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Abstract. This paper starts from the observation that the standard arguments for
compositionality are really arguments for the computability of semantics. Since computability
does not entail compositionality, the question of what justifies compositionality recurs. The
paper then elaborates on the idea of recursive semantics as corresponding to computable
semantics. It is then shown by means of time complexity theory and with the use of term rewriting
as systems of semantic computation, that syntactically unrestricted, noncompositional recursive
semantics leads to computational explosion (factorial complexity). Hence, with combinatorially
unrestricted syntax, semantics with tractable time complexity is compositional.

§1. Introduction. Standard arguments for the claim that natural language meaning
is compositional, like the learnability argument,1 take as a premise that language users
have the ability to work out the meaning of new sentences, i.e. sentences they have never
come across before. The fact that meanings of sentences can be worked out somehow
from what users already know is then associated with the principle of compositionality
(informally stated):

(PCI) The meaning of a complex expression is a function of the meanings of its
parts and its mode of composition.

The inference from the working out premise to the conclusion that (PCI) is true of
natural languages is perhaps best seen as an inference to the best explanation.2 The
idea is that language users know the meanings of individual words and the semantic
significance of syntactic modes of composition (and morphological modifications),
and by simply combining knowledge of these things, a user can step by step work out
the meaning of new grammatical sentences. That this is possible is supposed to be
guaranteed by compositionality.
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1 For the learnability argument, see Davidson (1965) (and for a revised interpretation of that

paper, cf. Pagin, 2019b). For an overview and discussion of arguments for compositionality,
see Pagin & Westerståhl (2010b).

2 This characterization is explicit in Fodor (1987) for the systematicity and productivity
arguments.
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There are two main problems with arguments of this kind:

(A) That meaning is compositional does not entail that the meaning of new
sentences can be worked out.

(B) That the meaning of new sentences can be worked out does not entail that
meaning is compositional.

Problem (A) depends on the fact that in (PCI), as well as in more formal versions of
the principle, it is not required of the function mentioned that it be possible to work out
its values from the arguments. Problem (B) depends on the fact that when it is possible
to work out the meanings of a complex expression, what the meaning is may depend
on factors over and above the meanings of the parts: then whether we have a part a or
a part b can make a difference to the outcome even if a and b have the same meaning.
In that case, compositionality does not hold.

Clearly, we can deal with problem (A) by simply adding the requirement that the
values of the function can be worked out. This gives us a principle stronger than the
standard principle of compositionality. Problem (B) is more difficult. If the meanings
of complex expressions can be worked out in a language with noncompositional
semantics, what reason is there, if any, to believe that natural language nevertheless has
a compositional semantics? The problem is pressing, since the idea that the meaning of
complex expressions is compositional is not only very intuitive, but it also has a long
tradition; its roots go back at least to medieval times.3

In this paper I shall propose an answer to this question. Briefly, the proposal is that
compositionality is associated with simplicity, more precisely computational simplicity.
A computation in the technical sense, is a sequence of elementary transformations of
representations according to specified rules or patterns that only exploit the syntactic
properties of the representations. A computation of the value of a function for a
particular argument starts with representation of the argument, and step by step
transforms the argument representation into a representation of the value.

As we shall see below, the meaning of an expression is something that can be
computed in this sense. We can then speak of semantic computation. That semantics
is computable does not entail that the comprehension process, when a hearer works
out the meaning of an utterance, is a computation in the same sense, even in part. For
one thing, this presupposes the so-called representational theory of mind, according to
which being in a mental state with propositional content consists in tokening a mental
representation (cf. Cummins, 1989) with that content, something which is controversial
and which I don’t need to assume here.

Nevertheless, I shall assume that there is a correlation between the cognitive difficulty
of a semantic interpretation task and its computational difficulty:

(COG) Other things equal, the greater the computational complexity of an
interpretation task, the greater the cognitive difficulty of the interpretation.

