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In this article we investigate the regularizing properties of generalized continua of
Cosserat micropolar type in the elasto-plastic case. We propose an extension of
classical infinitesimal elasto-plasticity to include consistently non-dissipative
micropolar effects. It is shown that the new model is thermodynamically
admissible and allows for a unique, global-in-time solution of the corresponding
rate-independent initial–boundary-value problem. The method of choice is the Yosida
approximation and a passage to the limit.

1. Introduction

This article addresses the modelling and mathematical analysis of geometrically lin-
ear generalized continua of Cosserat micropolar type in the elastic and elasto-plastic
cases. General continuum models involving independent rotations were introduced
by the Cosserat brothers [13]. In fact, their original motivation came from the theory
of surfaces, where the moving three-frame (Gauss frame) had been used successfully.

Their development was largely forgotten until it was rediscovered at the beginning
of the 1960s [1,19,22,30,31,37,42,48,53–55]. At that time theoretical investigations
of non-classical continuum theories were the main motivation [34]. The Cosserat
concept has been generalized in various directions; for an overview of these so-called
microcontinuum theories see [8, 20,21].

Among the first contributions extending the Cosserat framework to infinitesimal
elasto-plasticity we have to mention [7, 36, 47]. More recent infinitesimal elastic–
plastic formulations have been investigated in [15,17,33,43]. These models directly
comprise joint elastic and plastic Cosserat effects. Lately, the models have been
extended to a finite elastic–plastic setting as well (see, for example, [24, 28, 29,
44–46, 49] and references therein). Most of these extensions also directly comprise
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joint elastic and plastic Cosserat effects but we pretend that their physical and
mathematical significance is at present much more difficult to assess than models
where Cosserat effects are restricted to the elastic response of the material (see [24]
and references therein). Our own contribution will be of the second type.

Apart from the theoretical development, the Cosserat-type models are today
increasingly advocated as a means of regularizing the pathological mesh size depend-
ence of localization computations where shear failure mechanisms [5, 6, 12, 38, 40]
play a dominant role; for applications in plasticity see the non-exhaustive list
[14–17, 33, 43]. The mathematical difficulties that occur reflect the physical fact
that upon localization the validity limit of the classical models is reached. In mod-
els without any internal length the deformation should be homogeneous on the scale
of a representative volume element of the material [39].

The incorporation of a length-scale, which is natural in a Cosserat theory, has the
potential to remove the mesh sensitivity. The presence of the internal length-scale
causes the localization zones to have finite width. However, the actual length-scale
of a material is difficult to establish experimentally and theoretically [35] and its
determination remains basically an open question, as is the determination of other
material constants that also appear in the Cosserat framework. It is also not entirely
clear how the shear band width depends on the characteristic length.

The mathematical analysis of Cosserat micropolar models is at present restricted
to the infinitesimal, linear elastic models (see, for example, [18, 25, 26, 32]). To
the best of our knowledge, the elasto-plastic situation has not been dealt with
mathematically.

As far as classical rate-independent elasto-plasticity is concerned we remark that
global existence for the displacement has been shown only in a very weak, measure-
valued sense, while the stresses could be shown to remain in L2(Ω). For this result
we refer, for example, to [3, 11, 52]. If hardening or viscosity is added, then global
classical solutions are found (see, for example, [2,9,10]). A complete theory for the
classical rate-independent case remains elusive (see the remarks in [11]).

While the infinitesimal Cosserat micropolar elasto-plasticity model in its various
versions is interesting mathematically in its own right, we concentrate here on its
possible regularizing properties. We emphasize that our non-dissipative formulation
seems to provide just the correct amount of regularization missing in the classical
elasto-plastic problem. This being our main thrust, we do not investigate Cosserat
models in which additional Cosserat effects have been introduced for the plastic
behaviour as well.

Our contribution is organized as follows. First, we review the basic concepts of
the geometrically linear elastic Cosserat micropolar theories in a variational context
and present various existence results.

The formulation is then consistently extended to infinitesimal elasto-plasticity
with non-dissipative micropolar effects. The decisive stress tensor is none other
than the linearized elastic Eshelby energy–momentum tensor.

Subsequently, we mathematically study the rate-independent case obtained and
show, by means of the Yosida approximation and a passage to the limit, that the
rate-independent problem admits a unique, global-in-time solution for displace-
ments and microrotations in standard Sobolev spaces under fairly mild assumptions
on the data. The relevant notation is found in the appendix.
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2. The infinitesimal elastic Cosserat model

Let us start by recalling the infinitesimal Cosserat approach. First, in the purely
elastic case, an infinitesimal Cosserat theory can be obtained by introducing the
additive decomposition of the macroscopic displacement gradient ∇u into infinites-
imal microrotation Ā ∈ so(3, R) (infinitesimal Cosserat rotation tensor) and an
infinitesimal micropolar stretch tensor (or first Cosserat deformation tensor) ε̄ ∈
M

3×3 with

∇u = ε̄ + Ā, (2.1)

where ε̄ is not necessarily symmetric, such that (2.1) is in general not the decom-
position of ∇u into infinitesimal continuum stretch sym(∇u) and infinitesimal con-
tinuum rotation skew(∇u).

In the quasi-static case, the Cosserat theory is then obtained from a variational
principle [46, p. 51] or [50] for the infinitesimal displacement u : [0, T ] × Ω̄ �→ R

3

and the independent infinitesimal microrotation Ā : Ω̄ �→ so(3, R):

E(u, Ā) =
∫

Ω

W (∇u, Ā, DxĀ) − 〈f, u〉 − 〈M, Ā〉 dV

−
∫

ΓS

〈N, u〉 dS −
∫

ΓC

〈Mc, Ā〉 dS �→ min w.r.t. (u, Ā),

Ā|Γ = Ād, u|Γ = gd(t, x) − x.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.2)

Here W represents the elastic energy density and Ω ⊂ R
3 is a domain with boundary

∂Ω and Γ ⊂ ∂Ω is that part of the boundary where Dirichlet conditions gd, Ād
for infinitesimal displacements and rotations, respectively, are prescribed, while
ΓS ⊂ ∂Ω is a part of the boundary where traction boundary conditions N are
applied with Γ ∩ ΓS = ∅. In addition, ΓC ⊂ ∂Ω is the part of the boundary where
external surface couples Mc are applied with Γ ∩ΓC = ∅. The classical volume force
is denoted by f and the additional volume couple by M . Variation of the action E
with respect to u yields the equation for linearized balance of linear momentum and
variation of E with respect to Ā yields the linearized version of balance of angular
momentum.

2.1. Infinitesimal elastic Cosserat theory

It remains to specify the analytic form of the energy density W . A linearized
version of material frame-indifference implies the reduction

W (∇u, Ā, DxĀ) = W (ε̄, DxĀ), (2.3)

and for infinitesimal displacements u and small curvature DxĀ a quadratic ansatz
is appropriate:

W (ε̄, DxĀ) = W infin
mp (ε̄) + W small

curv (DxĀ), (2.4)

with an additive decomposition of the energy density into microstretch ε̄ and cur-
vature parts.
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In the isotropic case we assume for the stretch energy

W infin
mp (ε̄) = µ‖sym(ε̄)‖2 + µc‖skew(ε̄)‖2 + 1

2λ tr[sym(ε̄)]2

= µ‖sym ∇u‖2 + µc‖skew(∇u) − Ā‖2 + 1
2λ tr[sym(∇u)]2, (2.5)

where the Cosserat couple modulus µc � 0 is an additional parameter, complement-
ing the two Lamé constants µ, λ > 0.

