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The work in this paper concerns the study of different approximations for one-dimensional one-phase
Stefan-like problems with a space-dependent latent heat. It is considered two different problems,
which differ from each other in their boundary condition imposed at the fixed face: Dirichlet and
Robin conditions. The approximate solutions are obtained by applying the heat balance integral
method (HBIM), the modified HBIM and the refined integral method (RIM). Taking advantage of the
exact analytical solutions, we compare and test the accuracy of the approximate solutions. The analy-
sis is carried out using the dimensionless generalised Stefan number (Ste) and Biot number (Bi). It is
also studied the case when Bi goes to infinity in the problem with a convective condition, recovering
the approximate solutions when a temperature condition is imposed at the fixed face. Some numer-
ical simulations are provided in order to assert which of the approximate integral methods turns out
to be optimal. Moreover, we pose an approximate technique based on minimising the least-squares
error, obtaining also approximate solutions for the classical Stefan problem.

Key words: Stefan problem, variable latent heat, heat balance integral method, refined heat balance
integral method, exact solutions

2020 Mathematics Subject Classification: 80A22, 40C10, 35R35, 35K05, 35C05

1 Introduction

Stefan problems model heat transfer processes that involve a change of phase. They constitute a
broad field of study since they appear in a great number of mathematical and industrial signifi-
cance problems [1, 6, 10, 13]. A large bibliography on the subject is given in [25] and a review
on analytical solutions in [26].

The Stefan problem with a space-dependent latent heat can be found in several physical
processes. In [23], it was developed a mathematical model for the shoreline movement in a
sedimentary basin using an analogy with the one-phase melting Stefan problem with a variable
latent heat. Besides, in [31], it was introduced a two-phase Stefan problem with a general type of
space-dependent latent heat from the background of the artificial ground-freezing technique.
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Rosario, Argentina, by the Project ANPCyT PICTO Austral 2016 No. 0090 and by the European Union’s
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The assumption of variable latent heat not only becomes meaningful in the study of the shore-
line movement or in the soil freezing techniques but also in the nanoparticle melting [18] and
in the one-dimensional consolidation with threshold gradient [29]. More references dealing with
non-constant latent heat can be found in [3, 4, 7, 9, 14, 17, 21, 27, 30, 32, 33].

In this paper, we are going to consider two different Stefan-like problems (P) and (Ph)
with space-dependent latent heat imposing different conditions at the fixed boundary. The first
problem to consider can be stated as follows:

Problem (P). Find the location of the free boundary x = s(t) and the temperature T = T(x, t) at
the liquid region 0 < x < s(t) such that

∂T

∂t
= a2 ∂2T

∂x2
, 0 < x < s(t), t > 0, (1.1a)

T(0, t) = θ∞ tα/2, t > 0, (1.1b)

T(s(t), t) = 0, t > 0, (1.1c)

k
∂T

∂x
(s(t), t) = −γ s(t)α ṡ(t), t > 0, (1.1d)

s(0) = 0, (1.1e)

Equation (1.1a) is the heat conduction equation in the liquid region where a2 = k
ρc is the dif-

fusion coefficient being k the thermal conductivity, ρ the density mass and c the specific heat
capacity. At x = 0, a Dirichlet condition (1.1b) is imposed. It must be noticed that the temper-
ature at the fixed boundary is time-dependent and it is characterised by a parameter θ∞ > 0. In
addition, condition (1.1c) represents the fact that the phase change temperature is assumed to be
0 without loss of generality, condition (1.1d) is the corresponding Stefan condition and (1.1e) is
the initial position of the free boundary.

The remarkable feature of the problem is related to the condition at the interface given by the
Stefan condition (1.1d), where the latent heat by unit of volume is space-dependent defined by
a power function of the position γ

ρ
xα(t) with γ a given positive constant and α an arbitrarily

non-negative real value.
The second problem (Ph) arises by imposing a convective (Robin) condition at the fixed face

x = 0 instead of a Dirichlet one. In mathematical terms, we can define (Ph) as follows:

Problem (Ph). Find the location of the free boundary x = sh (t) and the temperature Th = Th(x, t) at
the liquid region 0 < x < sh(t) such that equations (1.1a) and (1.1c)–(1.1e) are satisfied, together
with the Robin condition

k
∂T

∂x
(0, t) = h√

t

[
T(0, t) − θ∞ tα/2

]
, t > 0. (1.1b�)

Condition (1.1b�) states that the incoming heat flux at the fixed face is proportional to the differ-
ence between the material temperature and the ambient temperature. Here, θ∞ tα/2 characterises
the bulk temperature at a large distance from the fixed face x = 0 and h represents the heat trans-
fer at the fixed face. We will work under the assumption that h > 0 and 0 < Th(0, t) < θ∞ tα/2 in
order to guarantee the melting process.

The exact solution to problem (P) was given in [32] for integer non-negative values of α and
was generalised in [33] by taking α as a real non-negative constant. Besides, the exact solution
of the problem (Ph) was provided in [3].
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It is known that due to the non-linear nature of the Stefan problem, exact solutions are limited
to a few cases and therefore it is necessary to solve them either numerically or approximately.

The idea in this paper is to take advantage of the exact solutions available in the literature
testing the accuracy of different approximate integral methods.

The heat balance integral method (HBIM), introduced by Goodman [8], is an approxi-
mate technique which is usually employed for solving the location of the free boundary in
phase-change problems. It consists in the transformation of the heat equation into an ordinary
differential equation in time, assuming a quadratic profile in space for the temperature. For those
profiles, several variants have been introduced in [28] and [20]. In addition, in [11, 12, 15, 16]
this method has been applied defining new accurate temperature profiles. Moreover, for the case
α = 0, the explicit solution to the problem (Ph) for the two-phase process was given in [24] and
this was useful to obtain the accuracy of different HBIMs to problem (Ph) in [2].

The paper will be structured as follows: in Section 2 we will give a brief introduction about the
approximate methods to be implemented. Then, in Section 3, we will recall the exact solution to
problem (P) that considers a Dirichlet condition at the fixed face and we will get some different
approximate solutions that will be tested with the exact one. In Section 4, we will present the
exact solution to the problem with a Robin condition at the fixed face, i.e. problem (Ph). We
are going to implement the different approximate methods and we will test their accuracy. In
all cases, we are going to provide numerical examples and comparisons. In addition, we will
show that the approximate solutions to problem (Ph) converge to the approximate solutions to
problem (P) when the heat transfer coefficient h goes to infinity. Finally, in Section 5, we will
implement an approximate method that consists in minimising the least-squares error as in [19].
For the case α = 0, we obtain different approximations for the problems (P) and (Ph) by using
the least-squares approximate method.

2 Heat balance integral methods

The classical HBIM, described for first time in [8], was designed to approximate problems
involving phase changes. This method consists in changing the heat equation (1.1a) by an ordi-
nary differential equation in time that arises by assuming a suitable temperature profile consistent
with the boundary conditions, integrating (1.1a) with respect to the spacial variable in an appro-
priate interval, and replacing the Stefan condition (1.1d) by a new equation obtained from the
phase-change temperature (1.1c).

Therefore, if we derive condition (1.1c) with respect to time and take into account the heat
equation (1.1a), we get

∂T

∂x
(s(t), t)ṡ(t) + a2 ∂2T

∂x2
(s(t), t) = 0. (2.1)

Clearing ṡ and replacing it in the Stefan condition (1.1d) it gives

k

γ sα(t)

[
∂T

∂x
(s(t), t)

]2

= a2 ∂2T

∂x2
(s(t), t). (1.1d�)

This last condition is going to substitute the Stefan condition in the approximated problem
obtained from the classical HBIM.
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On the other hand, using equation (1.1a) and the condition (1.1c), we have

d

dt

s(t)∫
0

T(x, t)dx =
s(t)∫
0

∂T

∂t
(x, t)dx + T(s(t), t)ṡ(t)

=
s(t)∫
0

a2 ∂2T

∂x2
(x, t)dx = a2

[
∂T

∂x
(s(t), t) − ∂T

∂x
(0, t)

]
.

Then, by applying the Stefan condition (1.1d) it results that

d

dt

s(t)∫
0

T(x, t)dx = −a2

[
γ

k
sα(t)ṡ(t) + ∂T

∂x
(0, t)

]
. (1.1a�)

The classical HBIM suggests to solve an approximate problem (P) through a new problem
that arises from replacing the heat equation (1.1a) by (1.1a�) and the Stefan condition (1.1d) by
(1.1d�) keeping the rest of the conditions of (P) the same. In short, the method consists in solving
the problem governed by (1.1a�), (1.1b),(1.1c), (1.1d�) and (1.1e). A priori, this method will
work better than the classical one due to the fact that it changes less conditions from the exact
problem.

