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SUMMARY
FastSLAM 2.0 is a popular framework which uses a Rao-Blackwellized particle filter to solve the
simultaneous localization and mapping problem. The sampling process is one of the most important
phases in the FastSLAM 2.0 framework. Its estimation accuracy depends heavily on a correct prior
knowledge about the control and observation noise statistics (the covariance matrices Q and R).
Without the correct prior knowledge about these matrices, the estimation accuracy of the robot path
and landmark positions may degrade seriously. However in many applications, the prior knowledge
is unknown, or these noises are non-stationary. In this paper, these covariance matrices are supposed
to be dynamic and denoted as Qt and Rt . Since there are noises, time-adjacent observations are
inconsistent with each other. This inconsistency can reflect the real value of the covariance matrices.
By the inconsistency, an extra step is introduced to the FastSLAM 2.0 framework. This step makes
Qt and Rt match with their real value by using a particle swarm optimization method based on
fractional calculus and alpha stable distribution (FC&ASD-PSO). Both simulation and experimental
results show that the proposed algorithm improves the accuracy by the more accurate estimation on
the noise covariance matrices.

KEYWORDS: Simultaneous localization and mapping, FastSLAM 2.0, Particle swarm optimization,
Fractional calculus, Alpha stable distribution, Mobile robot

1. Introduction
Simultaneous localization and mapping (SLAM) is a process by which a mobile robot can build a map
and locate itself at the same time in an unknown environment. SLAM is also known as concurrent
mapping and localization, or CML. The idea of SLAM was introduced at the 1986 IEEE Robotics
and Automation Conference, and is considered by many to be a key prerequisite for truly autonomous
robots.1 SLAM has been applied to a number of different applications, stretching from search and
rescue, over reconnaissance to commercial products.1−3 However, the SLAM research still faces
many challenging problems, such as large-scale and complex environments, reliable data association,
non-linearity, and unknown priori knowledge.

From a probabilistic perspective, SLAM approaches can be divided into two groups: offline
and online. Offline method optimizes the complete trajectory estimation and map after all data
has been recorded. Batch algorithms such as smoothing and mapping (SAM)6 and GraphSLAM7

are offline methods. SAM involves not just the most current robot position, but the entire robot
trajectory up to the current time.6 GraphSLAM transforms the SLAM posterior into a graphical
network, representing the log-likelihood of the data.7 Online SLAM involves estimating the
posterior over the momentary pose along with the map. The two key computational solutions to
the online SLAM problem are extended Kalman filter SLAM (EKF-SLAM) and FastSLAM.3,4

EKF-SLAM employs an extended Kalman filter (EKF) to represent the joint state space of a robot
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pose and all identified landmarks. Since EKF-SLAM has two major well-known shortcomings:
quadratic computational complexity and sensitivity to failures in data association, it is difficult to
be applied in real and large environments.3,4,25 FastSLAM is an instance of Rao-Blackwellized
particle filter (RBPF) which separates the full SLAM posterior into a product of a robot path
posterior and landmark posteriors conditioned on the robot path estimation.3−5 Some newer
methods like Marginal-SLAM,8 GMapping,9 cubature Kalman filter SLAM (CKF-SLAM)10 and
unscented Kalman filter SLAM (UKF-SLAM)4,11 are also recommendable to solve the online SLAM
problem.

Because FastSLAM has two advantages: multi-hypothesis data association and the ability to cope
with nonlinear and non-Gaussian robot motion models, it is believed to be an effective mean to
solve the SLAM problem by a lot of scholars.1,3−5 There are many successful implementations
of FastSLAM to solve different SLAM applications. In ref. [12], FastSLAM was chosen to solve
the visual SLAM application. Chen et al.13 extended FastSLAM from the single-robot SLAM to
the multi-robot case. FastSLAM, however, has some drawbacks as well. In ref. [14], it was noted
that FastSLAM will degenerate over time, regardless of the number of particles and the density of
landmarks within an environment. Resampling process aims for amending the particle degeneracy,
but it causes particles to lose their diversity, the so called particle depletion. When particles lose their
diversity, the estimation soon becomes optimistic, and it tends to underestimate its own uncertainty.
Liu15 introduced an effective number of particles to estimate how well the current particle set
represents the true posterior. After that, most resampling algorithms use it as an indicator to determine
when to resample, and drastically reduce the risk of replacing good particles. In ref. [16], some
well-known resampling algorithms were analyzed by computer simulations. Although all resampling
algorithms could not resolve the particle depletion problem, a suitable resampling method can improve
the FastSLAM performance. Some biological evolution algorithms have been newly proposed to
keep particle diversity as long as possible.17,18 On the other hand, FastSLAM linearizes the motion
model in the same manner as EKF-SLAM. Inaccurate approximation of the nonlinear function leads
to filter divergence.3,19 Chanki Kim19 proposed Unscented FastSLAM to overcome this important
limitation of the FastSLAM framework. This method has also been used in some improved FastSLAM
algorithms.20,21 Recently, the central difference particle filter and robust iterated sigma point methods
were introduced, and they were both similar to Unscented FastSLAM.22−24

These improved FastSLAM algorithms mentioned above were based on the assumption that the
control and observation noise statistics would be completely known and correct. Because of the
complexity of the real world, this assumption is hard to be tenable. Incorrect priori knowledge about
the control and observation noise matrices would seriously degrade the accuracy of the FastSLAM
algorithm.25−27 Havangi25 proposed an adaptive Neuro-Fuzzy method to dynamically adjust the
noise statistics. This method adjusts only the observation noise statistic, and this adjustment is
influenced by the cumulative errors tremendously. Particle swarm optimization (PSO) is a very useful
algorithm to find approximate solutions to extremely difficult or impossible numeric maximization
and minimization problems.28 There were some attempts which used the classical PSO to solve the
SLAM problem, and these attempts were focused on the sampling process. Two weaknesses restrict
its applications in SLAM problems. One is slow convergence, and the other is to get trapped into
local optima easily.29,30

