THE REVIEW OF SYMBOLIC LOGIC
Volume 13, Number 2, June 2020

ON MORITA EQUIVALENCE AND INTERPRETABILITY

PAUL ANH MCELDOWNEY
Department of Philosophy, University of Notre Dame

Abstract. In a recent article, Barrett & Halvorson (2016) define a notion of equivalence for
first-order theories, which they call “Morita equivalence.” To argue that Morita equivalence is a
reasonable measure of “theoretical equivalence,” they make use of the claim that Morita extensions
“say no more” than the theories they are extending. The goal of this article is to challenge this
central claim by raising objections to their argument for it and by showing why there is good
reason to think that the claim itself is false. In light of these criticisms, this article develops a
natural way for the advocate of Morita equivalence to respond. I prove that this response makes
her criterion a special case of bi-interpretability, an already well-established barometer of theoretical
equivalence. I conclude by providing reasons why the advocate of Morita equivalence should opt
for a notion of theoretical equivalence that is defined in terms of interpretability rather than Morita
extensions.

§1. Introduction. How do we know when two theories are the same? Suppose 77 and
T, are sets of sentences sharing the same many-sorted first-order signature.! To decide
whether 71 and 75 are the “same theory,” we often compare their deductive closures, i.e.,
their respective sets of theorems. In keeping with widely used conventions, let’s call two
theories logically equivalent if their deductive closures are the same.

Suppose now that 71 and 7> consist of sentences in distinct signatures. Since logically
equivalent theories must share the same signature, the notion of logical equivalence will
be largely uninformative in this context. As a response to the restrictive nature of logical
equivalence, many logicians and philosophers have proposed various formal criteria of
equivalence which aim to clarify the idea that theories need not share the same signature
in order for them to be equivalent.

One way to approach this issue is to introduce the notion of a “theory extension.” If T
is a first-order theory, one would like, for a variety of reasons, to extend T to a theory T+
such that T C T and the signature of T is a subset of the signature of 7. Let’s call such
a T™T a theory extension (or more concisely, an extension) of T and say that T+ extends T
if T is an extension of 7.

A strong case can be made that some theory extensions do not “add more theory,” i.e., do
not add any substantive claims to the theories they are extending. For example, an extension
that extends a theory to itself does not “add more theory.”
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1A first-order signature gives rise to what is commonly called a “first-order language.”
2 See Visser (2006) and Button & Walsh (2018) for surveys of such attempts.
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For a less trivial example, if T is a definitional extension of 7, then it is natural to think
that 7t does not add new substantive claims to 7.3 Let’s call theory extensions that do not
“add more theory” admissible.

In a recent article, Barrett & Halvorson (2016) define a notion of equivalence for first-
order theories called “Morita equivalence” which, they define in terms of theory exten-
sions called “Morita extensions.” According to Barrett and Halvorson, Morita equivalence
provides a plausible signature-independent criterion for theoretical equivalence especially
suited for comparing theories with different sorts. As a result, Barrett and Halvorson apply
their notion of equivalence to a variety of philosophical problems.*

To argue that Morita equivalence is a reasonable measure of “theoretical equivalence,”
Barrett and Halvorson make use of the claim that Morita extensions “say no more” than
the theories they are extending. In this article, I attempt to accomplish two things. First, I
challenge this central claim by raising objections to Barrett and Halvorson’s argument for
it and by showing that there are good reasons to think that the claim itself is false. Second,
I demonstrate that a natural way for the advocate of Morita equivalence to address these
criticisms will make Morita equivalence a special case of bi-interpretability, an already
well-established notion of theoretical equivalence.

In light of this result, I conclude that the reasonableness of Morita equivalence as a
notion of theoretical equivalence depends on how much it strengthens bi-interpretability.
Moreover, as part of my concluding remarks, I provide reasons why the advocate of Morita
equivalence should opt for a notion of theoretical equivalence that is defined in terms of
interpretability rather than Morita extensions.®

§2. Preliminaries. I begin with technical preliminaries. The setting of this article is
classical finitary many-sorted first-order logic.” Nothing in this article requires special
background in logic: all of the techniques and concepts used in the following proofs are
elementary.®

2.1. Many-sorted logic. A (many-sorted first-order) signature, £, is given by a quadru-
ple (5, R, F,C), where S is a set of sort symbols, R is a set of sorted relation symbols, F
is a set of sorted function symbols, and C is a set of sorted constant symbols. This means
that each relation symbol R € R comes equipped with a tuple of sorts symbols s; X - - - X 55,
from S which is called the arity of R. Analogously, each function symbol f € F comes
equipped with an arity s; X --- X s, — s,41, and each constant symbol ¢ € C comes
equipped with an arity s..

The notion of a definitional extension will be discussed at length in §2.2.

See, for example, Barrett & Halvorson (2017a), where the notion of Morita equivalence is used
to address the issue of conventionality in the philosophy of science.

Let Eq (x, y) and E» (x, y) be notions of equivalence for many-sorted first-order theories. Then E;
is said to strengthen E; if whenever A and B are many-sorted first-order theories, E{ (A, B) implies
E>(A, B).

In particular, I will discuss how these reasons motivated Tarski’s student Szczerba (1975) to define
a notion of theoretical equivalence in terms of interpretability rather than theory extensions.
There are a variety of mathematical contexts where working with a many-sorted logic is more
natural and fruitful than a single-sorted one. For example, the model theory of compact complex
spaces admits a convenient presentation in many-sorted logic; see Moosa (2005). Moreover, first-
order categorical logic finds a natural treatment in the many-sorted context; see Makkai & Reyes
(1967).

The following presentation of first-order logic will not be exhaustive. The interested reader is
encouraged to refer to Marker (2002) for a proper introduction to first-order logic.
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As usual, the set of L-formulas is defined inductively in the usual way using the symbols
in L, propositional connectives, sorted first-order quantifiers, sorted variable symbols, and
sorted identity symbols (one for every L-sort s). A many-sorted first-order language is
simply the set of £-formulas for some signature £. For convenience, we shall denote the
many-sorted first-order language generated by the signature £ also by L. Intuitively, each
identity symbol =, denotes the identity relation between objects of sort s; we do not allow
(as logical constants) identity symbols relating objects of different sorts. When there is no
ambiguity, the subscript of an identity symbol =, which signifies its arity, will be omitted.
As mentioned, variables and quantifiers are assumed to be sorted as well. This means
that a variable or a quantifier binding a variable ranges over precisely one sort. Thus, an
existential quantifier will be denoted by 3; and a universal quantifier will be denoted by V4,
where s is a sort symbol of L. The sort of a variable symbol will be called its arity. An L-
sentence is an L£-formula with no free variables. The arity of an L-formula ¢ (xq, ..., x,)
with free variables xq, ..., x,, of sort 51, ..., s, is defined tobe s; X --- X §,.

Intuitively, an £-structure M assigns values to the symbols in £. More specifically, an
L-structure M is given by the following:

1. For each sort symbol s € S, a non-empty set My, which we call a sort of M.
2. For each relation R € R of arity s1 X - -+ X sn,RM C Mg x---xM

Sn*
3. For each function f € F of arity s1 X --- X 5, = Sp+1, fM is a total function from
Mg, x -+ x My, to M,

Sn+1°
4. For each constant ¢ € C of arity s, ¢M is an element of M;, .

If M is an L-structure and s is a sort symbol of £, then the identity symbol =; is always
interpreted in M as equality among objects in M;. Moreover, finite tuples from M are
denoted by a, b, etc. Finite tuples of variables are denoted by X, 7, etc.

Central to model theory is the notion of being “true in a model.” Let M be an L-structure
and ¢ (x) be an £-formula, where X is the tuple (x1, ..., x,) and each x; is a variable of sort
siof L. If ais (ai,...,a,), where a; € My, then M = ¢(a) is defined inductively
and classically in the usual way (so, in particular, either M = ¢(ay,...a,) or M |
—¢(ay,...,ay)). When M = ¢(a), one says that M satisfies ¢ (a), or that M is a model
of ¢ (a).

Let M be an L-structure and let A C My, x --- x Mj,, where each My, is a sort of M.
Then, A is definable in M if there is an L£-formula ¢ (x) such that A = {a € M, x---xMj, :
M = ¢(a)}. We say that a set A is a definable set of M, or M defines A, if A is definable in
MO If ¢ (%) is an L-formula of arity s1 X - - - X s,,, then ¢» (M) denotes the set of realizations
of (x)in M, i.e., theset {a e My, x --- x My, : M = ¢(a)}.

An L-theory T is a set of L-sentences. If T is an L-theory, then T is assumed to be
satisfiable, i.e., there is an L-structure M such that whenever ¢ € T, M = ¢. If T is
an L-theory and ¢ is an L-sentence, then we say that 7 (logically) implies ¢ (denoted by
T = ¢) if every model M of T is a model of ¢. If T and 7" have the same set of theorems,
then we say that T and T” are logically equivalent (denoted by T = T’). We shall assume
that if 7' is an L-theory, then T is closed under logical implication. Thus, in this article,
T=T ifandonlyif T=T.

2.2. Definitional equivalence. To argue that Morita equivalence is a plausible crite-

rion for theoretical equivalence, Barrett and Halvorson draw analogies between it and

9 Note that in this article, a definable set is one that is definable without parameters.
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the notion of definitional equivalence (Barrett & Halvorson, 2017b, p. 13). Thus, before
turning to Morita equivalence, I will define and briefly discuss the latter notion.!” In
particular, I will focus on why definitionally equivalent theories might reasonably count
as being “theoretically equivalent.” In this section, I work only with signatures that share
the same sort symbols. So, if £ and £’ are signatures, then S = §'.

In order to define definitional equivalence, I will need to introduce a few preliminary
notions first.

DEFINITION 2.1. Let £L C L. If M is an L -structure, then ignoring the interpretations
of the symbols in LT — L gives us an L-structure M. The L-structure M is called a reduct
of M™ (more specifically, the L-reduct of M™T) and M7 is called an expansion of M
(more specifically, an L -expansion of M).

If L C LY, and if MY is an LT -structure, then we denote the L-reduct of M+ by M
or M*| ..

If M™ is an expansion of M, then M™ is called a definitional expansion of M if every
L -definable set of M is L-definable.

The idea behind a definitional expansion is simple. A definitional expansion M™ names
a definable set A of a given structure M with some nonlogical symbol not yet in the
signature of M. The following syntactic definition allows one to definitionally expand
a whole class of structures simultaneously.

