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Abstract

We have performed extensive one dimensional particle-in-cell (PIC) simulations to explore generation of electrostatic
waves driven by two-stream instability (TSI) that arises due to the interaction between two symmetric counterstreaming
electron beams. The electron beams are considered to be cold, collisionless and magnetic-field-free in the presence of
neutralizing background of static ions. Here, electrons are described by the non-extensive q-distributions of the Tsallis
statistics. Results shows that the electron holes structures are different for various q values such that: (i) for q> 1
cavitation of electron holes are more visible and the excited waves were more strong (ii) for q< 1 the degree of
cavitation decreases and for q= 0.5 the holes are not distinguishable. Furthermore, time development of the velocity
root-mean-square (VRMS) of electrons for different q-values demonstrate that the maximum energy conversion is
increased upon increasing the non-extensivity parameter q up to the values q> 1. The normalized total energy history
for a arbitrary entropic index q= 1.5, approves the energy conserving in our PIC simulation.
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1. INTRODUCTION

It is well-known that the two-stream instability (TSI) occurs in
a conservative system and from this point of view this instabil-
ity is a general class of reactive instabilities (Hasegawa, 1968)
that arise due to the interaction between cold electron beams.
TSI is a very common instability in plasma physics (Krall &

Trivelpiece, 1973; Chen, 1994). An examination of this in-
stability was investigated by means of a graphical solution of
the dispersion relation (Jackson, 1960) and also behavior of op-
posing streams using numerical simulations (Dawson, 1962).
This instability can be generated by two counterstreaming
beams, by an energetic particle stream injected into a plasma,
or setting a current along the plasma where different species
(ions and electrons) can have different drift velocities. In all
of the aforementioned examples, the energy of particles can
be transferred into the plasma wave excitation. However the
TSI has been first studied by a macroscopic moment equation
(Haeff, 1949; Pierce, 1948), the complete analytical and

numerical investigations have already been detailed in the
past decade (Lapenta et al., 2007; Dieckmann et al., 2006). Ac-
cording to that this instability is relevant to different areas of
science, the subject has been constantly studied in a variety
of situations (Startsev & Davidson, 2006; Silin et al., 2007;
Haas et al., 2009; Zeba et al., 2012; Startsev et al., 2014).

We know that in the standard assumption of statistical
mechanic with Boltzmann-Gibbs (BG) statistics the thermo-
dynamic quantities like energy are “extensive,” meaning that
these quantities are proportional to their size V or to the
number of particles N. Actually, in the short-range nature
of the interactions which hold matter together, this is justi-
fied. But if anyone deals with systems with long-range inter-
actions, most prominently gravity and Coulomb electric
forces, it is clear that energy is not extensive. This makes
hard the life of statistical mechanic.

The necessity of modification of the BG statistics, to
achieve a successful model valid for long-range interaction,
had been an important challenge among the scientists. A
first suitable non-extensive generalization of the BG entropy
for statistical equilibrium was reorganized by Renyi (1955),
and Tsallis (1988) proposed it subsequently. In Tsallis
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statistics, correlations between particles play an important
role in the fluctuations of the energy whose magnitude is
much smaller than that in Boltzmann statistics (Feng &
Liu, 2010). Tsallis (2002) formulated a non-extensive entro-
py with an entropic index q. In Tsallis formulation, the stan-
dard statistical mechanics is recovered for q→ 1 and the
super-extensivity, extensivity or sub-extensivity correspond
to q< 1, q= 1 or q> 1, respectively.
In the last few years, an increasing attention has been paid

to Tsallis statistics. For instance, non-extensive statistics has
been used to analyze the subjects such as energy fluctuations
(Liyan & Jiulin, 2008) Landau damping of dust acoustic
waves (Liu et al., 2012) and longitudinal oscillation in rela-
tivistic plasmas (Liu & Chen, 2011). Furthermore, the effect
of the non-extensive parameter q on the nonlinear Landau
damping is detailed (Valentini, 2005). The non-extensive
statistics is also applied to investigate the instability phenom-
ena, such as the plasma oscillations (Chen & Li, 2012) dust
ion acoustic instability (Dai et al., 2013) and arbitrary ampli-
tude kinetic Alfven solitons (Liu et al., 2011).
The particle-in-cell (PIC) method is one of the most popular