To solve the incorrect or unknown priori knowledge problem, this paper supposes the matrices
Q and R to be dynamic. The time subscript is introduced to the covariance matrices, and they are
rewritten as Qt and Rt . To make Qt and Rt match with their real value, an extra adjusting step
is introduced to the FastSLAM 2.0 framework. To decrease the cumulative errors, the proposed
algorithm uses the inconsistency between the time-adjacent observations to adjust these matrices
rather than the difference between the predicated observations and the observations. According to
the inconsistency, a complex and multi-modal fitness function is defined. Comparing the classical
PSO algorithm, fractional calculus and alpha stable distribution particle swarm optimization (FC&
ASD-PSO) features better search efficiency and accuracy.

The main contributions of this paper are stated as follows:

(1) The control and observation covariance matrices Q and R are supposed to be dynamic, and
denoted as Qt and Rt . An extra Qt and Rt adjusting step is introduced to the FastSLAM 2.0
framework.
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(2) The inconsistency between time-adjacent observations is used to adjust Qt and Rt . Without
cumulative errors, the inconsistency can reflect the real values of Qt and Rt more accurately.

(3) A novel PSO algorithm based on FC&ASD is proposed. With the faster convergence and better
performance, more suitable values of Qt and Rt are obtained quickly.

2. Background

2.1. Online SLAM problem
In SLAM problems, a robot does not have access to its own poses and a map of the environment.
Instead, all which can be acquired are measurements and controls.1 To describe the SLAM problem,
the robot pose at time t is denoted as xt , and the entire map is written as �. The map consists of
N landmarks which are written as {m1, m2, . . . , mN}. The control and the observation at time t are
denoted as ut and zt , respectively. The standard motion and observation models as nonlinear functions
with independent Gaussian noise are as follows:

xt = g(xt−1, ut ) + εt (1)

zt = h(xt , �) + δt (2)

where g and h are nonlinear functions, and εt and δt are the Gaussian noise variables with the
covariance matrices Qt and Rt , respectively.

In the Bayesian probabilistic framework, the online SLAM problem attempts to estimate the
posterior probability distribution over all possible maps and robot poses conditioned on the full set
of controls and observations at time t

p(xt , � |z1:t , u1:t ) (3)

where u1:t = [u1, u2, . . . ut ] represents the set of all controls executed by the robot, and z1:t =
[z1, z2,. . . zt ] represents the set of all observations collected by the robot.

The following recursive formula, known as the Bayes filter, is used to compute the posterior in
Eq. (3). By the Bayes rule, the law of total probability, and the Markov hypothesis,1 the online SLAM
problem can be rewritten as

p(xt , �|z1:t , u1:t )︸ ︷︷ ︸
Posterior distribution at t

∝ η p(zt |xt , �)︸ ︷︷ ︸
Observation model

∫
p(xt |xt−1, ut )︸ ︷︷ ︸

Motion model

p(xt−1, �|z1:t−1, u1:t−1, x0)︸ ︷︷ ︸
Posterior distribution at t−1

dxt−1 (4)

In general, the integral in Eq. (4) cannot be evaluated in closed form. The extend Kalman filter
and FastSLAM are simply approximations of the general Bayes filter.5

2.2. FastSLAM 2.0 algorithm
The posterior distribution in Eq. (4) possesses no closed form from which we can easily draw samples.
FastSLAM 2.0 is an efficient algorithm based on a straightforward factorization. This factorization
separates the full SLAM posterior into a product of a robot path posterior and N landmark posteriors
conditioned on the robot path5

p(x1:t , �|z1:t , u1:t ) = p(x1:t |z1:t , u1:t )p(�|z1:t , u1:t ) = p(x1:t |z1:t , u1:t )
N∏

j=1

p(mj |z1:t , u1:t ) (5)

where x1:t is the path of the robot from the start to time t .
The decomposed posterior in Eq. (5) can be approximated by a particle filter, with each

particle representing a sample of the robot path.5 Attached to each particle, N independent
landmark estimations are implemented as EKFs. At time t , the ith particle is described by the
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Fig. 1. The flow of each particle updating in FastSLAM 2.0.

following equation:
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〈(
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t
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(
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t ,
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)
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(
μ[i,2]
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[i,j ]
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[i,j ]∑
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)
, . . . ,

(
μ[i,N]

t ,

[i,N]∑
t

)〉
(6)

where x
[i]
t is the estimated robot pose of the ith particle, and ω

[i]
t is the weight of this particle.

(μ[i,j ]
t ,

∑[i,j ]
t ) are the mean and the covariance matrix of the Gaussian representing the j th landmark

conditioned on this particle.
At time t , the updating flow of each particle is shown in Fig. 1.