In [28], a modified integral balance method is presented. It postulates to change only the heat
equation keeping the same the rest of conditions, even the Stefan condition. It means that it
consists in solving an approximate problem given by (1.1a�), (1.1b), (1.1c), (1.1d) and (1.1e).

On the other hand, from the heat equation (1.1a), and the condition (1.1c) we have

s(t)∫
0

x∫
0

∂T

∂t
(z, t)dzdx =

s(t)∫
0

x∫
0

a2 ∂2T

∂z2
(z, t)dz dx

=
s(t)∫
0

a2

[
∂T

∂x
(x, t) − ∂T

∂x
(0, t)

]
dx

= a2

[
T(s(t), t) − T(0, t) − ∂T

∂x
(0, t)s(t)

]
,

that is to say

s(t)∫
0

x∫
0

∂T

∂t
(z, t)dzdx = −a2

[
T(0, t) + ∂T

∂x
(0, t)s(t)

]
. (1.1a†)

The refined integral method (RIM) introduced in [20] suggests to solve an approximate prob-
lem given by (1.1a†), (1.1b), (1.1c), (1.1d) and (1.1e). That is to say, to replace the heat equation
(1.1a) by (1.1a†).

In all cases, to solve the above approximated problems, it is necessary to adopt a suitable
profile for the temperature. Throughout this paper, we will assume a quadratic profile in space

T̃(x, t) = tα/2θ∞

[
Ã

(
1 − x

s̃(t)

)
+ B̃

(
1 − x

s̃(t)

)2
]

, (2.2)
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where T̃ and s̃ will be approximations of T and s, respectively. We can notice that in the chosen
profile a power function of time arises in order to be compatible with the boundary conditions
imposed in the exact problem.

It is worth to mention that for the approximations to the problem (Ph), it will be enough to
consider the same approximate problems stated for (P), changing only the boundary condition
(1.1b) by (1.1b�).

3 One-phase Stefan problem with Dirichlet condition

3.1 Exact solution

Before introducing the different approaching methods for problem (P), we present the exact
solution, which was given in [32] and [33] for the cases when α ∈N0 and α ∈R

+ \N0,
respectively.

Let us define the following non-dimensional parameter:

Ste = kθ∞
γ aα+2

(3.1)

which is called generalised Stefan number (Ste). We use the word ‘generalised’ since in case
that the latent heat l is constant, i.e. α = 0, we can recover the usual formula for the Ste, which
assuming a zero phase-change temperature is given by Ste = cθ∞

l . Notice that if we take α = 0
then the Dirichlet condition at the fixed face is given by θ∞ and from the Stefan condition (1.1d)
the latent heat becomes l = γ /ρ.

Then, if we combine the results found in [32] and [33], we can rewrite the solution of the
problem (P) (as it was done in the appendix of [5]), obtaining for each α ∈R

+
0 that

T(x, t) = tα/2

[
AM

(
−α

2
,

1

2
, −η2

)
+ BηM

(
−α

2
+ 1

2
,

3

2
, −η2

)]
, (3.2)

s(t) = 2aν
√

t, (3.3)

where η = x
2a

√
t

is the similarity variable,

A = θ∞ , B = −θ∞M
(−α

2 , 1
2 , −ν2

)
νM

(−α
2 + 1

2 , 3
2 , −ν2

) , (3.4)

and ν is the unique positive solution to the following equation:

Ste

2α+1
f (z) = zα+1, z > 0, (3.5)

where is defined by

f (z) = 1

zM
(

α
2 + 1, 3

2 , z2
) (3.6)

and M(a, b, z) is the Kummer function defined by

M(a, b, z) =
∞∑

s=0

(a)s

(b)ss! zs, (b cannot be a non-positive integer) (3.7)

https://doi.org/10.1017/S0956792520000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000170


342 J. Bollati and D. A. Tarzia

being (a)s the Pochhammer symbol:

(a)s = a(a + 1)(a + 2) . . . (a + s − 1), (a)0 = 1. (3.8)

Remark 3.1 If 0 < Ste < 1, the unique solution ν of equation (3.5) belongs to the interval (0, 1).
In fact, define H(x) = Ste

2α+1 f (z) − zα+1. On the one hand, we have H(0) = +∞ due to the fact that

M
(

α
2 + 1, 3

2 , 0
)= 1. On the other hand, we obtain H(1) < 0 as Ste

2α+1 < 1 < M
(

α
2 + 1, 3

2 , 1
)
.

3.2 Approximate solutions

We are going to implement the different approximate techniques for the problem (P) and test
their accuracy taking advantage of the knowledge of the exact solution.

First of all, we introduce a problem (P1) which arises when applying the classical heat balance
integral problem to (P). According to the previous section, the problem (P1) consists in finding
the free boundary s1 = s1(t) and the temperature T1 = T1(x, t) in 0 < x < s1(t) such that conditions
(1.1a�), (1.1b),(1.1c), (1.1d�) and (1.1e) are verified.

Provided that T1 assumes a quadratic profile in space like (2.2) we get the following result.

Theorem 3.2 If 0 < Ste < 1, there exists at least one solution to problem (P1), given by

T1(x, t) = tα/2θ∞

[
A1

(
1 − x

s1(t)

)
+ B1

(
1 − x

s1(t)

)2
]

, (3.9)

s1(t) = 2aν1

√
t, (3.10)

where the constants A1, B1 are defined as a function of ν1 by

A1 = −2
[
3 2ανα+2

1 + Ste
(
(−3 + (1 + α)ν2

1

)]
Ste
(
3 + (1 + α)ν2

1

) , (3.11)

B1 = 3
[
2α+1να+2

1 + Ste
(−1 + (1 + α)ν2

1

)]
Ste
(
3 + (1 + α)ν2

1

) , (3.12)

and the coefficient ν1 is a solution to the following equation:

z2α+4(−3) 22α+1(α − 2) + z2α+2(−9) 22α+1 + z4+α (−3) 2α(α − 3)(α + 1)Ste

+ zα+2 (−3) 2α+1(α + 7)Ste + zα9 2αSte + z42(α + 1)2Ste2

+ z2(−12)(α + 1)Ste2 + 18Ste2 = 0, z > 0. (3.13)

Proof First of all we shall notice that if T1 adopts the profile (3.9), it is clear evident that
the condition (1.1c) is automatically verified. From the imposed Dirichlet condition at the fixed
boundary (1.1b) we get

A1 + B1 = 1. (3.14)

In addition, we have that

∂T1

∂x
(x, t) = −tα/2θ∞

[
A1

s1(t)
+ 2B1

s1(t)

(
1 − x

s1(t)

)]
,
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and

∂2T1

∂x2
(x, t) = tα/2θ∞

2B1

s2
1(t)

.

Therefore, from condition (1.1d�), we claim

k

γ sα
1 (t)

tαθ2
∞

A2
1

s2
1(t)

= a2tα/2θ∞
2B1

s2
1(t)

.

Then, it follows that

s1(t) =
(

A2
1

2B1

kθ∞
γ a2

)1/α √
t.

Defining ν1 such that ν1 = 1
2a

(
A2

1
2B1

kθ∞
γ a2

)1/α

, we deduce that

s1(t) = 2aν1

√
t, (3.15)

where ν1, A1 and B1 are related as

A2
1 = 2α+1να

1

Ste
B1. (3.16)

Condition (1.1a�) and

d

dt

s1(t)∫
0

T1(x, t)dx = d

dt

s1(t)∫
0

tα/2θ∞

[
A1

(
1 − x

s1(t)

)
+ B1

(
1 − x

s1(t)

)2
]

dx

= θ∞

(
A1

2
+ B1

3

) (α

2
tα/2−1s1(t) + tα/2ṡ1(t)

)
give

θ∞
(

A1
2 + B1

3

) (
α
2 tα/2−1s1(t) + tα/2ṡ1(t)

)= −a2
[

γ

k sα
1 (t)ṡ1(t) + tα/2θ∞

(A1+2B1)
s1(t)

]
. (3.17)

According to (3.15), it results that

A1
(
(α + 1)ν2

1 − 1
)+ B1

(
2
3 (α + 1)ν2

1 − 2
)= −2α+1να+2

1
Ste . (3.18)

Thus, we have obtained three equations (3.14), (3.16) and (3.18) for the unknown coefficients
A1, B1 and ν1.

From (3.14) and (3.18), it is obtained that A1 and B1 are given as a function of ν1 by (3.11)
and (3.12), respectively.

Then, equation (3.16) leads to the fact that ν1 must be a positive solution to (3.13).
For the existence of solution to problem (P1), it remains to prove that the function w1 = w1(z),

defined as the left-hand side of equation (3.13), has at least one positive root. This can be easily
check by evaluating w1(0) = 18Ste2 > 0 and

w1(1) = −α2(3 2α − 2Ste)Ste − 2α(3 4α + 4Ste2) − 2(3 4α + 3 2α+2Ste − 4Ste2)
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FIGURE 1. Plot of w1(z) for α = 1 and Ste = 0.5.