numerical methods which approximate the plasma by a finite
number of particles. The first particle models of an electro-
static plasma were introduced by Buneman (1959). These
models were one-dimensional and did not use a mesh for
the calculation of the fields. Dawson at Princeton and Eldridge
and Feix in 1962 worked on similar models. The first particle-
mesh (PM) algorithm in one dimension was introduced by
Burger and in two dimension by Hockney (Hockney & East-
wood, 1988). They used the nearest grid point (NGP) charge
model and field interpolation in the PM algorithm. In fact, a
PM algorithm is a plasma model that uses finite-size particles
or clouds. However, algorithms using such finite-size particles
were developed by Birdsall and Langdon (1985). In recent
years, PIC simulations are also used in different areas, such
as laser-plasma interaction (Benedetti et al., 2009) and non-
linear beam plasma interaction (Yoo et al., 2007).
The first-order weighting in PIC simulation smoothes the

density and field fluctuations compared to zero-order weight-
ing or NGP model. Consequently, the PIC weighting scheme
produces far less noise than the NGP scheme and tend to
reduce nonphysical effects. Therefore, in this paper, we seek
estimates for growth of the electrostatic wave driven by TSI
by making use of extensive PIC simulations. The electrostatic
wave is produced by interpenetration of two counterstreaming
electron beams with equal density and opposite bulk velocity
in the presence of neutralizing background of the static ions. In
the context of the Tsallis statistics, we will assume that the
electron beams are described by the non-extensive
q-distributions, and so influence of entropic index q on the
growth of the TSI will be discussed in the next section.
This paper is organized as five sections. In Section 2, we

briefly discuss the initial electron distribution in the context
of the Tsallis statistics. In Section 3, the simulation approach
and results are presented and the approach is followed to
compare the instability generation by initially electron

distribution with different q values. In Section 4, the sum-
mary and conclusion are presented.

2. INITIALLY ELECTRON DISTRIBUTION AND
TSALLIS STATISTICS

As we mentioned previously, the BG statistics may not be
proper to describe the long-range natural interactions like a
plasma system. The parameter q in the Tsallis statistics rep-
resent the degree of non-extensivity of the distribution. This
continuous real parameter canbeused to adjust the distributions
so that distributions can have properties near or far from aMax-
wellian distribution. For example, to define the two-streams of
energetic beams with particles velocities around the drift vel-
ocity, we use the Tsallis statistics with q≫ 1 and for beams
widely spread around the drift velocity, the q≪ 1 is the best
choice (Fig. 1). Therefore, the Tsallis statistics is a generaliz-
ation of the BG statistics in the same way that Tsallis entropy
is a generalization of standard BG entropy. Therefore, in this
sectionwe are going to analyze theTSI based on theTsallis stat-
istics which is very suitable to describe a system with long-
range interactions such as a plasma. To do this, we focus our at-
tention to a system described initially by distribution function

f (v) = 1
2

fq(v− v0, vth)+ fq(v+ v0, vth)
[ ]

, (1)

where fq (v) is the so-called Tsallis distribution function define
as

fq(v) = n0Aq���
2π

√
vth

1− (q− 1)
v2

2v2th

[ ] 1
q− 1

. (2)

Fig. 1. (Color online) Normalized initial particles distribution function Eq.
(1) for various q values and v0= 3.

M. Ghorbanalilu et al.400

https://doi.org/10.1017/S0263034614000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0263034614000275


Here vth =
���
kBT
m

√
is the particle thermal velocity (kB, T, m,

are Boltzmann constant, particle temperature, and density,
respectively) and the normalization constant Aq is given by

Aq =
������
1− q

√ Γ( 1
1−q )

Γ( 1
1−q − 1

2 )

( )
for 0< q ≤ 1,

Aq = 1+ q

2

������
q− 1

√ Γ( 1
q−1 + 1

2 )

Γ( 1
q−1 )

( )
for q ≥ 1.