3 The so-called Additive Principle, that the meaning of a complex is the sum of the meanings of
the parts, was stated in an early version already by Abelard in the twelfth century (Abelard,
2010), and in a more mature form, in early middle fourteenth century, by Buridan (Buridan
& van Lecq, 1998, 2.3, Soph. 2, thesis 5, QM 5.14, fol. 23vb). This conception appears to
have become standard among late medieval logicians.
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The general concept of computational complexity is the concept of the difficulty of
a computation, and more precisely of the resources that are required for carrying
out the computation (much more below). The (COG) principle does not exclude
the possibility that there are other factors, not related to computational complexity,
that affect the cognitive difficulty of interpretation. Nevertheless, it is a substantial
empirical assumption. I shall leave it as an assumption here.4 It is a substantial issue
in the philosophical background to the present topic, but not directly relevant to the
technical matters that will be in focus below.

The cognitive difficulty, or computational complexity, aspect, provides two reasons
why the requirement of computability in principle is too weak. The first reason is that
there must be an upper bound the cognitive difficulty, and hence by (COG), to the
computational complexity, of interpretation tasks that humans can discharge. Human
cognitive capacities are limited. Attention span, memory, life span, even the number of
neurons of a human being, are finite. For all these reasons, there is an upper bound to
the size of computations we can perform. Therefore, the claim that natural language
meaning is computable, or that it can be worked out in principle, is too weak for
explaining the fact that language users are capable of working out the meaning of
new sentences. Since computability as such sets no upper bound to complexity, the
meanings of complex expressions of some language L might well be computable, even
though it is too difficult for any human speaker to actually work them out. Hence,
to have an explanation at all, we need to assume (using (COG)) that meanings are
computable by formal methods (algorithms) that are tractable to the human mind. The
appeal to computability is too weak already as it stands. We can apply this observation
as the requirement on natural language semantics: that natural language meaning be
computationally tractable:

(TRC) Any plausible semantics for natural language is computationally tractable.

The second reason derives from the observation that semantic comprehension is
a very fast real-time process. The hearer typically interprets an utterance on-line, as
it is being produced, with comprehension achieved immediately after the utterance
is completed. Therefore, under the (COG) assumption, the complexity of semantic
computation must be low. It must be low enough to make it possible for us to process
utterances as fast as we do. How low is that? Much more needs to be in place before
a sensible answer can even be stated, let alone justified. However, it is reasonable to
conjecture that, for semantic theories, other things equal, the lower the better:

(MIN) Other things equal, the lower the computational complexity of a semantics,
the better.

(MIN) is not a conceptual truth, as little as (COG) or (TRC). It might well be that
because of idiosyncrasies of the human brain, the true semantic theory for a language
isn’t the one with lowest complexity. This might be because (COG) is false, and even if
(COG) is true, idiosyncratic features of language learning mechanisms might lead us
to a semantics that is in fact not the easiest to process. That is implausible, however,
and I believe the reflections below will reinforce this assessment.

4 I discuss the relevance of computational complexity to cognition in Pagin (2012a), Pagin
(2012b), and in Pagin (2013).
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(COG) together with (TRC) or (MIN) can support an appeal to the inference
to the best explanation. It may be that some particular kind of semantics minimizes
semantic computational complexity or makes it tractable. Such a semantics then
offers the best explanation of real-time linguistic communicative success. By the best
explanation inference, we conclude that natural language has a semantics of this
kind.

How does compositionality fit into this? We noted that compositionality does not
entail computability. We will also see that compositionality together with computability
does not guarantee low complexity. It will turn out, however, that minimal semantic
complexity does entail compositionality. It will also turn out that allowing semantics
that is not (general) compositional entails allowing semantics with nontractable
complexity. These are the main results of this paper. Of course, as just stated, it is
only roughly true: a number of important qualifications will be made in later sections.
But already at this point we can state intuitively the main answer to the question “Why
compositionality?.”

