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Abstract

Disentangling trophic interactions among species is important for elucidating me-
chanisms underlying ecosystem functioning and services. Carabid beetles are an im-
portant guild of predators that may regulate pest populations in arable landscapes,
but their generalist feeding behavior hinders predictions about their actual contribu-
tion to pest control. In order to assess carabids’ potential for pest control, we simul-
taneously analyzed the carbon and nitrogen stable isotope ratios of a community of
45 co-occurring species in wheat and oilseed rape fields.With the expectation to iden-
tify distinct trophic groups based on the mean and the variance of carabid isotopic
signatures, we observed a high degree of overlap in trophic positions between spe-
cies. However, we also observed that species could be successfully categorized into
two groups according towhether or not their carbon signatures varied independently
from variations in the crop baseline. We interpret these results as differential primary
resource uptake or by differential mobility aptitude in foraging. Accordingly, we pro-
pose that the isotopic signal can inform us on the presence/absence of links between
generalist predators and cultivated plants through the trophic networks they belong
to, and consequently on their potential role as pest natural enemies.We therefore sug-
gest the complementarity of stable isotope analysis for obtaining a time-integrated
assessment of carabid trophic behavior that may be combined with more direct mo-
lecular diet analysis allowing the simultaneous quantification of specific trophic links
within agricultural landscapes.
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Introduction

The positive effect of biodiversity on ecological functions
and processes is well documented (Johnson et al., 1996;
Loreau 2000; Cardinale et al., 2003; Hooper et al., 2005;
Straub et al., 2008). The general opinion is thatmore diversified

ecosystems sustain higher levels and higher number of ecolog-
ical functions and services delivered to humans. However, for
ecosystem services such as biological control, the effect of bio-
diversity is frequently ambiguous and highly dependent on
the trophic level at which the biodiversity is considered
(Montoya et al., 2003). Indeed, while several studies showed
a positive relationship between natural enemies biodiversity
and pest biological control (Losey & Denno, 1998; Snyder
et al., 2006; Letourneau et al., 2009), others have also indicated
that species-rich predator assemblages could bemore sensitive
to competitive interactions or intraguild predation, diverting
them from pest predation (Rosenheim, 1998; Finke & Denno,
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2005; Davey et al., 2013). For instance, pest predation could be
altered by diet shifting resulting from competitive interactions
between generalist predators (Tixier et al., 2013). Hence, our
capacity to anticipate the effect of a change in predator diver-
sity on biocontrol is directly dependent on our capacity to dis-
entangle predator trophic interactions at the scale of the
interacting community (Thompson et al., 2012; Bohan et al.,
2013). However, empirically characterizing complex trophic
interactions within a pest–predator food web is challenging,
even in presumably simplified ecosystems such as intensively
managed farmland areas (Pocock et al., 2012; Mollot et al.,
2014). A typical community of service-providing predators
frequently comprises dozens of small-sized arthropods with
very wide diet spectrum (Agustí et al., 2003; Eitzinger &
Traugott, 2011; Staudacher et al., 2016). Moreover, in response
to frequent perturbations caused by management practices,
predator–prey interactions could be very dynamic in space
and time (Bommarco et al., 2007; Bell et al., 2010), requiring a
significant capacity to track and integrate these spatio-
temporal variations. This is particularly relevant with regard
to carabid beetles – a major guild of generalist predators in
agricultural landscapes (Kromp, 1999; Kulkarni et al., 2015)
that could feed upon a wide variety of resources (Larochelle,
1990) including numerous pests (Bohan et al., 2011; Boreau de
Roincé et al., 2012) but also beneficial organisms (King et al.,
2010; Davey et al., 2013) or carrion (i.e., scavenging, Young,
1984, 2005). Additionally, carabids have been shown to dy-
namically change their feeding behavior in response to varia-
tions in prey abundance (Bohan et al., 2000; Bell et al., 2010).
Hence, carabid contribution to biological control is yet hardly
predictable, rendering the implementation of concrete man-
agement actions difficult. In this paper, we tackle the long-
standing problem about the contribution individual species
make to biological control within the carabid community.
Previous studies have showed that carabid species could be
lumped into broad trophic categories according to their feed-
ing preferences (Larochelle, 1990) or according to functional
traits, such as the mandible morphology or body size
(Forsythe, 1983; Rouabah et al., 2014; Rusch et al., 2015).
However,morphological trait-based categories do not provide
a quantitative estimate of diet, also the link between functional
attributes and feeding behavior is not always consistent,
especially in such flexible feeders as carabids. Recently, mo-
lecular techniques were very successful in allowing the direct
quantification of trophic links from predators’ gut contents
(Symondson, 2002; Clare, 2014). However, the main limitation
with the molecular diet analysis is that it only provides a snap-
shot of a species diet – usually the most recent feeding event,
thus making the incorporation of spatio-temporal variations
in feeding choice of multiple species resource-demanding.
Finally, both functional and molecular approaches fail to dis-
tinguish active predation from scavenging (Foltan et al., 2005;
von Berg et al., 2012). The analysis of naturally occurring car-
bon and nitrogen stable isotope ratios (expressed as δ, the ratio
of heavy to light isotope, and reported in parts per thousand as
per mil) could help overcome some of the above-mentioned
methodological challenges.