(3)

The distribution function in Eq. (2) for q> 1 restricts
the particles velocity to a maximum cut-off value define as

vmax =
����
2v2th
q−1

√
. In the limit, q→ 1 Tsallis distribution is re-

duced to the well-known Maxwellian distribution. The
system defines as Eq. (1), introduces the two beams with
equal density and thermal spread around two equal but oppo-
site beam velocity v0. Clearly, we assume the instability re-
spond on such fast scale as to allow us to treat the ions as a
motionless positive background.
The two different classes of instabilities are plausible for a

system described by Eq. (1). The longitudinal mode with
wave number k parallel to the beams and the transverse mode
with wave number perpendicular to the beams. The former
mode is purely electrostatic (nomagnetic fluctuations are gener-
ated) and is refereed to as TSI. The next mode is purely trans-
verse and is often called to as Weibel instability (Weibel,
1959). TheWeibel instability is generated due to the anisotropic
structure of distribution function and in contrast to the TSI the
strongly magnetic field fluctuations are generated in this case
(Tautz et al., 2007). Although we expect the all instabilities
can be excited in a real plasma system, so the complete descrip-
tion need to be a three-dimension simulation.However, themain
goal of the present paper is focused on the longitudinal, or TSI.

3. SIMULATION APPROACH AND RESULTS

When two-streams of electron beams move through each
other, a density perturbation is created because of the reinfor-
cing of the charge particles of one beam by the forces due to
bunching of other beam and vice versa. The density pertur-
bation generates a electric field which can grow exponen-
tially. The linear stability analysis for TSI has been
computed by Thode and Sudan (1973). The dispersion
relation for electron beams which are distributed monochro-
matically at the velocities± v0 is given by

D(ω, k) = 1− ω2
p

1

(ω− kv0)2
+ 1

(ω+ kv0)2

[ ]
, (4)

where ωp = (e2n/me0)1/2 is the electron plasma frequency
and e, n, are electron charge and density. Obviously, the in-
stability condition require the existence of complex roots for
dispersion relation (4) as follow (Krall & Trivelpiece, 1973)

kv0 < (e2n/me0)
1/2. (5)

The equations which governed the electron motion are
simply given by

dx

dt
= vx,

dvx
dt

= −eE,

E = −∇xφ,

e0∇
2
xφ = −e(n0 − n),

(6)

where x and vx represent the position and velocity of electron,
e, n are charge and density of electron, E, φ, and n0 define
the electric field and potential of excited wave and density
of background neutralizing heavy ions, respectively. To
begin simulation, we have to normalize the equations. It is
convenient to normalize time to ωp

−1, distances to λD (where

λD = vth
ωp

is the Debye length), the velocity to vth and the elec-

tric field to ωp
−1 vth

−1. According to this normalized units, we
distribute the electrons initially with distribution function (1)
by using a random program. In this units, we consider two
beams velocity with arbitrary values v0=±3. During the
simulation, the initial configuration is perturbed by a wave
with wave number k= 2π/L with sufficiently large box
length L= 100λD to satisfy the instability condition (5).
The simulation box is divided in 512 grid points with peri-
odic boundary condition and the time step is chosen as Δt=
0.1ωp

−1. Here, we discretized the first and second relation in
Eq. (6) explicitly in time by making use of the leap-frog
scheme (Birdsall & Langdon, 1985), while the Poisson
equation is solved by fast-Fourier-transform (FFT) method.

In real plasma, the number of particles is extremely large
in which the maximum number of particles can be handled
just by the best supercomputers. Therefore, in a PIC simu-
lation, we usually assume one simulation particle consists
of many physical particles. According this fact that the
ratio of charge/mass is invariant during transformation, so
this superparticle and corresponding plasma particle followes
the same trajectory. However, the number of this superparti-
cle is chosen arbitrary, the number of simulated particles is
defined by a set of physical and numerical restrictions, and
usually it is chosen extremely large (>105) (Fehske et al.,
2008). In this simulation, the one million superparticle
equally loaded in two beams propagating in opposite direc-
tion. In this simulation, we track the superparticles in con-
tinuous phase space in which these individual particles
mimic the behavior of the distribution function. The four
main steps must execute in every time step: (1) The charge
density is interpolated on the grid from the particles position
(xp→ ρg). (2) The Poisson equation is solved by FFT to com-
pute the electrostatic potential on the grid and from this the
electric field easily accessible on the grid points (ρg→ Eg).
(3) The electric field is interpolated from the grid to the par-
ticles position (Eg→ Ep). (4) The particles positions and
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velocities are advanced in time with equations of motions
knowing the electric field at the particle positions.
To start the simulation we distribute the particles in one di-

mension by using a random program. If we assume that the
position of pth electron x̃p lies between the gth and (g+
1)th grid points, i.e., x̃g < x̃p < x̃g+1, so the particles densities
on the grid points are given by

ng = x̃g+1 − x̃p
△x̃

, ng+1 = x̃p − x̃g
△x̃

, (7)

where the tildes are used to show the normalized quantities

and x̃g = g△x̃ is the coordinate of the grid points. In this
stage, we can solve the Poisson equation by FFT method in
order to obtain the potential and electric field on the grid
points (Ẽg). Finally, the electric fields on the particle pos-
itions are obtained by interpolating as below

