
J. Fluid Mech. (2012), vol. 710, pp. 260–276. c© Cambridge University Press 2012 260
doi:10.1017/jfm.2012.363

Aspect ratio dependence of heat transport by
turbulent Rayleigh–Bénard convection in

rectangular cells

Quan Zhou†, Bo-Fang Liu, Chun-Mei Li and Bao-Chang Zhong

Shanghai Institute of Applied Mathematics and Mechanics, and Shanghai Key Laboratory of Mechanics
in Energy Engineering, Shanghai University, Shanghai 200072, China

(Received 4 February 2012; revised 7 June 2012; accepted 15 July 2012;
first published online 28 August 2012)

We report high-precision measurements of the Nusselt number Nu as a function of
the Rayleigh number Ra in water-filled rectangular Rayleigh–Bénard convection cells.
The horizontal length L and width W of the cells are 50.0 and 15.0 cm, respectively,
and the heights H = 49.9, 25.0, 12.5, 6.9, 3.5, and 2.4 cm, corresponding to the
aspect ratios (Γx ≡ L/H, Γy ≡W/H)= (1, 0.3), (2, 0.6), (4, 1.2), (7.3, 2.2), (14.3, 4.3),
and (20.8, 6.3). The measurements were carried out over the Rayleigh number range
6× 105 . Ra. 1011 and the Prandtl number range 5.2. Pr . 7. Our results show that
for rectangular geometry turbulent heat transport is independent of the cells’ aspect
ratios and hence is insensitive to the nature and structures of the large-scale mean
flows of the system. This is slightly different from the observations in cylindrical cells
where Nu is found to be in general a decreasing function of Γ , at least for Γ = 1
and larger. Such a difference is probably a manifestation of the finite plate conductivity
effect. Corrections for the influence of the finite conductivity of the top and bottom
plates are made to obtain the estimates of Nu∞ for plates with perfect conductivity.
The local scaling exponents βl of Nu∞ ∼ Raβl are calculated and found to increase
from 0.243 at Ra' 9× 105 to 0.327 at Ra' 4× 1010.

Key words: Benard convection, turbulent convection, turbulent flows

1. Introduction
Convection is ubiquitous in nature and in our everyday life. It can be found in the

stars and planets, in the Earth’s mantle and outer core, in the oceans and atmosphere,
as well as in heat transport and mass mixing in many engineering applications. The
paradigmatic example for natural convection is the Rayleigh–Bénard (RB) convection
of an enclosed fluid layer between the colder top and the warmer bottom plates
(Ahlers, Grossmann & Lohse 2009b; Lohse & Xia 2010). A key issue in the study
of turbulent RB convection is to understand how heat is transported upwards across
the fluid layer by convective flows. The global heat transport by convection is usually
expressed in terms of the Nusselt number, namely,

Nu= QH

λf∆
, (1.1)
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where Q is the heat current density across a fluid layer of thermal conductivity λf with
height H and with an applied temperature difference ∆. The dynamics of the system
is determined by the geometrical configuration of the convection cell and by two
dimensionless control parameters, i.e. the Rayleigh number and the Prandtl number,

Ra= αg∆H3

νκ
and Pr = ν

κ
. (1.2)