Stable isotopes provide quantitative and time-integrative
estimate about the trophic space occupied by an organism
based on the dependency of isotopic signatures observed in
consumers on their dietary resources (DeNiro & Epstein
(1978, 1981)). For instance, measuring the stable isotope ratios
of carbon (δ13C) allows pinpointing the actual food source
among a pool of potential ones, provided that their ratios

differ (Gannes et al., 1998). In contrast, for elements such as ni-
trogen (δ15N), a predictable enrichment of the heavier isotope
from diet to consumer is observed (Martínez del Rio et al.,
2009), leading to identify the trophic level of an organism rela-
tive to a reference baseline (Eggers & Jones, 2000). Considering
these advantages, we applied δ13C and δ15N stable isotope
analysis in order to estimate the degree of involvement in bio-
logical control of the most common carabid species in two
dominant crop types.Wemeasured themean and the variance
of the δ13C and δ15N trophic space occupied by each species
and compared it with the baseline crop plant. The crop plant
is an important agronomical factor structuring arthropod as-
semblages through the frequency and the intensity of the dif-
ferent management practices (Marrec et al., 2015; Puech et al.,
2015) but is also an important resource at the very basis of
farmland food webs (Tixier et al., 2013; Mollot et al., 2014).
Our objectives were twofold: (i) identify variations in the
trophic position across species and between crop types for
the same carabid species; (ii) assess whether variations in the
crop plant baseline influence variations in carabid isotopic sig-
natures. Our expectations were that (i) we would be able to
identify distinct trophic positions – through strict herbivores
to strict carnivores – within the carabid community; (ii) that
variations in isotope ratios of the crop baseline will cascade
at upper trophic levels, thus allowing the distinction between
crop-derived and non-crop-derived trophic groups.

