (xk, zk) − f (xk, xk) = f (xk, zk). (3-38)

Combining (3-35) and (3-38),

‖zk‖2 ≤ 2βk〈xk − zk, uk〉 + 2‖zk‖ ‖xk‖ ≤ 2β̃‖uk‖(‖zk‖ + ‖xk‖) + 2‖zk‖ ‖xk‖. (3-39)

This implies the following inequality:

‖zk‖ ≤ 4β̃‖uk‖ + 2‖xk‖. (3-40)

In fact, (3-40) is obvious when ‖zk‖ ≤ ‖xk‖ and it follows easily from (3-39) when
‖xk‖ ≤ ‖zk‖.

Now, since the sequences {xk} and {uk} are bounded, the boundedness of {zk} follows
from (3-40).

(ii) Since hk ∈ ∂ f ( yk, ·)(xk) by (3-7), we have by definition of the subdifferential of
f ( yk, ·) evaluated at xk,

〈y − xk, hk〉 ≤ f ( yk, y) − f ( yk, xk), ∀y ∈ E. (3-41)
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Note that the sequences {xk} and {zk} are bounded by Proposition 3.10 and part (i),
respectively; hence, the sequence {yk} is bounded too by (3-6). Let B1(xk) be the closed
ball of radius one centered at xk. Now, since f is bounded on bounded sets, there is
M > 0 such that f ( yk, xk) < M and f ( yk, y) < M for all k and for all y ∈ B1(xk). Then

‖hk‖ = sup
y∈B1(xk)

〈y − xk, hk〉 ≤ sup
y∈B1(xk)

f ( yk, y) − f ( yk, xk) ≤ 2M. (3-42)

Therefore, {hk} is bounded. On the other hand, since wk ∈ Hk by (3-7)–(3-9),

〈wk − xk, hk〉 + f ( yk, xk) ≤ 0, (3-43)

by (3-7). Also, by Lemma 3.8, we have limk→∞ ‖wk − xk‖ = 0. Using the Cauchy–
Schwarz inequality,

−‖wk − xk‖ ‖hk‖ + f ( yk, xk) ≤ 0. (3-44)

It follows from (3-44) that

lim sup
k→∞

f ( yk, xk) ≤ 0. (3-45)

Note that if the algorithm stops at iteration k, then xk is a solution of QEP ( f , K) by
Proposition 3.4 and this case is ruled out in the current proposition. If the algorithm
does not stop at any iteration, we consider separately the cases of xk = zk for some
k, and xk � zk for all k. If xk = zk for some k, then we have xk = yk = zk by (3-6);
therefore, f ( yk, xk) = 0 by B1. Now, if xk � zk for all k, then Proposition 3.5(ii) implies
that f ( yk, xk) > 0. Therefore, in both cases, when the algorithm does not stop at any
iteration,

f ( yk, xk) ≥ 0 (3-46)

for all k. Now (3-45) and (3-46) imply that

lim
k→∞

f ( yk, xk) = 0.
PROPOSITION 3.12. Assume that E is uniformly convex and uniformly smooth, f is a
bifunction, K(·) is a multivalued quasi-φ-nonexpansive mapping and the assumptions
B1–B4 are satisfied. Let {xk} and {zk} be the sequences generated by the algorithm
SEML. If {xki} is a subsequence of {xk} satisfying

lim
i→∞
φ(zki , xki ) = 0, (3-47)

then the sequence {xk} is strongly convergent to a solution of QEP ( f , K).

PROOF. Since xk → x̄ = PC∞∩Fix(K)(v0) by Proposition 3.10, it is enough to show that
x̄ ∈ S( f , K). From Proposition 2.1 and (3-47),

lim
i→∞
‖zki − xki‖ = 0. (3-48)
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Now continuity of f on E × E and (3-48) imply that

lim
k→∞

f (xki , zki ) = 0. (3-49)

Also, uniform smoothness of E implies uniform norm-to-norm continuity of J on each
bounded set of E. Therefore, we get from (3-48),

lim
i→∞
‖Jzki − Jxki‖ = 0. (3-50)

On the other hand, since xki → x̄, we have vki → x̄ by Lemma 3.8. Now take any y ∈
K(x̄); since K is lower semicontinuous at x̄ ∈ C, there is a sequence {ỹki} such that
ỹki ∈ K(vki ) and ỹki → y. By Corollary 3.3,

〈ỹki − zki , Jxki − Jzki〉 ≤ βki [ f (xki , ỹki ) − f (xki , zki )],

which implies that

−‖ỹki − zki‖ ‖Jxki − Jzki‖ ≤ βki [ f (xki , ỹki ) − f (xki , zki )]. (3-51)

Now, taking the liminf in (3-51), we use (3-50) and (3-49), together with the
boundedness of {zk} and {ỹki}, in order to obtain that lim infi→∞ f (xki , ỹki ) ≥ 0. Then
B2 implies that f (x̄, y) ≥ 0. Since y ∈ K(x̄) is arbitrary, we conclude that x̄ ∈ S( f , K).