DEFINITION 2.2. Let L C LT, and let R € L. Then, an explicit definition of R in terms
of L is an L -sentence of the form

VEHRE) © ¢ (X)), (1)

where ¢ is an L-formula. Similarly, if f is a function symbol in L, then an explicit
definition of f in terms of £ is an LT -sentence of the form

VX, y(f(X) =y & (X, ), )

where ¢(x,y) is an L-formula. Lastly, if ¢ is a constant symbol in L, then an explicit
definition of ¢ in terms of £ is an LT -sentence of the form

Vx(c = x & ¢ (x)), 3)
where ¢ (x) is an L-formula.
Note that (2) and (3) respectively, imply
Vid_1y¢ (X, ) (4)

and

o 1x(¢ (x)). o)
These sentences are called the admissibility conditions for (2) and (3), respectively.
We are now in a position to define the notion of a definitional extension.

DEFINITION 2.3. Let £ C LT. Then, a definitional extension TV of T is an LT -theory of
the form T U {0, : ¢ € LT} satisfying the following conditions:

1. If ¢ is a nonsortal symbol in LT — L, then 8, is an explicit definition of ¢ in terms
of L; and

10 My presentation, as does Barrett and Halvorson’s, follows Hodges (1993, sec. 2.6).
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2. if o is a constant or function symbol in LT — L and y is an admissibility condition
for oy, thenT = .

Essentially, definitional extensions of a theory simply add explicit definitions to theories
that already imply their associated admissibility conditions. The following elementary
example will help clarify the notion.

EXAMPLE 2.4. Let L be the language of arithmetic {+, X, s, 1}, let T be PA, i.e., first-
order Peano Arithmetic, and let ¢ (x) be the L-formula expressing that x is a prime number.
An example of a definitional extension of T is the LT -theory TT, which adds to T an L -
sentence Jp of the form (1) with ¢ (x) in the relevant position. Intuitively, op defines a new
one-place predicate symbol P that picks out the elements satisfying P(x), i.e., all of the
prime numbers.

One might ask whether definitional extensions add any substantial claims to the theories
they are extending, i.e., whether they are admissible extensions. As I will discuss, since
definitional extensions satisfy the following conditions, the view that definitional exten-
sions are admissible is well founded.

DEFINITION 2.5. Let T be an extension of T. Then T™ is conservative over T if whenever
¢ is an L-sentence, TT \= ¢ if and only if T = ¢.

Similarly, TT is eliminable over T if whenever ¢ (x) is an LY -formula, there is an L-
SJormula y (x) such that

" E Vi) < w () (6)

Given this, the following proposition substantiates the claim that definitional extensions
do not “add more theory” to the theories they are extending:

PROPOSITION 2.6. If Tt is a definitional extension of T, then the following are true.'!

1. Every model M of T has a unique definitional expansion M™ that is a model of T+ .
2. Every model of T™ is a definitional expansion of some model of T.

3. TT is conservative over T.

4. T is eliminable over T.

As a consequence of Proposition 2.6, there is good reason to think that 7+ does not
add substantive truths to 7. In particular, this proposition shows that explicit definitions
are in line with a tradition of thinking about the logic of definitions on which definitions
for new terms (i) can only define expressions that are substitutable with expressions in the
original language; and (ii) cannot prove new substantive truths concerning expressions in
the original language.'?

By eliminability, explicit definitions can only define expressions that can be substituted
for expressions in the original signature, thereby satisfying condition (i). By conservativity,
explicit definitions (in the sense of Definition 2.2) do not prove anything about terms in the
original signature that is not already provable in the original theory, thereby satisfying
condition (if). According to the traditional view of definitions then, explicit definitions do
not “add more theory.” Thus, definitional extensions do not either.

W Fora proof of this result, see Hodges (1993, pp. 58-62).
12 See, in particular, Hodges (2008, p. 104) and Suppes (1957, p. 153) for more on the traditional
view regarding definitions.
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For those who prefer to think semantically, there is another way of convincing oneself
that definitional extensions do not “add more theory.” Given any model M™ of T, note
that any definable set in M™ is already definable in M™ by an £-formula. This follows
from eliminability. Since every M™ is a definitional expansion of an £-structure M sat-
isfying 7, it follows that A is already definable in M. Thus, if the “semantic content” of
a theory is given by the definable sets in its models, then definitional extensions do not
increase semantic content. And if “theoretical content” is understood in terms of semantic
content, then it follows that definitional extensions do not add “further theory” to the
theories they are extending.

The notion of a definitional extension induces a natural notion of equivalence for first-
order theories:

DEFINITION 2.7. Let T and T’ be first-order theories. Then, T and T’ are definitionally
equivalent if there exists a common definitional extension TT of T and T', i.e., if there exists
a theory T™ which is a definitional extension of both T and T'.

A strong case can be made that definitionally equivalent theories are theoretically equiv-
alent. Suppose T and T are definitionally equivalent theories. Then, we can definitionally
extend them to get identical theories. But since we have good reason to think that defini-
tional extensions do not “add more theory,” it follows that we have good reason to think
that the common definitional extension of 7 and T, does not add more theory to either
of them. Thus, if 71 and 7> are definitionally equivalent, then we are justified in regarding
them as the same theory.'3

§3. Morita. Given a first-order L-theory T, a Morita extension Tt generalizes the
notion of a definitional extension of T by allowing T to add new sort symbols to £ not
already in £."* As we have seen, definitional extensions add explicit definitions only for
new relation, function and constant symbols. They do not extend the original signature
by adding new sort symbols. This implies that two theories with different sort symbols
cannot be definitionally equivalent. Motivating Barrett and Halvorson’s notion of Morita
equivalence is the plausible idea that two first-order theories may be equivalent even if they
do not share the same sort symbols.

3.1. Morita extension. Let L be a first-order many-sorted signature. Barrett and Halvor-
son consider four different ways of adding new sort symbols to an £-theory 7.

3.1.1. Product. Let L C L7 such that s is a sort symbol in £+ — £, s; and s are sort
symbols in £, and 71 and 7 are function symbols in £+ — £ of arity s — s; and s — s,
respectively. Then, an explicit definition of s, 7| and 7 as a product sort in terms of L is
an LT -sentence of the form

Vg XV, yd=12[m1(z) = x A w2(2) = y] ™

3.1.2. Coproduct. Let L C L7 such that s is a sort in LT — £, 51 and s, are sort
symbols in £, and p; and p; are function symbols in LT — £ of arities s1 — s and s, — s,

13 For more on the philosophical significance of definitional equivalence, see, for example, Glymour
(1971), which proposes definitional equivalence as a measure of theoretical equivalence in the
context of scientific theories.

14" A5 Barrett and Halvorson note, the name “Morita equivalence” originally comes from ring theory.
Two rings R and § are Morita equivalent if there is an equivalence of categories between the
category R-Mod of (left) modules over R and the category S-Mod of (left) modules over S.
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respectively. Then, an explicit definition of s, p1, and p; as a coproduct (or disjoint union
sort) in terms of £ is an LT -sentence of the form

V2l =1x(p1 (x) = 2) V Ty 19(p2(0) = 2)] A V5 XV, y[p1 (%) # p2 ()] ®)

3.1.3. Subsort. Let £ C LV such that s is a sort symbol in LT — L, sg is a sort symbol
in £, iis a function symbol in £L* — £ of arity s — so. Then, an explicit definition of s and
i as a subsort in terms of £ is an £1-sentence of the form

VSOX[QS(X) & ElsZ(i(Z) =x)]A VSZIVSZZ[i(Zl) = i(Z2) — 71 = 22], 9

where ¢ (x) is an L-formula. Note that (9) implies the L£-sentence Jg x[¢(x)], which is
called the admissibility condition for (9).

3.1.4. Quotient. Let L C LT such that s is a sort symbol in L1 — £, s; is a sort symbol
in £, and x is a function in £ of arity s; — s. Then, an explicit definition of s and u as a
quotient sort in terms of £ is an £*-sentence of the form

Vslxlvx]XZ[# (.X,']) = lu('xz) A ¢(X1, XZ)] A vszasl-x[lu (.X) = Z]> (10)
where ¢ (x1, x2) is an L-formula. Note that (10) implies the following L-sentences:

Vs, x(¢ (x, X))
Vs, X1V, x2[ (x1, x2) = ¢ (x2,x1)]
Vs, X1V X2V X3 [(¢ (X1, X2) A @ (x2, X3)) — ¢ (x1,x3)]

These L-sentences are called the admissibility conditions for (10).
Using the above, the definition of a Morita extension is given as follows.

DEFINITION 3.1. Let T be an L-theory. Then, a Morita extension T+ of T to LV is
a an LT-theory of the form T U {6, : ¢ € LVt — L} satisfying the following
conditions:

1. For each symbol ¢ € LT — L, the sentence J, is an explicit definition of ¢ in terms
of L1

2. If as is an admissibility condition for a definition d,, then T = a.

3. For each sort symbol s € LT — L and function symbol f € LT — L, if f appears in
the sort definition o5 € T™, then & = J.

Morita extensions generalize the notion of a definitional extension by allowing one to
add new sort symbols to a given theory. The following example will help clarify the notion
of a Morita extension.

EXAMPLE 3.2. Let L be the language of groups {-, e} and let T be the theory of groups.
Moreover, let Z(x) be the L-formula ¥y(x -y =y - x). The formula Z(x) picks out what’s
called the “center” of a group. Let E(x, y) be the formula Z(x - y~'). One can verify that
for any group G, E(x, y) defines an equivalence relation on G.

An example of a Morita extension of T is the LY -theory T, which adds to T a sentence
05 of the form (10) with E(x, y) in the relevant position. Intuitively, d; adds a new quotient
sort s to models of T. More specifically, when interpreted by a group G, s will denote the

15 Note that may be a relation, constant, or function symbol. Thus, d, may be an explicit definition
for ¢ in the sense of Definition 2.2 (i.e., in the sense of a definitional extension).
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underlying set of the quotient group G/Z(G), which is isomorphic to the group of inner
automorphisms of G.1°

3.2. Morita equivalence. Using the notion of a Morita extension, Morita equivalence
is defined accordingly.

DEFINITION 3.3. Let T and T' be many-sorted first-order theories. The theories T and T’
are Morita equivalent if there are finite sequences of Morita extensions T, Ty, ..., T, and
T',Ty,...,T,, suchthat T, = T,’n.17

According to Barrett and Halvorson, what makes Morita equivalence a particularly
attractive notion of equivalence is that it can relate theories equipped with different sorts,
which one is unable to do with the notion of definitional equivalence.'® Moreover, they
argue that, like the notion of definitional equivalence, Morita equivalence captures the
intuitive idea that two theories are the same if “they each can, in compatible ways, define
all the vocabulary that the other uses” (Barrett & Halvorson, 2017b, p. 3568). However,
whether Morita equivalence captures this intuition will depend on whether Morita exten-
sions add substantial claims to the theories they extend, i.e., whether they in fact, just “add
‘abbreviations’ of old statements” (Barrett & Halvorson, 2017b, p. 3568).