For the curvature term we assume that

W small
curv (DxĀ) = µ( 1

12L2
c)(α5‖sym DxĀ‖2 + α6‖skew DxĀ‖2 + α7 tr[DxĀ]2). (2.6)

Here, Lc > 0 with units of length introduces a specific internal characteristic length
into the elastic formulation. In general, we assume α5 > 0, α6, α7 � 0.

Two observations are essential. First, if µc = 0, the infinitesimal problem com-
pletely decouples: the infinitesimal microrotations Ā have no influence at all on the
macroscopic behaviour of the infinitesimal displacements and classical infinitesimal
elasticity results.

Second, the choice α6, α7 = 0 is possible, since coercivity of the reduced curvature
expression can still be concluded on account of the classical first Korn inequality
applied to sym DxĀ.1

In the limit of zero internal length-scale Lc = 0 and for µc > 0,2 the balance of
angular momentum reads

DĀWmp(∇u, Ā) ∈ Sym ⇔ DĀWmp(∇u, Ā) = 0, (2.7)

and implies already that infinitesimal continuum rotations and infinitesimal micro-
rotations coincide: skew(∇u) = Ā, and this in turn is equivalent to the symmetry
of the infinitesimal Cauchy stress σ or the so-called Boltzmann axiom.

If we now consider µc > 0, it is standard to prove that the corresponding
minimization problem admits a unique minimizing pair (u, Ā) ∈ H1(Ω, R3) ×
H1(Ω, so(3, R)). Existence results of this type have been obtained in, for exam-
ple, [18, 25,26,32].

1For Ā ∈ so(3, R) we have

Ā =

⎛
⎝ 0 α β

−α 0 γ
−β −γ 0

⎞
⎠ , axl(Ā) =

⎛
⎝α

β
γ

⎞
⎠ , ∇ axl(Ā) =

⎛
⎝αx αy αz

βx βy βz

γx γy γz

⎞
⎠ ,

sym ∇ axl(Ā) =

⎛
⎜⎜⎝

αx
1
2 (αy + βx) 1

2 (αz + γx)
1
2 (αy + βx) βy

1
2 (βz + γy)

1
2 (αz + γx) 1

2 (βz + γy) γz

⎞
⎟⎟⎠ ,

‖sym ∇ axl(Ā)‖2 = α2
x + β2

y + γ2
z + 1

2 (αy + βx)2 + 1
2 (αz + γx)2 + 1

2 (βz + γy)2,

‖sym DxĀ‖2 = ‖sym ∇(Ā · e1)‖2 + ‖sym ∇(Ā · e2)‖2 + ‖sym ∇(Ā · e3)‖2.

Looking at the last line the standard Korn’s inequality applied to columns of Ā yields coercivity
of ‖sym DxĀ‖2.

2Also corresponding to the limit of arbitrary large samples, which can be seen by a simple
scaling argument.
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Theorem 2.1 (existence for infinitesimal elastic Cosserat model). Let Ω ⊂ R
3 be

a bounded Lipschitz domain and assume for the boundary data gd ∈ H1(Ω, R3) and
Ād ∈ H1(Ω, so(3, R)). Moreover, let f ∈ L2(Ω, R3) and suppose N ∈ L2(ΓS, R3),
M ∈ L2(Ω, so(3, R)) together with Mc ∈ L2(ΓC, so(3, R)). Then models based
on (2.2) with (2.5) and (2.6) admit a unique minimizing solution pair (u, Ā) ∈
H1(Ω, R3) × H1(Ω, so(3, R)). The solution is smoother if the data are smoother.

Proof. We apply the direct method of variations. For simplicity we only assume
that M, Mc = 0. First we observe that infimizing sequences (uk, Āk) of (2.2) exist
and

∞ >

∫
Ω

W infin
mp (∇uk − Āk) + W small

curv (DxĀk) − 〈f, uk〉 dV

�
∫

Ω

µc‖∇uk − Āk‖2 dV − ‖f‖L2‖uk‖H1(Ω)

=
∫

Ω

µc‖sym(∇uk − Āk)‖2 + µc‖skew(∇uk − Āk)‖2 dV − ‖f‖L2‖uk‖H1(Ω)

�
∫

Ω

µc‖sym ∇(uk − gd + gd)‖2 dV − ‖f‖L2‖uk‖H1(Ω)

� 1
2µccK‖uk − gd‖2

H1(Ω) − µc‖sym ∇gd‖2
L2(Ω) − ‖f‖L2‖uk‖H1(Ω), (2.8)

showing that uk is bounded in H1(Ω). We have used the fact that sym is orthogonal
to skew and used the classical first Korn inequality together with the boundary
conditions for uk. Similarly, we obtain boundedness of Āk in H1(Ω, so(3, R)). We
can choose a subsequence of (uk, Āk) converging strongly in L2(Ω) and weakly in
H1(Ω). By overall convexity of the energy density in (∇u, DxĀ), the limit pair is
a minimizer.

For uniqueness, we consider the second derivative of the strains

D2
(∇u,Ā)W (∇u − Ā) · ((∇φ, δĀ), (∇φ, δĀ))

� µc‖∇φ − δĀ‖2

= µc‖sym ∇φ‖2 + µc‖skew(∇φ − δĀ)‖2

� µc‖sym ∇φ‖2. (2.9)

By the classical first Korn inequality for φ ∈ H1,2
◦ (Ω) we obtain uniform positivity

of the second derivative upon integration. The functional is strictly convex; the
solution is unique.

Since the resulting field equations of force balance and balance of angular momen-
tum are linear and uniformly elliptic with constant coefficients, the standard ellip-
tic regularity theory applies so that, for pure Dirichlet boundary conditions, the
smoother the data the smoother the solution.

The corresponding infinitesimal gradient-constrained Cosserat micropolar model
(or indeterminate couple stress model) is obtained formally by setting µc = ∞ and
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has the form (simplified curvature term: α5 = α6 = 1, α7 = 0)
∫

Ω

µ‖sym ∇u‖2 + 1
2λ tr[sym ∇u]2 + µ( 1

12L2
c)‖Dx skew(∇u)‖2 − 〈f, u〉 dV

−
∫

ΓS

〈N, u〉 dS −
∫

ΓC

〈Mc, skew(∇u)〉 dS �→ min w.r.t. u,

σloc = 2µ sym(∇u) + λ tr[sym(∇u)] · 1 ∈ Sym, constitutive stress,
u|∂Ω(x) = gd(x) − x, skew(∇u)|∂Ω = skew(∇gd)|∂Ω .

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
(2.10)

Using the same methods as before we obtain the following theorem.

Theorem 2.2 (existence for infinitesimal gradient case). Let Ω ⊂ R
3 be a bounded

domain with smooth boundary of class C1 and assume for the boundary data gd ∈
H2(Ω, R3). Moreover, let f ∈ L2(Ω, R3) and suppose N ∈ L2(ΓS, R3) together with
Mc ∈ L2(ΓC, so(3, R)). Then a model based on (2.10) admits a unique minimizing
solution u ∈ H1(Ω) ∩ {∇ curlu ∈ L2(Ω)} (cf. [18]).