PROPOSITION 3.13. Assume that E is a uniformly convex and uniformly smooth
Banach space, f is a bifunction, K(·) is a multivalued quasi-φ-nonexpansive mapping
and the assumptions B1–B4 are satisfied. If a subsequence {αki} of {αk} as defined in
(3-5) converges to 0, then the sequence {xk} is strongly convergent to a solution of QEP
( f , K).

PROOF. For proving the result, we will use Proposition 3.12. Thus, we must show that

lim
i→∞
φ(zki , xki ) = 0.

For the sake of contradiction, and without loss of generality, let us assume that

liminfi→∞φ(zki , xki ) ≥ η > 0, (3-52)

taking into account the nonnegativity of φ(·, ·). Define

ŷi =
αki

θ
zki +

(
1 −
αki

θ

)
xki , (3-53)

where αki = θ

(ki) by (3-5). Therefore,

ŷi − xki =
αki

θ
(zki − xki ). (3-54)

Note that, since limi→∞ αki = 0, 
(ki) > 1 for large enough i. Also, in view of (3-53),
we have that ŷ i = y
 (ki)−1 in the inner loop of the linesearch for determining αki , that
is, in (3-4). Since 
(ki) is the first integer for which the inequality in (3-3) holds, such
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inequality is reversed for 
(ki) − 1. That is,

βki [ f (ŷ i, x ki ) − f (ŷ i, z ki )] <
δ

2
φ(z ki , x ki ) (3-55)

for large enough i. On the other hand, since limi→∞ αki = 0 by hypothesis, and {zki − xki}
is bounded by Lemma 3.8 and Proposition 3.11i), it follows from (3-54) that

lim
i→∞
‖ŷi − xki‖ = 0. (3-56)

Since by Proposition 3.10, xki → x̄, and by B2, f is continuous with respect to the first
argument, uniformly on bounded sets with respect to the second argument, and since
δ belongs to (0, 1), it follows from (3-56) that there exists m ∈ N such that

βki [ f (xki , xki ) − f (ŷi, xki )] ≤ η(1 − δ)
8

,

βki [ f (ŷi, zki ) − f (xki , zki )] ≤ η(1 − δ)
8

(3-57)

for i ≥ m, with η as in (3-52) and δ as in (3-55). Therefore,

βki [ f (xki , xki ) − f (xki , zki )] ≤ βki [ f (ŷi, xki ) − f (ŷi, zki )] +
η(1 − δ)

4

<
δ

2
φ(zki , xki ) +

(1 − δ)
2
φ(zki , xki ) =

1
2
φ(zki , xki ) (3-58)

for all i ≥ m, using (3-57) in the first inequality and (3-55) and (3-52) in the second
one. Now we combine Corollary 3.3 and (3-58) in order to get

〈xki − zki , Jxki − Jzki〉 < 1
2φ(z

ki , xki )

for all i ≥ m or, equivalently,

φ(zki , xki ) + φ(xki , zki ) < φ(zki , xki )

for all i ≥ m, that is,

φ(xki , zki ) < 0

for all i ≥ m, which contradicts the definition of φ, thus establishing the result.

PROOF OF THEOREM 3.1. We consider two cases related to the behavior of {αk}. First
assume that there exists a subsequence {αki} of {αk} which converges to 0. In this case,
the result is obtained by Proposition 3.13, that is, we get that {xk} strongly converges to
x̄ ∈ S( f , K).