(1) Predict

Instead of sampling a new robot pose from the motion model in FastSLAM 1.0, FastSLAM 2.0
samples a new pose from the motion model and the most recent observation zt

5

x[i]
t ∼ p

(
xt |x[i]

t−1, ut , zt

)
(7)

A new robot pose is drawn from the motion model and updated by the most recent observation

x̂
[i]
t = g

(
x

[i]
t−1, ut

)
(8)

where x̂
[i]
t is the predicted pose of the ith particle from the motion model at time t . By incorporating

the current observation into the proposal distribution, FastSLAM 2.0 get better match in the posterior
and it is superior to FastSLAM 1.0 in nearly all respects.33
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(2) Data association

Data association is the process of relating landmarks observed in the environment to landmarks
in the map. This paper adopts the probabilistic multi-hypothesis tracker (PMHT) method for data
association.31

(3) Update the robot pose estimation

In this step, the robot pose is updated by the most recent observation

ẑ
[i]
t = h

(
x̂

[i]
t , �

)
(9)

x[i]
t = x̂

[i]
t + β

(
zt − ẑ

[i]
t

)
(10)

where ẑ
[i]
t is the predicted observation, and β is calculated from the landmark estimation covariance

matrices, Qt , Rt , and the Jacobian matrices.

(4) Calculate the importance weight

In the FastSLAM framework, the importance weight is defined as the ratio of the target distribution
over the proposal distribution

ω[i]
t = Target Distribution

Proposal Distribution
=

p
(
x

[i]
1:t |u1:t , z1:t

)
q
(
x

[i]
1:t |u1:t , z1:t

) (11)

The proposal distribution q(x[i]
1:t |u1:t , z1:t ) can be represented by a recursive form as

q
(
x

[i]
1:t |u1:t , z1:t

) = q
(
x[i]

t |x[i]
1:t−1, ut , zt

)
q
(
x

[i]
1:t−1|u1:t−1, z1:t−1, x0

)
(12)

The Bayes rule is used to calculate the importance weight as follows:

ω[i]
t ∝

p(zt |x[i]
t )p(x[i]

t |x[i]
t−1, ut )p(x[i]

t−1|x[i]
1:t−1, z1:t−1, u1:t−1, x0)

q(x[i]
t |x[i]

t−1, zt , ut )q(x[i]
t−1|x[i]

1:t−1, z1:t−1, u1:t−1, x0)
= ω

[i]
t−1

p(zt |x[i]
t )p(x[i]

t |x[i]
t−1, ut )

q(x[i]
t |x[i]

t−1, zt , ut )
(13)

The choice of the proposal distribution is one of the most critical issues in the FastSLAM
framework. The choice in FastSLAM 1.0 is the transitional prior32

q(x[i]
t |x[i]

t−1, ut , zt ) = p(x[i]
t |x[i]

t−1, ut

)
(14)

The proposal distribution in FastSLAM 2.0 is as follows:33

q
(
x[i]

t |x[i]
t−1, ut , zt

) = p
(
x[i]

t |x[i]
t−1, ut , zt

)
(15)

ω
[i]
t is normalized as

ω̄[i]
t = ω

[i]
t∑M

k=1 ω
[k]
t

(16)

where M is the number of particles.

(5) Update landmark estimations

Since the landmark estimations are conditioned on the robot pose, N EKFs are attached to each
particle. A landmark estimation updating depends on whether the landmark is observed at time
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t .5,32,33 If a landmark is newly observed, its mean and covariance are initialized as follows:

μ[i,N+1]
t = h−1

(
zt , x

[i]
t

) [i,N+1]∑
t

= HrzRtHT
rz (17)

where the matrix Hrz is the Jacobian of h−1.
If the j th landmark in the map is not observed, the estimation remains unchanged:

μ
[i,j ]
t = μ

[i,j ]
t−1

[i,j ]∑
t

=
[i,j ]∑
t−1

(18)

If the j th landmark in the map is observed, the updating is specified through the following
equations:

μ[i,N+1]
t = μ

[i,j ]
t−1 + Kt

(
zt − ẑ

[i]
t

) [i,j ]∑
t

= (I − KtHz)
[i,j ]∑
t−1

(19)

where Kt is the Kalman gain coefficient, and the matrix Hz is the Jacobian of h.
After all particles are updated, the number of effective particles is used as a robust indicator to

determine when to resample.15,16 The number is defined as

Neff= 1∑M
k=1 (ω̄k

t )
2 (20)

When Neff is less than a given threshold, the resampling process is would be performed. After that,
all particle weights are reset to

ω
[j ]
t = 1

M
(21)

2.3. Particle swarm optimization
PSO was published by Kennedy and Eberhart in 1995.34 This algorithm imitates human (or
insects) social behavior. For its efficiency in solving challenging optimization problems with minor
implementation effort, it has been applied to a plethora of fields such as social biomedicine, finance,
engineering design, automation, robot, signal process, computer graphic, and pattern recognition.28−30

In the PSO algorithm, each particle represents one potential solution. Each particle has memory
storing its location, speed, and personal best solution. During the evolutionary process, the location
and speed of each particle are updated iteratively by the following equations:34

Vi(k + 1) = ωVi(k)︸ ︷︷ ︸
Momentum component

+ c1r1(pib(k) − Xi(k))︸ ︷︷ ︸
Cognitive component

+ c2r2(pgb(k) − Xi(k))︸ ︷︷ ︸
Social component

(22)

Xi(k) = Xi(k) + Vi(k + 1) (23)

where Xi(k) is denoted as the ith particle location at the kth iteration. This particle will fly to the
next location Xi(k + 1) by the velocity Vi(k + 1). Vi(k + 1) is determined by three components,
namely, momentum, cognitive, and social. The momentum component simulates the inertial behavior
of the bird flying, and ω is the inertia weight that exerts the effect of the old velocity on the new
one.35 The cognitive component models the memory of the bird about its visited best position so far,
and the social component attracts birds to fly towards the best position found in their neighborhood
(interaction inside the swarm).36 c1 and c2 are called the cognitive and social acceleration coefficients,
respectively. r1 and r2 are random numbers. pib(k) and pgb(k) are the best position of the ith particle
and the global best position of the entire swarm, respectively.
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2.4. Fractional calculus and alpha stable distribution
There are several definitions of fractional calculus. Grünwald–Letnikov is one of the most popular
definitions37,38