From the assumption that 0 < Ste < 1, we obtain 3 2α − 2Ste > 0, and

3 4α + 3 2α+2Ste − 4Ste2 > 2α+2Ste − 4Ste2 = 4Ste(3 2α − Ste) > 0.

Therefore w1(1) < 0. Consequently, we can assure that there exists at least one positive solution
to equation (3.13) in the interval (0, 1).

Remark 3.3 The approximated free boundary s1 behaves as a square root of time just like the
exact one s, it means that s1(t) = 2aν1

√
t while s(t) = 2aν

√
t.

Remark 3.4 After Theorem 3.2 follows the question about uniqueness of solution. We found that
there exists different values for α and 0 < Ste < 1 that leads to multiple roots of equation (3.13),
i.e. w1(z) = 0, z > 0 (see Figure 1).

However our study must be reduced to find the roots of w1(z) located in the interval (0, 1) in
view of the proof of Theorem 3.2 but also in view of Remark 3.1. For the particular case of α = 0
the uniqueness analysis was given in [2].

Although we could not prove it analytically, by setting different values for α and Ste we can see
that there exists just one root of the polynomial w1(z) located in the interval (0, 1). In Figure 2,
we illustrate this fact setting α = 0.5, 1, 1.5, 2, 3, 5, 10 and Ste = 0.5. We have just plot between
0 � z � 0.5 in order to appreciate better this fact.

With the purpose of testing the classical integral balance method and in view of the above
remark we will only compare graphically the coefficient ν1 that characterises the approximated
free boundary problem s1 with the coefficient ν that characterises the exact free boundary s. In
Figure 3, we illustrate this comparisons for different values of 0 < Ste < 1 and α.

For the comparisons we have assumed that 0 < Ste < 1 not only due to the hypothesis in
Theorem 3.2, but also because of the fact that in general, the majority of phase change materials
under a realistic temperature present an Ste that does not exceed 1 (see [22]).
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FIGURE 2. Plot of w1(z) for different values of α setting Ste = 0.5.

Now, we will turn to the modified integral balance method. In this case we state an approxi-
mated problem (P2) for the problem (P) that is stated as follows: find the free boundary s2 = s2(t)
and the temperature T2 = T2(x, t) in 0 < x < s2(t) such that equation (1.1a�) and conditions (1.1b),
(1.1c), (1.1d) and (1.1e) are satisfied.

Assuming a quadratic profile in space for T2 we obtain the next theorem

Theorem 3.5 The problem (P2) has a unique solution given by

T2(x, t) = tα/2θ∞

[
A2

(
1 − x

s2(t)

)
+ B2

(
1 − x

s2(t)

)2
]

, (3.19)

s2(t) = 2aν2

√
t, (3.20)

where the constants A2 and B2 are given by

A2 = 6Ste − 2Ste ν2
2 (α + 1) − 3 2α+1να+2

2

Ste
(
ν2

2 (α + 1) + 3
) , (3.21)

B2 = −3Ste + 3Ste ν2
2 (α + 1) + 3 2α+1να+2

2

Ste
(
ν2

2 (α + 1) + 3
) , (3.22)

and where ν2 is the unique positive solution to the equation

zα+42α(α + 1) + zα+23 2α+1 + z2Ste(α + 1) − 3Ste = 0, z > 0. (3.23)
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FIGURE 3. Plot of ν and ν1 against Ste for different values of α = 0.5, 1, 5.

Proof Condition (1.1c) is clearly checked from the chosen temperature profile.
From the Stefan condition (1.1d), we obtain

−ktα/2θ∞
A2

s2(t) = −γ sα
2 (t)ṡ2(t). (3.24)

Therefore, it results that

s2(t) =
(

(α + 2)

( α
2 + 1)

kθ∞
γ

A2

)1/(α+2) √
t. (3.25)

If we introduce the coefficient ν2 such that ν2 = 1
2a

(
(α+2)
( α

2 +1)
kθ∞
γ

A2

)1/(α+2)
, the free boundary can

be expressed as

s2(t) = 2a ν2

√
t, (3.26)

where the following relation holds:

A2 = 2α+1να+2
2

Ste
. (3.27)

Taking into account the boundary condition at the fixed face (1.1b), we get

A2 + B2 = 1. (3.28)

In addition, in virtue of equation (1.1a�), we get

A2
(
(α + 1)ν2

2 − 1
)+ B2

(
2
3 (α + 1)ν2

2 − 2
)= −2α+1να+2

2
Ste . (3.29)

From equations (3.27), (3.28) and (3.29), we claim that A2 and B2 can be written in function of
ν2 through formulas (3.21) and (3.22), respectively. In addition, ν2 must be a solution to equation
(3.23). So that, to finish the proof, it remains to show that equation (3.23) has a unique positive
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FIGURE 4. Plot of ν and ν2 against Ste for different values of α = 0.5, 1, 5.

solution, i.e. the function defined by the left-hand side of this equation w2 = w2(z) has a unique
positive root. This is easily checked by noting that

w2(0) = −3Ste < 0, w2(+∞) = +∞,
dw2

dz
(z) > 0, ∀z > 0.

In Figure 4, as we did for the classical HBIM, we compare the coefficients ν2 (approximate)
with ν (exact) for different values of 0 < Ste < 1 and α.

The RIM intends to approximate the problem (P) through solving a problem (P3) that consists
in finding the free boundary s3 = s3(t) and the temperature T3 = T3(x, t) in 0 < x < s3(t) such that
equation (1.1a†) and conditions (1.1b), (1.1c), (1.1d) and (1.1e) are satisfied.

Under the assumption that T3 adopts a quadratic profile in space like (2.2), we can state the
following result.

Theorem 3.6 The unique solution to problem (P3) is given by

T3(x, t) = tα/2

[
A3θ∞

(
1 − x

s3(t)

)
+ B3θ∞

(
1 − x

s3(t)

)2
]

, (3.30)

s3(t) = 2aν3

√
t, (3.31)

where the constants A3 and B3 are given by

A3 = 6Ste − 2Ste ν2
3 (α + 1) − 3 2α+1να+2

3

Ste
(
ν2

3 (α + 1) + 3
) , (3.32)

B3 = −3Ste + 3Ste ν2
3 (α + 1) + 3 2α+1να+2

3

Ste
(
ν2

3 (α + 1) + 3
) , (3.33)

and where ν3 is the unique solution to equation

zα+42α+1α + zα+23 2α+2 + z2Ste(2 + 3α) − 6Ste = 0, z > 0. (3.34)

https://doi.org/10.1017/S0956792520000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000170


348 J. Bollati and D. A. Tarzia

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

Ste (Stefan number)

n,
n 3 n, a = 0.5

n3, a = 0.5

n, a = 1
n3, a = 1

n, a = 5
n3, a = 5

FIGURE 5. Plot of ν and ν3 against Ste for different values of α = 0.5, 1, 5.

Proof The proof is similar to the one of the Theorem 3.5. The only difference to take into
account is the fact that equation(1.1a†) is equivalent to

ν2
3

[
A3

(
1

3
+ 2

3
α

)
+ B3

(
1

3
+ α

2

)]
= B3. (3.35)

In Figure 5, we compare graphically the coefficient ν3 that characterises the approximate free
boundary s3 with the coefficient ν that characterises the exact boundary s.

3.3 Comparisons between the approximate solutions and the exact one

In the previous section, we have applied three different methods to approximate the solution to
the Stefan problem (P), with a Dirichlet condition at the fixed face and a variable latent heat.

For each method, we have stated a problem (Pi), i = 1, 2, 3 and we have compared graphically
the dimensionless coefficients νi that characterises their free boundaries si, with the coefficient ν

that characterises the exact free boundary s.
Then the goal will be to compare numerically, for different Ste, the coefficient ν given by (3.5)

with the approximate coefficients ν1, ν2 and ν3 defined by (3.13), (3.23) and (3.34), respectively.
In order that the comparisons be more representative, in Tables 1–3 we show the exact values

obtained for ν, the approximate value νi and percentage error committed in each case E(νi) =
100

∣∣ ν−νi
ν

∣∣, i = 1, 2, 3 for different values of Ste and α.
From the tables, we can notice that for α = 0.5, the error committed by each method is lower

than for α = 0 or α = 5. In all cases, the method which shows the greatest accuracy is the mod-
ified integral balance method. In other words, the best approximate problem to (P) is given by
problem (P2 ).