In the next section, I will turn to Barrett and Halvorson’s argument that Morita exten-
sions are admissible over the theories they extend. I will then discuss why their argument is
unsatisfactory and show that there is good reason to think that Morita extensions sometimes
do add substantial claims.

§4. Criticisms. Consider the following view.
M-EQ: Morita equivalent theories are theoretically equivalent.

As I have briefly discussed, to argue for this view, Barrett and Halvorson make use of the
following claim.

M-EXT: If T is an L-theory and T is a Morita extension of T, then 7™
“says no more” than 7.

In other words, M-EXT asserts that T+ does not add any substantial claims to 7.

Barrett and Halvorson attempt to substantiate M-EXT by proving three theorems that
purport to provide a precise sense in which M-EXT is true. First, they prove that if 7 is an
L-theory and T7 is a Morita extension of T, then every model of T extends uniquely to a
model of 7. Second, they show that T™ is a conservative extension of T in the same sense

16 An inner automorphism of G is an automorphism og : G — G of the form ¢ (a) = g_l -a-g

where g € G.

One might wonder why Morita equivalence is defined in terms of finite sequences of Morita
extensions. Why not just say that two theories T and T’ are Morita equivalent if there are logically
equivalent theories 77 and 7't such that 77 is a Morita extension of T and 7’7" is a Morita
extension of 7/? One reason is that this proposed definition is less general. To see this, note that
sequences of Morita extensions are not transitive, i.e., if 73 is a Morita extension of 75, and if 7>
is a Morita extension of 7', then T3 is not necessarily a Morita extension of 7. Thus, sequences
of Morita extensions of arbitrary finite length are not reducible to sequences of length 1. I will
discuss this failure of transitivity in greater detail later in §6.1.

See Example 4.8 of Barrett & Halvorson (2016) for an example of a pair of many-sorted theories
which are Morita equivalent, but not definitionally equivalent. This example is discussed further
in §5.1.

17

18
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found in Definition 2.5. Third, they show that if ¢ is an £*-formula, then for any “code”
&, which is an £ -formula relating sorts in £+ — £ with sorts in £, there is an £-formula
¢* such that ¢ is equivalent to ¢* modulo 77 and &.'° Let’s call this last theorem the
translation theorem.

Since I will be referring to the translation theorem throughout my evaluation of Barrett
and Halvorson’s argument, it will be useful to state it here. As a note, it won’t be important
to know the precise definition of Halvorson and Barrett’s definition of a “code” in order to
understand the basic gist of the theorem.?”

THEOREM 4.1 (Translation theorem). Let T+ be a Morita extension of T, and let

DXL, .y X3 Vs - - - Ym) be any LT -formula. Then given any code &(x1, . . ., yﬁ) for vari-
ables x1, ..., xp, there exists an L-formula ¢*(y1, . .., Ym; y}, e, y,%) such that
T+ ': VSI.X] T vsn‘x”vtlyl e vtmymvsiy{ T vsﬁyﬁ[é(xl ] yﬁ)

= BEL XV Ym) © B O Y VLY )] (1D
Let’s call a theory extension T+ of T satisfying this kind of translation theorem eliminable*
over T. To better understand the content of Theorem 4.11, it will be helpful to consider the
special case where n = 1 and m = 1.

COROLLARY 4.2 (Special case of Theorem 4.11). Let T be a Morita extension of

T, and let ¢(x;y) be an LT -formula. Then for every code &(x, z1, z2) for x, there is an
L-formula ¢*(y; z1, 22) such that

T |= V¥V, 21V5, 2208 (x5, 21, 22) = (9(x5 ) > ¢ (5 21, 22))]- 12)

According to Corollary 4.2, given any code &(x, 71, 22), which relates the £*-variable x
with the L-variables z; and 2, it follows that any £¥-formula ¢ (x; y) is equivalent to
some L-formula ¢*(y, z1, 22)-

4.1. The argument. Why should we think that by satisfying conservativity and elim-
inability*, Morita extensions “say no more” than the theories they are extending? (Barrett
& Halvorson, 2016, p. 565) A charitable way of interpreting Barrett and Halvorson’s
defense of M-EXT can be given as follows:

P1. Morita extensions are conservative and eliminable* over the theories they extend.

P2. If an extension T is conservative and eliminable* over T, then 7+ merely adds in
abbreviations to 7.

P3. Ifan extension 7 merely adds in abbreviations to T, then 7+ does not “add theory”
to T,i.e., TT does not add substantial truths to 7.

C4. Morita extensions do not “add theory” to the theories they are extending, i.e.,
M-EXT.

Together, the statements P1-C4 form a valid argument. Barrett and Halvorson provide a
mathematical proof for the first premise P1. The third premise P3 follows from a traditional
view regarding the logic of definitions (see discussion on p. 392).

This leaves the second premise P2, which will be the focus of my criticisms.
According to Barrett and Halvorson, the plausibility of P2 rests on an analogy between

19 These theorems are Theorems 4.2, 4.4, and 4.6 of Barrett & Halvorson (2016).
20 For a fuller discussion, the interested reader is encouraged to refer to Appendix 7.1.
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eliminability* and eliminability. In my evaluation of P2, not only will I argue that this
analogy is tenuous but also I will provide reasons to think that P2 (and C4 as well) is
actually false.

4.2. Against eliminability*. One of the main issues regarding P2 is that it is insuf-
ficiently explained and argued for. In fact, Barrett and Halvorson only briefly allude to
a defense of P2. According to them, if conservative and eliminable theory extensions
merely add abbreviations to the theories they are extending, and if eliminability™* is similar
(enough) to eliminability, then the same is true of extensions satisfying conservativity
and eliminablility*. Whether this inference goes through, however, depends on whether
eliminability* is, in fact, sufficiently similar to eliminability. Clearly, a further argument is
needed since the correspondence described in the translation theorem is importantly differ-
ent in logical form from the correspondence described by the usual notion of eliminability
for definitional extensions. In particular, the translation theorem features a correspondence
that is conditionalized by an Lt -formula, i.e., what Barrett and Halvorson call a “code.”
Given the conditional nature of the translation theorem, it is not immediately clear how
LT -expressions can be genuinely replaced with £-expressions. Thus, it is unclear why one
should take eliminability* to share any of the philosophical consequences that eliminability
enjoys.

In addition to being insufficiently argued for, there is good reason to think that P2 and
in fact C4 (i.e., M-EXT) are simply false. To see why Morita extensions do not merely add
abbreviations, it will be useful to recall the ways in which eliminable and conservative
extensions only add abbreviations to the theories they are extending. Recall that if 7 is
conservative and eliminable over 7, then 71 does not add nondefinable sets to models
of T. In other words, any expression in £+ — £ can be replaced by an expression in £
that is, according to T, equivalent to expressions in £L* — L. In contrast, if T+ were to
add non-definable sets to the models of T, then 7" would not just add abbreviations to 7,
but would seem to add genuinely “new theory.” In particular, if each model M™ of T+
definably asserts the existence of a set X (say, by using the £T-formula ¢ (x)) that cannot
be defined in any model of T by a first-order formula in £, then it would seem that ¢ (x) is
an LT -formula that does not abbreviate anything in 7.

An example will help to illustrate my point. Let £ denote the signature of rings, and
let T be the complete £-theory of the complex field C.2! Moreover, let £ denote the
signature £ U {i}, where i is a constant symbol, and let T+ denote the theory TU (i =—1).
However, recall that i and —i (in any model of T) are indiscernible in £; they satisfy the
same L-formulas. Since no model M of T can define i™*!
adds more theory to 7.

In light of these considerations, we may formulate the following definability constraint,
which explains why examples like this one seem to involve some addition of “new
theory:”

+, we are inclined to say that 7T

DC: If g is a symbolin £, then for any model M™ of T™, there is an £ -structure N’
isomorphic to M* and a model M’ of T such that oN'" is definable in M/, i.c.,
there is an £-formula ¢ (x) such that, whenever a € N'*, M’ |= ¢ (a) if and only if

N+

acao

21 T is also known as the theory ACFq, the theory of algebraically closed fields with character-
istic 0.
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One might wonder what role N'* is playing in DC, and whether this role can be performed
by M. The following example will help illustrate why A/ T is necessary in formulating
a useful definability condition in the many-sorted context. Let 7" be the empty theory with
one sort s. Suppose T is the Morita extension of T adding a product sort s for s. Note
that the set of natural numbers N (with no further structure) is a model of T. Let N;L be
a model of T which extends N and which interprets s+ as N x N. Similarly, let \;" be
the extension of N which interprets st as Z. Observe that N ]+ and N;r are isomorphic (as
LT -structures) and that both are models of 7. However, while N x N is definable in N,
there is no sense in which Z is definable in N since Z is not a subset of N” for any #n. This
example shows how theory extensions adding new sorts can only determine their model
extensions up to isomorphism at best, and thus, if we are interested in definability in theory
extensions that add new sorts, then we’ll have to make reference to a model extension N’
whose new sorts are actually subsets of the original sorts.

In short, DC merely states that the interpretation of any new symbol added while extend-
ing T to T™ is already definable in some model of T. What’s problematic about extending
the theory T of the complex field to the theory 7' U {i> = —1} is that it specifies a way of
extending theories that violate DC.

In practice, it is common for logicians to understand definability in a more general sense,
where a structure’s interpretation of a symbol is definable in some quotient object of some
model of the original theory.?> Thus, one may state the following modest generalization of
DC:

DC*: If ¢ is a symbol in £ — £, then for any model M™ of T, there is a model
N isomorphic to Mt and a model M’ of T such that ¢V is definable in some
definable quotient structure of M’.

Intuitively, DC* generalizes DC by allowing the interpretation of new symbols to be defin-
able in definable quotient structures of models of 7. Satisfying DC* ensures that 7 does
not add any new structure to the models of 7 that isn’t, in some way or another, already
definable in some model of 7.