Material and methods

Collection and sample preparation

Carabid beetles were intensively sampled between 03 and
23 May 2012, period corresponding to the peak of carabid
activity in our study area this year (Supplementary fig. S1).
Sampling took place in two arable fields (winter wheat and
oilseed rape, size 1–5 ha each), situated approximately 10 km
apart within the long-term ecological research area ‘Armorique’
(http://osur.univ-rennes1.fr/za-armorique/, 48°36′N, 1°32′
W), Brittany, France. For maximizing the number of species
collected, each field was checkered with a high number
(>50) of dry pitfall traps. All traps were opened and closed
in four sampling sessions of 24 h each. Carabid beetles were
collected alive. Living individuals were freeze-killed at −20 °C
as soon as possible (and in all cases less than 5 h after collec-
tion), sorted out at the laboratory and identified to the species
level (Roger et al., 2012). For assessing the crop baseline, fresh
plant tissues (stems, leaves, pods and ears) were sampled from
randomly selected plants for each crop type: oilseed rape
(Brassica napus, Brassicaceæ) and wheat (Triticum aestivum,
Poaceæ). Plant tissues per crop were mixed together, frozen
at −20 °C within 5 h after collection and stored at −20 °C
prior analyses (N = 5 for wheat and N = 8 for oilseed rape).
Both carabid and plant samples were freeze-dried for 24 h.
To avoid bias induced by the presence of prospective prey
within carabid gut contents, all species sizing >4.5 mm (90%
of species) were dissected and gut contents were removed.
Because of their small size, dissection was impractical for spe-
cies smaller than 4.5 mm. These specimens were analyzed in
their entirety. All freeze-dried samples were manually ground
into fine powder. Tin capsules containing between 1 and 2 mg
of tissue of each individual were processed with isotope-ratio
mass spectrometer (Delta Plus, Thermo Quest, Waltham, MA,
USA), coupled to an elementary analyzer (Flash EA, Thermo
Quest, Waltham, MA, USA) at the Roscoff Biological Station,
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Brittany, France. The stable isotopic composition of carbon
and nitrogen (δ13C and δ15N) was expressed as a relative
ratio, in parts per thousand, to an international standard:

dX = (Rsample/Rstandard) − 1
[ ]

1000,

whereRsample is the absolute isotopic ratio (heavy/light) of the
sample and Rstandard is the correspondent ratio in the standard
(Peterson & Fry, 1987; Ehleringer & Rundel, 1988). The inter-
national standards used were Vienna Pee Dee Belemnite for
δ13C and atmospheric nitrogen for δ15N. Measurement uncer-
tainty was ±0.2‰ for δ15N and ±0.1‰ for δ13C.

Statistical analyses

Statistical analyses were run with the R software version
3.1.0 (R Core Team, 2013). Variations in the δ13C and δ15N
trophic position among carabid species and between crop
types aswell as their interactionwere compared by fitting gen-
eral linear models (GLM, Gaussian distribution family, link =
identity) using the R function glm. The number of individuals
per species and per field ranged between N = 1 and N = 28
(mode N = 2 and N = 4). Carabid species represented by less
than two individuals in the whole dataset (seven species)
were not taken into account in statistical analyses. Their indi-
vidual δ13C and δ15N values are provided in Supplementary
table S1.

The effect of variations in the crop plant baseline on differ-
ences in the carabid δ13C between crop types were also inves-
tigated using a GLM model (Gaussian distribution family,
link = identity), including as variables the carabid species
and the interaction carabid species × crop field. Hence, the
interaction carabid species × crop field was an estimate of
δ13C variation between the two crop fields within the consid-
ered carabid species. The crop was also treated like a carabid
species in this model. Thus, the interaction crop × field was an
estimate of the δ13C variation between the two crop species as
crop baselines consist in wheat in one field and in oilseed rape
in the other. Then, for each pair of carabid species, t-tests were
performed to assess whether the interaction carabid species ×
field differed significantly. Similarly, t-tests were also
performed to assess whether the δ13C variation between the
two fields for each carabid species differed significantly from
the δ13C variation between the two crop types (interaction
crop × field). Only the most abundant carabid species
occurring in the both crop types were selected for these
analyses (11 species, mode N = 10).

Results

A total of 295 individuals belonging to 45 species and 26
different genera were analyzed (table 1). Of these 28 species
were common in both cultures. Overall, the amplitude of
δ13C variation was higher in wheat (fig. 1a), whereas higher
amplitude of δ15N variation was observed in oilseed rape
(fig. 1b). Average δ13C values ranged from −14.3‰
(Harpalus rubripes) to −29.3‰ (Amara familiaris) in wheat
(fig. 1a), and from −24.4‰ (Pterostichus melanarius) to
−29.8‰ (Leistus fulvibarbis) in oilseed rape (fig. 1b). Average
δ15N values ranged from 4.4‰ (Syntomus obscuroguttatus) to
9.6‰ (Pterostichus vernalis) in wheat (fig. 1a), and from 2.2‰
(Amara plebeja) to 12‰ (P. melanarius) in oilseed rape (fig. 1b).
Based on GLM analysis, the carabid species, the crop type and
their interaction explained a significant part of the variation in