Here, g is the acceleration due to gravity and α, ν, and κ are the isobaric thermal
expansion coefficient, the kinematic viscosity, and the thermal diffusivity of the
working fluid, respectively. The cell geometry is usually described in terms of one
or more aspect ratios, such as Γ ≡ D/H for a cylindrical cell of inner diameter D
and (Γx ≡ L/H, Γy ≡ W/H) for a rectangular cell of horizontal length L and width
W. The Ra- and Pr-dependence of Nu for various working fluids and cell geometries
have been studied, both experimentally and numerically, in great detail for many years
(Castaing et al. 1989; Kerr 1996; Chavanne et al. 1997, 2001; Du & Tong 2000; Kerr
& Herring 2000; Niemela et al. 2000; Ahlers & Xu 2001; Roche et al. 2002, 2005;
Xia, Lam & Zhou 2002; Niemela & Sreenivasan 2003; Verzicco & Camussi 2003;
Shishkina & Wagner 2007; Ahlers, Funfschilling & Bodenschatz 2009a; Funfschilling,
Bodenschatz & Ahlers 2009; Song & Tong 2010; Stevens, Verzicco & Lohse 2010;
Stevens, Lohse & Verzicco 2011; Silano, Sreenivasan & Verzicco 2010; He et al.
2012). In addition, various theoretical models have been advanced to predict the
behaviour of convective heat transport (Castaing et al. 1989; Shraiman & Siggia
1990; Grossmann & Lohse 2000, 2001, 2003, 2004, 2011; Dubrulle 2001, 2002).
For more detailed elucidation of the problem, we refer interested readers to the
recent review paper by Ahlers et al. (2009b). On the other hand, there are fewer
measurements focusing on the aspect ratio dependence (Xu, Bajaj & Ahlers 2000;
Fleischer & Goldstein 2002; Cheung 2004; Nikolaenko et al. 2005; Funfschilling
et al. 2005; Sun et al. 2005a; Niemela & Sreenivasan 2006; Roche et al. 2010),
and those measurements were all performed in containers with a cylindrical geometry.
The objective of the present experimental investigation is to fill this gap by making
high-precision measurements of Nu over a wide range of the aspect ratio in convection
cells with a rectangular geometry.

A lateral sidewall is indispensable for any convection experiment in the laboratory.
The interaction between the sidewall and fluids would change the velocity and
temperature distributions in the cell, and in turn change the flow structures of the
system. Indeed, previous experimental studies for both cylindrical (du Puits, Resagk
& Thess 2007) and rectangular (Xia, Sun & Cheung 2008) cells have shown that
with increasing aspect ratio the large-scale circulation (LSC) departs from a single-roll
structure and becomes a multi-roll pattern. Thus, the Γ -dependence of Nu may reflect
the influence of flow structures on heat transport characteristics via the influence on
the boundary layers. Measurements in cylindrical samples using water as the working
fluid (Pr ≈ 4.3) revealed that for Γ . 6 Nu decreases, albeit only a few per cent,
with increasing Γ (Funfschilling et al. 2005; Sun et al. 2005a). This suggests that
the global heat transport properties of the RB system are not very sensitive to the
flow structures for such parameter ranges. However, the situation is very different for
lower Pr and for the two-dimensional case. Using three-dimensional direct numerical
simulation (DNS), Bailon-Cuba, Emran & Schumacher (2010) found for Pr = 0.7 that
the minimum of Nu occurs at the aspect ratio where the LSC undergoes a transition
from a single-roll to a double-roll structure and the variations in Nu for different Γ
are significant and can yield 11.3 % for Ra = 108. For two-dimensional steady-state
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calculations, Ching & Tam (2006) obtained a power law of Nu ∼ Γ −1 for Γ 6 3. In
two-dimensional numerical RB flow, van der Poel, Stevens & Lohse (2011) identified
different turbulent states for both Pr = 0.7 and 4.3, corresponding to different roll
structures and associated with different overall heat transfers. Transitions among these
states thus lead to jumps and sharp transitions in Nu(Γ ). By connecting the structures
of Nu(Γ ) to the way the flow organizes itself in the sample, van der Poel et al.
(2011) explained why the aspect ratio dependence of Nu is more pronounced for small
Pr . Compared with the three-dimensional cases, we note that the two-dimensional
simulations show larger variations in Nu(Γ ) for both Pr = 0.7 and 4.3, which may
be explained by the different flow structures formed in the two- and three-dimensional
cases.