The answer is that whenever the meaning of an expression depends on more than
one factor, processing the interdependence of these factors needs extra computational
steps. So, if the meaning of a complex expression depends on the meanings of the parts
and the mode of composition, and on other features of the parts as well, more steps
will be needed in computing the meaning. If in addition the other features are both
complex and interdependent, the complexity will quickly grow. Therefore, since there is
anyway dependence on part meanings and mode of composition, and since minimizing
complexity entails eliminating any further dependence, what remains is compositional
semantics. This, in a nutshell, is the outcome of the technical investigations in this
paper.5

However, although the basic idea is simple, it is not a simple matter to establish
the result with a reasonable degree of precision. The proof that minimally complex
semantics is compositional depends on the fact that certain kinds of compositional
semantics have minimal complexity in an absolute sense, not just less than any other
kind of semantics. Now, even with the complexity measure that will be chosen here,
minimal complexity can be defined in two different ways. Under strong restrictions
on the character of the rule systems that will be investigated, restrictions that do
not allow for so-called speed-up, minimal complexity will amount to a measure of
exactly one computation step per symbol in the syntactic term that is processed. If the
object language (OL) contains quantifiers or other variable binding operators, and the
semantics has a standard format, then complexity will not be minimal in this sense.
If speed-up is allowed, minimal complexity will amount to a complexity function
that is a linear function of the size of the syntactic term. If the language contains
variable-binding, however, the minimal complexity will not be linear but quadratic.6

Variable-binding in the OL gives rise to a number of complications, and these cannot
be given a full treatment in the present paper.

5 In Pagin (2012a), I have discussed the philosophical aspects of the idea at greater length.
This paper focuses on the technical side.

6 I characterize and discuss the complexity of truth-theoretic semantics for first-order
languages in Pagin (2012b).
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I shall also leave aside extra-linguistic context dependence. This is not because
extra-linguistic context dependence increases computational complexity. On the whole,
it presumably does increase cognitive effort on the part of the hearer, but in ways that
are quite different from what will be considered here (e.g. the time needed to identify
referents of demonstratives). However, I know of no computational model of this
cognitive process. For present purposes, taking account of extra-linguistic context
dependence adds an inessential complication. I shall take account of certain kinds of
linguistic context dependence (see §2 on general compositionality).

The rest of the paper is organized as follows. In §2. I set out the formal framework
for compositional semantics, including general compositional semantics. §3 discusses
computability and recursive semantics. §4 introduces the idea of computational
complexity and its application to semantics. §5 discusses the choice of complexity
measure. §6 introduces term rewriting and its application to semantics. §7 relates term
rewriting and complexity measures. §8 presents the main complexity results in terms
of a measure inherent to term rewriting. §9 sums up the resulting relation between
compositionality and complexity. Appendix A. provides the proof of proposition
1, concerning recursive semantics. Appendix B. provides proof of proposition 6.
Appendix C provides the proof of Proposition 7, concerning the complexity of
recursive semantics. Appendix D. provides the proof of proposition 8, concerning
the termination property of a relevant class of term rewriting systems.

§2. Compositionality. I shall here use a version of the abstract algebraic framework
for semantics that was introduced by Hodges (2001) and subsequently used e.g. in Pagin
(2003), Westerståhl (2004), Pagin & Westerståhl (2010a), and Pagin & Westerståhl
(2010b). This approach uses an algebraic format in setting out the grammar for a
language, and lets the terms of a grammatical term algebra be the arguments to semantic
functions. This framework doesn’t use grammatical sorts for defining the domains of the
syntactic operations. Rather, the operations are simply allowed to be partial functions.
This simplifies the abstract treatment.

2.1. Syntax. The syntax for a language L will be given in the format of a
grammatical term algebra GTAL.

Definition 1. A grammatical term algebra GTAL for a language L is a partial algebra

(GTL,ATL,ΣL),

where GTL is the set of grammatical terms for L, ATL is the set of atomic (grammatical )
terms for L, and ΣL is the set of syntactic operations for L. ΣL is required to be finite. ATL
is finite as well, unless L contains variable binding operators and therefore a countable
set of variables.7 GTL is the closure of ATL under ΣL.