I contend that DC* is a necessary condition for theory extensions to count as “not adding
theory.” More concisely, I hold the following position:

If a theory extension T+ of T does not add substantial claims to T, then
T satisfies DC*.

This position strikes me as being difficult to deny for reasons that have already been
discussed. If 77 is an extension that adds non-definable sets to models of T, then T+
seems to be adding genuinely new theory to 7. If adding nondefinable sets to models does
not count as an example of “adding more theory,” then I am not sure what would count.

If this is right, then the advocate of M-EQ is in trouble. As I will show, there are examples
of Morita extensions that fail to satisfy DC* (and thus, DC as well). In particular, if T is an
L-theory and T is a Morita extension which adds a coproduct sort to T, then 7 does not,
in general, satisfy DC*.

To see this, consider the following example. Let £ have one sort s, and no relation, func-
tion, or constant symbols. Let 7 be the L-theory consisting of the single axiom
FxV,y(y = x), i.e., T states there is exactly one object. Let 7T denote the Morita extension

22 The notion of a definable quotient structure will be discussed further in §5.1.

https://doi.org/10.1017/51755020319000303 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020319000303

ON MORITA EQUIVALENCE AND INTERPRETABILITY 399

which adds a new sort, s, for the disjoint union (i.e., coproduct) of s with itself. Then, T+
implies that there are rwo s"-objects, i.e., Tt = Jyxdyy(x # ).

To see that 7+ does not satisfy DC*, note that the disjoint union of s with itself is not
definable in a first-order way; it is not even definable in a definable quotient structure of
some model of 7. This is because any definable set of a one element structure is either
empty or has cardinality one. However, every model M™ of TT defines a two element
set, namely, M Thus, s’ M is not definable in any definable quotient structure of the
L-reduct M of M™ . In other words, T does not satisfy DC*.

This gives us a precise sense in which Morita extensions do not merely “add in ‘ab-
breviations’ of old statements into the theory 7" (Barrett & Halvorson, 2017b, p. 3568)
as Barrett and Halvorson claim. And if the only alternative to adding abbreviations is for
Morita extensions to add substantial truths to the theories they are extending, then we have
strong reason to think that C4, i.e., M-EXT, is, in fact, false.?3

4.3. Fixing Morita. In light of the issues facing M-EQ, there are ways for its advocate
to respond. One way is to argue against the view that theory extensions have to satisfy
DC* in order to count as not “adding more theory.” In going this route, the advocate of
M-EQ would have to provide an account of what makes P2 plausible and, in particular,
what distinguishes Morita extensions from various other ways of extending theories that
involve adding arbitrary or otherwise problematic non-definable sets as new sorts.

One tempting way to proceed along these lines is to propose eliminability* as a dividing
line that separates Morita extensions from various “bad company” alternatives. Unfortu-
nately, as the next example shows, there are theory extensions that satisfy eliminability*,
yet seem to add a significant amount of theory.

Let T be an L-theory where L is single-sorted but has no relation, function, or constant
symbols. Let £T be the signature £ U {s,,} U {p; : i < o}, where s, is a sort symbol not
appearing in £, and each p; is a function symbol of arity s — s, for the same fixed sort
s € L. Moreover, let ¢; ; be the L1 -sentence

Vsx¥sylpi(x) # pj(y)] 13)

and let y; be the L1 -sentence stating that p; is injective. Define T® to be the L' -theory
TU{@ij:i,j<wandi#jlU{y;: i<}

Intuitively, 7% extends 7 by defining a new sort s, that contains the disjoint union of
s with itself w-many times.?* Clearly, the interpretation of s, in models of 7% cannot be
defined in models of T unless one allows for infinitary formulas. Since no interpretation of
S¢, 1s definable in a model of 7 or even in a definable quotient structure of a model of T it
follows that 7% violates DC*. In addition to violating DC*, there are other reasons to think
that adding the £ -sentences ¢;; to T constitutes a substantial increase in “theory.” For
example, if T is axiomatized by the sentence stating that there is one thing, its extension
T implies that there is a sort with infinitely many things. Intuitively, this seems like a
great increase in “‘theory.”

One can straightforwardly show that 7¢ is eliminable* and conservative over T by
formulating a notion of a “code” and proving a translation-type theorem analogous to the

23 In other words, if Morita extensions do not merely add in abbreviations, and moreover, if the
converse of P3 is also true, then the negation of C4 validly follows. However, one might ask: why
think that the converse of P3 is true? The answer is that both P3 and its converse follow from the
traditional view regarding definitions (see p. 392).

b Intuitively, the union of the images of the p; is the disjoint union of s with itself w-many times.
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one given in Theorem 4.11 (see Appendix 7.2 for a full detailed proof). Examples like 7
provide insight into how badly eliminability* can fail to control the amount of “new theory”
that gets added to a given first-order theory. Since the construction of 7% generalizes
to any arbitrary infinite cardinal, it is tempting to conclude that this failure might be
limitless.?

It seems, then, that the advocate of M-EQ who wants to push back against DC* cannot ap-
peal to eliminability* as a dividing line between Morita extensions and their bad company
extensions. Neither can she appeal to the fact that 7% adds infinitely many new statements
to T, since Morita extensions themselves often result from adding infinitely many new
statements to an original theory.

Rather than pushing back against DC*, I suggest that a more natural way of responding
is to modify the definition of a Morita extension so that it satisfies DC* in full generality.
This can be done (i) by restricting our attention to theories that imply the existence of (at
least) two objects within the same sort (see Corollary 5.8); or (if) by giving up on disjoint
union (i.e., coproduct) as a kind of Morita extension (see Corollary 5.9). However, with
either modification, as I will show in the next section, Morita equivalence will turn out
to be a special case of the model-theoretic notion of “bi-interpretability,” a widely used
measure of theoretical equivalence.

§5. Morita and bi-interpretability. In the previous section, I enumerated two ways
that an advocate of M-EQ can modify the definition of a Morita extension so that it satisfies
DC*. The main goal of this section is to prove that either modification makes
Morita equivalence a strengthening of bi-interpretability, i.e., Morita equivalence implies
bi-interpretability. In light of this, I conclude that the tenability of Morita equivalence as
a measure of theoretical equivalence depends on how much it strengthens the notion of
bi-interpretability.

Before sketching out the proofs of these results, it is important to define the notion of
bi-interpretability.

5.1. Interpretability. Constructing quotient objects is ubiquitous in mathematics: the
complex numbers are often represented as pairs of reals; the real projective plane is often
represented as a quotient structure of R?; a field extension F[a] of F can be represented
as quotient structure of the polynomial ring F[x]. Interpretations are ways of generalizing
these kinds of constructions while maintaining a concern for first-order definability. The
following presentation of interpretations is inspired by Button & Walsh (2018) and Hodges
(1993).

DEFINITION 5.1. Let M be an L-structure and N be an L' -structure. We say that M is a
(definable) quotient structure of N if the following conditions hold:

1. Each sort My of M has the form X;/E; = {a/E, : a € X} where X; is a definable
setin N and Ey is a definable (in N') equivalence relation on X,.26

2. For every constant symbol c of arity s, relation symbol R of arity s1 X - -+ X s, and
Sfunction symbol f of arity s1 X - - - X 8, = Sp+1 of L, the following sets are definable
in N:

25 Qbserve that the construction of T7¢ generalizes to any many-sorted first-order language L.
Moreover, the appropriate analogue of Theorem 4.11 should hold for any such generalization
of T%.

26 Recall that, in this article, a definable set is a set that is definable without parameters.

https://doi.org/10.1017/51755020319000303 Published online by Cambridge University Press


https://doi.org/10.1017/S1755020319000303

ON MORITA EQUIVALENCE AND INTERPRETABILITY 401

(M) =gt la € X, : M = ¢ = a/E)
(RM)_] =qef {(@1,...,ay) € Xsl X -0 X Xsn M |=R(Ez1/Es,, ...,Zz,,/ESn)}

(fM)_l =qet {(a1, ..., an41) € Xy X -0 X XS,H,I :

M sz(al/Esla ceey Zln/ES,,) = an+l/Es,,+1}-

We say that M is interpretable in N if M is isomorphic to a quotient structure of N.
We say that M and N are mutually interpretable if each is interpretable in the other:

In short, N interprets M if the sorts, relations, functions, and constants of M are all
definable in some quotient structure of NV

Given the duality between definable sets and their defining formulas, one can show that
M is interpretable in A if and only if there is an interpretation T' of M in N in the
following sense:’

DEFINITION 5.2. Let L and L' be many-sorted first-order languages. An interpretation T
of L in L' is given by the following two items:

1. Domain formulas: For every sort symbol s of L, an L'-formula d4(X) called a domain
formula for s.

2. Translation formulas: For each unnested atomic L-formula ¢(yi, ..., ym), where y;
is a variable of sort s;, an L'-formula ¥ (x1, . . ., Xp), where the arity of X; is given
by the arity of the domain formula s, (X) for 5;.28

Let M be an L-structure, and N be an L'-structure. Then, an interpretation I' of M in
N is given an interpretation T of L in L' with the following additional property: for each
sort symbol s € L, there is a surjective map (called a coordinate map for s)

fs 1 0s(N) = Mg

such that for any unnested atomic L-formula ¢ (X) of arity s; X - - - X s, and any finite tuple

(..., an) € I (N) x -+ x &, (N)
ME ¢ (@), ....[s,(dn) © N E ¢l (@, ..., dy).

Let I' be an interpretation of M in A, where M is an L-structure and N is an L'-
structure. In light of the equivalence between interpretability and the existence of an in-
terpretation map, we may denote '\ as the quotient structure of A/ defined by I" which
is isomorphic to M. Note that [V is an L-structure and each sort I'N; of TV is of the
form X;/E; = {a/Es : a € Xy}, where Xy = J;(N) and E; is given by the realizations of
(x =5 y)I' in N. Moreover, the formulas in " determine the interpretations of the rest of
the non-logical symbols of £ in T in an analogous way.

27T A proof of this claim can be adapted from the proof of Theorem 5.3.1 of Hodges (1993).

28 An unnested atomic L-formula is an atomic formula of one of the following forms (cf. Hodges
(1993, sec. 2.6)):

1. x =y, where x and y are variables of the same sort.

2. x = ¢, where c is a constant symbol of £ (where x and ¢ have the same sort).