Different geometrical shapes represent different symmetries, and hence may lead
to different features of the flow and heat transfer. This prompts us to study the
Γ -dependence of Nu in a non-cylindrical system. In the present study, we choose a
rectangle as the shape of the cells, which has been widely used in the past (Xia,
Sun & Zhou 2003; Gasteuil et al. 2007; Maystrenko, Resagk & Thess 2007; Zhou &
Xia 2008, 2010a,b; Zhou, Sun & Xia 2007; Zhou et al. 2010). It was found that the
convective flows in cells with this geometry share some dynamics similar to those in
the two-dimensional RB system, such as reversals of the LSC (Sugiyama et al. 2010).

The remainder of this paper is organized as follows. We give detailed descriptions of
the experimental apparatus and conditions in § 2. Experimental results are presented
and analysed in § 3, which is divided into two parts. In § 3.1, we compare the
measured Nu for different aspect ratios and with those obtained in cylindrical cells.
In § 3.2 we consider the finite conductivity corrections of the top and bottom plates
and estimate Nu∞ for perfectly conducting plates. The scaling behaviours of Nu∞ are
also discussed in § 3.2. We summarize our findings and conclude in § 4.

2. Experimental apparatus and methods

Figure 1 is a schematic drawing of the front view of our apparatus and the drawing
corresponds to (Γx, Γy)= (1, 0.3). The sidewall of the cell, indicated as E in the figure,
is composed of four transparent Plexiglas plates of 1.2 cm in thickness. The inner
length L and inner width W of the cell are 50 and 15 cm, respectively. Six sidewalls
of heights H = 49.9, 25.0, 12.5, 6.9, 3.5, and 2.4 cm were used in the experiment. The
corresponding aspect ratios are (Γx ≡ L/H, Γy ≡ W/H) = (1, 0.3), (2, 0.6), (4, 1.2),
(7.3, 2.2), (14.3, 4.3), and (20.8, 6.3), respectively. As Γy is proportional to Γx, in the
remainder of the paper we use only Γx to indicate the cell’s aspect ratio for ease of
presentation. The top (B) and bottom (F) plates are made of pure copper of 56 cm in
length and 21 cm in width and their fluid-contact surfaces are electroplated with a thin
layer of nickel to prevent oxidation by water. The thickness of the top plate is 3.5 cm
and that of the bottom plate is 1.5 cm. Silicon O-rings are placed between the copper
plates and the sidewall plates to avoid fluid leakage. Eight stainless steel posts (not
shown) hold the top and bottom plates together. They are insulated from the plates
by Teflon sleeves and washers. Four parallel channels (not shown) of 1.5 cm in width
and 2 cm in depth are machined into the top plate and the separation between adjacent
channels is 1.5 cm. The channels start and end, respectively, at the two diagonal ends
of the long edges. A silicon rubber sheet (not shown) and a Plexiglas plate (A) of
1.4 cm in thickness are fixed on the top to form the cover and also to prevent interflow
between the adjacent channels. At two ends of the ith channel (i = 1, 2, 3, 4), there
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FIGURE 1. Schematic diagram of the front view of a rectangular cell. A, the Plexiglas cover;
B, the copper top plate; Ci and C′i (i = 1, 2, 3, 4), nozzles connecting the channels to the
refrigerated circulators; D, thermistors; E, the Plexiglas sidewall; F, the copper bottom plate;
G, the copper cover for the bottom plate, H1, nozzle for transferring fluid into the cell; H2,
nozzle for letting air out of the cell.

are two nozzles (Ci and C′i), through which the channel is connected to a separate
refrigerated circulator (Polyscience 9712) that has a temperature stability of 0.01 ◦C.
The channels and the circulators are connected such that the incoming cooler fluid and
the outgoing warmer fluid in adjacent channels always flow in opposite directions. To
provide constant and uniform heating, two rectangular Kapton film heaters of 25 cm
in length and 15 cm in width are sandwiched between two copper plates (F and G)
and are connected in parallel to a DC power supply (SGI 330X15D) with 99.99 %
long-term stability. Therefore, the experiments were conducted under constant heating
of the bottom plate while maintaining a constant temperature at the top plate. Note
that recent high-resolution two-dimensional (Johnston & Doering 2009) and three-
dimensional (Stevens et al. 2011) simulations have revealed that turbulent thermal
convection with boundary conditions of constant temperature and constant heat flux
display identical heat transport at sufficient high Rayleigh numbers.