αDa
t f (t) = lim

h→0

1

hα

[ t−a
h

]∑
k=0

(−1)k
(

α

k

)
f (t − k × h) (24)

(
α

k

)
= 	(α + 1)

	(k + 1)	(α − k + 1)
(25)

where α is the fractional order, and h is the step size. Often, in discrete time implementations
expression (23) is approximated by

αDa
t f (t) = 1

T α

[ t−a
T

]∑
k=0

(−1)k
(

α

k

)
f (t − k × T ) (26)

Alpha stable distribution is parameterized by the two shape parameters α and β, the location
parameter μ, and the scale parameter σ .40 A random variable x is called stable if its characteristic
function can be written as

f (x; α, β, σ, μ) = 1

2π

∫ ∞

−∞
exp[itμ − |σ t |α(1 − iβsgn(t)�)]e−itxdt (27)

where sgn(t) is just the sign of t , and � is given by

� =
{

tan(πα
2 )α �= 1

−( 2
π

) log |t |α = 1
(28)

3. An Improved FastSLAM 2.0 Algorithm Based on FC&ASD-PSO
As already mentioned above, a correct priori knowledge about the control and observation noise
statistics (covariance matrices Qt and Rt ) is assumed in the FastSLAM 2.0 algorithm. However, it is
very difficult to get the real values of Qt and Rt . Many sensors are sensitive to complex and dynamic
environments. For example, the road surface, temperature, tire status, crawler belt tightening and
driving speed can all affect the sensor sensitivity in an inertial navigation system (INS).41 Ultrasound
sensors are very sensitive to the angle of an object’s surface relative to sensors.42 In the FastSLAM
2.0 algorithm, the estimations of the robot pose and landmark positions are updated by the difference
between the observation zt and the predicted observation ẑt . This updating depends on Qt and Rt . If
Rt is more than Qt , it means that we trust the control data more than the observation data, and the
updated pose would be closer to the predicted pose. Otherwise it means that we trust the observation
data more than the control data, and the updated pose would be closer to the observation. An incorrect
priori knowledge about Qt and Rt would cause the estimation to be the result of an error trend to the
control data or the observation data.

Figure 2 shows the comparison between the three estimations of the robot pose and map. These
estimations use the same FastSLAM 2.0 algorithm, but they are based on the different priori
knowledge. The blue estimation is based on the correct priori knowledge about Q and R. R is
amplified mistakenly by a factor of 3 on the red estimation. Q is amplified mistakenly by a factor
of 3 on the green estimation. The black arrow and plus signs show the real robot pose and landmark
positions. Since the sensed velocity and angle are more than real value in this experiment, the predicted
robot pose is the upper-left of the real pose. Because R is amplified in the red estimation, it leads this
estimation over-trust the control data. The red estimated robot pose is closed to the predicted pose
which is calculated from the motion model. All red landmark estimations are the upper-left of their
real positions. Because Q is amplified mistakenly in the green estimation, it leads this estimation
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Fig. 2. The comparison between the three estimations based on different priori knowledge about Q and R.

over-trust the observation data. This amplification leads the robot pose estimation and landmark
estimations to have an error trend to the observation data. It can be seen that the algorithm based on
the correct priori knowledge gets more accuracy estimations comparing the same algorithm based on
the incorrect priori knowledge.

To solve the incorrect priori knowledge problem, an adjusting step is introduced to the FastSLAM
2.0 framework. The suitable fitness function and time complexity are important for this step. Because
the inconsistency between the observation zt−1 and zt can reflect the real values of Qt and Rt , the
adjusting step uses it as the fitness function. To improve the compute efficiency and accuracy, this
step uses FC&ASD-PSO rather than the classical PSO algorithm to search the approximate solutions.

3.1. Fitness function
Although the difference between the observation zt and predicted observation ẑt can reflect the real
values of Qt and Rt to some extent, this reflection is influenced by the cumulative errors tremendously.
To avoid the cumulative errors influence, the time-adjacent observations zt−1 and zt are compared.
In the adjusting step, it is assumed that the robot is at the original point at time t−1, and the pose is
denoted as x̄t−1. The map, which uses the same coordinate system as observation, is denoted as �̄.
Since noises exist in the controls and observations, there is an inconsistency between time-adjacent
observations. According to this inconsistency, FC&ASD-PSO method searches the optimal Q̃t , R̃t ,
and x̃t which are used as the parameters of the fitness function. The fitness function is the product of
the pose estimation and the observation estimation conditioned on the robot pose and the map

argmax|Q̃t ,R̃t ,x̃t
p(zt |x̄t , �̄t )p(x̄t |ut ,x̄t−1) (29)

where x̄t is the robot pose with the same coordinate system as ut . A special particle X[ex], which is
used to adjust Qt and Rt , consists of x̄t and �̄

p(x̄t |ut ,x̄t−1) ∼N
(
x̄t ; f(ut ), FuQtFT

u

)
(30)
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where f is the transformation of the function g in Eq. (1) for the different coordinate system, and the
matrix Fu is the Jacobian of the function f

p(�̄) ∼ N(�̄; zt−1, Rt ) (31)

p(zt |x̄t , �̄) ∼ N(zt ; s(x̄t , �̄),Rt ) (32)

where s is the transformation of the function h in Eq. (2).
p(zt |x̄t , �̄t )p(x̄t |ut ,x̄t−1) can be written as a factored form

p(zt |x̄t , �̄)p(x̄t |ut ,x̄t−1) =
N∏

j=1

p(zt |x̄t , m̄j )p(x̄t |ut ,x̄t−1) (33)