I shall use s, s1, s2, ... , t, t1, t2, ... , u, u1, u2, ... as parameters for grammatical terms.
I shall use �, �1, �2, ... as parameters for syntactic operations (quotes omitted here).
An instance of

��(t1, ... , tn)�

7 This will not be considered here.
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is a meta-grammatical term. It refers to a grammatical term in GTL, provided the
corresponding operation � is defined for the arguments t1, ... , tn. If it does, then
t1, ... , tn are the immediate subterms of �(t1, ... , tn).

What do the grammatical terms themselves look like? This varies from system to
system. In Hodges’ original setup, there is an expression algebra

EAL = (EL,AL,Σ′
L),

where EL is the set of well-formed expressions (strings) of L, AL is the set of atomic
expressions of L and Σ′

L is the set of syntactic operations on expressions of L. EL is then
the closure of AL under Σ′

L. The grammatical terms are built up from the atomic terms
and the operators (i.e. the symbols denoting the operations of the algebra). Hodges
lets atomic expressions double as atomic grammatical terms. Let us for the moment
follow Hodges in this. Let ‘e1’ and ‘e2’ be atomic expressions in E L, and ‘ �’ a two-place
operator, where the operation � is in Σ′

L.8 Then, if � is defined for ‘e1’ and ‘e2’,

‘�(‘e1’, ‘e2’)’

is a grammatical term. It represents the expression of L that is formed from ‘e1’ and ‘
e2’ by means of the operation �, i.e. �(‘e′1, ‘e

′
2). 9 Assume that � is the corresponding

syntactic operation in the grammatical term algebra. Then while the operation �,
in the expression algebra, maps expressions on expressions, the operation � in the
grammatical term algebra, maps terms on terms, and more precisely terms on more
complex terms that are formed by means of the operator ‘ �’. That is, we have

�(‘e1’, ‘e2’) = ‘�(‘e1’, ‘e2’)’. (1)

In Hodges’ format, the grammatical terms are both the input to the semantics and
directly represent the expressions of the language. In other frameworks the relation
is not direct. In the format of Heim & Kratzer (1998), the syntax is a version of the
Principles and Parameters framework. There the inputs to the semantics belong to
the LF level of syntactic representation. LF does not directly represent expressions of
the language. Rather, it is the surface structures that directly represent the expressions,
and LF representations are derived from surface structures. In Heim & Kratzer (1998),
items in LF are presented as syntactic trees. Trees, of course, correspond in the linear
format to terms, with subtrees corresponding to subterms.

For present purposes, it does not matter what the syntactic format is like, as long as
the items that are the arguments to the semantic functions have the constituent structure
corresponding to the subterm relation. I shall simply use the meta-grammatical terms,
such as the term that occurs on the left hand side of (1), to talk about grammatical
terms, and leave aside further issues of the nature of those terms and their relation to
the expressions of the language.

2.2. Standard compositionality. Semantic functions map grammatical terms on
meanings. I shall use ‘�’, sometimes with subscripts or superscripts, for semantic
functions. In this context, I shall also leave aside the question exactly which entities
serve as meanings, whether they are extensions, intensions, structures, Fregean senses,

8 Note that in Hodges’ setup (but not here), the atomic expressions are also grammatical
terms.

9 In this sentence the grammatical term is used, and refers to an expression of L, while in the
preceding sentence it is mentioned.
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sets of proofs, or something else. We assume a set M of meanings. So, where GTAL is
the grammatical term algebra for L, � : GTL −→M , is a semantic function.

On the other hand, meanings are not meanings intrinsically, but only from the point
of view of being the value of a semantic function. So the concepts of a meaning and
of a semantic function must be taken as interdefinable and co-basic. I shall use ‘m’,
‘m1’, ‘ m2’,...as parameters for meanings. At present, nothing need be assumed about
the inner structure of M, the domain of meanings. In §3, where the idea of recursive
semantics will be developed, an algebraic structure will have to be assumed.

There is a question whether a semantic function should be seen as partial or total on
the set of grammatical terms. It has been held that category mistakes in the sense of Ryle
give rise to expressions that are strictly meaningless, and Chomsky’s famous example
‘Colorless green ideas sleep furiously’ has been held to be a perfectly grammatical
but nonsensical sentence. I find such examples entirely unconvincing: usually falsity
is a better alternative (cf. Magidor, 2009). There is also a technical reason, in that
accommodating partiality computationally would involve great complexity (both in
the technical and in the nontechnical sense). Since partiality isn’t mandatory, technical
considerations tell against allowing it.