δ13C and in δ15N (table 2). The same results were observed
when δ13C and δ15N for only the most abundant species, pre-
sent in the both crop types, were considered (Supplementary
table S2). GLM analysis of the interaction carabid species ×-
field carried out on the species caught in both fields revealed
two groups of species (fig. 2) depending onwhether their δ13C
variation between fields differed significantly from the δ13C
variation between the two crops or not. For each species,
isotopic signature was considered significantly different
from plant isotopic signature for a probability threshold of
0.05. The first group included Nebria salina (P = 0.83),
Anchomenus dorsalis (P = 0.54), Poecilus cupreus (P = 0.43) and
Anisodactylus binotatus (P = 0.50). The second group included
Amara aenea (P = 0.018), Brachinus sclopeta (P = 0.042), Loricera
pilicornis (P = 0.021) and Ocydromus tetracolus (P = 0.0018).
Asaphidion flavipes (P = 0.079) was also included in the second
group because its isotopic signature was almost significantly
different from the isotopic signature of the crop plant as well
as almost significantly different from the isotopic signatures of
all the species belonging to the first group. All species belong-
ing to group 1 did not differ significantly from each other in
their interaction with the field (fig. 2), neither from the inter-
action crop × field (fig. 2). In the group 2, species did not differ
significantly from each other in their interaction with the field
(with an interaction carabid species × field not significantly
different from 0), but the interaction carabid species × field
was significantly different from the interaction crop × field
(fig. 2, Supplementary table S3). Finally, the interaction with
the field of species belonging to the group 1 was frequently
significantly different from the interaction with the field of
species belonging to the group 2, and when it was not, the dif-
ference was always close to the significance (Supplementary
table S3). Two species exhibited intermediate behavior
(Agonummuelleri andAmara similata), probably due to the rela-
tively low sampling size (respectively, only four and one indi-
viduals in either of the two crop types). However, A. muelleri
tended to belong to group 1 and A. similata to group 2
(Supplementary table S3).

Discussion

Overall, the species identity explained a significant part of
the variation in the carabid δ13C and δ15N ratios. Despite these
differences, we were not able to identify clear trophic groups
within the carabid community based on the species δ13C and
δ15N values. This is mainly due to the high intraspecific vari-
ation, especially for δ15N. This suggests that carabid beetles are
indeed generalist, plastic foragers, particularly in agricultural
areas (Lövei & Sunderland, 1996; Bennett & Hobson, 2009;
Okuzaki et al., 2010; Kamenova et al., 2015), where such trophic
generalism could be easily explained by important variations
in resource availability (Bohan et al., 2000; Bell et al., 2010).
However, similar levels of intraspecific variability in isotopic
values have also been reported within carabid communities
residing inmore stable habitats (Zalewski et al., 2014), suggest-
ing that other mechanisms could be in play. For instance, nu-
merous non-trophic sources of variation could also explain the
high intraspecific variability in δ13C and δ15N signatures of a
consumer. Factors such as individual differences in metabolic
rates, fasting time, or diet quality have all been shown to influ-
ence isotopic values without any direct link to differences in
trophic choice (reviewed by Martínez del Rio et al., 2009).
Carabid beetles typically could experience extended fasting
periods (Bilde & Toft, 1998; Laparie et al., 2012) and the
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proportion of individuals displaying an empty gut within a
population could be exceptionally high (Sunderland, 1975;
Hengeveld, 1980), which in turn may significantly impact
the isotopic fractionation. However, little is known about the
specific factors affecting isotopic fractionation in insects in
general, particularly in carabid beetles. Hence, identifying
the most important sources of non-dietary variation and the
magnitude of their effect is an important requirement for tak-
ing full advantage of the stable isotope analysis for this group
of organisms. Another methodological constraint hampering
the interpretation of stable isotope data in our case comes
from the lack of information about the time lag in isotopic
turnover associated with ontogenetic niche shifts (i.e., changes
in the carabid isotopic signature between larval and adult