Besides, we can also provide an illustration at the exact temperature T with the approximate
temperatures Ti , i = 1, 2, 3, given by (3.9), (3.19) and (3.30), respectively. If we consider α = 5,
Ste = 0.5, θ∞ = 30 and a = 1, we obtain Figures 6–9.
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Table 1. Dimensionless coefficients of the free boundaries and their percentage relative error
for α = 0

Ste ν ν1 Erel(ν1) (%) ν2 Erel(ν2) (%) ν3 Erel(ν3) (%)

0.1 0.2200 0.2232 1.4530 0.2209 0.3947 0.2218 0.7954
0.2 0.3064 0.3143 2.5729 0.3087 0.7499 0.3111 1.5213
0.3 0.3699 0.3827 3.4575 0.3738 1.0707 0.3780 2.1856
0.4 0.4212 0.4388 4.1687 0.4270 1.3618 0.4330 2.7953
0.5 0.4648 0.4869 4.7478 0.4723 1.6266 0.4804 3.3561
0.6 0.5028 0.5290 5.2236 0.5122 1.8683 0.5222 3.8729
0.7 0.5365 0.5666 5.6173 0.5477 2.0895 0.5599 4.3501
0.8 0.5669 0.6006 5.9443 0.5799 2.2923 0.5941 4.7913
0.9 0.5946 0.6316 6.2165 0.6094 2.4786 0.6255 5.1999
1.0 0.6201 0.6600 6.4432 0.6365 2.6500 0.6547 5.5786

Table 2. Dimensionless coefficients of the free boundaries and their percentage relative error
for α = 0.5

Ste ν ν1 Erel(ν1 ) (%) ν2 Erel(ν2 ) (%) ν3 Erel(ν3 ) (%)

0.1 0.2569 0.2587 0.6956 0.2574 0.2001 0.2580 0.4012
0.2 0.3339 0.3372 0.9999 0.3349 0.3147 0.3360 0.6321
0.3 0.3876 0.3921 1.1718 0.3891 0.3974 0.3907 0.7995
0.4 0.4298 0.4353 1.2678 0.4318 0.4596 0.4338 0.9260
0.5 0.4650 0.4711 1.3143 0.4674 0.5067 0.4698 1.0225
0.6 0.4953 0.5018 1.3264 0.4980 0.5423 0.5007 1.0959
0.7 0.5220 0.5288 1.3133 0.5249 0.5684 0.5280 1.1508
0.8 0.5458 0.5528 1.2814 0.5491 0.5869 0.5523 1.1905
0.9 0.5675 0.5745 1.2352 0.5709 0.5989 0.5744 1.2173
1.0 0.5873 0.5943 1.1777 0.5909 0.6054 0.5946 1.2334

Table 3. Dimensionless coefficients of the free boundaries and their percentage relative error
for α = 5

Ste ν ν1 Erel(ν1 ) (%) ν2 Erel(ν2 ) (%) ν3 Erel(ν3 ) (%)

0.1 0.3793 0.3563 6.0700 0.3723 1.8469 0.3656 3.6135
0.2 0.4151 0.3849 7.2853 0.4055 2.3333 0.3963 4.5496
0.3 0.4374 0.4020 8.0816 0.4256 2.6810 0.4145 5.2154
0.4 0.4537 0.4143 8.6859 0.4403 2.9615 0.4276 5.7505
0.5 0.4667 0.4239 9.1776 0.4518 3.2010 0.4377 6.2058
0.6 0.4775 0.4317 9.5943 0.4612 3.4122 0.4460 6.6060
0.7 0.4869 0.4384 9.9572 0.4693 3.6025 0.4529 6.9656
0.8 0.4950 0.4442 10.2795 0.4763 3.7766 0.4589 7.2936
0.9 0.5023 0.4492 10.5699 0.4826 3.9376 0.4642 7.5962
1.0 0.5090 0.4538 10.8345 0.4881 4.0880 0.4689 7.8780
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4 One-phase Stefan problem with Robin condition

In this section, we are going to present the exact solution of the problem with a Robin condition,
then we will obtain different approximate solutions that will be compared and we will analyse
their convergence when the coefficient that characterises the heat transfer at the fixed boundary
goes to infinity.

4.1 Exact solution

We recall that the exact solution to problem (Ph) governed by equations (1.1a), (1.1b�) and
(1.1c)–(1.1e) given in [3] can be written as

Th(x, t) = tα/2

[
AhM

(
−α

2
,

1

2
, −η2

)
+ BhηM

(
−α

2
+ 1

2
,

3

2
, −η2

)]
, (4.1)

sh(t) = 2aνh

√
t, (4.2)

where η = x
2a

√
t

is the similarity variable, the coefficients Ah and Bh are given by

Ah = −νhM
(−α

2 + 1
2 , 3

2 , −ν2
h

)
M
(−α

2 , 1
2 , −ν2

h

) Bh, (4.3)

Bh = −θ∞M
(−α

2 , 1
2 , −ν2

h

)[
1

2Bi M
(−α

2 , 1
2 , −ν2

h

)+ νhM
(−α

2 + 1
2 , 3

2 , −ν2
h

)] , (4.4)

and with νh defined as the unique solution to the following equation:

Ste

2α+1

1[
1

f (z) + 1
2Bi M

(
α
2 + 1

2 , 1
2 , z2

)] = zα+1, z > 0, (4.5)

where Ste and f are given by (3.1) and (3.6), respectively, and where the Biot number (Bi) is
defined by Bi = ah

k .
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In [3], it was also proved that the unique solution to the exact problem with convective condi-
tion (Ph) converges pointwise to the unique solution to the problem with temperature condition
(P) when the Bi goes to infinity (i.e. h → ∞)

4.2 Approximate solutions and convergence

As it was done for the problem (P), we will now apply the classical integral balance method, the
modified integral balance method and the RIM to the problem (Ph). For each method, we will
state an approximate problem (Pih ), i = 1, 2, 3. Assuming a quadratic profile in space, we will
obtain the solutions to the approximate problems. Finally, we will show that the solution of each
problem (Pih ) converges to the solution of the problem (Pi) defined in the previous section, when
h → ∞. This fact is intuitively expected because the same happens to the exact problems (Ph)
and (P).

We introduce an approximate problem (P1h ) that arises when applying the classical HBIM
to the problem (Ph). It consists in finding the free boundary s1h = s1h (t) and the temperature
T1h = T1h (x, t) in 0 < x < s1h such that conditions: (1.1a�), (1.1b�),(1.1c), (1.1d�) and (1.1e) are
satisfied.

Provided that T1h adopts a quadratic profile in space, like (2.2) we can prove the next result.

Theorem 4.1 If 0 < Ste < 1, α � 0 and Bi is large enough, there exists at least one solution to
problem (P1h ), which is given by

T1h (x, t) = tα/2θ∞

[
A1h

(
1 − x

s1h(t)

)
+ B1h

(
1 − x

s1h (t)

)2
]

, (4.6)

s1h (t) = 2aν1h

√
t, (4.7)

where the constants A1h and B1h are defined as a function of ν1h

A1h = 6Ste − 2Ste ν2
1h

(α + 1) − 3
Bi 2

α+1να+1
1h

− 3 2α+1να+2
1h

Ste
[
ν2

1h
(α + 1) + 2

Biν1h (α + 1) + 3
] , (4.8)

B1h = −3Ste + 3Ste ν2
1h

(α + 1) + 3
Bi 2

ανα+1
1h

+ 3 2α+1να+2
1h

Ste
[
ν2

1h
(α + 1) + 2

Biν1h (α + 1) + 3
] , (4.9)

where ν1h is a solution to the following equation:

z2α+4(−3)22α+1(α − 2) + z2α+3(−3)
22α

Bi
(5α − 7) + z2α+2(−3)22α+1

(
α − 2

Bi2
+ 3

)
+ z2α+1(−9)

22α

Bi
+ zα+4(−3)2αSte(α − 3)(α + 1) + zα+3(−3)

2α+1

Bi
Ste(α − 1)(α + 1)

+ zα+2(−3)2α+1Ste(α + 7) + zα+13
2α+1

Bi
Ste(α − 5) + zα9 2αSte + z42Ste2(1 + α)2

+ z2(−12)Ste2(α + 1) + 18Ste2 = 0, z > 0. (4.10)
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Proof It can be easily checked that the chosen profile (4.6) verifies condition (1.1c). In addition,
we have

∂T1h

∂x
(x, t) = −tα/2θ∞

[
A1h

s1h (t)
+ 2B1h

s1h (t)

(
1 − x

s1h(t)

)]
,

and

∂2T1h

∂x2
(x, t) = tα/2θ∞

2B1h

s2
1h

(t)
.

In virtue of condition (1.1d�), the following equality holds:

k

γ sα
1h

(t)
tαθ2

∞
A2

1h

s2
1h(t)

= a2tα/2θ∞
2B1h

s2
1h

(t)
.

Consequently,

s1h(t) =
(

A2
1h

2B1h

kθ∞
γ a2

)1/α √
t.