Ẽp = x̃g+1 − x̃p
△x̃

( )
Ẽg + x̃p − x̃g

△x̃

( )
Ẽg+1. (8)

Now it is possible to update the particles position and vel-
ocity for every time step. In PIC simulation, the time is di-
vided into discreet time moment, in fact the time is grided.

Fig. 2. (Color online) Snapshots of particles evolution in phase space and excited fields in real space at ωpt= 10 for various values of
entropic index q.
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In this case, the physical quantities are calculated only at
given time moments, which, usually, the time step △t is con-
stant. Making use of the leap-frog algorithm, Eq. (6) is differ-
enced explicitly in time for time step n as

x̃n+1
p = x̃np +△tṽ

n+1
2

p ,

ṽ
n+3

2
p = ṽ

n+1
2

p − e

m
△tẼp(x̃

n
p).

(9)

In Figure 1, we plotted the initial normalized particle distri-
bution function based on Eq. (1), for different values of en-
tropic index q. we find from the figure that the thermal

spreading decreases with increasing of index q. For example,
for q= 2, the particles velocity are peaked around v0=±3,
while for q= 0.5 velocities spread widely.

Figure 2 shows the snapshot of the phase space for beams
initially distributed by distribution function (1) with different
q values at ωpt= 10. However, the particles widely spread on
velocity axis for q= 0.5, distribution width is very thin for
q= 2. It is clear that the electron holes structures are different
between the figures. The electron holes are the region of
phase space resembling holes where indicate of local
depletion of electron and intensification of localized electric
field in this area. The structure of all vortexes holes are

Fig. 3. (Color online) Snapshots of particles evolution in phase space and excited fields in real space at ωpt= 20 for various values of
entropic index q.
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similar, like the well-known round-eye structure. More
important difference is the degree of cavitation between the
figures. Clearly, the cavitation is more perceptible for q= 2
and q= 1.5 and consequently localized electric fields are
stronger. The snapshot of normalized excited electric field
Ẽ in real space is plotted right on the top of phase space dia-
grams. It is found from the figure that the electric field is van-
ished right on the center of holes.
The particles evolution in phase space at ωpt= 20 is

shown in Figure 3. The figure indicates growth of the
weak fields for q= 0.5, while the electron holes are not
so distinguishable. On the other hand, the longitudinal

fields driven by TSI, and the position of holes are changed
for structures corresponding to q= 1, q= 1.5, q= 2,
respectively. The formation of three electron holes is
lucid for all cases, however the size and cavitation
degree are different for them. To analyze the processes
of holes formation, we display the snapshot of particles
phase space at ωpt= 60 in Figure 4. The figure shows
that the electron holes move while turning around and
keeping their integrity and shape. The small initial holes
at earlier time interact together and form new holes, but
continue at later time the smaller holes collapse to a
large electron hole.

Fig. 4. (Color online) Snapshots of particles evolution in phase space and excited fields in real space at ωpt= 60 for various values of
entropic index q.
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It is intuitively understood that the cavity formation can be
developed due to the interaction of the cool electrons of one
beam to the electrostatic waves carried by another one. How-
ever, the thermal spread of the electrons (thermal noise) may
affect this formation. The results show that for small q values
(q< 1) which the thermal noise are sufficiently large the
hole cavitation is not complete, while for the large q values
(q> 1) the thermal noise is very small and the cavity for-
mation is complete. The electrons can be trapped by the ex-
cited fields and accelerate up to the large velocities.
We tried to show the electron evolution in phase space and

the cavity formation for two different values q= 0.5 and q= 5
by a short video. The normalized excited electrostatic fields
evolution which driven by TSI are shown right on the top of
the phase space for any case. The video clearly reveals that
the strength of excited field is significantly large for q= 5.
The red point indicates a electron in phase space which ran-
domly chosen in the macroscopic scale for tracking of electron
motion. It seems that electron is very effectively trapped by

strong field in the case q= 5. Furthermore, the cavity for-
mation and round-eye structures are shown in this video.