The function s will be replaced by a linear approximation, and the approximation is obtained
through a first-order Taylor expansion

x̂t = f(ut ) (34)

ẑt = s(x̂t , zt−1) (35)

Sm = ∇m̄j
s(xt , m̄j )|x̄t = x̂t , m̄j = zt−1(m̄j ) (36)

Sx = ∇x̄t
s(xt , m̄j )|x̄t = x̂t , m̄j = zt−1(m̄j ) (37)

s(x̄t , m̄j ) ≈ ẑt + Sm(m̄j − zt−1(m̄j )) + Sx(x̄t − x̂t ) (38)

where x̂t and ẑ t can be thought of as the predicted robot pose and the predicted observation at time t .
The observation at time t−1 on the j th landmark zt−1(m̄j ) is used to estimate this landmark position.
The matrices Sm and Sx are the Jacobian of s. That is, they are the derivatives of s with respect to m̄j

and x̄t , respectively. An approximate form is determined by the linear approximation

p(zt |x̄t , �̄) ∼N(zt ; ẑt , Rt + SmRtST
m + SxFuQtFT

uST
x︸ ︷︷ ︸

Zt

) (39)

For brevity, the covariance of this Gaussian is written as Zt . The fitness function yt is written as the
following form:

yt = p(zt |x̄t , �̄)p(x̄t |ut ,x̄t−1) = 1√
2πZt

e
− (zt −ẑt )2

2Zt

1√
2πFuQtFT

u

e
− (x̄t −x̂)2

2FuQt FT
u (40)

3.2. FC&ASD-PSO implementation
3.2.1. Fractional-order velocity. Fractional calculus is used to update the velocity in this proposed
algorithm. With memory and hereditary properties, this method has faster speed and more accurate
solution than the classical PSO algorithm.

Let the inertia weight ω is 1, and Eq. (22) can be rewritten as

Vi(k + 1) − Vi(k) = φ1 + φ2 (41)

where φ1 = c1r1(pib(k) − Xi(k)) and φ2 = c2r2(pgb(k) − Xi(k)). The left side Vi(k + 1) − Vi(k) is
the discrete version of the derivative of order α =1 (assuming T = 1), leading to the following
expression:

αDa
k+1V(k + 1) = φ1 + φ2 (42)
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Fig. 3. The flow of FC&ASD-PSO.

Equation (22) can be written as Eq. (43) considering the first a = k−3 terms of differential
derivative given by Eq. (26)

Vi(k + 1) = αVi(k) + 1

2
αVi(k − 1) + 1

6
α(1 − α)Vi(k − 2)

+ 1

24
α(1 − α)(2 − α)Vi(k − 3) + φ1 + φ2 (43)

where α varies in [0.2, 0.7] by the iteration number.

3.2.2. Velocity threshold based on alpha stable distribution. Velocity threshold plays an important
role in the PSO algorithm. A dynamic velocity threshold can improve the PSO performance especially
for multi-modal functions.39,43 The fitness function yt defined in Eq. (40) is a multi-modal function
in whose solution space there are many local optima. In this paper, a stochastic velocity threshold
automation strategy is proposed by incorporated the alpha stable distribution. This method has a large
capability of the global exploration and big chances to jump the local optima.43

Let v
j
max(k) denoted as the j th particle velocity threshold at the iteration k. It is generated as

follows:

vj
max(k) = |rand| (44)

where rand is a random number with the alpha stable probability distribution.

3.2.3. FC&ASD-PSO implementation. [x̃t , Q̃t , R̃t ] is the output of the FC&ASD-PSO search, and
they will be used in the adjusting step. The detail of FC&ASD-PSO is shown in Fig. 3.
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Fig. 4. The flow of the proposed algorithm.

3.3. An improved FastSLAM 2.0 algorithm based on FC&ASD-PSO
The proposed algorithm introduces an adjusting step before the updating particles process to the
FastSLAM 2.0 framework. The detail of this algorithm is shown in Fig. 4. The updating particles
process (as shown in Fig. 1) and resampling process are the same as FastSLAM 2.0.

In the adjusting process, X
[ex]
t (as defined in Section 3.1) is supposed to be a special particle used

for adjusting Qt and Rt . The adjusting process is as follows:

(1) Initialize

If there are a few observed landmarks, it is difficult to determine the respective impact of the control
noise and the observation noise to the inconsistency. It is unnecessary to continue the adjusting process
when the number of observed landmarks is less than 3.

The robot pose at time t−1 is supposed to be at the original point, and the map can be represented
by the last observation zt−1

X[ex]
t = [x̄t−1, �̄] = [(0, 0, 0), zt−1] (45)

(2) Predict the pose

x̂t = f(ut ) (46)

(3) Data association

PMHT method is also used to implement the data association for this particle. The data association
would be more accurate, for that there are no cumulative errors.

(4) Search the optimal parameters by the FC&ASD-PSO method

[x̃t , Q̃t , R̃t ] = PSO(x̂t , Qt−1, Rt−1, zt−1, zt ) (47)

(5) Predict the observation

ẑ t = s(x̃t , �̄) (48)

(6) Adjust Qt and Rt

Dxt = x̃t − x̂t

FuQt−1FT
u

(49)

Dzt (mj ) = zt (m̄j ) − ẑt (m̄j )

SmRt−1ST
m

j= 1, 2, . . . ,Mo (50)
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where zt (m̄j ) is the observation of the j th landmark, and ẑt (m̄j ) is the predicted observation of the
j th landmark. Mo is the number of observed landmarks.