3. f(x) =y, where f is a function symbol of £ (where the arity of f determines the arity of x and
)

4. R(x), where R is a relation symbol of £ (where the arity of R determines the arity of x).
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If T is an interpretation of £ in £’, then the domain and translation formulas of T induce
a translation map ¢ — ¢' from the entire set of L-formulas to £'-formulas as follows.
If ¢ is an atomic £-formula, then ¢ is mapped to the translation formula ¢ given by
I'. To lift this mapping on atomic formulas to the entire set of L£-formulas, we let the
map commute with propositional connectives and quantifiers in the natural way, where the
translated quantifiers are relativized to the appropriate domain formulas. So, for instance,
the L-formula Vy(¢(y)) is mapped to the £'-formula VS/I X1+ Vg X (Os(X1, ooy Xn) —

#" (x1,...,x,)) where d; is the domain formula (of arity s] x --- x s,) for s given by
I'. When there is no ambiguity, interpretations will be identified with their associated
translation maps.?’

Using the notion of interpretability for structures, we may define a notion of inter-
pretability for theories as follows:

DEFINITION 5.3. Let T be an L-theory and T' be an L'-theory. We say that T is inter-
pretable in T’ if every model M’ of T uniformly interprets a model of T, i.e., each model
M of T interprets a model M of T using the same set of formulas.

Equivalently, T is interpretable in T’ if and only if there is an interpretation T of L in L'
such that for any L-sentence ¢, if T f= ¢, then T' = ¢'.30

An interpretation T of L in L' witnessing the interpretability of T in T' is called an
interpretation of T in T'.

The theories T and T are mutually interpretable if T and T interpret each other.

In sum, there are two equivalent ways of defining the notion of interpretability for first-
order theories. One way is semantic: interpretability is characterized in terms of uniform
definability of models. The other is syntactic: interpretability is characterized in terms
of the existence of an interpretation map which preserves logical form and provability.
Given this equivalence, it follows that if T is an interpretation of £ in £’ witnessing the
interpretability of 7 in 7’, then for any model M’ of T, there is some model M of T
such that T witnesses the interpretability of M in M. In this case, we may denote I' M’
as the quotient structure of M’ defined by I' which is isomorphic to M. Note that T M’
is a model of T and each sort M, of T M’ is of the form X,/E;, = {a/E; : a € X},
where X; = d,(M’) and E; is the set of realizations of (x = y)' in M’. As before, the
formulas in I" determine the interpretations of the rest of the non-logical symbols of £
inT M.

There is a widespread belief that interpretability offers insight into issues regarding
theory reduction and theoretical equivalence.’! For our current purposes, it will be im-
portant to focus on how interpretability relates to the notion of admissibility. Recall that
if 71 is an admissible extension of 7', then the concepts and theorems of Tt must be
translatable to those of 7. Given the equivalence between interpretability (for theories)
and the existence of an interpretation map which preserves logical form and provability,
interpretability offers a promising signature-independent way of making the notion of
translatability precise. Thus, it is natural to think that if 77 is an admissible extension
of T, then T must be interpretable in 7.

29 See Visser (2006, sec. 2.2) for a rigorous definition of a translation map.

30 Recall that the translation map ¢ — ¢! induced by I' will often be identified with I itself. For
more on this “syntactic” approach to interpretability, the interested reader is encouraged to refer
to Button & Walsh (2018, sec. 5.5) and Visser (2006).

31 See, for example, Niebergall (2013), Visser (2006), and van Fraassen (2014).
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If this is right, then we have additional reasons for thinking that M-EQ and M-EXT are
false: if T is a Morita extension of T, then T™ is not necessarily interpretable in T. The
example which shows that Morita extensions do not always satisfy DC* demonstrates this
(see p. 398). More generally, let 7 have a model M such that every sort M of M has
precisely one element. Let 7T be a Morita extension adding a new coproduct sort to
T. Then every model M™ of T has a sort with more than one element. However, any
definable set of M has at most one element. Thus, 77 is not interpretable in 7. As a result,
those who believe that interpretability is a necessary condition on admissibility have reason
to reject M-EQ and M-EXT.

As a corollary, if T and T’ are Morita equivalent, then they are not necessarily mutually
interpretable. In fact, Example 4.8 of Barrett & Halvorson (2016) features a pair of theories
T1 and T> which are Morita equivalent but not mutually interpretable. Let £; = {s{, P, O}
and £, = {s2, 53}, where each s; is a sort symbol, and P and Q are (unary) predicate
symbols. Let 77 be the Li-theory which states that P and Q are non-empty, mutually
exclusive and exhaustive. Let 75 be the empty theory in £;. Note that 72 has a model M
with a pair of one-element sorts M, and M3. The structure M cannot interpret any model
of T since each model of T has at least two elements. Thus, 7> cannot interpret 77, and so
T and T, cannot be mutually interpretable. This example illustrates how Morita extensions
allow us to “define” the predicates P and Q of 77 by using the sorts of 7> even though the
sort of 71 (on which P and Q are defined) cannot be uniformly defined in models of 7.
As a consequence, this example demonstrates another sense in which Morita equivalent
theories may fail to define “all the vocabulary that the other uses” (Barrett & Halvorson,
2017b, p. 3586).

As I have discussed, it is natural to think that interpretability is a necessary condition
on admissibility. However, it is arguably not sufficient. If T is interpretable in 7’, then
every model of 77 uniformly defines a model of T. However, there is no guarantee that
every model of T can be defined by a model of 7”.3% Thus, interpretable theory extensions
do not satisfy DC* in full generality. To address this, one may strengthen the notion of
interpretability as follows.

DEFINITION 5.4. Let T be an L-theory and T' be an L'-theory. We say that T is
(semantically) faithfully interpretable in T' if T is interpretable in T', and moreover, by
the same interpretation, every model of T is uniformly interpreted in a model of T'.33

Equivalently, T is (semantically) faithfully interpretable in T' if there is an interpretation
T of T in T' such that for any model M of T, there is a model M’ of T" such that
METM.

The theories T and T' are mutually faithfully interpretable if T and T’ faithfully interpret
each other.

If T is semantically faithfully interpretable in 77, then one can define any model of T in
some model of 7. Thus, faithfully interpretable theories do satisfy DC*.

The reason for calling such interpretations “semantically faithful” is because they imply
the syntactic way of defining faithful interpretability: that is, T’ syntactically faithfully
interprets T if there is a translation map T’ of £ in £’ such that for any L-sentence ¢,

32 See Example 2 of Example 5.6.

33 T should note that Hodges (1993, sec. 5.5) calls semantically faithful interpretations “total
interpretations.” Moreover, it is important to note that faithful interpretability corresponds to the
relation <; defined by Szczerba (1975, p. 136).
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T |= ¢ if and only if T’ |= ¢".3* However, it is important to note that the converse does
not hold.3> Nevertheless, we will restrict our attention to faithful interpretability as defined
in Definition 5.4 because it satisfies DC*. Thus, for the remainder of this article, by “faithful
interpretability,” I will mean semantic faithful interpretability.

Lastly, we define the notion of bi-interpretability, which is a special case of mutual
(faithful) interpretability.30

DEFINITION 5.5. Let T be an L-theory and T' be an L'-theory. Then T and T' are bi-
interpretable if the two classes V. = {M : M = Tyand W = {N : N |= T’} satisfy the
following:

1. Every structure M from V uniformly defines a structure MT from W which is a
quotient structure of M.

2. Every structure N from W uniformly defines a structure N7 from V which is a
quotient structure of N.

3. For every structure M from V, there are uniformly definable (in M) bijections g :
(M®)] — My (for every sort symbol s € L) that induce an isomorphism between
(M®)? and M.

4. For every structure N from W, there are uniformly definable (in N) bijections hy :
(N"), — Ny (for every sort symbol s' € L") that induce an isomorphism between

N”) and N.

In many cases, M will be a proper quotient structure of M, i.e., there is a sort s’ € L’
such that the equivalence relation E’,(x, y) used to define z’s interpretation of s’ is not
simply the identity (with respect to some sort s in £). Similarly, N7 will often be a
proper quotient structure of N. In this situation, a bijection g; : (M")"); — My is
definable in M if there is an £-formula which defines (gA{V‘)_1 in the sense of Definition
5.1, where the sort M; is viewed as being the realizations of the formula x; = x5 in M
(where x; is a variable of sort s). The analogous statement holds, by definition, for each
hy : (N7){, = Ny.

Intuitively, bi-interpretability strengthens mutual (faithful) interpretability by requiring
that 7 and 7" define each other’s models in a definably invertible way.

34 There are other semantic analogues of syntactic faithful interpretability. For example, one can

show that I' is a syntactic faithful interpretation of 7' in 7, if and only if for every model M
of Ty, there is a model My of T, such that T My = My, i.e.,, [ My and M are elementarily
equivalent.

I thank Sean Walsh for the following counter-example. Let £ be the language of Peano
Arithmetic and £, be £ U {c}, where ¢ is a constant symbol not in L. Let 71 be PA and
T, be PA*, where PA* is PAU {c > 5"(1) : n € N}. An interpretation I" of T in T is given by
(gé)r = ¢, i.e., the inclusion map from £ to £;. One checks that I is a syntactically faithful.
Note that if M5 is a model of 75, then '’ M3 is just the £ -reduct of M5, which is a non-standard
model of PA. Thus, there is no model M of T, such that T M, = N.

The definition of bi-interpretability given here (which can be found on p. 90 of Walsh (2014))
is relatively semantic in nature (since it makes explicit reference to the models of a theory). It
is important to emphasize that, given the equivalence between syntactic and semantic forms of
interpretability, bi-interpretability may be (equivalently) defined in a syntactic fashion. For more
on the syntactic formulation of bi-interpretability, see sec. A.7.2. of Visser (2015).

Here, “uniformly” means that the same formulas are used for each structure in V, and similarly
for structures in W.

35

36
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EXAMPLE 5.6. The following are examples of interpretations.

1. If M is a definitional expansion of M, then M7 is interpretable in M. If Tt is a
definitional extension of T, then T is interpretable in T. If T and T' are definitionally
equivalent, then they are bi-interpretable.

2. The theory PA+—=Con(PA) is mutually interpretable with PA but there is no faithful
interpretation of PA in PA + —Con(PA).38

3. First-order Peano arithmetic PA is bi-interpretable with the theory ZFfin + TC,
where ZFfin is (ZF — Infinity) +—lInfinity and TC states that every set has a transitive
closure.®

5.2. Morita implies bi-interpretability. Let’s recall the two ways of modifying the
definition of a Morita extension that I suggested earlier. The first is to (i) restrict the
definition to theories that assert the existence of (at least) two objects (within the same
sort). The second is to (i) drop disjoint union (i.e., coproduct) as a way of adding new
sorts.