Degassed water was used as the convecting fluid and the cell was levelled to better
than 0.1◦. During the measurements the entire cell was wrapped in several layers of
Styrofoam. The temperature of each conducting plate was measured by five thermistors
(D), which are embedded uniformly beneath the fluid-contact surface of the respective
plate. When calculating the temperature difference ∆ between the bottom and top
plates, a correction was made for the temperature change between the thermistor
position and the fluid-contact surface. In each measurement after Ra was changed it
took ∼4–8 h for the system to reach the steady state, and we waited for at least 12 h
to start the measurements. A typical measurement lasted over 12 h and more than 24 h
for low-∆ experiments (∆< 4 ◦C). No long-term drift of the mean temperature in the
plates was observed over the duration of the measurement and the standard deviations
were less than 0.5 % of ∆ for all measurements.

To see the temperature uniformity of each conducting plate, we plot in figure 2
the normalized temperature variation, (Ti − Tm)/∆, for both the top and bottom
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FIGURE 2. The normalized horizontal temperature differences, (Ti − Tm)/∆, for the (a,c) top
and (b,d) bottom plates, and for (a,b) Γx = 1 and (c,d) Γx = 7.3. The index i (=1, 2, 3, 4, 5)
of the thermistor is listed in figure 1 (see the top plate B and the bottom plate F).

plates. Here, Ti (i = 1, 2, 3, 4, 5) is the time-averaged temperature measured by the
ith thermistor in a given plate and Tm is the mean value of all the five thermistors
in the same plate. It is found that the Γx = 1 cell has the largest variation of plate
temperature and we plot the Γx = 1 results in figure 2(a,b). The temperature variation
for the other five Γx are similar, and we choose Γx = 7.3 as an example and plot
the results in figure 2(c,d). One sees that (Ti − Tm)/∆ is at most 4 % for Γx = 1
and less than 2 % for all Γx = 7.3 measurements. We thus estimate that a systematic
error of the order of 1 % could be introduced into the measured Nu by this horizontal
temperature inhomogeneity of the conducting plates. Several thermistors were placed
around the cell sidewall and around the bottom plate to monitor the environment
temperature, based on which heat leakages to the environment and conduction by
the posts and Plexiglas sidewall were calculated. The relative leakages to the total
heat current were found to become more significant with decreasing ∆, and thus we
kept heat leakages from all sources to be less than 7 % of the total applied heat
current by working with sufficiently large ∆. We found that the largest source of
leakage, especially for the small aspect ratio cells, is through the cell sidewall, which
is insulated by multi-layers of Styrofoam. The errors in calculating the leaks come
mainly from uncertainties in the thermal conductivities of the material involved, which
are estimated to be less than 20 %. This translates into an uncertainty of less than
1.5 % in the results of Nu.

3. Results and discussion
3.1. Nu versus Ra for different Γx

The measured Nu with corresponding values of ∆, Ra, and Pr are given in tables 1
and 2. The Γx = 1 measurements were made at mean temperatures of 20 and 30 ◦C,
corresponding to Pr = 7.01 and 5.45, respectively, and the measurements for the other
five values of Γx were conducted at 31.3 ◦C, corresponding to Pr = 5.25. Previous
studies have revealed that with increasing Prandtl number Nu first increases, reaches
its maximum value at around Pr ≈ 4 (depending on Ra), and then decreases slightly
or remains independent of Pr (Ahlers & Xu 2001; Grossmann & Lohse 2001; Xia
et al. 2002; Silano et al. 2010; Stevens et al. 2011). Therefore, within the present Pr
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FIGURE 3. (Colour online) Compensated Nu/Ra1/3 on a linear scale versus Ra on a
logarithmic scale. 5, Γx = 20.8; ©, Γx = 14.3; 4, Γx = 7.3; �, Γx = 4; C, Γx = 2; B,
Γx = 1 and Pr ≈ 7.01; ♦, Γx = 1 and Pr ≈ 5.45. Note that the data are as measured, without
the correction for the finite plate conductivity.