Let x̃t − x̂t represent the pose error, and Dxt ∼ N(0, 1) obeys the normal distribution. In order to
avoid frequent adjustment, Qt will be adjusted when the relative small probability event happens. If
|Dxt | is more than 1.4 or less than 0.2, Qt is calculated as

Qt = Qt−1 + ωq(Q̃t − Qt−1) (51)

Otherwise Qt remains unchanged

Qt = Qt−1 (52)

where ωq is an adjustment weight and varied by the number of the observed landmarks.
Let zt (m̄j ) − ẑt (m̄j ) represent the observation noise of the j th landmark. Mn is denoted as the

number of |Dzt (m̄j )| greater than 1.4, and Ln is denoted as the number of |Dzt (m̄j )| less than 0.2

Mnp = Mn

Mo

Lnp = Ln

Mo

(53)

When Mnp or Lnp is more than a given threshold Nmax, Rt is adjusted by the following equation:

Rt = Rt−1 + ωr (R̃t − Rt−1) (54)

Otherwise, Rt remains unchanged

Rt = Rt−1 (55)

where ωr is an adjustment weight. While Mo decreases, the threshold Nmax increases, and ωq and ωr

decrease, and vice versa.

4. Experimental Analysis

4.1. Simulation experiments
4.1.1. Simulation models. In the simulation environment, the SLAM state is described by the robot
pose (position and heading) and landmark positions in the Cartesian coordinate system. The state at
time t is represented by a joint state-vector Xt

Xt = [xt , �] = [(xxt
, yxt

, θxt
), (xm1, ym1 ), . . . , (xmj

, ymj
), . . . , (xmN

, ymN
)] (56)

The map � does not have time subscript as landmarks are modeled as stationary. The motion and
observation models are as follows:

xt = g(xt−1, ut ) =

⎡⎢⎣xxt−1 + �T Vt cos(θxt−1 + αt )

yxt−1 + �T Vt sin(θxt−1 + αt )

θxt−1 + �T Vt sin(αt )
/

L

⎤⎥⎦ + ε (57)

zt (mj ) = h(xt , mj ) =
[

lt (mj )

βt (mj )

]
=
⎡⎣
√

(xmj
− xxt

)2 + (ymj
− yxt

)2

arctan
( ymj

−yxt

xmj
−xxt t

) − θxt

⎤⎦ + δ (58)

The control and the observation are denoted as ut and zt , respectively. ut includes the velocity
Vt and steering angle αt . zt (mj ) represents the range-bearing observation from the robot to the j th
landmark, lt (mj ) is the distance, and βt (mj ) is the angle from 0 to 2π clockwise. L is the wheel-base.

The special particle X[ex]
t

uses the coordinate system of the control and observation. Since the
control and observation data is determined by the distance and angle in the simulation environment,
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Fig. 5. The particle X[ex]
t

observation model based on the polar coordinate system. γx̄t−1 and γx̂t
are the angles

at the points x̄t−1 and x̂t . lmj
, l̂xt

, and l̂mj
are the lengths of edges.

the estimation of the robot pose and landmark positions for the special particle is modeled in the polar
coordinate system

X[ex]
t

= [x̄t , �̄t ] = [(lxt
, βxt

, θxt
), (lm1, βm1 ), . . . , (lmj

, βmj
), . . . , (lmN

, βmN
)] (59)

x̄t−1 is set to the original point

x̄t−1 = [0, 0, 0] (60)

According to Eqs. (57) and (58), the motion and observation models in the polar coordinate system
are as follows:

x̂t = f(x̄t−1, ut ) =

⎡⎢⎣ l̂xt

β̂xt

θ̂ xt

⎤⎥⎦ =

⎡⎢⎣�T Vt

αt

�T Vt sin(αt )
/

L

⎤⎥⎦ (61)

ẑt = [l̂mj
, β̂mj

]T = s(x̂t , �̄t ) = s(x̂t , zt−1) (62)

The predicted pose x̂t , the estimated position of the j th landmark m̄j , and x̄t−1 construct a triangle
which is shown in Fig. 5.

The prediction of the observation ẑmj
= [l̂mj

, β̂mj
] for the j th landmark is calculated from this

model. First, γx̄t−1 is calculated

γo = βmj
− β̂xt

(63)

γx̄t−1 =
{ |γo||γo | ≤ π

2π − |γo ||γo| > π
(64)

By using the cosine theorem, the distance l̂mj
between x̂t and m̄j can be calculated as

l̂mj
=
√

l̂2
xt

+ l2
mj

− 2l̂xt
lmj

cos(γx̄t−1 ) (65)
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Fig. 6. The comparison between the two algorithms based on an incorrect Q. The control and observation noise
covariance matrices are static. Q is amplified mistakenly by a factor of 3, and R is correct.

By using the cosine theorem, the angle γx̂t
can be calculated as

γx̂t
= arccos

(
l̂2
xt

+ l̂2
mj

− l2
mj

2l̂xt
l̂(mj )

)
(66)

If γo is in [0, π] or [−2π, −π], the predicted robot pose x̂t is under the line which starts from x̄t−1

to m̄j , and the angle β̃mj
is in [βmj

, π + βmj
]

β̃mj
= π + β̂xt

− γx̂t
(67)

If γo is between [π, 2π] or [−π, 0], x̂t is above the line which starts from x̂t−1 to m̄j , and β̃mj
is

in [π + βmj
, 2π + βmj

]

β̃mj
= π + β̂xt

+ γx̂t
(68)

Considering the heading of the robot, the predicted observation angle β̂mj
is calculated as

β̂mj
= β̃mj

− θ̂xt
(69)