Now we take a subsequence {αki} of {αk} bounded away from zero, say greater than
or equal to η for large enough i. It follows from (3-3) and (3-6) that

βki [ f ( yki , xki ) − f ( yki , zki )] ≥ δ
2
φ(zki , xki ). (3-59)

https://doi.org/10.1017/S1446788720000233 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788720000233


108 B. D. Rouhani and V. Mohebbi [19]

Note that

0 = f ( yki , yki ) ≤ αki f ( yki , zki ) + (1 − αki ) f ( yki , xki ),

so that
1 − αki

αki

f ( yki , xki ) ≥ − f ( yki , zki ). (3-60)

Multiplying (3-60) by βki and adding (3-59), we easily get

βki f ( yki , xki ) ≥
δαki

2
φ(zki , xki ). (3-61)

Taking limits in (3-61) and using Proposition 3.11(ii), we obtain limi→∞ φ(zki , xki ) = 0.
Now we invoke Proposition 3.12 in order to get x̄ ∈ S( f , K). We have shown that

the limit x̄ of {xk} belongs to S( f , K) when the corresponding step sizes {αk} either
approach zero or remain bounded away from zero, establishing the claim.

4. Application to a generalized Nash equilibrium problem

In this section, we give an application of our main result to game theory. We first
introduce constrained game problems. Let I be a finite index set and, for each i ∈ I, let
Xi be a subset of a Banach space Ei. We use the notation

E =
∏
i∈I

Ei, X =
∏
i∈I

Xi and Xi =
∏

j∈I,j�i

Xj.

For each x ∈ X, xi denotes its ith coordinate and xi its projection on Xi. In the following,
we occasionally write x = (xi, xi). If I is the set of players, each player i ∈ I has
the strategy set Xi, a constraint correspondence Fi : Xi → 2Xi and a loss function
fi : X → R. A constrained game Γ = (Xi, Fi, fi)i∈I is defined as a family of ordered
triples (Xi, Fi, fi). A point x̂ ∈ X is called an equilibrium point of Γ if, for each i ∈ I,

x̂i ∈ Fi(x̂i),

fi(x̂) ≤ fi( yi, x̂i), ∀yi ∈ Fi(x̂i). (4-1)

If Fi(xi) = Xi for each i ∈ I, the constrained game Γ = (Xi, Fi, fi)i∈I reduces to the
conventional game Γ = (Xi, fi)i∈I and an equilibrium point is said to be a Nash
equilibrium point (see [9]).

In the following theorem, we use the above notation in order to approximate an
equilibrium point of the problem.

THEOREM 4.1. Assume that E is a uniformly convex and uniformly smooth Banach
space. Consider the above constrained game Γ = (Xi, Fi, fi)i∈I , where I is the set of
players, each player i ∈ I has the strategy set Xi, which is a nonempty, closed and
convex subset of Ei, a constraint correspondence Fi : Xi → 2Xi and a loss function
fi : X → R, which is convex and uniformly continuous on bounded sets for all i ∈ I,
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and the multivalued mapping K(·) from X into P(X) defined by

K(x) =
∏
i∈I

Fi(xi) (4-2)

satisfies B4. If either there is ŷ ∈ X such that ŷi ∈ Fi(ŷi) and fi(ŷi, xi) ≤ fi(x) for each
i ∈ I and all x ∈ X, or if the sequence {vk} generated by the algorithm SEML is bounded,
then {vk} converges strongly to an equilibrium point of Γ.

PROOF. Define f (x, y) =
∑

i∈I( fi( yi, xi) − fi(xi, xi)). It is easy to see that f satisfies
B1–B3. Then, by Theorem 3.1, the sequence {vk} converges strongly to some x̂ ∈ K(x̂)
such that f (x̂, y) ≥ 0 for all y ∈ K(x̂). Now, choosing y = ( yi, x̂i), we get f (x̂, y) =
fi( yi, x̂i) − fi(x̂i, x̂i) ≥ 0 for all yi ∈ Fi(x̂i). Since i ∈ I is arbitrary, it follows that x̂ is
an equilibrium point of Γ. This completes the proof of the theorem.

Now we present a concrete example.

EXAMPLE 4.2. We consider an oil field with n oil wells. Some restrictions on the
strategy set of the model are imposed on the amount of oil which is extracted. The oil
is refined and then sold. We assume that there are n petroleum companies and each
company i may extract from oil well i. Let x denote the vector in Rn with components
xi, where xi is the amount of oil extracted from well i. We denote by xmin

j and xmax
j the

lower and upper bounds for the amount of oil extracted from well j. Then the strategy
set of the model takes the form

C := {x = (x1, . . . , xn); xmin
j ≤ xj ≤ xmax

j , ∀j = 1, . . . , n}.