range, Nu is expected to depend very weakly on Pr . Indeed, as shown in figures 3
and 5, no significant differences are observed between the Pr = 5.45 (circles) and
7.01 (right-triangles) results. Another source of uncertainty in the measured Nu could
be the non-Boussinesq effects, as some of our measurements were made at larger ∆.
Funfschilling et al. (2005) argued that the applied temperature difference ∆ should be
limited to .15 ◦C to strictly conform to the Boussinesq conditions. However, it can
be seen from figure 2 and tables 1 and 2 that some of our data have ∆ much larger
than 15 ◦C. As we shall see below, the measured large-∆ data show the same trend as
those of small ∆. This suggests that some of our data being not strictly Boussinesq
will not change the main conclusions of the present work. Indeed, Ahlers et al. (2006)
have shown that for water as the working fluid the non-Boussinesq effects could only
slightly reduce the measured Nu by at most 1.4 % for ∆= 40 K and thus Nu is rather
insensitive to even significant deviations from the Boussinesq conditions. Hence, for
completeness all data are listed in the tables and plotted in the figures.

Figure 3 shows Nu/Ra1/3 as a function of Ra for all six Γx. It is seen that data
points for Γx = 20.8 (down-triangles) collapse well on top of those for Γx = 14.3
(diamonds) (within their overlap Ra range), which in turn collapse well on top of
those for Γx = 7.3 (up-triangles). This implies that all sets of data can be described
by a single curve over such a wide range of Γx, i.e. no significant Γx-dependence is
observed. As discussed in § 1, Γ -dependence of Nu essentially reflects the influence
of flow structures on heat transport characteristics. Indeed, using particle image
velocimetry (PIV), Xia et al. (2008) have shown in rectangular cells that the number
of the convection rolls depends systematically on the aspect ratio of the system: only
one convection roll is observed in the Γx = 1 and 2 cells and the LSC breaks into a
(horizontally arranging) multi-roll structure for Γx larger than or equal to 4. Therefore,
our present results suggest that for rectangular geometry turbulent heat transport is
very insensitive to the nature and structures of the large-scale mean flows of the
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FIGURE 4. (Colour online) Comparison among Nu/Ra−1/3 from the present work (©), from
Funfschilling et al. (2005) (5, Γ = 1; ×, Γ = 2; ∗, Γ = 3; �, Γ = 6; for clarity their
Γ = 1.5 data are not shown) and from Sun et al. (2005a) (4, Γ = 2; B, Γ = 5; C, Γ = 10; ♦,
Γ = 20). As our results show that for rectangular geometry Nu/Ra−1/3 is independent of the
cells’ aspect ratio, here we do not distinguish our data for different Γx. Note that all data are
as measured, without the correction for the finite plate conductivity.

system. We note that our present results are different from those obtained in the
two-dimensional numerical case (van der Poel et al. 2011), which were made for both
Pr = 0.7 and 4.3. For the two-dimensional simulation, the stable states with n rolls are
found to enable larger heat transfer than those with n + 1 rolls for vertically arranging
LSC rolls. One possible reason for this difference may be attributed to different
alignments of the LSC rolls, i.e. the aspect ratios of the two-dimensional simulation
vary between 0.4 and 1.25 and the LSC rolls are stacked vertically, whereas for the
present geometry we have horizontally stacked rolls (Xia et al. 2008).