4.1.2. Simulation results and analysis. The comparisons between the proposed algorithm and
FastSLAM 2.0 are based on a Matlab SLAM simulator which was implemented by Tim Bailey.44 The
simulation environment is a 250 m × 200 m area with 135 landmarks. The robot moves at a speed
of 3 m/s, and the maximum steering angle G is π

6 rad. The speed noise εv is 0.3 m/s, and the angle
noise εβ is π

60 rad. It equips a ranger bearing sensor with a π rad frontal view and a maximum range
of 30 m. The range noise of the observation δl is 0.2 m, and the angle noise δβ is π

180 rad.
Figure 6 shows the comparison of the robot path and landmark estimations between the proposed

algorithm and FastSLAM 2.0 with 50 particles. This comparison is based on the incorrect priori
knowledge about Q and the correct priori knowledge about R. Since Q is amplified mistakenly,
the robot pose estimation would be closer to the observation in FastSLAM 2.0. There is no great
impact on accuracy by the incorrect priori knowledge in the beginning. With the cumulative errors,
the excessive trust for the observation will seriously decreases the accuracy of the estimation. The
proposed algorithm starts with a wrongly known priori knowledge about Q0 and then adapts Qt .
By the FC&ASD-PSO searching, the adjusting step attempts to minimize the mismatch between
Qt and the real values. As there are enough observed landmarks in the simulation environment, the
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Fig. 7. The comparison between the two algorithms based on an incorrect R. The control and observation noise
covariance matrix is static. Q is correct, and R is amplified mistakenly by a factor of 3.

estimations on the covariance matrices Rt and Qt are very close to the real values in the proposed
algorithm. In 50 experiments, the adjustments usually get 90% precision on Rt estimation and 80%
precision on Qt estimation before 32 iterations, and then the estimations fluctuate around the real
value. For Qt converges to the actual real control covariance, the proposed algorithm has higher
precision than FastSLAM 2.0 in the estimation of the robot path and landmark positions while Qt

in FastSLAM 2.0 is kept fixed over time. From Fig. 6, it is noticeable that the estimated path by the
proposed algorithm is almost the same with the real path whereas there are some difference between
the path acquired by FastSLAM 2.0 and the real path.

Figure 7 shows the comparison between the proposed algorithm and FastSLAM 2.0 with 50
particles. This comparison is based on the incorrect priori knowledge about R and the correct priori
knowledge about Q. Since R is amplified mistakenly, the robot pose estimation would be closer to
the predicted pose in FastSLAM 2.0. The excessive trust for the control data decreases the accuracy
of the estimation. The proposed algorithm starts with a wrongly known priori knowledge R0 and then
adapts Rt . The adjusting step attempts to minimize the mismatch between Rt and real values. Because
there are enough observed landmarks, it takes a few iterations to get approximate estimations for the
control and observation noise covariance matrices. Based on the approximate estimations of Qt and
Rt , the estimated path by the proposed algorithm is more accurate than the estimation of FastSLAM
2.0 while these covariance matrices are kept fixed in FastSLAM 2.0.

Figure 8 shows the comparison between the proposed algorithm and FastSLAM 2.0 with 50
particles. This comparison is based on a temporary control error. In the real environments, it is
likely that the robot motion changes drastically for some reasons, but the sensor does not sense it.
For example, the phenomenon will occur when the robot is blocked by something. This experiment
simulates this situation in which the robot is blocked from the 81th iteration to the 160th iteration.
The velocity decreases to 0.1 m/s, and the sensed velocity is still 3 m/s in this interval. Although the
robot pose can be revised by the observation, a good revision depends on how correct is the priori
knowledge about Qt and Rt . The proposed algorithm attempts to adjust Qt and make the robot pose
estimation closer to the observation in this interval. In the adjusting step, there is a big difference
between the updated pose and the predicted pose of the special particle. Since the big difference and
enough observations, Qt is rapidly increased. By this adjustment, the proposed algorithm can get
more accurate estimation than FastSLAM 2.0. After the interval, the difference between the updated
pose and the predicted pose of the special particle become smaller, Qt is also decreased to the real
value.

Due to the randomness of the sampling process and noises, the result of each experiment is
different. In order to get more detailed and accurate evaluation between the two algorithms, 50
simulation experiments were carried out. Table I shows the results of these experiments, and RMSE
represents root mean square error. The results show that the proposed FastSLAM is more accurate
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Table I. The comparison of 50 experimental results between the proposed algorithm and FastSLAM 2.0.

Priori RMSE in robot RMSE in landmark Average running
knowledge Algorithm position estimation (m) position estimation (m) time (s)

Incorrect Q proposed FastSLAM 2.598584 2.297926 25.83
FastSLAM 2.0 4.522,848 4.031649 16.71

Incorrect R proposed FastSLAM 2.814088 2.486992 25.83
FastSLAM 2.0 6.161934 5.441496 16.71

Fig. 8. The comparison between the two algorithms based on a temporary control error. In this simulation, the
real robot velocity is 0.1 m/s from the 81th iteration to the 160th iteration, but the sensed velocity is still 3 m/s.
After this interval, the robot motion returns to normal.

than FastSLAM 2.0 on the estimation of the robot pose and landmark positions. Because there is an
extra adjusting process in the proposed algorithm, the running time of the proposed algorithm is more
than that of the FastSLAM 2.0 algorithm.

In the 50 simulation experiments based on the incorrect priori knowledge about Q and the
correct priori knowledge about R, the robot is assumed to run for about 200 s. Figure 9 shows
the RMSE comparisons based on time series between two algorithms. Four sub-figures show
the RMSE comparisons in x, y, orientation, and position, respectively. It can be seen that the
robot position error of FastSLAM 2.0 is more than that of the proposed algorithm. Figure 10
shows the RMSE comparison in landmark positions between two algorithms after the loop is
closed. It can be seen the landmark estimation errors of proposed algorithm is fewer than that of
FastSLAM 2.0.