Let I = {1, 2, . . . , n} denote the index set of all oil wells. We assume that the price p of
the oil, which is a strictly decreasing function of the supply, is given by

p = a − b
n∑

i=1

xi,

where a and b are two positive real numbers. Let cj be the cost function for oil well j.
We assume that for i different from j, ci and cj are independent of each other. However,
the amount of oil xi extracted from well i may depend on the other xj. Now we specify
our restrictions on the amount of oil xi extracted from well i for all i. For each i ∈ I,
suppose that

Xi = {z : xmin
i ≤ z ≤ xmax

i } and Xi =
∏

j∈I, j�i

Xj.

Now we define Fi : Xi → 2Xi by

Fi(xi) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

{
zi ∈ Xi | ∃zi ∈ Xi : zi ≤ β −

∑
j�i

zj

}
if
∑
i∈I

xi > β,
{
zi ∈ Xi | ∃zi ∈ Xi : zi ≤

∑
i∈I

xi −
∑
j�i

zj

}
if
∑
i∈I

xi ≤ β
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for each xi ∈ Xi, where xi is the projection of x on Xi, β is the upper bound for the total
amount of extracted oil and β ≥ ∑n

i=1 xmin
i . In fact, the total amount of extracted oil is

constrained by the multivalued mapping K(·) from C into itself defined by

K(x) = F1(x1) × F2(x2) × · · · × Fn(xn)

for all x ∈ C. It is easy to see that we can write the above definition of the mapping K
at x ∈ C as

K(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{
z ∈ C :

∑
i∈I

zi ≤ β
}

if
∑
i∈I

xi > β,
{
z ∈ C :

∑
i∈I

zi ≤
∑
i∈I

xi

}
if
∑
i∈I

xi ≤ β.
(4-3)

Then, for each x ∈ C, K(x) is a nonempty, closed and convex subset of C, and the total
amount of extracted oil x must belong to K(x). The profit made by the company i that
owns oil well i is given by

hi(x) = pxi − ci(xi) =
(
a − b

n∑
k=1

xk

)
xi − ci(xi)

for each i = 1, . . . , n. Let us define

hi( yi, xi) =
(
a − b

(∑
j�i

xj + yi

))
yi − cj( yi).

Note that we write x = (xi, xi). Clearly, if for all x, y ∈ C, we define z = (z1, . . . , zn) by

zj =

⎧⎪⎪⎨⎪⎪⎩
xj, j � i,
yj, j = i

for all j = 1, . . . , n, then we have hi( yi, xi) = hi(z) for all i = 1, . . . , n. If we define a loss
function fi : C → R by fi(x) = −hi(x) for all i ∈ I, then a point x̂ ∈ C is an equilibrium
point of Γ = (Xi, Fi, fi)i∈I if, for each i ∈ I,

x̂i ∈ Fi(x̂i),

fi(x̂) ≤ fi( yi, x̂i), ∀yi ∈ Fi(x̂i). (4-4)

Now, if we define

f (x, y) =
n∑

i=1

(hi(xi, xi) − hi( yi, xi)), (4-5)

then the oligopolistic equilibrium problem model of oil markets is transformed to the
following quasi-equilibrium problem: find x̂ ∈ K(x̂) such that f (x̂, y) ≥ 0 for all y ∈
K(x̂). Assume that x̂ = (x̂1, . . . , x̂n) is a solution to the problem. By choosing yj = x̂j for
all j � i, and the component yi arbitrarily, since f (x̂, y) ≥ 0 for all y ∈ K(x̂), we deduce
that hi(x̂i, x̂i) − hi( yi, x̂i) ≥ 0 for all y ∈ K(x̂). Since i is arbitrary, this implies that each
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equilibrium point corresponds to an optimal amount of oil to be extracted so that each
company makes a profit. In other words,

x̂i ∈ Fi(x̂i),

fi(x̂) ≤ fi( yi, x̂i), ∀yi ∈ Fi(x̂i). (4-6)

However, unlike the case of an equilibrium problem where K does not depend on C,
this may not correspond to the maximum profit for each company, unless the solution
is unique.

Our main result provides an approximation scheme to the equilibrium solution of
the above problem, with rather mild conditions on the data, as stated in the following
theorem.

THEOREM 4.3. Assume that the assumptions of the above example are satisfied, and
that the cost function ci is convex and uniformly continuous on bounded sets for all i =
1, . . . , n. Let the bifunction f be defined as in (4-5), and the multivalued mapping K(·)
from C into itself as in (4-3). Then, if the sequence {vk} is generated by the algorithm
SEML, it converges to an element of S( f , K).