I begin by showing that (i) entails that Morita equivalent theories are bi-interpretable.
I then use the proof of this to establish the analogous claim with regards to (ii). As a
corollary, I note that, under either (i) or (if), Morita extensions satisfy DC*. I begin by
proving a lemma that reduces the notion of a Morita extension to that of
bi-interpretability.

LEMMA 5.7. Let T be an L-theory such that T = Ix3sy(x # y) for some sort symbol
s € L. Let T be a Morita extension of T, then T™ and T are bi-interpretable.

Proof Sketch. Due to the length of the proof, it has been placed in Appendix 7.3. The
basic idea behind the proof is worth discussing since the proof can be used to show that
Morita extensions satisfy DC*.

The proof begins with the observation that there are four possible ways for a Morita
extension 77 of a given theory T to define a new sort symbol. There is the case where T+
defines a new product sort, the case where it defines a new coproduct sort, the case where it
defines a new quotient sort and the case where it defines a new subsort. I then show that, in
each case, every model M™ of T is interpretable in its £-reduct M using the same set of
formulas. Thus, in each case, the new sort symbol will be uniformly definable by definable
quotient structures of 7. It follows by definition that T is (faithfully) interpretable in 7.
Let’s 7 denote this uniform construction of models of T+ from models of 7.

Conversely, 77 (faithfully) interprets T via the interpretation y which maps each model
M of TT to its L-reduct M™T | .

Lastly, one defines a bijection g, : (M?), — M, for every s € £ such that the collection
{gs : s € L} induces an isomorphism between (M?)” and M. One defines an analogous
collection of bijections {A : s € LT} which induce an isomorphism between ((M™)7)?
and M. O

According to the proof of Lemma 5.7, a Morita extension 77 of T can only add new sorts
that are definable in some definable quotient structure of a model of 7. It follows that
Morita extensions satisfy DC* (with respect to the theories they are extending). To put
things more concisely, the following is an immediate corollary of the proof.

38 See Proposition 5.10 of Button & Walsh (2018).
39 This result is proven in Kaye & Wong (2007).
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COROLLARY 5.8. Let T be an L-theory such that T |= JxF;y(x # y) for some sort
symbol s € L. If TT is a Morita extension of T, then T™ satisfies DC* (with respect to T).

Moreover, in the proof of Lemma 5.7, the assumption that 7 = JaxF;y(x # y) is only
used to handle coproduct sorts. Thus, the proof of Lemma 5.7 also shows that if one drops
coproduct sorts from the definition of Morita extensions, then all Morita extensions satisfy
DC*,.

COROLLARY 5.9. If Tt be a Morita extension of T which does not add any new
coproduct sorts, then T™ satisfies DC* (with respect to T).

For the same reason, the proof of Lemma 5.7 can be used to show the following.

LEMMA 5.10. If T+ is a Morita extension of T which does not add any new coproduct
sorts to T, then T and T are bi-interpretable.

Proof. As remarked, the proof is the same as in Lemma 5.7, except that we do not
include the case covering coproduct sorts. U

It is a straightforward consequence of Lemma 5.7 that, if we restrict ourselves to theories
that satisfy 7 |= Jsx3;y(x # y), Morita equivalent theories are bi-interpretable.

PROPOSITION 5.11. Let T and T' imply Ax3;y(x # y) for some sort s, respectively.
Then if T and T' are Morita equivalent, then they are bi-interpretable.

Proof. Let T and T’ be Morita equivalent. Then there are finite sequences of Morita
extensions 7, T1,...,T, and 7', T}, ..., T, such that T, = T,,. By Lemma 5.7, each
Ti41 is bi-interpretable in 7; for i = 1, ..., n. Similarly, each 1 is bi-interpretable in
Tj for j = 1,...,m. Since bi-interpretability is transitive, T, is bi-interpretable with T
and T}, is bi-interpretable with 7’. Moreover, since logical equivalence is a special case
of bi-interpretable, T}, is bi-interpretable with 7,,. Again, by transitivity, 7 and 7" are bi-
interpretable. O

The above proposition shows that if we restrict ourselves to theories that imply
JexJsy(x # y) for some sort s, Morita equivalence is a special case of bi-interpretability.
Similarly, we can use Lemma 5.10 to prove the following analogue of Proposition 5.11.

PROPOSITION 5.12. Let T and T' be Morita equivalent by way of finite sequences of
Morita extensions which define no new coproduct sorts. Then T and T' are bi-interpretable.

Proof. The proof is the same as the proof of Proposition 5.11, except that we use Lemma
5.10 and omit the coproduct case. U

Thus, if the advocate of M-EQ chooses to drop coproduct sorts as a way of defining new
sorts via Morita extensions, Morita equivalent theories will end up being bi-interpretable.
In general, the converse does not hold: if 7 and 7’ are bi-interpretable, then 7 and 7’
may not be Morita equivalent. A counter-example can be given as follows. Let T be the
empty theory with one sort s and let 7" = | J{”, T; where each 7; defines a product sort for
the i-fold product of s with itself. Then T and 7" are bi-interpretable.* However, T and T’
are not Morita equivalent for the simple reason that there is no finite sequence of Morita
extensions which gives one 7’ from 7. Thus, Morita equivalence properly strengthens

40" Given any model M of T and extension M’ of T’ such that sM = M’ M™ s definable in M
by the L-formulax; =x; Axp =X A--- A X, = xp. Thus, T is bi-interpretable in 7.
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bi-interpretability. It is left as an open question whether the converse holds for theories
with finite signatures.*!

§6. Conclusion. In this article, I have argued that the central claim that Barrett and
Halvorson use to argue for the reasonableness of Morita equivalence as a measure of
theoretical equivalence is problematic. I have shown that the claim is insufficiently argued
for, and moreover, that we have good reason to think that the claim is actually false.
In light of these problems, I have shown that one natural way of responding will make
Morita equivalence a strengthening of bi-interpretability, i.e., Morita equivalence implies
bi-interpretability.

There is a fairly widespread belief among logicians that bi-interpretability deserves a
privileged status as a “signature-independent” notion of equivalence for many-sorted first-
order theories.*?> A thorough assessment of whether this sentiment is ultimately justified
is outside the scope of this article.*> However, it should be noted that bi-interpretability
preserves a variety of desirable meta-theoretic properties such as finite axiomatizability,
decidability, and x-categoricity.** Moreover, bi-interpretability captures a precise sense in
which two theories define each other’s models in a definably invertible way. Syntactically,
this implies that bi-interpretable theories (syntactically) faithfully interpret one another
(see p. 403). Thus, whether we think of many-sorted first-order theories “semantically” or
“syntactically,” these considerations count in favor of bi-interpretability’s privileged status
as a notion of theoretical equivalence.*>

As a result, I conclude that the tenability of Morita equivalence as a measure of theo-
retical equivalence depends on how much it strengthens the notion of bi-interpretability.
If it strengthens bi-interpretability too much, Morita equivalence runs the risk of sys-
tematically and arbitrarily deeming classes of theories inequivalent that should actually
count as equivalent. In this case, Morita equivalence would lose practical value as measure

41" An earlier version of this article contained a purported proof of a partial converse. In particular,
this purported proof attempted to establish that if we restrict ourselves to theories with
finite signatures, then mutual faithful interpretability implies Morita equivalence. In private
correspondence, Professor Halvorson notified me of a gap in this proof. For this, I am deeply
grateful to Professor Halvorson. In fact, it is important to note that mutual faithful interpretability
does not imply Morita equivalence (even assuming finite signatures) since Morita equivalent
theories have the isomorphic automorphism groups while mutually faithfully interpretable
theories need not.

42 See, for example, Visser (2015) and Slaman (2008).
43 For a critical discussion on bi-interpretability as a notion of theoretical equivalence, see Button &
Walsh (2018).
For more on the properties preserved by bi-interpretability, see Visser (2015).
It should be mentioned that from a category-theoretic point of view, bi-interpretability seems
like the most natural weakening of definitional equivalence (cf. Friedman & Visser (2014) and
Visser (20006)). Let INTq be the category of interpretations and maps between interpretations.
In this category, two interpretations 7, y : S — T are defined to be equal if whenever M is a
model of the interpreting theory 7, M® = M?” . As a result, isomorphism in INTq is definitional
equivalence. The category INT{ is the same as INTq except it defines equality as the existence
of a “definable isomorphism” rather than strict identity. Two interpretations 7z, y : S — T are
defined to be equal in INT4 if, whenever M is a model of 7, there is a formula F in the language
of T such that FM induces an isomorphism between M? and M7 . Isomorphism in INT{
is bi-interpretability. Unless there is some natural notion of equality sitting between definable
isomorphism and strict identity, then it follows that from this category-theoretic point of view,
bi-interpretability seems like the most natural weakening of definitional equivalence.

44
45
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of theoretical equivalence. If not strong enough, Morita equivalence would not seem to
possess any theoretical advantages over bi-interpretability.

In the remainder of these concluding remarks, I discuss whether the advocate of Morita
equivalence might be better off opting for a notion of theoretical equivalence defined in
terms of interpretability rather than the notion of a Morita extension. To this end, I enumer-
ate a number of conceptual and practical worries concerning the notion of a Morita exten-
sion, and then discuss how the notion of interpretability is not subject to the same sorts of
worries. Thus, regardless of how much Morita equivalence strengthens bi-interpretability,
there are compelling reasons to adopt bi-interpretability as a measure of theoretical equiv-
alence over Morita equivalence.

6.1. Interpretability versus morita. A general worry concerning the notion of Morita
equivalence is that its definition appears ad hoc. There is little to motivate the claim that
the only kinds of sort symbols that we can admissibly add to a theory are the ones that
Barrett and Halvorson happen to discuss. It is not even clear whether a more motivated list
can be enumerated.

Another general worry stems from the failure of Morita extensions to be fransitive. That
is, if T, is a Morita extension of 7, and 73 is a Morita extension of 7>, then it is not
necessarily the case that 73 is a Morita extension of 7. In fact, this lack of transitivity is
pervasive. For example, if 77 is the empty theory with one sort s, 7> defines a product sort
s x s of s with itself, and T3 defines a product sort (s x §) x s of s X s with s, then 773 is not
a Morita extension of T7.