Defining ν1h such that ν1h = 1
2a

(
A2

1h
2B1h

kθ∞
γ a2

)1/α

, we conclude that

s1h(t) = 2aν1h

√
t, (4.11)

where ν1h is an unknown that is related with A1h and B1h in the following way:

A2
1h

= 2α+1να

1h

Ste
B1h . (4.12)

Then, condition (1.1a�) leads to

A1h

[
(α + 1)ν2

1h
− 1
]
+ B1h

[
2

3
(α + 1)ν2

1h
− 2

]
= −2α+1

Ste
ν1h . (4.13)

In addition, according to (1.1b�), we have

A1h

(
1 + 2Bi ν1h

)+ 2B1h

(
1 + Bi ν1h

)= 2Bi ν1h . (4.14)

Thus, we have obtained three equations (4.12), (4.13) and (4.14), for the three unknown
coefficients A1h , B1h and ν1h .

From (4.13) and (4.14), we obtain that A1h and B1h are given by (4.8) and (4.9), respectively.
Then, equation (4.12) leads to ν1h as a positive solution to equation (4.10). If we denote by

ω1h = ω1h (z) the left-hand side of equation (4.10), we have

ω1h (0) = 18 Ste2 > 0 (4.15)

and

ω1h (1) = −α2
(
3 2α − 2Ste + 3

Bi 2
α+1
)

Ste − 2α
(
3 4α + 4Ste2 + 21

Bi 2
α−1 − 3

Bi 2
αSte

)
− 2

(
3 4α + 3 22+αSte − 4Ste2

)+ 3
Bi

(
22α+3 − 23+αSte

)
. (4.16)
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It can be noticed that if 0 < Ste < 1 and α � 0, we have

3 2α − 2Ste + 3

Bi
2α+1 > 0,

3 4α + 3 22+αSte − 4Ste2 > 0,

and

3 4α + 4Ste2 + 21

Bi
2α−1 − 3

Bi
2αSte = 3 4α + 4Ste2 + 3

Bi
2α

(
7

2
− Ste

)
> 0.

As 22α+3 − 23+αSte = 2α23(2α − Ste) > 0, there exists a large enough Bi that makes ω1h (1) < 0.
In consequence, there will exists at least one solution to equation (4.10).

With the aim of testing the accuracy of the classical HBIM and taking into account that the
exact free boundary sh(t) = 2aνh

√
t and the approximate one is given by s1h(t) = 2aν1h

√
t we are

going to compare graphically only the coefficients νh with ν1h for different values of Bi and α,
fixing Ste = 0.5 (see Figure 10).

The modified integral balance method defines a new approximated problem for (Ph) that will
be called as problem (P2h ) and which consists in finding the free boundary s2h = s2h (t) and the
temperature T2h = T2h (x, t) in 0 < x < s2h(t) such that equations (1.1a�), (1.1b�) and (1.1c)–(1.1e)
are satisfied.

Once again assuming a quadratic profile in space as (2.2) for the temperature T2h , we can state
the following results.

Theorem 4.2 Given Ste > 0 and α � 0, there exists a unique solution to the problem (P2 ) which
is given by

T2h (x, t) = tα/2

[
A2hθ∞

(
1 − x

s2h(t)

)
+ B2hθ∞

(
1 − x

s2h (t)

)2
]

, (4.17)

s2h (t) = 2aν2h

√
t, (4.18)

https://doi.org/10.1017/S0956792520000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000170


Approximate solutions to one-phase Stefan-like problems 355

where the constants A2h and B2h are given by

A2h = 6Ste − 2Ste ν2
2h

(α + 1) − 3
Bi 2

α+1να+1
2h

− 3 2α+1να+2
2h

Ste
[
ν2

2h
(α + 1) + 2

Biν2h (α + 1) + 3
] , (4.19)

B2h = −3Ste + 3Ste ν2
2h

(α + 1) + 3
Bi 2

ανα+1
2h

+ 3 2α+1να+2
2h

Ste
[
ν2

2h
(α + 1) + 2

Biν2h (α + 1) + 3
] , (4.20)

and where the coefficient ν2h is the unique solution to the following equation:

zα+42α(α + 1) + zα+3 2α+1

Bi (α + 1) + zα+23 2α+1

+ zα+13 2α

Bi + z2Ste(α + 1) − 3Ste = 0, z > 0. (4.21)

Proof It is clear immediate that the chosen profile temperature leads the condition (1.1c) to be
automatically verified. From condition (1.1d), we obtain

−ktα/2θ∞
A2h

s2h (t)
= −γ sα

2h
(t)ṡ2h(t). (4.22)

Therefore,

s2h (t) =
(

(α + 2)

( α
2 + 1)

kθ∞
γ

A2h

)1/(α+2) √
t. (4.23)

Introducing the new coefficient ν2h such that ν2h = 1
2a

(
(α+2)
( α

2 +1)
kθ∞
γ

A2h

)1/(α+2)
, the free boundary

can be expressed as

s2h (t) = 2a ν2h

√
t, (4.24)

where the following equality holds:

A2h = 2α+1να+2
2h

Ste
. (4.25)

The convective boundary condition at x = 0, i.e. condition (1.1b�), leads to

A2h (1 + 2Bi ν2h ) + 2B2h (1 + Bi ν2h ) = 2Bi ν2h . (4.26)

In addition, from (1.1a�) it results that

A2h

(
(α + 1)ν2

2h
− 1
)

+ B2h

(
2
3 (α + 1)ν2

2h
− 2
)

= −2α+1να+2
2h

Ste . (4.27)

Taking into account equations (4.25)–(4.27), we obtain that A2h and B2h can be given as functions
of ν2h through formulas (4.19) and (4.20), respectively. Moreover, we get that ν2h must be a
solution to equation (4.21). To finish the proof, it remains to show that We shall notice first that
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FIGURE 11. Plot of νh and ν2h against Bi for α = 1 or 5 and Ste = 0.5.

(4.21) has a unique positive solution. If we define the function w2h = w2h (z) as the left-hand side
of equation (4.21), we have that

w2h (0) = −3Ste < 0, w2h (+∞) = +∞,
dw2h

dz
(z) > 0, ∀z > 0.

So we conclude that w2h has a unique positive root.

In what follows, we will show that the unique solution to the problem (P2h ) converges to the
unique solution to the problem (P2 ) when h → ∞.

Theorem 4.3 The solution to problem (P2h ) given in Theorem 4.2 converges to the solution to
problem (P2 ) given by Theorem 3.5 when the coefficient h, which characterises the heat transfer
in the fixed boundary, goes to infinity.

Proof The free boundary of the problem (P2h ) is characterised by a dimensionless coefficient
ν2h which is the unique positive root of the function ω2h = ω2h (z) defined as the left-hand side
of equation (4.21). On the one hand, we can notice that if h1 < h2 then ω2h1 (z) > ω2h2 (z) and
consequently their unique positive root verify ν2h1

< ν2h2
.

On the other hand, if we define ω2 = ω2 (z) as the left-hand side of equation (3.23), we get

ω2h (z) − ω2 (z) = zα+3 2α+1

Bi
(α + 1) + zα+13

2α

Bi
> 0, ∀z > 0.

Therefore, {νh}h is increasing and bounded from above by ν.
In addition, it is easily seen that when h → ∞, or equivalently when Bi → ∞, we obtain

ω2h → ω2 and so ν2h → ν2 . Therefore, it is obtained that s2h (t) → s2 (t), for every t > 0. Showing
that A2h → A2 and B2h → B2 we get T2h (x, t) → T2 (x, t) when h → ∞ for every t > 0 and 0 < x <

s2 (t).

In Figure 11, we compare graphically, for different values of Bi >1, the coefficient ν2h that
characterises the free boundary s2h with the coefficient νh that characterises the exact free
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boundary sh, for different values of α, fixing Ste = 0.5. We shall notice that when the Bi increases
then the value of ν2h gets closer to the value of ν2 .

Lastly, we will turn to the RIM applied to problem (Ph). We define a new approximate problem
(P3h ) which consists in finding the free boundary s3h = s3h (t) and the temperature T3h = T3h (x, t)
in 0 < x < s3h(t) such that equations (1.1a†), (1.1b�) and (1.1c)–(1.1e) are verified.

Provided that T3h adopts a profile like (2.2), we state the following theorem.