Figure 5 depicted the ratio of the kinetic energy of the elec-
trons to the initial kinetic energy in terms of ωpt. As the figure
shows reduction is found for q= 2 is maximum around
ωpt= 10 (Fig. 2). In addition, the figure shows that the mini-
mum reduction is found for q= 0.5. Therefore, the kinetic
energy reduces significantly during interpenetration of two
beams with large entropic index q≫1, while energy slightly
decreases for beams with small index q≪1.

Figure 6 displayed the ratio of electrostatic energy to the
initial electrons kinetic energy as a function of ωpt. We see
that the electrostatic energy is zero initially, but after a short
time around t≈ 10ωp

−1 the system reaches a dynamic equili-
brium. After that energy splits between kinetic and electro-
static energies unequally with a continues exchange between
two. The energy fluctuations is large when the instabilitystarts,
but fluctuations decrease and remain merely constant for suf-
ficiently long time. The maximum energy conversion is
related to q= 2 around 15% for time scale around t≈
10ωp

−1, which in comparison to the Maxwellian distribution
the maximum conversion increased by more than twice.

To analyze more the energy conversion process and in-
stability generation, the time development of the electrons
velocity-root-mean-square (VRMS) is displayed in Figure 7.
We note that the electrons VRMS define as

vrms =
�������������������
1
Np

∑Np

p=1

(ṽnp − ṽ0p)
2

√√√√ , (10)

where ṽnp and ṽ
0
p indicate the normalized pth electron velocity at

nth time step and t= 0, respectively. The figure shows that the
electrons velocity rise rapidly in the time scale that TSI grows
(t≈ 10ωp

−1). It is clear that the maximum growth for electrons
velocity are belong to the case with entropic indexes q= 2,
while the minimum correspond to q= 0.5. The figure approve
that the TSI excites stronglywhen the entropic index q becomes

Fig. 6. (Color online) The ratio of electrostatic energy to the particles initial
kinetic energy as a function of ωpt for different values of q.

Fig. 5. (Color online) The ratio of kinetic energy of particles to the initial
kinetic energy as a function of ωpt for different values of q.

Fig. 7. (Color online) Particles velocity-root-mean-square variation as a
function of ωpt for different values of q.
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large (q> 1), so electrons are trapped by the field and acceler-
ated quickly up to the large velocities. In addition, it is under-
stood from the Figure 7 that the energy conversion enhances
with increasing the entropic index q, which is in agreement of
the previous results obtained from simulation. Therefore, the
thermal noise can be decrease the electrons VRMS and as the
result the energy conversion efficiency and the TSI growth rate.
In Figure 8, we display the ratio of electrons total energy to

the initial total energy in terms of ωpt for q= 1.5. The energy
history clearly approves the energy conserving in our PIC
simulation.

4. SUMMARY AND CONCLUSION

In the present, we have performed extensive one-dimensional
PIC simulations to investigate TSI driven by two counter
streaming symmetric electron beams. We have interpreted
our results by a non-extensive q-distributions of Tsallis stat-
istics. The simulation consist one million superparticle
equally loaded in two beams propagating in opposite direc-
tion. The results indicate that the generation of TSI and
cavity formation are dominated by the entropic index q.
While for the large values of q> 1 the cavitation was com-
plete, for small q≪ 1 the cavity formation was not percepti-
ble. The snapshots of excited electric fields in real space
clearly show that the strength of the fields are enhanced by
increasing the entropic index q. The ratio of electrostatic
energy to the electrons initial kinetic energy reveals that
the energy conversion and the instability generation are suf-
ficiently predominated by increasing the entropic index up to
the values q> 1. Our results suggest that the cavity formation
and instability generation can be affected by particle thermal
spreading. For example, for a system with entropic index q<
1 the particle velocities speared widely around the drift vel-
ocity v0=±3 and the excited fields strength were very
weak compared to the cases q> 1, which the velocities
spreading were very thin. The normalized total energy his-
tory for a arbitrary entropic index q= 1.5, approves the
energy conserving in our PIC simulation
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