Failing to satisfy transitivity would have been seen as problematic from the point of view
of someone like Tarski, who influenced his student Szczerba to avoid defining a formal
notion of equivalence in terms of theory extensions along the lines used by Barrett and
Halvorson. According to Tarski, if we extend theories based on rules of definition, then
our theory extensions will depend on the order in which rules of definition are used (or,
in our current case, the order in which Morita extensions are introduced). To return to the
example just given, note that the rule we used to extend 75 to 73 can’t be used to extend
Ty to T3 since T has no sort for s x s. Thus, there is no way to introduce a sort (s X §) X s
to get to 73 from 7. This dependency on the order of extension was viewed by Tarski
as an “unpleasant property” (Szczerba, 1975, p. 129) because it reveals a deep disanalogy
between rules of definition and rules of inference.

For instance, one often considers the closure of a first-order theory under the standard
rules of deduction. Regardless of the order by which one implements these rules, one will
(ultimately) arrive at the same theory. So, it makes perfect sense to speak of the closure
of a first-order theory. However, since extending theories by rules of definition depends
on the order in which one implements those rules, we cannot similarly talk about “the”
definitional closure of a theory without first specifying an order.

Given all this, a major theoretical advantage of the notion of interpretability over the no-
tion of a Morita extension is that the former is general and well motivated: interpretability
captures the idea that a theory 77 is a “part” of a theory 77 if the the primitive symbols of
T> can uniformly define the primitive symbols of 7.

Moreover, since interpretability is transitive, it escapes the “dependency of order” that
Tarski considered to be problematic. It was this consideration that motivated Szczerba
himself to define a notion of equivalence in terms of interpretability rather than in terms
of extensions. Therefore, there are compelling reasons to think that methodological and
conceptual gains will result from opting for the notion of interpretability over the notion of
a Morita extension.
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It is no surprise that interpretability has enjoyed wide currency in mathematical logic
over the past half-century. At the end of the day, I hope to have shown how, in view of the
various issues facing Morita equivalence, we may now appreciate the conceptual leaps and
technical innovations of Tarski and his students in a brand new light.*¢

§7. Appendix.

7.1. The translation theorem. In this appendix, I discuss Theorem 4.11 in greater
detail. Before the theorem can be precisely stated, I'll need to define the notion of a “code.”

Intuitively, a code is an L1-formula which relates variables from sorts in £ with
variables from sorts in £. More formally, given variables xi, ..., x, of sorts s1,...,s, €
LT — L, acodeis an £ formula of the form

EC YL Y X Y8, 92) =der (G1GLL YYD A A GG v, Y2) (14)

where yl-l and yi2 are variables from sorts in £, and where each conjunct ¢ is defined
according to the kind of sort x; belongs to.

If x; € s; and T defines s; as a product sort with projection maps | and 7 of arities
S; — s} and s; — sl-z, respectively, then the conjunct & (x;, y} R yiz) is just the £ formula
w1(x) = yl.1 Ama(x) = yl.2. If T defines s; as a coproduct sort of T with projections pj
and p; of arities s; — s and s — s, then & is either the £ formula p; (yil) = x; or
the £+ formula pz(yiz) = x;. If TT defines s; as a subsort with inclusion map i of arity
s; = sb, then & is the £ formula i(x;) = y,.l. Lastly, if 7+ defines s; as a quotient sort
with projection map € of arity si1 — sj, then & is the £ formula e(yl-l) = X;.

In what follows, variables in sorts 51, 52, etc. from £+ — £ will be denoted by x1, x2, etc.
and variables in sorts 1, fp, etc. from £ will be denoted by y;, yz, etc. Theorem 4.11 can
now be precisely stated.

THEOREM 4.11 (Translation theorem). Let T be a a Morita extension of T. Moreover,
suppose that ¢ (x1,...,%n; V1, Ym) is an LV-formula. Then, for any code
Elxy, yi, y%; ces Xy y,ﬁ, y,%) for variables xi,...,x, there exists an L-formula

D 1y s Yms y}, ... ,y,%) such that
+ 1 2 2
TT = VX1, ... VX0V )1 - .V,mymvs}yl .. .VS%yn[cf(x], ce V)

S (DL X Vs ey V) S PO e Y V¥ YL V2D (15)

7.2. Bad company. In this appendix, I discuss an example given earlier in the article
(see p. 399), which I used to argue that Morita extensions had “bad company,” i.e., there are
instances of theory extensions that share many features with Morita extensions, yet seem
to add substantial truths to the theories they extend. First, let’s briefly recall the example.

Let T be an L-theory where £ is empty and single-sorted. Let £ be the signature
LU {5} U{p; : i < o}, where s, is a sort symbol not appearing in £, and each p; is a
function symbol of arity s — s, for the sort s € L.

We define T® to be the £ -theory

TU{¢ij:i,j<wandi#jlU{y;:i < o}, (16)

46 These points provide support for van Fraassen’s suggestion (cf. van Fraassen (2014)) that the
conceptual framework given by the notion of interpretability can help usher in a promising new
formal approach in the philosophy of science.
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where each ¢; j is the L1 -sentence

Vsx¥sylpi(x) # pi(n], a7

and each y; is an L*-sentence stating that p; is injective. Intuitively, 7 extends T by
defining a new sort s, that contains the disjoint union of s with itself w-many times.

Next, T will show how a notion of a “code” can be defined for T+ which allows us to
state a translation theorem in the style of Theorem 4.11. Like before, a code for variables
X1, ..., Xy of sort s, is an £1-formula of the form

ECXL Y15 23 Xns Yn) =det (1001, Y1) A - ALa(Xn, Yi)), (18)

where each y; is a variable of sort s € £, and where each conjunct & (x;, y;) is defined to
be any £+ -formula of the form py(y;) = x; for some k < @ (where x; is a variable of sort
Se)- With this slight modification of the notion of a code, we can formulate the following
analogue of Theorem 4.11:

PROPOSITION 7.1. Let T® be defined as above. Let ¢(x1, .. ., X; Z) be an LT -formula
where X1, . .., X, are variables of sort s, € LY — L and 7 is a finite tuple of variables of
sort s € L. Then given any code £(x1, y1; .. .; Xu, yn) for the variables xi, ..., x,, there
exists an L-formula ¢$* (21, ..., Zm; Y1, - - - » Yn) Such that

T+ 'szwxla--wxnvszayl,-~;)7n[":(x1ayl§ -~-;xn,}’n)
= (P01, XD © @@y Lyl (19)

To prove this, I begin by proving an analogue of Lemma A.1 from Barrett & Halvorson

(2016).

LEMMA 7.2. Let t(x1, ..., Xn,Z) be an LT -term of sort s € L and x is a variable of
sort s'. Let E(x, y; X1, V15 - .. ; Xn, yn) be a code for the variables x, x1, . . ., x,. Then there
is an L-formula ¢*(x,Z, y1, ..., Yn) such that

T+ = vs/xvsmxla e Xa YT, V1, a)’n[éz(xa Vi Xn, Yn)

%(t(xlsﬂ'?-xn’Z)ZX(_)qs*(x’Z?yl’""yﬂ)]' (20)
Ifs' € L, then x will not appear in &. If s' € LT — L, then x will not appear in ¢*.

Proof. The proof is the same as the proof of Lemma A.1 in Barrett & Halvorson (2016),
and proceeds by induction on the complexity of 7. All but two cases are covered in the
original proof.

The first case is when x is a variable of sort s,,, and ¢ is a variable x; of sort s,, for some
i < n. A code for x and x; is an £ -formula of the form pi(y;) = x; Api(y) = xfork, | < w.
We define the £-formula ¢* to be y; = y in the case where k = [, and any contradiction in
the case where k # [.

The second case is when ¢ is a term of the form

Sy X0,2)s e (X1, ey X0, 2)),s 21

where f is a function symbol of the form pj for some k < w and py is of arity s — s4.
Then, ¢ is of the form pg(y;) where y; is of sort s.

Let &£(x, y) =der pi1(y) = x be a code for x, where y is of sort 5. If [ # k, then let ¢* be
any contradiction, for example y # y. If [ = k, then let ¢* be the formula y; = y. Either
way, ¢* satisfies condition (20). (]
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We now return to the proof of Proposition 7.1.

Proof of Proposition 7.1. The proof follows the proof of Theorem 4.11 in Barrett &
Halvorson (2016) and proceeds by induction on the complexity of ¢. Barrett and Halvor-
son’s proof of Theorem 4.11. Note that since £ is empty, the only nontrivial case to consider
is when ¢ is an £T-formula of the form

t(xls--‘a-xn’z)ZM(-xla~-"xnﬂz)a (22)

for s,-terms ¢ and u. If ¢ or u is a variable symbol of sort s,,, then we simply apply Lemma
7.2. Otherwise, t is of the form pi(y;) for some k < w and u is of the form p;(y,) for some
| < w.If k # [, then let ¢* be any contradiction in the signature £, for example, y; # yj.
If k = [, then we let ¢* be the L£-formula y; = y;. One verifies that, in either case, ¢*
satisfies the condition (19).

This covers the base cases. For the inductive step, we consider the cases of —, A, and
V. Suppose the result holds for £*-formulas ¢ and ¢>. Then the result holds for —¢; by
letting (—¢)* be =(¢™). Similarly, the result holds for ¢ A ¢, by letting (¢1 A¢2)™ be p7 A
¢5. Lastly, to check V, consider the Lt formula VY, x¢ (x, x1, .. ., X,) such that the result
holds for ¢ (x, x1,...,x,). Let E(x, y, X1, V1, --.,Xn, yu) be a code for the s,-variables
X, X1, ..., X,. By the inductive hypothesis, there is an L-formula ¢*(y, y1,...,y,). We
define (¥, x¢ (x))* to be the L-formula Vsyd* (v, 1, . .., ¥u). One verifies that this formula
satisfies the condition (19). O

7.3. Proof of Lemma 5.7. In this appendix, I provide a rigorous proof of Lemma
5.7. The proof is broken up into two parts. First, we prove that T and T+ are mutually
(faithfully) interpretable by defining a pair of (faithful) interpretations. Then, we show that
these interpretations witness the bi-interpretability of 7 and T, which establishes Lemma
5.7. The following Lemma establishes the first part.

LEMMA 7.3. Let T be an L-theory such that T = yx, y(x # y) for some sort symbol
s’ € L. Then T and T™ are mutually faithfully interpretable.