In figure 4, we compare the present results with those obtained in cylindrical cells
and at Pr ≈ 4.4. We mainly consider two recent data sets: one is from Funfschilling
et al. (2005) (referred to as FBNA) and the other is from Sun et al. (2005a) (referred
to as SRSX). As our measured Nu is independent of the cells’ aspect ratio, here we
do not distinguish our data for different Γx. Note that all data in figure 4 are as
measured, without the correction for the finite plate conductivity. For the FBNA data,
one sees that the Γ = 6 data of FBNA are in excellent agreement with ours, but their
small-Γ data are a few per cent larger. Nevertheless, we note that the Γ = 1 data of
FBNA (down-triangles) show similar trends to ours for Ra . 109 and Ra & 1010 and
thus the small difference between the two sets of data may be attributed to different
system errors. The SRSX data and ours are much closer. One sees that parts of the
Γ = 5 and 10 data of SRSX agree well with ours and the others lie slightly below our
measured Nu.

One noticeable difference between the present results and those of FBNA and SRSX
is worthy of note. For both FBNA and SRSX the larger-Γ results lie consistently
below those of smaller ones, i.e. Nu is generally smaller for larger Γ . This is true
even for the largest-Γ (i.e. Γ = 10 and 20) data of SRSX (see figure 4). However,
our measured Nu for all six values of Γx fall into a single curve, i.e. Nu is essentially
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FIGURE 5. (Colour online) (a) Compensated Nu∞/Ra1/3 on a linear scale versus Ra on a
logarithmic scale: symbols as figure 3. Here, Nu∞ is calculated using (3.1) and the parameters
a = 0.275 and b = 0.39 obtained by Brown et al. (2005) in cylindrical cells. For comparison,
the uncorrected data Nu/Ra1/3 of figure 3 are replotted in (b).

independent of Γx for our results. To understand such a difference, we note that
all data plotted in figure 4 have not been corrected for the influence of the finite
conductivity of the top and bottom plates (Verzicco 2004). In a cylindrical cell of
Γ = 0.5, Sun, Xi & Xia (2005b) argued that because of the finite conductivity and
finite heat capacity of the plates the azimuthal sweeping of the circulation plane of the
LSC would make heat transfer more efficient than the case when the LSC is locked in
a particular orientation. Moreover, Xi & Xia (2008) studied the azimuthal motion of
the LSC in cylindrical cells of Γ = 0.5, 1.0, and 2.3 and their results showed that the
LSC’s azimuthal motion is more confined in larger-Γ cells. If we generalize the above
two findings to large Γ and take them together, a possible scenario can be achieved:
the larger-Γ cell confines the azimuthal sweeping motion of the LSC, which in turn
reduces the measured Nu. This scenario could be valid for cylindrical cells due to their
azimuthal symmetry. But for rectangular cells, this is not expected to work because
the rectangular geometry has already locked the orientation of the LSC (Xia et al.
2003). Therefore, our present Γx-independent results are consistent with the lack of the
azimuthal sweeping motion of the LSC in rectangular cells. What we should stress is
that the large-Γ cell contains multi-roll structures of the LSC (du Puits et al. 2007;
Xia et al. 2008; Bailon-Cuba et al. 2010) and thus the azimuthal motion of the LSC
and its influence on heat transfer should be more complicated for large Γ . However,
as we shall see in figure 6, when corrections for the finite conductivity of the plates
are made, Γ -dependence of Nu∞ becomes weaker for both the FBNA and SRSX data,
which suggests that the finite plate conductivity effect is indeed a major factor for the
observed difference of the behaviours of heat transfer in rectangular and cylindrical
cells.