stages). Comparedwith the adult stages, carabid larvae usual-
ly exhibit distinct or more specialized trophic habits (Löveï &
Sunderland, 1996), suggesting that a delayed response in iso-
topic turnover during the dietary shift after metamorphosis
will result in an isotopic signature that does not match the ac-
tual adult’s diet. Moreover, for some carabid species, two or
more generations that are not distinguishablemorphologically
could co-occur at the same season (Thiele, 1977). This suggests
that intraspecific variations in isotopic signature would have
more to do with time since metamorphosis than with feeding
habits. This point requires further considerationwithin the dy-
namic agricultural landscapes where spatio-temporal turn-
over of crops is high (Holland et al., 2005; Fahrig et al., 2010).
For instance, an individual emerging in the late season on a

Table 1. Carabid species (and their taxonomic affiliation) analyzed for δ13C and δ15N isotope ratios. Codes as presented in fig. 1.

Species code Carabid species Subfamily Tribe

ACmerid Acupalpus meridianus Harpalinae Stenolophini
AGmülle Agonum muëlleri Platyninae Platynini
AGafru Agonum afrum Platyninae Platynini
AGsexpu Agonum sexpunctatum1 Platyninae Platynini
ANdorsa Anchomenus dorsalis Platyninae Platynini
AMaen Amara aenea Pterostichinae Zabrini
AMcommu Amara communis1 Pterostichinae Zabrini
AMfamili Amara familiaris Pterostichinae Zabrini
AMunic Amara lunicollis Pterostichinae Zabrini
AMovata Amara ovata1 Pterostichinae Zabrini
AMplebej Amara plebeja Pterostichinae Zabrini
AMsimil Amara similata Pterostichinae Zabrini
ANbinot Anisodactylus binotatus Harpalinae Anisodactylini
ASflav Asaphidion flavipes Trechinae Bembidiini
BBulla Badister bullatus1 Licininae Licinini
BRsclope Brachinus sclopeta Brachininae Brachinini
CAntri Carabus intricatus1 Carabinae Carabini
CAnemo Carabus nemoralis2 Carabinae Carabini
CHnigri Chlaenius nigricornis2 Licininae Chlaeniini
CIcindel Cicidella spp.1 Cicindelinae Cicindelini
CLfosso Clivina fossor Scaritinae Clivinini
DEatric Demetrias atricapillus1 Lebiinae Lebiini
HAaffin Harpalus affinis Harpalinae Harpalini
HRubri Harpalus rubripes2 Harpalinae Harpalini
LFulvi Leistus fulvibarbis1 Nebriinae Nebriini
LOpilic Loricera pilicornis Loricerinae Loricerini
MEamp Metallina lampros Trechinae Bembidiini
MEprope Metallina properans Trechinae Bembidiini
NEbrevi Nebria brevicollis Nebriinae Nebriini
NEsali Nebria salina Nebriinae Nebriini
NObigut Notiophilus biguttatus1 Nebriinae Notiophilini
NOpalu Notiophilus palustris1 Nebriinae Notiophilini
NOquadri Notiophilus quadristriatus Nebriinae Notiophilini
OCtetra Ocydromus tetracolus Trechinae Bembidiini
PAmacu Parophonus maculicornis1 Harpalinae Harpalini
PHbigut Philochthus biguttatus Trechinae Bembidiini
PHobtu Phyla obtusa Trechinae Bembidiini
POcupr Poecilus cupreus Pterostichinae Pterostichini
PSrufi Psedudophonus rufipes Harpalinae Harpalini
PTanthra Pterostichus anthracinus2 Pterostichinae Pterostichini
PTmela Pterostichus melanarius Pterostichinae Pterostichini
PTstren Pterostichus strenuus Pterostichinae Pterostichini
PTvern Pterostichus vernalis Pterostichinae Pterostichini
SYfovea Syntomus foveatus2 Lebiinae Lebiini
SYobscu Syntomus obscuroguttatus2 Lebiinae Lebiini
TRquadris Trechus quadristriatus Trechinae Trechini