3. Infinitesimal Cosserat micropolar elasto-plasticity

3.1. Non-dissipative extension to micropolar elasto-plasticity

Now we extend the formulation of micropolar elasticity to cover infinitesimal elasto-
plasticity as well. It should be made clear that there exist various ways of obtain-
ing such an extension; for an overview of the competing models we refer to the
instructive survey article by Forest and Sievert [23]. Incidentally, the Cosserats
themselves [13, p. 5] had already envisaged the application of their general the-
ory to plasticity and fracture. Without restricting generality we base the following
considerations on a simplified curvature expression by setting α5 = α6 = 1, α7 = 0.

The basic idea of a non-dissipative extension is quite simple. Consider the additive
decomposition of the total micropolar stretch into elastic and plastic parts

ε̄ = ε̄e + ε̄p, (3.1)

and assume that microrotational effects remain purely elastic: Āe := Ā. Now we
replace formally ε̄ in equation (2.5) with ε̄e, which yields (note that ‖DxĀe‖2 =
2‖∇ axl(Āe)‖2)

E(ε̄e, Āe)

=
∫

Ω

µ‖sym ε̄e‖2 + µc‖skew(ε̄e)‖2 + 1
2λ tr[ε̄e]2 + 2µ( 1

12L2
c)‖∇ axl(Āe)‖2 dV

=
∫

Ω

µ‖ε − sym ε̄p‖2 + µc‖skew(∇u − Āe − ε̄p)‖2

+ 1
2λ tr[ε − ε̄p]2 + 2µ( 1

12L2
c)‖∇ axl(Āe)‖2 dV (3.2)

as thermodynamic potential, where ε = sym ∇u is the symmetric part of the dis-
placement gradient. We need to supply a consistent flow rule for ε̄p (note again
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that Āe acts solely elastically). By choosing

ε̇p(t) ∈ f(TE), TE := −∂ε̄pW
infin
mp (ε̄e) = ∂ε̄eW

infin
mp (ε̄e), ε̄e = ε̄ − ε̄p, (3.3)

W infin
mp (ε̄e) = µ‖sym ε̄e‖2 + µc‖skew(ε̄e)‖2 + 1

2λ tr[ε̄e]2,

with a constitutive multifunction f such that 〈f(Σ), Σ〉 � 0,∀Σ �= 0 the reduced
dissipation inequality

d
dt

E(ε, Āe, ε̄p) � 0 (3.4)

at fixed in time (∇u, Āe) is automatically satisfied, thus ensuring the second law of
thermodynamics.

We assume that the multifunction f takes trace free symmetric values only,
i.e. f(TE) ∈ Sym(3) ∩ sl(3, R). This sets the infinitesimal plastic spin skew(ε̄p) to
zero and restricts attention to incompressible plasticity as in the classical formula-
tion of ideal plasticity. Since then ε̄p ∈ Sym(3), we may identify ε̄p = sym(ε̄p) = εp,
formally as in ideal plasticity. We have thus obtained our infinitesimal model, as
follows.

3.2. Infinitesimal elasto-plastic Cosserat model

The infinitesimal system in variational form with non-dissipative Cosserat effects
reads∫

Ω

µ‖ε − εp‖2 + µc‖skew(∇u − Āe)‖2 + 1
2λ tr[ε]2 + 2µ( 1

12L2
c)‖∇ axl(Āe)‖2

−〈f, u〉 − 〈M, Āe〉 dV −
∫

ΓS

〈N, u〉 dS −
∫

ΓC

〈Mc, Āe〉 dS

�→ min w.r.t. (u, Āe) at fixed εp,

ε̇p(t) ∈ f(TE), TE = 2µ(ε − εp),
u|Γ = gd(t, x) − x, Āe|Γ = skew(∇gd(t, x))|Γ .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(3.5)

The corresponding system of partial differential equations coupled with the flow
rule is given by (note that ‖Āe‖2 = 2‖ axl(Āe)‖2 for Āe ∈ so(3, R))

div σ = −f, x ∈ Ω,

σ = 2µ(ε − εp) + 2µc(skew(∇u) − Āe) + λ tr[ε] · 1 ,

−µ( 1
12L2

c)∆ axl(Āe) = µc axl(skew(∇u) − Āe) + 1
2 axl(skew(M)),

ε̇p(t) ∈ f(TE), TE = 2µ(ε − εp),
u|Γ (t, x) = gd(t, x) − x, Āe|Γ = skew(∇gd(t, x))|Γ ,

σ · n|ΓS(t, x) = N, σ · n|∂Ω\{Γ∪ΓS}(t, x) = 0,

µ( 1
12L2

c)∇ axl(Āe) · n|ΓC(t, x) = 1
2 axl(skew(Mc)),

µ( 1
12L2

c)∇ axl(Āe) · n|∂Ω\{Γ∪ΓC}(t, x) = 0,

tr[εp(0)] = 0, εp(0) ∈ Sym(3).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

We remark that the derivation of this model is intrinsically thermodynamically
correct but that it can also be obtained as the linearized version of a corresponding
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geometrically exact model [41] based on the multiplicative decomposition of the
deformation gradient into elastic and plastic parts, which, in fact, was derived prior
to this linearized model.

In [17, p. 815] an elasto-plastic model based on the infinitesimal theory with dis-
sipative Cosserat effects has been investigated by means of localized considerations.
They show that the Cosserat couple modulus µc > 0 has a decisive influence on
localization effects, essentially excluding mode II shear failure. In the light of our
development with non-dissipative Cosserat effects, however, it is difficult to transfer
this insight directly.

3.3. Mathematical analysis of the elasto-plastic model

For brevity of notation, in this section we write A instead of Āe and lc instead
of the positive constant µ( 1

12L2
c). Moreover, we study general Dirichlet boundary

conditions, which means that the boundary data for the displacement and for the
microrotation may be prescribed independently. For simplicity we only consider
M = 0.

The goal of this subsection is to prove that the following initial–boundary-value
problem,

div σ = −f,

σ = 2µ(ε − εp) + 2µc(skew(∇u) − A) + λ tr[ε] · 1 ,

−lc∆ axl(A) = µc axl(skew(∇u) − A),
ε̇p ∈ f(TE), TE = 2µ(ε − εp),

u|∂Ω = ud, A|∂Ω = Ad, εp(0) = ε0
p,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.7)

possesses global-in-time L2-solutions, assuming that the given data f , ud, Ad, ε0
p

satisfy some natural restrictions and f : D(f) ⊂ Sym(3) → P(Sym(3)) is supposed
to be a maximal monotone mapping [4, definition 1, p. 140] with 0 ∈ f(0). This is,
for example, verified for the flow function corresponding to classical ideal plasticity.3

Here, for any set X the symbol P(X) denotes the family of all subsets of X. This
mapping defines the maximal monotone operator

f : L2(Ω, Sym(3)) → P(L2(Ω, Sym(3)))

with the domain

D(f) = {T ∈ L2(Ω, Sym(3)) : T (x) ∈ D(f) a.e. in Ω and there exists

S ∈ L2(Ω, Sym(3)) with S(x) ∈ f(T (x)) a.e. in Ω}. (3.8)

System (3.7) contains only one physical nonlinearity, the constitutive multifunc-
tion f, which is assumed to be maximal monotone. Such a nonlinear mapping can
be approximated by single-valued, global Lipschitz functions fη, called in the liter-
ature the Yosida approximation (see, for example, [4, theorem 2, p. 144]). Hence,
our idea is quite natural: we rewrite (3.7) with fη instead of f and try to pass to
the limit η → 0+.