To set out a compositional semantics, we will need certain functions that map
meanings on meanings:

Definition 2. A meaning operation is a function r :Mn −→M , for some positive natural
number n.

Meaning operations may be partial, but will be assumed to be defined in all
relevant applications. I shall use ‘r’, with numerical and syntactic operator subscripts
as parameters for meaning operations.

Definition 3. Given a grammar GTAL and a domain M of meanings, a semantic function
� : GTL −→M is standard compositional iff for each n-ary operation � ∈ ΣL there is
a meaning operation r� :Mn −→M such that for any grammatical terms t1, ... , tn for
which � is defined, �(�(t1, ... , tn)) = r�(�(t1), ... , �(tn)).

2.3. General compositionality. Standard compositionality can be generalized by
making the meaning of a subterm depend on its linguistic context.10 Such a
generalization is of interest, since it increases semantic power (some semantic functions,
e.g. for quotation, are not standard compositional but are general compositional)
without increasing computational complexity. The latter aspect makes it obligatory
in the present context, since the conclusion that minimally complex semantics is
guaranteed to be compositional, does hold for general compositionality, but—precisely
because of that—not for standard compositionality.

There are two equivalent ways of implementing this generalization: by adding an
argument for linguistic context to a single semantic function, and by replacing a single
semantic function by a set of functions. The second does not require a formal definition
of linguistic context, and I shall employ it here. The idea is that a semantic evaluation

10 Semantics which make use of this possibility have been called “switcher semantics.” Switcher
semantics has been employed giving a semantics for names in modal contexts (Glüer & Pagin,
2006, 2008), general terms in modal contexts (Glüer & Pagin, 2012), quotation (Pagin &
Westerståhl, 2010c), and belief sentences (Pagin, 2019a). The framework is presented the
latter two works and in Pagin & Westerståhl (2010a, 2010b).
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always starts with the same, designated, function, for unembedded terms, but may shift
to other functions depending on the syntactic operation and the argument position.
First we need a definition of a semantic system:

Definition 4. Given a grammar GTAL and a domain M of meanings, a semantic system S
is a triple (S ′, �S,ΨS) where S ′ is a finite set of semantic functions �j : GTL −→M , �S
a designated member of S, and ΨS : S ′ × ΣL ×N −→ S ′ a (partial ) selection function
that maps any triple of a function �j ∈ S ′, an n-ary operation � ∈ ΣL and an argument
position i of �, 1 ≤ i ≤ n, on a function �k ∈ S ′. For any term t, S(t) = �S(t).

A system S is then said to be general compositional iff the semantic functions in S ′

can be defined by mutual recursion over syntax with composition equations analogous
to those in standard compositionality:

Definition 5. Given a grammar GTAL and a domain M of meanings, a semantic system
S is general compositional iff for each n-ary operation � ∈ ΣL and each member �i ∈ S ′

there is a meaning operation r�,i :Mn −→M such that for any grammatical terms
t1, ... , tn for which � is defined,

�i(�(t1, ... , tn)) = r�,i(�j1 (t1), ... , �jn (tn)),

where �jk = ΨS(�i , �, k), 1 ≤ k ≤ n.

It is easy to see that in the particular case where S ′ = {�} (for some �), we get
standard compositionality as a special case. In that case, of course, ΨS(�, �, k) = �,
for any � and k.

§3. Computability and recursive semantics. Computational semantics is a part of
computational linguistics where formal or model theoretic semantics is implemented
algorithmically, and also combined with other computational linguistic techniques,
e.g. concerning parsing. Ultimately, its goal is to provide algorithms for computing the
meanings of natural language text fragments (cf. e.g. Bunt & Muskens, 1999).