Underlined species were present in both crop types.
1Indicates species present only in oilseed rape (n = 11).
2Indicates species present only in wheat (n = 6).
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previous year may have experienced a very different basal re-
source, and still exhibit the isotopic signature of its previous
diet at the moment of the field sampling. The same reasoning
holds true for dispersal. One plausible scenario is that over-
wintering carabid beetles may migrate to other fields after
emergence, while keeping the isotopic imprint of their native
location (Girard et al., 2011). Indeed, we cannot guarantee that
no migrants from the nearby fields were present at the time of
sampling, but we believe that such scenarios are highly unlike-
ly in our case. First, it takes about 17 days for amid-sized adult
carabid to reach the isotopic level of its prey after overwinter-
ing (Makarov et al., 2013). Second, beetles were collected in the
middle of the reproductive season, when carabids usually

Fig. 1. Comparison of δ13C and δ15N stable isotope ratios of carabid beetles in (a) wheat; (b) oilseed rape. Means ± SD are shown. Species
codes are indicated in table 1.

Table 2. Results of GLM analyses testing the effect of the carabid
species, the crop type, and their interaction on δ13C and in δ15N
variation.

Variable df Residual deviance P

δ13C
Species 39 855.96 <0.001
Crop 1 244.12 <0.001
Species × crop 21 179.18 <0.001

δ13N
Species 39 827.89 <0.001
Crop 1 36.08 <0.001
Species × crop 21 108.40 <0.001
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tend to stay within the crop they select after emergence
(Marrec et al., 2015).

Yet, according to our dataset, some species occupied well-
differentiated δ13C and δ15N isotopic niches. Interestingly,
differences were more marked for carbon compared with ni-
trogen, possibly indicating that resource partitioning is mostly
related to the identity of the basal resource rather than to a dif-
ferentiation in the trophic position. This confirms results from
at least three independent studies, suggesting that the primary
resource uptake could be the prevalent axis of trophic differen-
tiation between carabid species (as opposite to the δ15N troph-
ic position) (Ikeda et al., 2010; Okuzaki et al., 2010; Zalewski
et al., 2014). Here,Harpalus species were more carbon-enriched
compared with all other species, even if enrichment was less
pronounced in oilseed rape compared with wheat (fig. 1). In
laboratory conditions, Harpalus species usually show marked
granivorous preferences (Johnson & Cameron, 1969; Forsythe,
1982; Goldschmidt & Toft, 1997) as well as a capacity to con-
sume a large variety of seed species (Honek et al., 2003, 2007;
Wallinger et al., 2015). Thus, the carbon enrichment (compared
with the crop baseline) as well as the relatively low δ15N troph-
ic position might suggest that in arable fields,Harpalus species
not only consume plant material but also that this plant mater-
ial probably originates from weed plants rather than the crop.
Another genus of supposedly granivorous species, Amara,
showed a rather intriguing pattern in δ15N signature. Most
species occupied intermediate-to-high δ15N tropic positions

in both wheat and oilseed rape, while only two species in oil-
seed rape showed a trophic position compatible with phyt-
ophagous behavior (A. plebeja and Amara lunicollis). The
explanation about this pattern is not evident, but it will be in-
teresting to investigate at what extend observed differences in
isotopic signatures among Amara species could be linked to
various degrees of specialization in seed consumption within
the genus (Saska, 2005; Honek et al., 2007).

From applied perspective, our results show that solely
based on the mean and the variance of δ13C and δ15N sig-
natures, it seems challenging to consistently infer carabids’ po-
tential to contribute to biological control. Nevertheless, when
comparing variations in carbon signatures between carabid
species and the crop baseline, we identified two distinct
groups. The first group varied in a similar pattern to the varia-
tions in δ13C observed between the two crop plants. The cara-
bid species forming this group –N. salina,A. dorsalis, P. cupreus
and A. binotatus – are all supposedly mid- to large-sized car-
nivorous or omnivorous beetles, usually indicated as feeding
upon a large variety of insects, comprising aphids and other
pests (Sunderland, 1975). The second group of species had
their δ13C ratios varying independently from the variations
in the crop. These species include A. aenea, L. pilicornis, O. tet-
racolus, and A. flavipes, which are all small- to mid-sized spe-
cies, mainly phytophagous or carnivores, specialized in
the consumption of small detritivores like Collembola
(Sunderland, 1975; Hintzpeter & Bauer, 1986). The carabid B.