Theorem 4.4 Let 0 < Ste < 1, α � 0 and Bi � 0, then there exists a unique solution to problem
(P3h ) which is given by

T3h (x, t) = tα/2

[
A3hθ∞

(
1 − x

s3h (t)

)
+ B3hθ∞

(
1 − x

s3h(t)

)2
]

, (4.28)

s3h(t) = 2aν3h

√
t, (4.29)

where the constants A3h and B3h are defined by

A3h =
12ν3h

(
1 − ν2

3h

(
α
2 + 1

3

))
2αν3

3h
+ ( 5α+2

Bi

)
ν2

3h
+ 6

Bi + 12ν3h

, (4.30)

B3h = 12ν3
3h

(
2
3α + 1

3

)
2αν3

3h
+ ( 5α+2

Bi

)
ν2

3h
+ 6

Bi + 12ν3h

, (4.31)

and where ν3h is the unique solution to the following equation:

zα+42α+1α + zα+3
(

2α (2+5α)
Bi

)
+ zα+23 2α+2 + zα+1 3 2α+1

Bi

+ z2Ste(2 + 3α) − 6Ste = 0, z > 0. (4.32)

Proof The proof is similar to the one given in Theorem 4.2. The only difference lies in the fact
that equation (1.1a†) is equivalent to

ν2
3h

[
A3h

(
1
3 + 2

3α
)+ B3h

(
1
3 + α

2

)]= B3h . (4.33)

The approximated problem (P3h ) obtained when applying the RIM verifies the same conver-
gence property than the exact problem (Ph).

Theorem 4.5 The unique solution to problem (P3h ) given by Theorem 4.4 converges to the
unique solution to problem (P3 ), given by Theorem 3.6, when the coefficient that characterises
the heat transfer at the fixed face h goes to infinity.

Proof The proof is analogous to the proof given in Theorem 4.3.
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FIGURE 12. Plot of νh and ν3h against Bi for α = 1 or 5 and Ste = 0.5.

In Figure 12, we compare graphically, for different values of Bi > 1, the coefficient ν3h that
characterises the approximate free boundary s3h with the coefficient νh corresponding to the exact
free boundary sh, for different values of α fixing Ste = 0.5. Once again, as Bi increases, the value
ν3h becomes closer to the value ν3 .

4.3 Comparisons between the approximate solutions and the exact one

In this section, we are going to compare the exact solution to the problem with a convective
condition at the fixed face (Ph) with the approximate solutions obtained by applying the integral
balance methods proposed in the previous sections.

For each method, we have defined a new problem (P
ih

), i = 1, 2, 3 and we have compared
graphically the coefficient ν

ih
that characterises each free boundary s

ih
, with the coefficient νh

that corresponds to the exact free boundary sh.
The goal is to compare numerically the coefficient νh given by (4.5) with the approximate

coefficients ν1h , ν2h and ν3h given by (4.10), (4.21) and (4.32), respectively.
In order that the comparisons be more representative, in Tables 4–6 we show the exact

value νh, the approximate value ν
ih

and the percentage error committed in each case E(ν
ih

) =
100

∣∣∣ νh−νih
νh

∣∣∣, i = 1, 2, 3 for different values of Bi and α fixing Ste = 0.5.

From the above tables, we can deduce that for α = 0.5, the percentage error committed is
smaller than for the other cases. In all cases, as it happened with the problem (P), the method
with best accuracy for approximating the problem (Ph) is the modified integral method, i.e. the
best approximate problem is given by (P2h ).

We can also compare the exact temperature Th with the approximate ones T
ih

, i = 1, 2, 3, given
by (4.6), (4.17) and (4.28), respectively. In Figures 13–16, we show a colour map for α = 5,
Ste = 0.5, θ∞ = 30, a = 1.
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Table 4. Dimensionless coefficients of the free boundaries and their percentage relative error
for α = 0 and Ste = 0.5

Bi νh ν1h Erel(ν1h ) (%) ν2h Erel(ν2h ) (%) ν3h Erel(ν3h ) (%)

1 0.2926 0.2966 1.3828 0.2937 0.3939 0.2899 0.9103
10 0.4422 0.4681 5.8548 0.4484 1.4111 0.4545 2.7969
20 0.4533 0.4776 5.3525 0.4602 1.5151 0.4672 3.0744
30 0.4571 0.4807 5.1622 0.4642 1.5514 0.4716 3.1679
40 0.4590 0.4822 5.0628 0.4662 1.5699 0.4738 3.2148
50 0.4601 0.4832 5.0019 0.4674 1.5811 0.4751 3.2430
60 0.4609 0.4838 4.9606 0.4682 1.5886 0.4759 3.2618
70 0.4615 0.4842 4.9309 0.4688 1.5940 0.4766 3.2752
80 0.4619 0.4845 4.9085 0.4693 1.5980 0.4771 3.2853
90 0.4622 0.4848 4.8909 0.4696 1.6012 0.4774 3.2932
100 0.4625 0.4850 4.8768 0.4699 1.6037 0.4777 3.2994

Table 5. Dimensionless coefficients of the free boundaries and their percentage relative error
for α = 5 and Ste = 0.5

Bi νh ν1h Erel(ν1h ) (%) ν2h Erel(ν2h ) (%) ν3h Erel(ν3h ) (%)

1 0.3274 0.3293 0.5908 0.3280 0.1779 0.3160 3.4746
10 0.4459 0.4551 2.0484 0.4480 0.4543 0.4474 0.3370
20 0.4553 0.4631 1.7173 0.4574 0.4798 0.4583 0.6724
30 0.4585 0.4657 1.5912 0.4607 0.4886 0.4621 0.7874
40 0.4601 0.4671 1.5250 0.4623 0.4931 0.4640 0.8456
50 0.4610 0.4679 1.4844 0.4633 0.4958 0.4651 0.8807
60 0.4617 0.4684 1.4569 0.4640 0.4976 0.4659 0.9042
70 0.4622 0.4688 1.4370 0.4645 0.4989 0.4664 0.9210
80 0.4625 0.4691 1.4220 0.4648 0.4999 0.4668 0.9336
90 0.4628 0.4693 1.4103 0.4651 0.5006 0.4672 0.9434
100 0.4630 0.4695 1.4009 0.4653 0.5012 0.4674 0.9513

Table 6. Dimensionless coefficients of the free boundaries and their percentage relative error
for α = 0.5 and Ste = 0.5

Bi νh ν1h Erel(ν1h ) (%) ν2h Erel(ν2h ) (%) ν3h Erel(ν3h ) (%)

1 0.4073 0.3834 5.8702 0.4005 1.6647 0.3730 8.4069
10 0.4569 0.4170 8.7307 0.4437 2.8806 0.4259 6.7799
20 0.4616 0.4203 8.9507 0.4476 3.0301 0.4315 6.5196
30 0.4632 0.4214 9.0256 0.4489 3.0845 0.4335 6.4217
40 0.4641 0.4220 9.0633 0.4496 3.1126 0.4345 6.3703
50 0.4646 0.4224 9.0861 0.4501 3.1298 0.4351 6.3387
60 0.4649 0.4226 9.1012 0.4503 3.1414 0.4356 6.3173
70 0.4652 0.4228 9.1121 0.4505 3.1497 0.4359 6.3018
80 0.4654 0.4229 9.1203 0.4507 3.1560 0.4361 6.2901
90 0.4655 0.4230 9.1266 0.4508 3.1609 0.4363 6.2809
100 0.4656 0.4231 9.1317 0.4509 3.1649 0.4364 6.2736

https://doi.org/10.1017/S0956792520000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000170


360 J. Bollati and D. A. Tarzia

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

Position x (m)

Ti
m

e 
t (

s)

0

5

10

15

20

FIGURE 13. Colour map for Th.
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FIGURE 15. Colour map for T2h .
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FIGURE 16. Colour map for T3h .

5 Minimising the least-squares error in the HBIM

In this section, we are going to analyse the least-squares error that we commit when assuming a
quadratic profile in space. If we have an approximate solution for the heat equation given by T̂ ,
ŝ such that

T̂(x, t) = tα/2θ∞

[
Â

(
1 − x

ŝ(t)

)
+ B̂

(
1 − x

ŝ(t)

)2
]

, (5.1)

with adequate coefficients Â, B̂ and ŝ, then we can measure how far we are from the heat equation
by computing the least-squares error (see [19]) given by

E =
ŝ(t)∫
0

(
∂T̂

∂t
(x, t) − a2 ∂2T̂

∂x2
(x, t)

)2

dx (5.2)

Taking into account that

∂T̂

∂t
(x, t) = α

2
tα/2−1θ∞

[
Â

(
1 − x

ŝ(t)

)
+ B̂

(
1 − x

ŝ(t)

)2
]

+ tα/2
˙̂s(t)

ŝ2(t)
xθ∞

[
Â + 2B̂

(
1 − x

ŝ(t)

)]
(5.3)

and

∂2T̂

∂x2
(x, t) = tα/2 2B̂θ∞

ŝ2(t)
, (5.4)

https://doi.org/10.1017/S0956792520000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000170


362 J. Bollati and D. A. Tarzia

we get

E = α2

4 θ2
∞ tα−2

(
Â2

3 + ÂB̂
2 + B̂2

5

)
+ tαθ2

∞
˙̂s2(t)
ŝ2(t)