3Maximal monotonicity shows 〈f(TE) − f(0), TE − 0〉 = 〈f(TE), TE〉 � 0, which implies the
reduced dissipation inequality (3.4).
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Thus, for all η > 0 we study first the following approximated initial–boundary-
value problem

div ση = −f,

ση = 2µ(εη − εη
p) + 2µc(skew(∇uη) − Aη) + λ tr[εη] · 1 ,

−lc∆ axl(Aη) = −µc axl(Aη) + µc axl(skew(∇uη)),
ε̇η
p = fη(T η

E), T η
E = 2µ(εη − εη

p),

uη|∂Ω = ud, Aη|∂Ω = Ad, εη
p(0) = ε0

p.

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.9)

Theorem 3.1 (global existence and uniqueness for approximated problem).
Let us assume that the given data possess the following regularity: for all times
T > 0,

f ∈ C([0, T ], L2(Ω, R3)),

ud ∈ C([0, T ], H1/2(∂Ω, R3)),

Ad ∈ C([0, T ], H3/2(∂Ω, so(3, R)))

and the initial data ε0
p belong to L2(Ω, Sym(3)). Then the approximated problem

has a global-in-time, unique solution (uη, εη, εη
p, Aη) with the regularity

uη ∈ C([0, T ], H1(Ω, R3)), εη ∈ C([0, T ], L2(Ω, Sym(3))),

εη
p ∈ C1([0, T ], L2(Ω, Sym(3))), Aη ∈ C([0, T ], H2(Ω, so(3, R))).

If the given data are more regular in time, or, more precisely, if

ḟ ∈ C([0, T ], L2(Ω, R3)),

u̇d ∈ C([0, T ], H1/2(∂Ω, R3)),

Ȧd ∈ C([0, T ], H3/2(∂Ω, so(3, R))),

⎫⎪⎪⎬
⎪⎪⎭

(3.10)

then the unique solution is also C1 in time.

Proof. We give a sketch of the proof, which is otherwise standard. Note that the
approximated system of equations contains only global Lipschitz nonlinearities.
Hence, we use Banach’s Fix Point Theorem. For a fixed time T > 0 let us denote
by X the Banach space C([0, T ], L2(Ω, Sym(3))). We define an operator P : X → X
as follows: for ε ∈ X we solve the integral equation

εp(t) =
∫ t

0
fη(2µ(ε(τ) − εp(τ))) dτ + ε0

p. (3.11)

By the regularity of fη it follows that this nonlinear integral equation is uniquely
solvable in X. Then, for the solution εp, we study the elliptic boundary-value
problem

div(2µ(ε − εp) + 2µc(skew(∇u) − A) + λ tr[ε] · 1) = −f,

−lc∆ axl(A) = −µc axl(A) + µc axl(skew(∇u)),

u|∂Ω = ud, A|∂Ω = Ad,

⎫⎪⎪⎬
⎪⎪⎭

(3.12)
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for the pair (u, A) of unknown functions. This problem has a unique solution u with
the regularity C([0, T ], H1(Ω, R3)) and A ∈ C([0, T ], H2(Ω, so(3, R))). Finally, we
set P (ε) := 1

2 (∇u + ∇Tu). By direct inspection of (3.12) it is not difficult to see
that for two input functions ε1, ε2 ∈ X we have

‖P (ε1)(t) − P (ε2)(t)‖L2(Ω) � C‖ε1
p(t) − ε2

p(t)‖L2(Ω),

where ε1
p(t) and ε2

p(t) are solutions of (3.11) with the input functions ε1 and ε2,
respectively, and the positive constant C does not depend on these input functions
and is independent of t. Hence, looking at (3.12) we see that for short times T the
operator P is a contraction. Moreover, the contraction constant depends only on
the Lipschitz constant of the function fη and on the time T . Hence, for small T
the mapping P possesses a unique fixed point in X and this function defines a
local-in-time solution of the approximated system. Next, using the fact that the
length of the existence interval does not depend on the given data, we may extend
the solution with the same time-step and obtain a global-in-time, unique solution.
Finally, we see that the solution εp is even more regular in time; this means εp ∈
C1([0, T ], L2(Ω, Sym(3))). Then for given data satisfying (3.10) we conclude that
the solution is C1 in time.

The main idea of the last proof was based on the global Lipschitz property of the
nonlinear function fη. However, we have not yet used the physical structure of the
problem. Next, we prove that the energy associated with the problem is bounded
independently of the parameter η. The energy is defined by

E(u, ε, εp, A)(t)

=
∫

Ω

(µ‖ε − εp‖2 + 1
2λ tr[ε]2 + µc‖ skew(∇u) − A‖2 + 2lc‖∇ axl(A)‖2) dx.

Theorem 3.2 (coerciveness of the energy). The energy function is elastically co-
ercive with respect to ∇u. This means that ∃CE > 0, ∀u ∈ H1,2

◦ (Ω), ∀A ∈ H1,2
◦ (Ω),

∀εp ∈ L2(Ω)
E(u, ε, εp, A) � CE(‖u‖2

H1(Ω) + ‖A‖2
H1(Ω)).

Moreover, ∃CE > 0, ∀ud, Ad ∈ H1/2(∂Ω), ∃Cd > 0, ∀εp ∈ L2(Ω), ∀u ∈ H1,2(Ω),
∀A ∈ H1,2(Ω) with u|∂Ω = ud and A|∂Ω = Ad it holds that

E(u, ε, εp, A) + Cd � CE(‖u‖2
H1(Ω) + ‖A‖2

H1(Ω)).

Proof. We begin with the first statement. From the definition of the energy we see
that

E(u, ε, εp, A) �
∫

Ω

( 1
2λ tr[ε]2 + µc‖ skew(∇u) − A‖2 + 2lc‖∇ axl(A)‖2) dx

�
∫

Ω

( 1
2λ| div u|2 + µc‖ skew(∇u)‖2 + µc‖A‖2

− 2µc〈skew(∇u), A〉 + 2lc‖∇ axl(A)‖2) dx

�
∫

Ω

( 1
2λ| div u|2 + 1

2µc‖ skew(∇u)‖2 − µc‖A‖2 + 2lc‖∇ axl(A)‖2) dx.

(3.13)
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Next we estimate the negative term using the Poincaré inequality and the definition
of the energy

µc‖A‖2
L2(Ω) = 2µc‖ axl(A)‖2

L2(Ω)

� 2µcCΩ‖∇ axl(A)‖2
L2(Ω)

� µcCΩ

lc
E(u, ε, εp, A),

where the constant CΩ > 0 depends on the domain Ω only. Moreover, we use the
following well-known estimate [27, p. 36]:

‖∇u‖2
L2(Ω) � Ccurl

div (‖ div u‖2
L2(Ω) + ‖ curlu‖2

L2(Ω)),

where the positive constant Ccurl
div does not depend on u. Inserting the latter two

inequalities into the main estimate (3.13) we have
(

1 +
µcCΩ

lc

)
E(u, ε, εp, A) � 1

2Ccurl
div

min{λ, µc}‖∇u‖2
L2(Ω) + 2lc‖∇ axl(A)‖2

L2(Ω).