Fig. 2. Boxplot comparing the δ13C values of the crop baseline and the 11 most common carabid species in wheat (black) and oilseed rape
(gray). Carabid species has been arranged according towhether their δ13C variation between the fields differed significantly (group 2) or not
(group 1) from the δ13C variation between the two crop types. The species Agonum muëlleri and Amara similata exhibited intermediate
behavior. For P values see Supplementary table S3. Species codes are indicated in table 1.
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sclopeta, which also belongs to this group of species, is most
likely an ectoparasitoid of Amara species (Saska & Honek,
2004, 2008). This apparent trophic partitioning mediated by
the baseline resource allows distinguishing between crop-
derived and non-crop-derived trophic groups of species, and
thus confirms our expectations. Consequently, based on our
results and on previous information about carabid trophic be-
havior, wewere able to indirectly assess the likely contribution
of these generalist predators to biological control. For example,
large carnivorous or omnivorous carabidsmost seemingly rely
on the crop plant for their carbon uptake suggesting the con-
sumption of animal species directly associated with the crop
(i.e., herbivorous pests). On the other hand, small granivorous
or detritivore feeders probably rely on alternative carbon re-
sources with no direct link to the crop. The latter might still
be contributing to biocontrol of weeds (Girard et al., 2011), as
weed plants constitute another important and diversified
source of carbon at the basis of agricultural food webs
(Marshall et al., 2003; Tixier et al., 2013; Mollot et al., 2014).

Overall, the stable isotope analysis we applied in this study
shows to be practical, rapid, and relatively cheap method for
directly assigning carabid species into loose trophic categories.
However, in order to take more advantage of such stable iso-
tope data, it would be beneficial to diversify the tools and the
methods. For instance, more quantitative tools such as mixing
models or functional metrics (Layman et al., 2007; Parnell et al.,
2013; Cucherousset & Villéger, 2015), or methods for more dir-
ect assessment of diet (e.g., DNA metabarcoding, Pompanon
et al., 2012; Vacher et al., 2016) could help characterizing with
more precision the carabid contribution to biological control
(Boreau de Roincé et al., 2012).

Yet, carabid beetles are also notorious scavengers, but
DNA techniques cannot tease apart active predation from
scavenging (Foltan et al., 2005; Juen & Traugott, 2005;
Heidemann et al., 2011; von Berg et al., 2012). Thus, the ques-
tion about the importance of carrion in carabid diet remains
open. Stable isotope analysis could possibly inform about
scavenging, but it is not known yet how the consumption of
carrion impacts the δ13C and δ15N signatures as well as the
trophic groupswe observe here. In order to elucidate if scaven-
gers could be clearly delimitated based on their isotopic signa-
ture, it would be interesting to experimentally feed carabid
beetles with fresh or decayed prey (Wallinger et al., 2013),
and compare their δ13C and δ15N signatures.

In conclusion, stable isotope analysis appears as a straight-
forward, relatively cheap, and complementary tool that could
be used to assess species trophic behavior and possibly pro-
vide amean for the functional categorization of carabid beetles
based on their diet. Although our study does not provide dir-
ect evidence about carabid contribution to biological control,
we show that the isotopic signal can inform us about the juxta-
position in arable fields of two independent and functionally
complementary carabid trophic groups, comprising each sev-
eral functionally redundant species. Based on these results, we
argue that maintaining high levels of species richness within
farmland carabid assemblages appears as an important pre-
requisite for preserving the integrity of ecological functions
that could be important to humans (Jonason et al., 2013;
Trichard et al., 2013; Peralta et al., 2014).

Supplementary material

The supplementary material for this article can be found at
https://doi.org/10.1017/S0007485317000542.
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