Proof. Let Tt be a Morita extension of T, where T satisfies the hypothesis of the
Lemma. We define a pair of interpretations y and 7 such that, whenever M is a model
of T, M is a quotient structure of M that is a model of T; and similarly, whenever M is
amodel of TF, (M™)? is a quotient structure of M™ that is a model of T+ (see Definition
5.3). Faithfulness of these interpretations follow from the fact that every model M of T
uniquely extends to a model M+ of T+ .47

We begin by defining an interpretation y which defines models of M from M. Given
a model M of TT, let (M™)” be the L-reduct M|, of M™, which is a model of T.
Note that the £-reduct M|z of M is trivially definable in M.

Next, we define an interpretation 7, which defines a quotient structure M?® from any
model M of T such that M7 is a model of 7. First, if ¢ is a symbol in £, then let oM’
be oM, which is trivially definable in M. Suppose then that ¢ is a symbol in £ — L.
When ¢ is a sort symbol s of L1 — L, there are four cases, depending on the type of sort s
is:

Case 1. s is a subsort sort. Then, the explicit definition d; of s is of the form

VX[ (x) & Fyz(i(z) = x)] A Vsz1, 22[i(z1) = i(z2) = 21 = 2], (23)

47 This is Theorem 4.2 of Barrett & Halvorson (2016).
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where ¢(x) is an L-formula, x is a variable of L-sort sg, and i is a function of arity
s — 50.

We define M7 and iM" as follows. Let M7 be ¢ (M), which is definable in M. Moreover,
let the graph of iM" be the set of realizations of ¢(x0) A x9 = x in M. One verifies
that (23) and the associated admissibility condition are satisfied by the quotient structure
ME.

Case 2. s is a product sort of L-sorts s; and s>. Then, the explicit definition J; for s is of
the form

Vs Vs, y3s=12[m1(2) = x A m2(2) = y] (24)
where 7 is a function of arity s — s1 and 75 is a function of arity s — s».
We define M, ner, and ﬂj/\/lz as follows. Let M{ be the set of realizations of the
following £-formula in M:

@ (x1,x2) =der (X1 = X1 A X2 = X2)

where x1 is a variable of sort s1 and x» is a variable of sort s,. Lastly, we define the maps
”1/\/11 and HZMT, respectively, to be the sets of realizations of the £-formulas ¢ (xy, x2) A

x1 = xand @(x1, x2) Axp = x in M. One verifies that M satisfies (24).
Case 3. s is a quotient sort. Then, the explicit definition Js for s is of the form

VX1V X2l€(x1) = €(x2) <> ¢ (x1, x2)] A Vyzdy, x[e(x) = 2] 25)

where s is an L-sort, € is a function of arity so — s, and ¢ (x, y) is an L-formula defining
an equivalence relation on every model of 7.

We define M7 and e as follows. Let M7 be My, /¢ (M) (i.e., the quotient of M,
under the equivalence relation given by ¢ (x, y) on My, x My, in M). Moreover, we define
[(E)_l]Mr as the set of realizations of ¢ (x1, x2) in M. One verifies that M satisfies (25)
and the associated admissibility conditions for s.

Case 4. s is a coproduct of L-sorts s; and 5. Then, the explicit definition Jy for s is of the
form

Vsz[3s=1x(p1 (x) = 2) V F5,=17(p (V) = 2)] A V5 XV, ¥[p1 (x) # p2(0)] (26)

where p1 and p, are functions of arity s; — s and s, — s, respectively.

We define M?, ler, and péw as follows. Since T |= ¢ x3yy(x # y) for some L-sort s,
we may define M{ in M in the following way. Let M’ be the product My, x My, x My X My,
and let (x, y, z1,22) ~ (¥, ¥, 2|, 25) be a relation on M’ defined by the £-formula

x=xXrz=0A=5)Vi=Y Au#nAD #D). (27)

Note that ~ is, by construction, a definable relation on M’. Moreover, it is not hard to check
that ~ is an equivalence relation on M’ such that M’/ ~ is isomorphic to the usual way of
defining the disjoint union of My, and Mj,. Thus, we define M] as M’/ ~.

To complete the proof of the coproduct case, we have to define the the interpretation
of the coproduct maps in M{. To this end, we define pIMT My, — M as pi(a) =
([(a, b, c, c)]), where b € My, and ¢ € My. Similarly, define péwr : Mg, — M as
p2(b) = (la, b, c,d)]), where a € My, and c, d are distinct elements in My. Note that
[(p1)~ 1M and [(p2) 11" are definable in M: the map [(p1)~ ™M is definable by the
L-formula x; = x A z; = z. Similarly, the map [(p2)~']M" is definable in M by the
L-formula x = y A z; # z. Thus, these maps are definable in M" as a quotient structure
of M. One verifies that, given these definitions, M7 satisfies (26).
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Cases 1-4 cover all possible ways T7 can define new sorts to 7. What remains to be
checked is the case where the symbol ¢ is a relation, function, or constant symbol in
LT — L. In this case, s is definable in terms of some L-formula ¢ (X) and the function
symbols used to define new sort symbols, which we have already defined in M? as a
quotient structure of M.

Since the £-formulas used to define M from M can be used on any model of T to
construct a model of 77, we have provided a uniform way of defining models of 77 from
T. Thus, 7 defines an interpretation (in fact, a faithful interpretation) of 7% in T. O

Next, we show 7 and y as defined in Lemma 7.3 witness the bi-interpretability of 7" and
T+.

LEMMA 5.7. Let T be an L-theory such that T |= Jsx3;y(x # y) for some sort symbol
s € L. Let T be a Morita extension of T, then T and T are bi-interpretable.

Proof. Let T be an L-theory such that T = Jx3dsy(x # y) for some sort symbol s
of £. Let TT be a Morita extension of 7. In what follows, a variable of sort s in £ will
be denoted as x, y, X', y, etc. Variables of sort st in £T — £ will be denoted X4y Vs
etc.

Recall that the proof of Lemma 7.3 establishes that there is a uniform definable faith-
ful inner model construction 7 of models of 7t from models of 7. That is, whenever
M is a model of T, M is a model of 7. Conversely, there is a definable faithful
uniform inner model construction y such that for any model M of T, there is some
model M* of T such that (M*)” = M, which is just given by the L-reduct of M+,
which is definable in M. Thus, to show that 7 and T+ are bi-interpretable, it suffices
to show that there is a definable map (in M) that induces an isomorphism between M
and ((M)?)? and likewise, there is a definable map (in M™) inducing an isomorphism
between M™ and ((M™)”)?. Note that ((M)?)” is identical to M, and so we will denote
((M)?)? as M. Similarly, (M™)?)? is identical to M7, and so we will denote (M™)?)?
as M?".

Since ((M)")? is identical to M, the L-formulas of the form x; = y,, where s is a
sort symbol in £, define (in M) bijections which induce an isomorphism between M and
(M)

Now we show that, for each sort s € £V, there is a definable (in M™) bijection A
between M? and M} such that the collection (ks : s € L) induces an isomorphism A
between M and M.

First, if s is a sort symbol in £, then x; = y, defines a bijection from M; to Mj. That
is, hy will be defined to be the identity map when s is an £-sort. If s is a sort symbol sT
in LT — L, then there are four cases depending on how 7™ defines s*. For the sake of
readability, I will often repeat the construction of 7:

Case 1. T defines sT as a subsort corresponding to the £-formula ¢ (x) with one variable
x of sort s1. Then, M? is the LT -structure whose interpretation of s in M7 is ¢ (M), i.e.,
the realizations of ¢ (x) in M (i.e., the L-reduct of M™). Moreover, the interpretation of
the inclusion map i is ¢ (x) A x = y.

Note that the £ -formula

P A G(x)) = y4)
defines (in M) a bijection hg+ @ M — Mst. The bijections (hs : s € £1) induce an

isomorphism A from M7 to M™. Intuitively, & is the identity on M? |, and h defines a
bijection on the realizations of ¢ in M" to the domain of M:Q.
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Case 2. TT defines s* as a product sort of s; and s», where s and s are sort symbols in
L. Then for any model M of T, M? is the L -structure whose interpretation of s* in M?
is the set of realizations (in M) of the £-formula ¢ (x1, x2) =gef (x| = X1 A x2 = x2), and
the interpretation (in M?) of 7| and 7, are given by the L-formulas ¢ (x1,x2) A x| = x
and ¢ (x1, x2) A xp = x, respectively.

Note that the £ -formula

Pl () = x)) A (12(y) = x5) A (v = y)]

defines (in M™) a bijection of hg+ : M{ x M, — M. The maps which induces an
isomorphism & between M® and M. Intuitively, 4 is the identity on M7 [, and h maps
ordered pairs (a, b) from M to the unique element ¢* in M+ such that 71(c™) = a and
ma(ct) =b.
Case 3. TT adds a quotient sort s from an L-formula ¢ (x1,x2), where x; and x, are
variables of sort s; in £. Then, M7 interprets s as My /¢ (M) (i.e., the quotient of M
under the equivalence relation given by ¢ (x, y) on M;). Similarly, the interpretation of ¢
by M7 is given by the set of realizations of ¢ (x{, xp) in M.
Note that the £*-formula

W (e, yh) =der p(x) = y*
defines (in M™) a bijection from M, to M;. Together, the bijections {4 : s € LT} induce
an isomorphism from M? to M. Intuitively, / is the identity on M7 | and h maps each
¢ (x, y)-class [a], where a is an element of My, to u(a) which is an element of M +. One
easily checks that / is well-defined.

Case 4. TT defines s as a coproduct sort of the £-sorts s; and s5. Let s be the sort
symbol in £ such that 7 | Jyx3y(x # y). Then, M7 interprets st as the product
My, x My, x My, x My, modulo the equivalence relation given by the £-formula:

(x1 =) Azo =wo Azy =wp) V (2 =)y A 2o # Wo Az F W)
Similarly, the projection maps p; of arity s; — st and p, of arity s — sT are definable

by the L£-formulas x; = x A z9 = wo and y» = y A zg # wy, respectively.
Note that the £1-formula

W G4 50200 20, ¥7) Zaef [0 =X A Yy =yh Az =z20) = p(x)) = y*]

AL =xp A =Y Az # 29) = pO)) =TT

defines (in M™) a function of arity (s; x s x So X So) — sT, which induces a bijec-
tion hg+ from M7, to M;’; The bijections (kg : s € L£T) induce an isomorphism & :
M — M. Intuitively, A is the identity on M7 | and i maps the ~-class [(a, b, ¢, d)],
where (a, b, ¢, d) is a tuple of arity M} x My x My x My, to pi(a) if ¢ = d and to
() ifc #£d. O
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