(
Â2

3 + ÂB̂
3 + 2B̂2

15

)
+ 4tαa4θ2

∞
B̂2

ŝ4(t)
+ αθ2

∞ tα−1 ˙̂s(t)
ŝ(t)

(
Â2

6 + ÂB̂
4 + B̂2

10

)
− 2αa2θ2

∞ tα−1 B̂
ŝ2(t)

(
Â
2 + B̂

3

)
− 4a2θ2

∞ tα
˙̂s(t)

ŝ3(t)
B̂
(

Â
2 + B̂

3

)
. (5.5)

In case that the free boundary ŝ(t) = 2aξ
√

t with ξ > 0, by simple computations, the least-squares
error becomes E = E(ξ ), given by the following expression:

E(ξ ) = tα−2 θ2∞
ξ4

[
ξ4

4

(
α2
(

Â2

3 + ÂB̂
2 + B̂2

5

)
+ 2α

(
Â2

6 + ÂB̂
4 + B̂2

10

)
+ Â2

3 + ÂB̂
3 + 2B̂2

15

)
− ξ2

2 B̂(α + 1)
(

Â
2 + B̂

3

)
+ B̂2

4

]
. (5.6)

Let us then define a new approximate problem (P4 ) for the problem (P) that consists in finding
the free boundary s4 = s4 (t) and the temperature T4 = T4 (x, t) in the domain 0 < x < s4 (t) given
by the profile (5.1) such that they minimise the least-squares error (5.5) subject to the conditions
(1.1b), (1.1c), (1.1d) and (1.1e).

Theorem 5.1 If a free boundary s4 and a temperature T4 constitute a solution to problem (P4 )
then they are given by the expressions

T4 (x, t) = tα/2θ∞

[
A4

(
1 − x

s4 (t)

)
+ B4

(
1 − x

s4 (t)

)2
]

, (5.7)

s4 (t) = 2aν4

√
t, (5.8)

where the constants A4 and B4 are defined as a function of ν4 as

A4 = 2α+1να+2
4

Ste
, B4 = 1 − 2α+1να+2

4

Ste
, (5.9)

and where ν4 > 0 must minimise for every t > 0, the function

E(ξ ) = tα−2θ2
∞

60Ste2

p(ξ )

ξ 4
, ∀t > 0 (5.10)

with

p(ξ ) = ξ 8+2α22α+1(α2 + α + 4) + 5 ξ 2α+622α+2(1 + α) + 15 ξ 2α+422α+2

+ ξα+62αSte(2 + 3α + 3α2) + 5 ξα+42α+1Ste(1 + α)

− 15 ξ 2+α2α+22α+2Ste + ξ 4Ste2(2 + 3α + 3α2)

− 10ξ 2Ste2(1 + α) + 15Ste2. (5.11)

Proof Provided that T4 adopts a quadratic profile in space given by (5.7), then the condition
(1.1c) holds immediately and the Stefan condition (1.1d) becomes equivalent to

−ktα/2θ∞
A4

s4 (t)
= −γ sα

4
(t)ṡ4 (t). (5.12)
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Then

s4 (t) =
(

(α + 2)

( α
2 + 1)

kθ∞
γ

A4

)1/(α+2) √
t. (5.13)

Introducing ν4 = 1
2a

(
(α+2)
( α

2 +1)
kθ∞
γ

A4

)1/(α+2)
, the free boundary becomes

s4 (t) = 2a ν4

√
t, (5.14)

and

A4 = 2α+1να+2
4

Ste
. (5.15)

In addition, from the boundary condition at the fixed face (1.1b) we get

A4 + B4 = 1. (5.16)

Then we obtain formulas (5.9) for the coefficients A4 and B4 . Finally, as the free boundary s4

is defined by (5.14), we have to minimise the least-squares error E given by (5.6). In addition,
replacing A4 and B4 by the formulas given in (5.9), we get that ν4 must minimise (5.10).

Corollary 1 For the classical Stefan problem, i.e. for the case α = 0, we get that problem (P4 )
has a unique solution given by

T (0)
4

(x, t) = θ∞

⎡⎣A(0)
4

(
1 − x

s(0)
4

(t)

)
+ B(0)

4

(
1 − x

s(0)
4

(t)

)2
⎤⎦ , (5.17)

s(0)
4

(t) = 2aν(0)
4

√
t, (5.18)

where the superscript (0) makes reference to the value of α = 0 and the constants A(0)
4

and B(0)
4

are defined as a function of ν(0)
4

as

A(0)
4

= 2(ν(0)
4

)2

Ste
, B4 = 1 − 2(ν(0)

4
)2

Ste
(5.19)

being ν(0)
4

> 0 the value where the function E(0) attains its minimum

E(0)(ξ ) = t−2θ2
∞

60Ste2

p(0)(ξ )

ξ 4
, ∀t > 0 (5.20)

with

p(0)(ξ ) = 8ξ 8 + 2(10 + Ste)ξ 6 + 2(30 + 5Ste + Ste2)ξ 4

− 10Ste(6 + Ste)ξ 2 + 15Ste2 (5.21)

In addition, ν(0)
4

can be obtained as the unique positive root of the following real polynomial

r(ξ ) = 32ξ 8 + 4(10 + Ste)ξ 6 + 20Ste(6 + Ste)ξ 2 − 60Ste2. (5.22)
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Table 7. Dimensionless coefficients of the free boundaries and their percentage relative error
for α = 0

Ste ν ν2 Erel(ν2 ) (%) ν4 Erel(ν4 ) (%)

0.1 0.2200 0.2209 0.3947 0.2209 0.3855
0.2 0.3064 0.3087 0.7499 0.3086 0.7168
0.3 0.3699 0.3738 1.0707 0.3736 1.0040
0.4 0.4212 0.4270 1.3618 0.4265 1.2551
0.5 0.4648 0.4723 1.6266 0.4716 1.4762
0.6 0.5028 0.5122 1.8683 0.5112 1.6722
0.7 0.5365 0.5477 2.0895 0.5464 1.8470
0.8 0.5669 0.5799 2.2923 0.5783 2.0037
0.9 0.5946 0.6094 2.4786 0.6074 2.1449
1.0 0.6201 0.6365 2.6500 0.6342 2.2727

Remark 5.2 Due to formula (5.20), we have that the error we commit when approximating with
problem (P4 ) for the case α = 0 is inversely proportional to the square of time, i.e. E(0) ∝ 1/t2.

Proof From Theorem 5.1, we need to minimise the function E(ξ ) given by (5.10) for the case
α = 0. So, it is clear evident that we need to minimise the function E(0)(ξ ) given by (5.20) which

is equivalent to minimise the function F(0)(ξ ) = p(0)(ξ )
ξ4 . Therefore, let us show that F(0) has a

unique positive value where the minimum is attained. Observe that F(0) is a continuous function
in R

+. Moreover if we compute its derivative, we obtain

F′(0)(ξ ) = r(ξ )

ξ 5

with r given by (5.22). As r is a polynomial that verifies r(0) = −60Ste2 < 0, r(+∞) = +∞, and
r′(ξ ) > 0, ∀ξ > 0, we obtain that there exists a unique value ξ0 > 0 such that r(ξ0) = 0. In addition,
we can assure that r(ξ ) < 0, for every ξ < ξ0 and r(ξ ) > 0, for every ξ > ξ0. Consequently, we
have

F′(0)(ξ ) < 0, ∀ξ < ξ0, F′(0)(ξ0) = 0, F′(0)(ξ ) > 0, ∀ξ > ξ0.

We can conclude that F(0) decreases in (0, ξ0) and increases in (ξ0, +∞). This means that F(0) has
a unique minimum that is attained at ξ0. Calling ν(0)

4
= ξ0, we get that ν(0)

4
is the unique positive

root of r and minimises the error function E(0).

Taking into account the last result we show in Table 7 the coefficient ν that characterises the
exact free boundary of problem (P), the approximate coefficient ν2 obtained by the modified
integral balance method (which until now was the most accurate technique) and the coefficient
ν4 defined by the Corollary 1 for different values of Ste numbers. Computing also the percentage
relative error committed in each case we assure that the approximate problem (P4) is the best
approximation we can obtain adopting a quadratic profile in space for the temperature.

In a similar way, we can define a new approximate problem (P4h ) for the problem (Ph) that
consists in finding the free boundary s4h = s4h(t) and the temperature T4h = T4h (x, t) in 0 < x <
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s4h (t) given by the profile (5.1) such that they minimise the least-squares error (5.5) subject to
the conditions (1.1b�) and (1.1c)–(1.1e).