3.2. Nu∞ versus Ra for different Γx

Brown et al. (2005) suggested an empirical correction factor f (X) = 1 − exp[− (aX)b],
namely

Nu= f (X)Nu∞ = {1− exp[− (aX)b]}Nu∞(Ra,Pr), (3.1)

to obtain estimates of the ideal Nusselt number Nu∞ for plates with perfect
conductivity from the measured Nu. Here, X = Rf /Rp is the ratio of the effective
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FIGURE 6. (Colour online) Comparison among Nu∞/Ra−1/3 from the present work, from
Funfschilling et al. (2005), and from Sun et al. (2005a). Note that the data have been
corrected for the finite plate conductivity.

thermal resistance of the working fluid, Rf = H/(λfNu), to the thermal resistance of
the plates, Rp = e/λp, λp (=401 W (m K)−1) is the conductivity of plates (Cu), λf

(λf = 0.614 W (m K)−1 for Pr = 5.25 and λf = 0.589 W (m K)−1 for Pr = 7) is the
conductivity of water, and e (=1.5 cm) is the mean thickness of the top (the part of
the top plate below the cooling channels is used here) and bottom plates (Verzicco
2004). To apply the relation (3.1) to our measured Nu, one needs to determine the
values of a and b. The best way to do this is to use plates of different thermal
conductivities, as was done by Brown et al. (2005), who used two sets of plates made
of Cu and Al. However, the lack of aluminum-plate measurements in the present study
prevents us from determining the values of a and b. Alternatively, to estimate Nu∞,
we use the parameters a = 0.275 and b = 0.39 obtained by Brown et al. (2005) in
cylindrical samples of 50 cm in diameter.

Figure 5(a) shows the calculated Nu∞/Ra1/3 as a function of Ra. For comparison,
the uncorrected data Nu/Ra1/3 of figure 3 are replotted in figure 5(b). The corrected
data in figure 5(a) seem to display a small aspect ratio dependence, e.g. near
Ra= 2×108 the Γx = 7.3 data lie slightly above the Γx = 4 data and near Ra= 2×109

the Γx = 4 data lie slightly above the Γx = 2 data. We note that this dependence is
consistent with the FBNA data (see figure 6, where data points for Γ = 6 lie slightly
above those for Γ = 3, which in turn lie slightly above those for Γ = 2). Nevertheless,
the differences of Nu∞ for the two adjacent-Γx sets of data are only a few per cent,
which is smaller than or comparable with the experimental errors. Hence, we may also
conclude that no significant Γx-dependence of heat transfer is observed.

We want to emphasize that here we adopted the parameters of a = 0.275 and
b= 0.39 determined by Brown et al. (2005) for cylindrical samples with a diameter of
50 cm. Brown et al. (2005) have shown experimentally that a and b are independent
of the aspect ratio, but vary with the diameter of the sample. In the present study, we
chose the rectangle as the geometry of the convection cells, which can possibly have
an influence on the finite plate correction, as discussed at the end of § 3.1. However,

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
2.

36
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2012.363


272 Q. Zhou, B.-F. Liu, C.-M. Li and B.-C. Zhong

Γx 1 2 4 7.3 14.3 20.8

A(Γx) 0.074 0.059 0.108 0.173 0.212 0.242
β(Γx) 0.324 0.335 0.307 0.282 0.271 0.262

TABLE 3. Fitted parameters from (3.2).

without the measurement performed with aluminum plates it is difficult to assess
whether the geometry would (significantly) influence the values of a and b. By using
different sets of a and b to perform the finite conductivity correction, we estimate that
the uncertainties of a and b may yield a few per cent uncertainty on the obtained
Nu∞, which is of the same order as the difference between Nu and Nu∞. We should
also stress that the best way to estimate Nu∞ is to use plates with different thermal
conductivities, as was done by Brown et al. (2005) for cylindrical samples. Therefore,
new measurements with Al plates are essential for conclusively settling the problem
and this will be the objective of future studies.

In figure 6 we directly compare our Nu∞ and those of FBNA and SRSX. It is seen
that our data display Ra-dependence similar to that of the Γ = 1 data of FBNA, and
excellent agreement between our data and those of SRSX can be found for nearly all
the overlap Ra range. As the three sets of data were taken independently from the
samples with very different geometries, this agreement is just remarkable.