From this the first statement follows immediately. It is important to see that the
estimate follows from the positivity of µc, λ and lc = 1

12µL2
c .

The second statement follows from the first one if we select fixed functions
ũ, Ã ∈ H1,2(Ω) such that ũ|∂Ω = ud, Ã|∂Ω = Ad and use the first inequality for
the differences u − ũ and A − Ã.

The coerciveness of the energy is the crucial one in our existence theory. In
classical rate-independent plasticity, curlu is not controlled. We also note here that
the energy E already controls the L2(Ω) norm of the inelastic strain (‖εp‖L2(Ω) �
‖ε‖L2(Ω) + ‖ε − εp‖L2(Ω)).

Theorem 3.3 (energy estimate for the approximate sequence). Let us assume the
given data satisfy (3.10) and that {(uη, εη, εη

p, Aη)} is the solution of the approx-
imate problem. Then for all times T > 0 there exists a positive constant C(T ),
independent of η, such that

E(uη, εη, εη
p, Aη)(t) � C(T ) for all t ∈ [0, T ). (3.14)

Proof. Calculating the time derivative of the energy, we obtain

Ė(uη, εη, εη
p, Aη)(t)

=
∫

Ω

(2µ〈εη − εη
p, ε̇η − ε̇η

p〉 + λ tr[εη] tr[ε̇η]

+ 2µc〈skew(∇uη) − Aη, skew(∇u̇η) − Ȧη〉 + 4lc〈∇ axl(Aη),∇ axl(Ȧη)〉) dx

= −
∫

Ω

〈T η
E , ε̇η

p〉 dx +
∫

Ω

〈ση,∇u̇η〉 dx

− 2µc

∫
Ω

〈skew(∇uη) − Aη, Ȧη〉 dx + 4lc

∫
Ω

〈∇ axl(Aη),∇ axl(Ȧη)〉 dx.
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The first integral on the right-hand side of the last equality is non-negative. In the
second and the fourth integrals we integrate by parts to obtain

Ė(uη, εη, εη
p, Aη)(t)

�
∫

Ω

〈f, u̇η〉 dx +
∫

∂Ω

〈ση · n, u̇η〉 ds

− 4µc

∫
Ω

〈axl skew(∇uη) − axl(Aη), axl(Ȧη)〉 dx

− 4lc

∫
Ω

〈∆ axl(Aη), axl(Ȧη)〉 dx + 4lc

∫
∂Ω

〈∇ axl(Aη) · n, axl(Ȧη)〉 ds.

Using the equation for the microrotations and the boundary conditions, we finally
obtain

Ė(uη, εη, εη
p, Aη)(t) �

∫
Ω

〈f, u̇η〉 dx +
∫

∂Ω

〈ση · n, u̇d〉 ds

+ 4lc

∫
∂Ω

〈∇ axl(Aη) · n, axl(Ȧd)〉 ds. (3.15)

Note that the boundary integrals are defined in the sense of the duality between
the spaces

H1/2(∂Ω, R3) and H−1/2(∂Ω, R3).

Integrating (3.15) in time we arrive at the inequality

E(uη, εη, εη
p, Aη)(t) � E(uη, εη, εη

p, Aη)(0)

+
∫ t

0

∫
Ω

〈f, u̇η〉 dx +
∫ t

0

∫
∂Ω

〈ση · n, u̇d〉 ds

+ 4lc

∫ t

0

∫
∂Ω

〈∇ axl(Aη) · n, axl(Ȧd)〉 ds. (3.16)

By the continuity with respect to time we conclude that the initial values uη(0),
εη(0), Aη(0) are solutions of the following linear elliptic boundary-value problem

div ση(0) = −f,

ση(0) = 2µ(εη(0) − εη
p(0)) + 2µc(skew(∇uη(0)) − Aη(0)) + λ tr[εη(0)] · 1 ,

−lc∆ axl(Aη(0)) = −µc axl(Aη(0)) + µc axl(skew(∇uη(0))),
uη(0)|∂Ω = ud, Aη(0)|∂Ω = Ad,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭
(3.17)

where εη(0) = 1
2 (∇uη(0) + ∇Tuη(0)). The unique solution of (3.17) satisfies

uη(0) ∈ H1(Ω, R3), εη(0) ∈ L2(Ω, Sym(3)), Aη(0) ∈ H2(Ω, so(3, R))

and is independent of η. The initial energy value E(uη, εη, εη
p, Aη)(0) is a constant.

Next, we analyse the first integral from the right-hand side of (3.16). Integrating
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partially in time, we obtain
∫ t

0

∫
Ω

〈f, u̇η〉 dxdτ

= −
∫ t

0

∫
Ω

〈ḟ , uη〉 dxdτ +
∫

Ω

〈f(t), uη(t)〉 dx −
∫

Ω

〈f(0), uη(0)〉 dx

� 1
2

∫ t

0
‖ḟ‖2

L2 dτ + 1
2

∫ t

0
‖uη‖2

L2 dτ + ‖f(0)‖L2‖uη(0)‖L2 + ‖f(t)‖L2‖uη(t)‖L2 .

By Poincaré’s inequality we conclude that

‖uη(t)‖L2 � ‖uη(t) − ũd(t)‖L2 + ‖ũd(t)‖L2

� diam(Ω)(‖∇uη(t)‖L2 + ‖∇ũd(t)‖L2) + ‖ũd(t)‖L2 ,

where ũd is a function from H1(Ω, R3) with ũd|∂Ω = ud. By the coercivity of the
energy with respect to the gradient of uη there exists a positive constant CE and a
function Cd(t) independent of η such that ‖∇uη(t)‖L2 � CEE1/2(uη, εη, εη

p, Aη)(t)+
Cd(t). Using the latter results we have

∣∣∣∣
∫ t

0

∫
Ω

〈f, u̇η〉 dxdτ

∣∣∣∣ � C

∫ t

0
E(uη, εη, εη

p, Aη)(τ) dτ

+ C‖f(t)‖L2E1/2(uη, εη, εη
p, Aη)(t) + C(t), (3.18)

where the constants C, C(t) do not depend on η and C(t) depends on the given
data only. The second integral in (3.16) is estimated (by the trace theorem in the
space L2(div) [51, ch. 1]) as follows:

∣∣∣∣
∫ t

0

∫
∂Ω

〈ση · n, u̇d〉 ds

∣∣∣∣ �
∫ t

0
‖ση · n‖H−1/2‖u̇d‖H1/2 dτ

� C

∫ t

0
(‖ση‖L2 + ‖ div ση‖L2)‖u̇d‖H1/2 dτ

� C

∫ t

0
‖f‖L2‖u̇d‖H1/2 dτ

� +C

∫ t

0
E(uη, εη, εη

p, Aη)(τ) dτ + C

∫ t

0
‖u̇d‖2

H1/2 dτ,

(3.19)

where C > 0 does not depend on η. To estimate the last integral in (3.16) we use
the H2-regularity of the microrotations