Theorem 5.3 If a free boundary s4h and a temperature T4h constitute a solution to problem (P4h )
then they are given by the expressions:

T4h (x, t) = tα/2θ∞

[
A4h

(
1 − x

s4h (t)

)
+ B4h

(
1 − x

s4h(t)

)2
]

, (5.23)

s4h(t) = 2aν4h

√
t, (5.24)

where the constants A4h and B4h are defined as a function of ν4h as

A4h = 2α+1να+2
4h

Ste
, B4h = 2Bi ν4h − A4h (1 + 2Bi ν4h )

2(1 + Bi ν4h )
(5.25)

and where ν4h > 0 must minimise for every t > 0, the real function:

Eh (ξ ) = tα−2θ2
∞

60 Ste2( 1
Bi + ξ )2

·{
p(ξ ) + 1

Bi

[
22α
(
7α2 + 7α + 18

)
x2α+7 + 25 22α+1(α + 1)x2α+5,

+ 2α
(
9α2 + 9α + 6

)
Stexα+5 + 15 22α+2x2α+3

−5 2α+1(α + 1)Ste xα+3 − 15 2α+1Ste xα+1
]

+ 1

Bi2
[
4α+1

(
2α2 + 2α + 3

)
x2α+6 + 5 4α+1(α + 1)x2α+4 + 15 4αx2α+2

]}
(5.26)

with p(ξ ) given by formula (5.11).

Proof It is clear immediate that the chosen profile temperature leads the condition (1.1c) to be
automatically verified. From condition (1.1d), we obtain

−ktα/2θ∞
A4h

s4h (t)
= −γ sα

4h
(t)ṡ4h(t). (5.27)

Therefore,

s4h (t) =
(

(α + 2)

( α
2 + 1)

kθ∞
γ

A4h

)1/(α+2) √
t. (5.28)

Introducing the new coefficient ν4h such that ν4h = 1
2a

(
(α+2)
( α

2 +1)
kθ∞
γ

A4h

)1/(α+2)
, the free boundary

can be expressed as

s4h (t) = 2a ν4h

√
t, (5.29)

where the following equality holds:

A4h = 2α+1να+2
4h

Ste
. (5.30)

https://doi.org/10.1017/S0956792520000170 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792520000170


366 J. Bollati and D. A. Tarzia

The convective boundary condition at x = 0, i.e. condition (1.1b�), leads to

A4h (1 + 2Bi ν4h ) + 2B4h (1 + Bi ν4h ) = 2Bi ν4h . (5.31)

Therefore, we obtain the formulas given in (5.25). Replacing A4h , B4h and s4h for their expres-
sions in function of ν4h , minimising the least-squares error (5.5) is equivalent to minimising
(5.26) (obtained by Mathematica software).

Corollary 2 For the classical Stefan problem, i.e. for the case α = 0, we get that if Bi > 1√
12

and Ste < 1
2Bi2

, then (P4h ) has a unique solution given by

T (0)
4h

(x, t) = θ∞

⎡⎢⎣A(0)
4h

⎛⎝1 − x

s(0)
4h

(t)

⎞⎠+ B(0)
4h

⎛⎝1 − x

s(0)
4h

(t)

⎞⎠2
⎤⎥⎦ , (5.32)

s(0)
4h

(t) = 2aν(0)
4h

√
t, (5.33)

where the superscript (0) makes reference to the value of α = 0 and the constants A(0)
4h

and B(0)
4h

are defined as a function of ν(0)
4h

as

A(0)
4h

= 2(ν(0)
4h

)2

Ste
, B(0)

4h
= 2Bi ν(0)

4h
− A(0)

4h
(1 + 2Biν(0)

4h
)

2(1 + ν
(0)
4h Bi)

, (5.34)

being ν(0)
4h

> 0 the value where the function E(0)
h attains its minimum

E(0)
h (ξ ) = t−2θ2

∞
60Ste2x2( 1

Bi + x)2

{
p(0)(ξ ) + 1

Bi

[
2x(9x6 + (3Ste + 25)x4

+ 5(6 − Ste)x2 − 15Ste)
]+ 1

Bi2
x2(12x4 + 20x2 + 15)

}
, (5.35)

where p(0) is given by (5.21). Moreover, ν(0)
4h

can be obtained as the unique positive root of the
following polynomial:

rh(ξ ) = 16Bi3ξ 9 + 51Bi2ξ 8 + ξ 7
(
2Bi3Ste + 20Bi3 + 57Bi

)
+ ξ 6

(
7Bi2Ste + 65Bi2 + 24

)
+ Bi(3Ste + 25)ξ 5 + ξ 4

(
Bi2
(
2Ste2 + 15Ste + 30

)+ 20
)

+ 5Bi(3 + (−1 + 12Bi2)Ste + 2Bi2Ste2)ξ 3 + 45Bi2Steξ 2

+ 15BiSte(1 − 2Bi2Ste)ξ − 15Bi2Ste2. (5.36)

Proof When we replace α = 0 in Theorem 5.3, we immediately obtain the formulas (5.34) and
(5.35). In order to prove that there exists a unique value that minimises the least-squares error,
we compute E′

h(ξ ) and we get that E′
h(ξ ) = θ∞

30Ste2t2ξ3(Biξ+1)3 rh(ξ ) with rh given by (5.36). We can

observe that rh(0) < 0, rh(+∞) = +∞, r′
h > 0 under the hypothesis that Bi > 1√

12
and Ste < 1

2Bi2
.

Therefore, we can assure that there exists a unique ξh0 such that rh(ξh0 ) = 0. In addition, we
have that rh(ξ ) < 0, ∀ξ < ξh0 and rh(ξ ) > 0, ∀ξ > ξh0 . Then we get that Eh(ξ ) decreases ∀ξ < ξh0
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Table 8. Coefficients of the free boundaries and their percentage relative error for α = 0 and
Ste = 0.02

Bi νh ν2h Erel(ν2h ) (%) ν4h Erel(ν4h ) (%)

1.0000 0.0193 0.0193 0.0002 0.0193 0.0002
2.0000 0.0350 0.0350 0.0023 0.0350 0.0022
3.0000 0.0468 0.0468 0.0066 0.0468 0.0064
4.0000 0.0553 0.0553 0.0120 0.0553 0.0117
5.0000 0.0617 0.0617 0.0175 0.0617 0.0172

Table 9. Coefficients of the free boundaries and their percentage relative error for α = 0 and
Ste = 0.02

Bi νh ν2h Erel(ν2h ) (%) ν4h Erel(ν4h ) (%)

1 0.2926 0.2937 0.3939 0.2933 0.2600
10 0.4422 0.4484 1.4111 0.4477 1.2478
20 0.4533 0.4602 1.5151 0.4595 1.3576
30 0.4571 0.4642 1.5514 0.4635 1.3962
40 0.4590 0.4662 1.5699 0.4655 1.4158
50 0.4601 0.4674 1.5811 0.4667 1.4277
60 0.4609 0.4682 1.5886 0.4675 1.4357
70 0.4615 0.4688 1.5940 0.4681 1.4414
80 0.4619 0.4693 1.5980 0.4686 1.4457
90 0.4622 0.4696 1.6012 0.4689 1.4491
100 0.4625 0.4699 1.6037 0.4692 1.4518

and increases ∀ξ > ξh0 . Consequently, we obtain that ξh0 constitutes the unique minimum of the
least-squares error.

In view of the above result, in Table 8, for α = 0 we compare the coefficient νh that charac-
terises the exact free boundary problem with the coefficient ν2h corresponding to the modified
integral method, which was until now the most accurate, and we also compare with the coefficient
ν2h obtained when minimising the least-squares error. We fix Ste = 0.02 and vary Bi between 1
and 5. The value of this parameters are chosen in order to verify the hypothesis of Corollary 2.
By computing the percentage relative error of each method, we conclude that the approximate
problem (P4h) gives us the best approximate solution to problem (Ph).

In case we decide to use the formula (5.36) to compute ν4h without satisfying the hypothesis
of the Corollary 2, fixing Ste = 0.5 and varying Bi from 1 to 100 we get the results shown in
Table 9.

6 Conclusions

In this paper, we have studied different approximate methods for one-dimensional one-phase
Stefan problems where the main feature consists in taking a space-dependent latent heat. We
have considered two different problems that differ from each other in their boundary condition
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at the fixed face x = 0: Dirichlet or Robin condition. We have implemented the classical HBIM,
a modified integral method and the RIM. Exploiting the knowledge of the exact solution of both
problems (available in literature), we have studied the accuracy of the different approximations
obtained. All the analysis have been carried out using dimensionless parameters like Ste and Bi.
Furthermore, we have studied the case when Bi goes to infinity in the problem with a convective
condition, recovering the approximate solutions when a temperature condition is imposed at
the fixed face. We provided some numerical simulations and we have concluded that, in the
majority of cases, the modified integral method is the most reliable in terms of accuracy. When
approaching by the minimisation of the least-squares error, we get better approximations but
only for the case α = 0 (where we could prove existence and uniqueness of solution). The least
accurate method was the classical HBIM, not only to the high percentage error committed but
also because we could not obtain a result that assures uniqueness of the approximate solution.
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