Finally, we studied the power-law relation between Nu∞ and Ra, namely,

Nu∞ = A(Γx)Ra
β(Γx). (3.2)

Table 3 displays the fitted results for the power-law relation (3.2) at fixed aspect
ratios. One sees that as Γx increases in general the prefactor A increases and the
scaling exponent β decreases. Here, Γx-dependences of A and β essentially reflect
their Ra-dependence as our results do not reveal significant aspect ratio dependence of
Nu∞. We thus do not distinguish the data for different Γx and take them together to
study the scaling behaviours of Nu∞(Ra). The local scaling exponent βl is obtained by
a power-law fit, Nu∞ ∼ Raβl , to the data for Nu∞(Ra) within a sliding window that
covers half a decade of Ra. Figure 7 shows the results for βl as a function of Ra. It
is seen that βl roughly increases linearly with logRa from βl = 0.243 at Ra ≈ 9 × 105

to βl = 0.342 at Ra ≈ 3.6 × 109. At small Ra, our results differ greatly from the DNS
results for cylindrical samples of unit aspect ratio by Wagner, Shishkina & Wagner
(2012), who found that βl increases again as Ra decreases below 2 × 107 and grows
to ∼0.30 at Ra = 106 (see figure 2 of Wagner et al. 2012). The apparent differences
in βl may be explained by the different Prandtl number in the two studies, i.e. Wagner
et al. (2012) carried out their simulations at Pr = 0.786, while our measurements were
made at Pr ≈ 5.45. For higher Ra, βl drops slightly and fluctuates around 0.32. The
FBNA results for βl are also displayed together with ours in figure 7 for comparison.
For Ra > 108 the two data sets both increase with Ra, with ours being a little more
scattered. A source of uncertainty for our data could be the non-Boussinesq effect,
i.e. the FBNA data were obtained in the strictly Boussinesq range, while some of our
data are beyond the Boussinesq range (i.e. ∆> 15 ◦C). However, as discussed in § 3.1,
some of our data being not strictly Boussinesq will not change our main conclusions.
What is worthy of note is that around Ra ≈ 1010 our measured βl has a value that is
close to the value of 1/3. The exponent β ≈ 1/3 was obtained before in cylindrical
cells of Γ = 1 by FBNA at Ra≈ 7×1010 (see open triangles in figure 7) and of Γ = 4
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FIGURE 7. (Colour online) Local scaling exponent βl of Nu∞(Ra), determined from a power-
law fit over a sliding window of half a decade, as a function of Ra for the present data (solid
circles) and for the Γ = 1 data of Funfschilling et al. (2005) (open triangles). The dashed line
marks βl = 1/3 for reference. Note that both sets of βl were obtained from the corrected data.

by Niemela & Sreenivasan (2006) for Ra > 1010. Here, our results in rectangular cells
seem to be qualitatively consistent with these findings

4. Conclusion
In conclusion, our high-precision measurements of Nu in rectangular cells with

(Γx, Γy) varying from (1, 0.3) to (20.8, 6.3) show that Nu is independent of the aspect
ratio. This is slightly different from the observations by both FBNA and SRSX in
cylindrical cells where Nu is found to be in general a decreasing function of Γ , at
least for Γ ∼ 1 and larger. Such a difference may be attributed to different azimuthal
dynamics of the large-scale circulation (LSC) and is probably a manifestation of the
finite plate conductivity effect. To make finite conductivity corrections, an empirical
correction factor f (X) = 1 − exp[− (aX)b], together with the parameters a = 0.275
and b = 0.39 obtained by Brown et al. (2005) in cylindrical samples, were adopted
to estimate Nu∞ for plates with perfect conductivity from the measured Nu. The
obtained Nu∞ were found to be consistent with the FBNA and SRSX data measured in
cylindrical samples to only a few per cent. The scaling behaviours between Nu∞ and
Ra were studied for all six aspect ratios. The local scaling exponents βl of Nu∞ ∼ Raβl

were calculated and found to increase with increasing Ra. Around Ra ≈ 1010 our
measured βl has a value that is close to the value of 1/3.
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