∣∣∣∣
∫ t

0

∫
∂Ω

〈∇ axl(Aη) · n, axl(Ȧd)〉 ds

∣∣∣∣
�

∫ t

0
‖∇ axl(Aη) · n‖H−1/2‖ axl(Ȧd)‖H1/2 dτ

� C

∫ t

0
(‖∇ axl(Aη)‖L2 + ‖∆ axl(Aη)‖L2)‖ axl(Ȧd)‖H1/2 dτ
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= C

∫ t

0

(
‖∇ axl(Aη)‖L2 +

µc

lc
‖ skew(∇uη) − Aη‖L2

)
‖ axl(Ȧd)‖H1/2 dτ

� C̃

∫ t

0
E(uη, εη, εη

p, Aη)(τ) dτ + C̃

∫ t

0
‖ axl(Ȧd)‖2

H1/2 dτ, (3.20)

where again the constants C, C̃ do not depend on η. On inserting (3.18)–(3.20) into
(3.16) we obtain

E(uη, εη, εη
p, Aη)(t) � C1‖f(t)‖L2E1/2(uη, εη, εη

p, Aη)(t)

+ C2

∫ t

0
E(uη, εη, εη

p, Aη)(τ) dτ + C3(t), (3.21)

where C1, C2, C3(t) do not depend on η and C3(t) depends only on the given data.
Next, using the inequality ab � δa2 +(1/4δ)b2, we separate in the first term on the
right-hand side the energy with a small factor and absorb this expression by the
left-hand side. Finally, Gronwall’s lemma completes the proof.

The energy estimate proved in the last theorem yields boundedness of the stresses
{ση} in the space L∞((0, T ), L2(Ω, Sym(3))) and of the microrotations {Aη} in
the space L∞((0, T ), H1(Ω, so(3, R))). Moreover, using the fact that the energy
controls the gradient of the displacement, the sequence {uη} is bounded in the
space L∞((0, T ), H1(Ω, R3)) and consequently the sequence of strains {εη} and the
sequence of inelastic strains {εη

p} are bounded in the space

L∞((0, T ), L2(Ω, Sym(3))).

Hence, for a subsequence (again denoted using the superscript η) we find that, for
all T > 0,

ση ∗
⇀ σ in L∞((0, T ), L2(Ω, Sym(3))),

Aη ∗
⇀ A in L∞((0, T ), H1(Ω, so(3, R))),

uη ∗
⇀ u in L∞((0, T ), H1(Ω, R3)),

εη ∗
⇀ ε in L∞((0, T ), L2(Ω, Sym(3))),

εη
p

∗
⇀ εp in L∞((0, T ), L2(Ω, Sym(3)))

and the limit functions satisfy

ε = 1
2 (∇u + ∇Tu), σ = 2µ(ε − εp) + 2µc(skew(∇u) − A) + λ tr[ε] · 1 .

Moreover, we see that the sequence {div ση} is constant with respect to η and
consequently is bounded in the space L∞((0, T ), L2(Ω, R3)), and the sequence
{∆ axl(Aη)} is bounded in the space L∞((0, T ), L2(Ω, R3)). Using the closedness of
the differential operators in Sobolev spaces, the limit functions satisfy the system

div σ = −f,

−lc∆ axl(A) = −µc axl(A) + µc axl(skew(∇u)),

u|∂Ω = ud, A|∂Ω = Ad.
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Thus, to complete the existence theory for the infinitesimal elasto-plastic Cosserat
model we should prove only that the limit functions satisfy the differential inclusion
(3.7)4. The sequence T η

E = 2µ(εη − εη
p) converges weakly-∗ to TE = 2µ(ε − εp) and

the sequence ∫ t

0
fη(T η

E) dτ = εη
p − ε0

p

also converges weakly-∗ to εp − ε0
p. To conclude that the limit functions εp and

TE satisfy the differential inclusion, we need estimates for the sequence {fη(T η
E)}.

Hence, the next step in our existence theory is an estimate for time derivatives of
the approximate sequence.

Theorem 3.4 (energy estimate for time derivatives). Suppose that the given data
possess more time regularity as in the last theorem and satisfy additionally: for all
times T > 0

f̈ ∈ L2((0, T ) × Ω, R3),

∂3
t ud ∈ L2((0, T ), H1/2(∂Ω, R3)),

∂3
t Ad ∈ L2((0, T ), H1/2(∂Ω, so(3, R)).

⎫⎪⎪⎬
⎪⎪⎭

(3.22)

Moreover, assume that the initial data ε0
p ∈ L2(Ω, Sym(3)) are chosen such that

the initial value of the reduced Eshelby tensor TE(0) = 2µ(ε(0) − ε0
p) defined by

system (3.17) belongs to the domain of the maximal monotone operator f. Then
there exists a positive constant C(T ), independent of the parameter η, such that

E(u̇η, ε̇η, ε̇η
p, Ȧη)(t) � C(T ) for all t ∈ [0, T ).

Proof. For h > 0 let us denote by (uη
h(t), εη

h(t), εη
p,h(t), Aη

h(t)) the shifted functions
(uη(t+h), εη(t+h), εη

p(t+h), Aη(t+h)) and calculate the energy evaluated on the
differences (uη

h − uη, . . . ). Then for the time derivative we have

Ė(uη
h − uη, εη

h − εη, εη
p,h − εη

p, Aη
h − Aη)(t)

=
∫

Ω

2µ〈εη
h − εη − εη

p,h + εη
p, ε̇η

h − ε̇η − ε̇η
p,h + ε̇η

p〉 dx

+ 2µc

∫
Ω

〈skew(∇uη
h − ∇uη) − Aη

h + Aη, skew(∇u̇η
h − ∇u̇η) − Ȧη

h + Ȧη〉 dx

+ λ

∫
Ω

tr[εη
h − εη] tr[ε̇η

h − ε̇η] dx + 4lc

∫
Ω

〈∇ axl(Aη
h − Aη),∇ axl(Ȧη

h − Ȧη)〉 dx

= −
∫

Ω

〈T η
E,h − T η

E , ε̇η
p,h − ε̇η

p〉 dx +
∫

Ω

〈ση
h − ση,∇u̇η

h − ∇u̇η〉 dx

+ 4µc

∫
Ω

〈axl skew(∇uη
h − ∇uη) − axl(Ȧη

h − Ȧη)〉 dx

+ 4lc

∫
Ω

〈∇ axl(Aη
h − Aη),∇ axl(Ȧη

h − Ȧη)〉 dx, (3.23)

where T η
E,h(t) = T η

E(t+h) and ση
h(t) = ση(t+h). By the monotonicity of the Yosida

approximation the first term on the right-hand side of (3.23) is non-positive. Similar
to the energy estimate in theorem 3.3 we integrate by parts in the second and in
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the fourth integral and use the equation for microrotations. Hence, we arrive at the
inequality

Ė(uη
h − uη, εη

h − εη, εη
p,h − εη

p, Aη
h − Aη)(t)

�
∫

Ω

〈fh − f, u̇η
h − u̇η〉 dx +

∫
∂Ω

〈(ση
h − ση) · n, u̇d,h − u̇d〉 ds

+ 4lc

∫
∂Ω

〈∇ axl(Aη
h − Aη) · n, axl(Ȧd,h − Ȧd)〉 ds, (3.24)

where fh(t) = f(t + h), ud,h(t) = ud(t + h) and Ad,h(t) = Ad(t + h). Next, we
integrate (3.24) in time and obtain

E(uη
h − uη, εη

h − εη, εη
p,h − εη

p, Aη
h − Aη)(t)

� E(uη
h − uη, εη

h − εη, εη
p,h − εη

p, Aη
h − Aη)(0)

+
∫ t

0

∫
Ω

〈fh − f, u̇η
h − u̇η〉 dxdτ +

∫ t

0

∫
∂Ω

〈(ση
h − ση) · n, u̇d,h − u̇d〉 ds dτ

+ 4lc

∫ t

0

∫
∂Ω

〈∇ axl(Aη
h − Aη) · n, axl(Ȧd,h − Ȧd)〉 ds dτ. (3.25)

Before we divide (3.25) by h2 we should shift in the integral terms the shift operator
onto given data. We calculate this with details for the first integral only.