The practice of computational semantics does not directly tell us what it is
for meaning to be computable. In formal semantics, meanings are represented in
some meta-language (ML) and rules are provided for deriving canonical meaning
representations from representations that contain reference to OL expressions or
grammatical terms. These rules can be more or less algorithmic. If they are fully
algorithmic, the semantics is clearly computable. But in order to characterize the
concept of a computable semantic function more generally we need a more systematic
approach.

A function f on the natural numbers is Turing computable iff there is a Turing machine
that for any representation of an argument x as input to f halts with a representation
of the value f(x) as output. The inputs and outputs are not numbers but syntactic
representations of numbers, according to some encoding into the language of the
machine. By analogy, we would say that a semantic function � on a set of terms GTL
is Turing computable iff there is a Turing machine that for any term t ∈ GTL as input
terminates with �(t) as output. In this case, the inputs can be the terms themselves, but
the outputs must be canonical representations of meanings in some chosen formal ML.

There are two crucial nontechnical differences between the machine computations in
these two cases. First, in the number-theoretic case, it does not matter that the machine
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operates on syntactic representations of numbers rather than the numbers themselves,
since the relevant properties of numbers are shared by their canonical representations.
The semantic case is different, since the relation between the meta-linguistic canonical
meaning representation and the meaning it represents is of the same kind as the relation
between the OL expressions and their meanings, the relation that we try to model by
means of a ML and an algorithm. This fact raises some questions about the significance
of the model, but I think the most relevant questions can be answered.

Second, while machine computation of number functions is not intended as a model
of human computation, in the semantic case we do want a reasonable model of human
interpretation. Turing computation isn’t. According to the Church-Turing Thesis, any
function on the natural numbers that can be computed by a human or a machine
following a finite set of explicit instructions is recursive (cf. Copeland, 2008). As was
established by Alonzo Church, S.C. Kleene, and Alan Turing in 1936, the concepts of
being recursive, lambda-definable and computable by a Turing machine, are coextensive,
given the domain of natural numbers. By analogy, we can hope to model human
interpretation by means recursive functions on a syntactic domain.

However, while the concept of Turing computation is directly applicable to any
domain where computations are substitution operations on strings, the concept of
a recursive function is only defined for natural numbers, and so the equation of
computability with recursiveness is not directly applicable. It is nevertheless indirectly
applicable. As shown originally by Gödel, we can effectively code syntax in arithmetic.
The semantic functions we are interested in will be represented by functions from OL
terms to ML expressions; since the ML will be unambiguous, we don’t need the term-
expression distinction there. Both the OL and the ML can therefore be arithmetically
coded, and functions from OL to ML thereby coded as arithmetical functions. Hence,
the concept of a recursive function is indirectly applicable via the coding. We will
define a concept of recursive s semantic function and show that the encoding image of
a recursive s function is indeed recursive (Proposition 1).

To proceed, we shall first need to assume that the domain M of meanings is generated
by an algebra.

Definition 6. A meaning algebra MAM for a set of meanings M is a triple (M,BM,RM ),
where BM is a finite set of basic meanings, and RM is a finite set of elementary meaning
operations. M is the closure of BM under RM . We also require that for any �, �′ ∈ RM
and any x1, ... , xn, y1, ... , ym,

i) �(x1, ... , xn) �∈ BM .
ii) if �(x1, ... , xn) = �′(y1, ... , ym), then � = �′, m = n, xi = yi , 1 ≤ i ≤ n.

In virtue of conditions i) and ii), there is a function | · |M :M −→ N, where |x|M is
the number of “occurrences” of elements in BM ∪RM in x:

( | · |M ) i) |x|M = 1, if x ∈ BM .
ii) if x = �(x1, ... , xn), then |x|M = 1 + |x1|M + ··· + |xn|M .

We can easily verify that | · |M is well-defined.
The elementary meaning operations correspond to the successor operation for the

natural numbers: they are methods of elementarily forming more complex meanings
from simples meanings, such as wooden chair from wooden and chair by means
some operation r ∈ RM that corresponds to an attribute-noun construction. The
computability of elementary meaning operations is ensured formally: where �r� is
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a canonical representation of r, and �mi� ofmi , 1 ≤ i ≤ n, the canonical representation
of r(m1, ... , mn) is simply �r(m1, ... , mn)�.