Figure 11 shows the RMSE comparisons based on time series. A total of 50 simulation experiments
based on the incorrect priori knowledge about R were carried out for the comparisons. It can be seen
that the robot position error of FastSLAM 2.0 is more than that of the proposed algorithm. For the
map is dense with many landmarks in the simulation environment, the incorrect priori knowledge
about R has more effect on the estimation accuracy, and RMSE is more than that of the incorrect
priori knowledge about Q in FastSLAM 2.0. From Fig. 12, it can be seen the landmark position
estimation error of proposed algorithm is fewer than that of FastSLAM 2.0.

FastSLAM in its current form cannot produce consistent estimates in the long-term.14 By
introducing the adjusting step, the proposed algorithm can get more accuracy than FastSLAM 2.0.
Using more particles and better resample can prolong the consistency, but higher landmark density
degrades consistency more quickly. In the simulation environment, the proposed algorithm becomes
rapidly optimistic as same as FastSLAM 2.0.
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Fig. 9. The RMSE comparison in x, y, orientation, and position between two algorithms based on an
incorrect Q.

Fig. 10. The RMSE comparison in landmark positions between two algorithms based on an incorrect Q.

Fig. 11. The RMSE comparison in x, y, orientation, and position between two algorithms based on an
incorrect R.

4.2. Experiments with “Car Park Dataset”
4.2.1. Experimental models. “Car Park Dataset”, which was collected by Australian Centre for Field
Robotics (ACFR) in Sydney,45 is popular in the SLAM research community. A truck equipped with
GPS, inertial and laser sensors was tested in an open parking area with artificial beacons. The motion
model of the truck is shown in Fig. 13.
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Fig. 12. The RMSE comparison in landmark positions between two algorithms based on an incorrect R.

Fig. 13. The motion model of the truck.

The motion and observation model are as follows:

xt = g(xt−1, ut ) =

⎡⎢⎣xxt−1 + �T Vt (cos(θ
xt−1

+ αt ) − tan(αt )
L

(a sin(θ
xt−1

) + b cos(θ
xt−1

)))
yxt−1 + �T Vt (sin(θ

xt−1
+ αt ) − tan(αt )

L
(b sin(θ

xt−1
) − a cos(θ

xt−1
)))

θxt−1 + �T Vt tan(αt )
L

⎤⎥⎦+ ε (70)

Vt = Vet

1 − H
L

× tan(αt )
(71)

zt (mj ) = h(xt ) =
[

lt (mj )
βt (mj )

]
=

⎡⎣√
(xmj

− xxt
)2 + (ymj

− y
xt

)2

arctan
( ymj

−yxt

xmj
−xxt

) − θxt
+ π

2

⎤⎦+ δ (72)

where Vt is the velocity of the center of the axle, Vet is the velocity of the back left wheel, �T is the
sampling interval, and αt is the steering angle.

4.2.2. Experimental results and analysis. Figures 14 and 15 show the comparisons between the
proposed algorithm and FastSLAM 2.0. These comparisons are based on incorrect Q and R,
respectively. The estimated path and landmark positions in proposed algorithm are closer to the
GPS path and landmark positions than the estimations in FastSLAM 2.0. Table II shows the map
estimation in proposed algorithm is more accurate than the estimation in FastSLAM 2.0, and the
running time is also more than that of FastSLAM 2.0. Because there are fewer observed landmarks in
this environment, the adjusting process is only executed 57 times. The running time of each adjusting
process is 0.0142 s, and the radar sampling interval is 0.2136 s. The proposed algorithm can meet the
requirement of the real-time application.
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Table II. The comparison between the proposed algorithm and FastSLAM 2.0.

Priori RMSE in landmark Running
knowledge Algorithm position estimation (m) time (s)

Incorrect Q proposed FastSLAM 0.1049 10.27
FastSLAM 2.0 0.1233 9.48

Incorrect R proposed FastSLAM 0.1318 10.27
FastSLAM 2.0 0.1689 9.48

Fig. 14. The comparison between the proposed algorithm and FastSLAM 2.0 based on the incorrect priori
knowledge about Q. The covariance matrix Q is amplified mistakenly by a factor of 3.

Fig. 15. The comparison between the proposed algorithm and FastSLAM 2.0 based on the incorrect priori
knowledge about R. The covariance matrix R is amplified mistakenly by a factor of 3.

5. Conclusions
In the FastSLAM 2.0 framework, it is assumed that the priori knowledge about the control and
observation noise matrices is known and correct. Since sensors are usually sensitive to environments,
this assumption is not tenable in many applications. The incorrect priori knowledge about Qt and
Rt may seriously degrade the performance of FastSLAM 2.0. This paper proposes an improved
FastSLAM algorithm based on FC&ASD-PSO. An extra step for adjusting the noise covariance
matrices Qt and Rt is introduced in this algorithm. In order to reduce the influence of the cumulative
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errors, this step uses a special particle. This particle, which uses the same coordinate system of
control and observation, is used to compare time-adjacent observations. FC&ASD-PSO searches for
the optimal solutions Q̃t and R̃t from time-adjacent observations. Qt and Rt are updated by Q̃t and R̃t .
The experiment results and theoretical analysis show that compared to FastSLAM 2.0, the proposed
algorithm has higher estimation precision and lower RMSE.

6. Supplementary Material
To view supplementary material for this article, please visit http://dx.doi.org/10.1017/
S0263574716000527.
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