∫ t

0

∫
Ω

〈fh − f, u̇η
h − u̇η〉 dxdτ

=
∫

Ω

∫ t

0
〈f(τ + h) − f(τ), u̇η(τ + h)〉dτ dx

−
∫

Ω

∫ t

0
〈f(τ + h) − f(τ), u̇η(τ)〉dτ dx

= (τ + h = s in the first integral)

=
∫

Ω

∫ t+h

h

〈f(s) − f(s − h), u̇η(s)〉 ds dx

−
∫

Ω

∫ t

0
〈f(s + h) − f(s), u̇η(s)〉 ds dx

= −
∫

Ω

∫ t+h

h

〈f(s + h) − 2f(s) + f(s − h), u̇η(s)〉 ds dx

−
∫

Ω

∫ h

0
〈f(s + h) − f(s), u̇η(s)〉 dxds

+
∫

Ω

∫ t+h

t

〈f(s + h) − f(s), u̇η(s)〉 ds dx. (3.26)

In the same manner we transform the second and the third integral terms from
(3.25). Next, we insert (3.26) and the results for other terms into (3.25), divide by
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h2 and pass to the limit h → 0+. Hence, we conclude with the following inequality:

E(u̇η, ε̇η, ε̇η
p, Ȧη)(t) � E(u̇η, ε̇η, ε̇η

p, Ȧη)(0) −
∫ t

0

∫
Ω

〈f̈ , u̇η〉 dxdτ

−
∫

Ω

〈ḟ(0), u̇η(0)〉 dx +
∫

Ω

〈ḟ(t), u̇η(t)〉 dx

−
∫ t

0

∫
∂Ω

〈ση · n, ∂3
t ud〉 ds dτ −

∫
∂Ω

〈ση(0) · n, ∂2
t ud(0)〉 ds

+
∫

∂Ω

〈ση(t) · n, ∂2
t ud(t)〉 ds

− 4lc

∫ t

0

∫
∂Ω

〈∇ axl(Aη) · n, axl(∂3
t Ad)〉 ds dτ

− 4lc

∫
∂Ω

〈∇ axl(Aη)(0) · n, axl(∂2
t Ad)(0)〉 ds

+ 4lc

∫
∂Ω

〈∇ axl(Aη)(t) · n, axl(∂2
t Ad)(t)〉 ds. (3.27)

To obtain the initial energy for time derivatives we observe that ε̇η
p(0) = fη(T η

E(0)) =
fη(TE(0)). By using assumption TE(0) ∈ D(f) we find that the sequence {fη(TE(0))}
is bounded in L2(Ω, Sym(3)). The other initial values u̇η(0), ε̇η(0) and Ȧη(0) are
solutions of (3.17) with ε̇η

p(0) instead of ε0
p. Consequently, the initial energy for time

derivatives is bounded. The integral term on the right-hand side of (3.27) can be
estimated in the same manner as in the proof of theorem 3.3. Thus we arrive at the
following inequality

E(u̇η, ε̇η, ε̇η
p, Ȧη)(t) � C1‖ḟ(t)‖L2E1/2(u̇η, ε̇η, ε̇η

p, Ȧη)(t)

+ C2

∫ t

0
E(u̇η, ε̇η, ε̇η

p, Ȧη)(τ) dτ + C3(t),

where C1, C2, C3(t) do not depend on η and C3(t) depends only on the given data.
Similarly to the proof of theorem 3.3, this concludes the statement.

The energy estimate for time derivatives yields that the sequence {fη(T η
E)} is

bounded in L∞((0, T ), L2(Ω, Sym(3))). Hence, εp(0) = ε0
p and we can select a

subsequence (denoted again by the superscript η) with

fη(T η
E) ∗

⇀ f0 in L∞((0, T ), L2(Ω, Sym(3))).

This shows that the limit function TE = 2µ(ε − εp) belongs to D(f). To end our
existence theory we need only to prove that

f0(t, x) ∈ f(TE(t, x)) a.e. in (0, T ) × Ω. (3.28)

From the definition of a maximal monotone operator it is easy to see that its graph
is weakly–strongly closed. Thus we have to improve the weak convergence of the
sequence {T η

E}.
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Theorem 3.5 (strong convergence of the stresses). Let us assume that the given
data satisfy all requirements of theorem 3.4. Then

E(uη − uν , εη − εν , εη
p − εν

p, Aη − Aν)(t) → 0

for η, ν → 0+ uniformly on bounded time intervals.

Proof. Calculating the time derivative of the energy evaluated on the differences of
two approximation steps we obtain

Ė(uη − uν , εη − εν , εη
p − εν

p, Aη − Aν)(t)

= 2µ

∫
Ω

〈εη − εν − εη
p + εν

p, ε̇η − ε̇ν − ε̇η
p + ε̇ν

p〉 dx

+ λ

∫
Ω

tr[εη − εν ] tr[ε̇η − ε̇ν ] dx

+ 4lc

∫
Ω

〈∇ axl(Aη − Aν),∇ axl(Ȧη − Ȧν)〉 dx

+ 2µc

∫
Ω

〈skew(∇uη − ∇uν) − Aη + Aν , skew(∇u̇η − ∇u̇ν) − Ȧη + Ȧν〉 dx.

Using that the given data for both approximation steps are the same we conclude
that

Ė(uη −uν , εη −εν , εη
p−εν

p, Aη −Aν)(t) = −
∫

Ω

〈T η
E −T ν

E , fη(T η
E)−fν(T ν

E)〉 dx. (3.29)

Next, we estimate the right-hand side of (3.29). This estimation is a standard one in
the theory of maximal monotone operators (cf. the proof of [4, theorem 1, p. 147]).
Nevertheless, for completeness of the proof we insert it here. By definition of the
Yosida approximation we have

f�(T �
E) ∈ f(J�(T �

E)) where J�(T �
E) = T �

E − �f�(T �
E) and � = η, ν (3.30)

is the resolvent of the operator f. Hence, by (3.30) we have

−
∫

Ω

〈T η
E − T ν

E , fη(T η
E) − fν(T ν

E)〉 dx

= −
∫

Ω

〈Jη(T η
E) − Jν(T ν

E), fη(T η
E) − fν(T ν

E)〉 dx

−
∫

Ω

〈ηfη(T η
E) − νfν(T ν

E), fη(T η
E) − fν(T ν

E)〉 dx

� 1
4η‖fν(T ν

E)‖2
L2 +

ν

4
‖fη(T η

E)‖2
L2

= 1
4η‖ε̇ν

p‖2
L2 + 1

4ν‖ε̇η
p‖2

L2 .