PROOF. It is obvious that f satisfies B1–B3. Now we show that the condition B4 is
satisfied. By the definition of K,

K(x) =
{
z = (z1, . . . , zn) ∈ C :

n∑
i=1

zi ≤ min
{ n∑

i=1

xi, β
}}

. (4-7)

Since β ≥ ∑n
i=1 xmin

i , it is obvious that K is a multivalued mapping with nonempty,
closed and convex values, and Fix(K) � ∅. We want to show that the condition B4
is satisfied. We first show that K is quasi-φ-nonexpansive. Let p ∈ Fix(K). For x ∈ C,
we consider separately the cases where x ∈ K(x) and x � K(x). If x ∈ K(x), we have
‖p − PK(x)(x)‖2 = ‖p − x‖2, where P is the projection and, if x � K(x), then we have
‖p − PK(x)(x)‖2 ≤ ‖p − x‖2. Therefore, we have ‖p − PK(x)(x)‖2 ≤ ‖p − x‖2 for all x ∈
C and p ∈ Fix(K). This implies that K is quasi-φ-nonexpansive. Now we show that
K is demiclosed. Let xk → x̄ and limk→∞ d(xk, K(xk)) = 0. Then

∑n
i=1 x̄i ≤ β. Now the

definition of K shows that x̄ ∈ K(x̄), that is, the mapping K is demiclosed. Finally, we
prove that K is lower semicontinuous at each x̄ ∈ C. Suppose that xk → x̄ and ȳ ∈ K(x̄).
For all xk = (xk

1, xk
2, . . . , xk

n), we define

yk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

ȳ if
n∑

i=1

ȳi ≤
n∑

i=1

xk
i ,

xk if
n∑

i=1

ȳi >

n∑
i=1

xk
i .

(4-8)

Then we have yk ∈ K(xk) and yk → ȳ. This follows from the fact that xk → x̄ and
therefore yk = ȳ, except maybe for finitely many values of k. This implies that K
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is lower semicontinuous at each x̄ ∈ C. Now the result is a direct consequence of
Theorem 3.1.

We note that a classical equilibrium problem arising from Nash–Cournot
oligopolistic equilibrium models of electricity markets was discussed in [27], with
a numerical example in [30].

The following is an infinite-dimensional example of application of our result.

EXAMPLE 4.4. LetE = 
p = {ξ = (ξ1, ξ2, ξ3, . . .) : (
∑∞

i=1 |ξi|p)1/p < ∞} for 1 < p < ∞,
and let f : E × E → R be a bifunction which is defined by

f (x, y) = 〈x − y, Jx〉
∞∑

i=1

(xi)
p.

Let C = {ξ = (ξ1, ξ2, ξ3, . . .) ∈ 
p : ξi ≥ 0,∀i ∈ N}, and K(·) : C → P(C) be defined by
K(x) = { 12 x + tz|t ∈ R+, z ∈ B(x, 1

4‖x‖)} for each x ∈ C, where B(x, 1
4‖x‖) denotes the

closed ball of radius 1
4‖x‖ centered at x. It is easy to see that f satisfies B1–B3, and

it is obvious that K is a multivalued mapping with nonempty, closed and convex
values. We want to show that the condition B4 is satisfied. Note that for all x ∈ C,
we have x ∈ K(x) and therefore Fix(K) � ∅. Let p ∈ Fix(K) and x ∈ C. Then we have
‖p − PK(x)(x)‖2 = ‖p − x‖2, where P is the generalized projection. This implies that
K is quasi-φ-nonexpansive. Also, by the definition of K, we have x ∈ K(x) for all
x ∈ C; therefore, the mapping K is demiclosed. Finally, we show that K is lower
semicontinuous at each x̄ ∈ C. Suppose that xk → x̄ and ȳ ∈ K(x̄). Then there exist
t > 0 and z̄ ∈ B(x̄, 1

4‖x̄‖) such that ȳ = 1
2 x̄ + t̄z. It can be shown that there exists a

sequence zk ∈ B(xk, 1
4‖x

k‖) such that zk → z̄. Now we define yk = 1
2 xk + tzk. Then we

have yk ∈ K(xk) and yk → ȳ. This implies that K is lower semicontinuous at each x̄ ∈ C.
Hence, B4 is satisfied too. Now, if the sequence {vk} generated by the algorithm SEML
is bounded, then, by Theorem 3.1, it converges strongly to an element of S( f , K). In
this example, we can see that DS( f , K) = ∅, while S( f , K) � ∅.
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