Inserting the last result into (3.29) and integrating in time we finally obtain

E(uη − uν , εη − εν , εη
p − εν

p, Aη − Aν)(t) � 1
4 t(η + ν)C(T ) for all t ∈ [0, T ),

where the constant C(T ) is from the statement of theorem 3.4. The last inequality
immediately completes the proof.
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Using (3.30) and the fact that the resolvent Jη is a global Lipschitz operator with
the Lipschitz constant less than or equal to 1, we see that the sequence {Jη(T η

E)}
converges strongly to the function TE (note that the sequence {fη(T η

E)} is bounded).
Thus, the weak limit fη(T η

E) ∗
⇀ f0 belongs to the set f(TE) and the limit functions

(u, ε, εp, A) satisfy (3.7).

Theorem 3.6 (uniqueness of solutions). Let us assume that the given data f , ud,
Ad, ε0

p satisfy all requirements of theorem 3.4 Then system (3.7) possesses a unique,
global-in-time solution (u, ε, εp, A).

Proof. Assume that (u1, ε1, ε1
p, A1) and (u2, ε2, ε2

p, A2) are two solutions of (3.7) for
the same given data. Then for the energy function evaluated on differences of these
solutions we have

Ė(u1 − u2, ε1 − ε2, ε1
p − ε2

p, A1 − A2)(t)

= 2µ

∫
Ω

〈ε1 − ε2 − ε1
p + ε2

p, ε̇1 − ε̇2 − ε̇1
p + ε̇2

p〉 dx

+ λ

∫
Ω

tr[εη − εν ] tr[ε̇η − ε̇ν ] dx + 4lc

∫
Ω

〈∇ axl(A1 − A2),∇ axl(Ȧ1 − Ȧ2)〉 dx

+ 2µc

∫
Ω

〈skew(∇u1 − ∇u2) − A1 + A2, skew(∇u̇1 − ∇u̇2) − Ȧ1 + Ȧ2〉 dx

= −
∫

Ω

〈T 1
E − T 2

E, ε̇1
p − ε̇2

p〉 dx

� 0.

Immediately, this yields that

E(u1 − u2, ε1 − ε2, ε1
p − ε2

p, A1 − A2)(t)

� E(u1 − u2, ε1 − ε2, ε1
p − ε2

p, A1 − A2)(0) = 0

and the statement follows from coerciveness of the energy function (see the first
statement of theorem 3.2).

Finally, we formulate the following existence theorem, which we have proved.

Theorem 3.7 (existence for the infinitesimal elasto-plastic Cosserat model).
Suppose that the given data f , ud, Ad satisfy the following conditions. For all times
T > 0,

f ∈ C1([0, T ], L2(Ω, R3)), f̈ ∈ L2((0, T ) × Ω, R3),

ud ∈ C2([0, T ], H1/2(∂Ω, R3)), ∂3
t ud ∈ L2((0, T )H1/2(∂Ω, R3)),

Ad ∈ C2([0, T ], H3/2(∂Ω, so(3, R))), ∂3
t Ad ∈ L2((0, T )H1/2(∂Ω, so(3, R))).

Moreover, assume that the initial data ε0
p ∈ L2(Ω, Sym(3)) are chosen such that

the initial value of the reduced Eshelby tensor TE(0) = 2µ(ε(0) − ε0
p) defined by

system (3.17) belongs to the domain of the maximal monotone operator f. Then
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system (3.7) possesses a global-in-time, unique solution (u, ε, εp, A) with the follow-
ing regularity. For all times T > 0,

u ∈ H1,∞((0, T ), H1(Ω, R3)),

ε, εp ∈ H1,∞((0, T ), L2(Ω, Sym(3))),

A ∈ H1,∞((0, T ), H2(Ω, so(3, R))).

Remark 3.8. In the analysis part we have assumed that the values of the constitu-
tive multifunction f are trace free. This means that the existence theory developed
works well for trace-free flow rules, corresponding to incompressible plasticity only.
For constitutive multifunctions possessing general values we are not able to show
the coerciveness of the energy.

Note that, for the model to be well posed in the rate-independent case, we did
not need the so-called safe load condition, which is otherwise unavoidable.

4. Discussion

The infinitesimal Cosserat model has been extended to elasto-plasticity where
Cosserat effects remain, in contrast to others proposals in the literature, non-
dissipative. As only difference from classical rate-independent infinitesimal plas-
ticity we have introduced an additional infinitesimal microrotation Āe, influencing
only the elastic behaviour of the model. This minor change is shown to completely
regularize the pathological behaviour of rate-independent classical plasticity the-
ory. Decisive in our analysis is the observation that the infinitesimal microrotations
provide an independent control of the rotation curlu, otherwise not present in the
theory. This extra resistance against elastic shear is also a welcome feature from a
modelling and numerical point of view.

Since this modification of classical rate-independent plasticity is not operative in
uniaxial tension/compression we may arguably say that the provided regularization
is optimal. Numerical calculations based on this modification are ‘cheap’, in the
sense that the resulting system remains of second order.
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Appendix A. Notation

Let Ω ⊂ R
3 be a bounded domain with Lipschitz boundary ∂Ω and let Γ be a

smooth subset of ∂Ω with non-vanishing two-dimensional Hausdorff measure. We
denote by M

3×3 the set of real 3 × 3 second-order tensors, written with capital
letters. The standard Euclidean scalar product on M

3×3 is given by

〈X, Y 〉
M3×3 = tr[XY T],
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and thus the Frobenius tensor norm is ‖X‖2 = 〈X, X〉
M3×3 (we use these symbols

indifferently for tensors and vectors). The identity tensor on M
3×3 is denoted by 1,

so that tr[X] = 〈X, 1〉. We let Sym and PSym denote the symmetric and positive
definite symmetric tensors respectively. We adopt the usual abbreviations of Lie-
algebra theory, i.e. so(3, R) := {X ∈ M

3×3|XT = −X} are skew symmetric second-
order tensors and sl(3, R) := {X ∈ M

3×3| tr[X] = 0} are traceless tensors. We
set

sym(X) = 1
2 (XT + X) and skew(X) = 1

2 (X − XT)

such that X = sym(X) + skew(X). For X ∈ M
3×3 we set for the deviatoric part

dev X = X − 1
3 tr[X]1 ∈ sl(3, R).

For a second-order tensor X we let X · ei be the application of the tensor X to
the column vector ei and we define the third-order tensor

h = DxX(x) = (∇(X(x) · e1),∇(X(x) · e2),∇(X(x) · e3)) = (h1, h2, h3) ∈ (M3×3)3.

For h we set ‖h‖2 =
∑3

i=1 ‖hi‖2 together with sym(h) := (sym h1, sym h2, sym h3)
and tr[h] := (tr[h1], tr[h2], tr[h3]) ∈ R

3. The first and second differential of a scalar-
valued function W (F ) are written DF W (F ) ·H and D2

F W (F ) ·(H, H), respectively.
Sometimes we also use ∂XW (X) to denote the first derivative of W with respect
to X. We employ the standard notation of Sobolev spaces, i.e. L2(Ω), H1,2(Ω),
H1,2

◦ (Ω), which we use indifferently for scalar-valued functions as well as for vector-
valued and tensor-valued functions.
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