We next form a two-sorted semantic algebra from a grammatical term algebra and a
meaning algebra, together with a set of semantic functions:

Definition 7. A semantic algebra SALM for a language L and a domain of meanings M
is a triple

(〈GTL,M 〉, 〈ATL, BM 〉, 〈ΣL,RM 〉),
where (GTL,ATL,ΣL) is a grammatical term algebra for L and (M,BM,RM ) is meaning
algebra for M.

We shall now define the concept of a recursive s function, in analogy with the standard
definition of a recursive function on the natural numbers.11 It will, in full analogy, be
defined by three kinds of basic function and three kinds of operation for inductive
definitions of new functions. The basic kinds are: successor kind operations (syntactic
operations and elementary meaning operations), constant functions (one for each
atomic element), and projection functions. The three kinds of inductive operations
are: function composition, primitive recursion, and minimization.

Minimization requires a computable total ordering ≺ of GTL ∪M .

Definition 8. We define a total ordering ≺ of the domain ofGTL ∪M . We assume given
a total ordering ≺A of the domain ATL ∪ BM and a total ordering ≺O of the domain
ΣL ∪RM . Since these domains are finite, the orderings are arbitrary, up to a point: we do
require that if the arity of �′ is higher than the arity of �, then � ≺O �′. We denote the
least element in the ≺A ordering by ‘@’.

We also define the size |x| of an element x ∈ GTL ∪M as the number of occurrences
of elements of ATL ∪ B ∪ ΣL ∪R in x (in the sense of | · |M if x ∈M ). Then

x ≺ y iff

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x, y ∈ GTL ∪M, and x ≺A y
|x| < |y|
|x| = |y|, x = �(x1, ... , xn), y = �′(y1, ... , ym), and � ≺O �′
|x| = |y|, x = �(x1, ... , xn), y = �(y1, ... , yn), and x1 ≺ y1

or there is k, 1 < k ≤ n, s.t. xk ≺ yk and for all i, 1 ≤ i < k, xi ∼ yi ,

where x ∼ y iff x, y ∈ GTL ∪M , and x �≺ y, y �≺ x.

It can be verified by induction on size that ≺ is total, i.e. that if x ∼ y, then x = y.
Moreover, if the meaning operations inRM are computable, then≺ is computable: each
element in RM is 1 – 1, and each element inM –– BM is the value of some application
of some member of RM . Hence, for each element x ∈M , we can effectively determine
that it is in BM or that for some � ∈ RM and some x1, ... , xn ∈M , x = �(x1, ... , xn).
Hence, for any x, y ∈M , we can effectively determine whether x ≺ y, y ≺ x or x = y
by applying the clauses of the definition. We shall call any such computable total
ordering a semantic algebra ordering.

11 This general concept of recursives semantics is more general than what will be needed for the
complexity arguments. It is defined here to show that the more general concept is well-defined,
and that it sustains Propositions 1 and 2.
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We can now define the concept of a recursive s≺ function, i.e. a semantic recursive
function relative to a total ordering ≺. Let ‘ �x’ be short for ‘ x1, ... , xn’.

Definition 9. With respect to a semantic algebra SALM , and a semantic algebra ordering
≺ on GTL ∪M , a (partial ) function h is recursive s≺ iff h satisfies one of i)–vi):

i) h is a basic constant function such that h(x) = y, and y ∈ ATL ∪ BM .
ii) h ∈ ΣL ∪RM .
iii) h is a projection function �ni , where i ≤ n, is a function of n arguments such that

for any arguments x1, ... , xn, �ni (x1, ... , xn) = xi .
iv) h is defined by function composition

h(x1, ... , xn) = f(g1(x1, ... , xn), ... , gk(x1, ... , xn))

and f, g1, ... , gn are recursive s≺.
v) h is defined by primitive recursion ,

h( �x, y) =

{
fy( �x) if y ∈ ATL ∪ BM
g�(h( �x, y1), ... , h( �x, yk), �x, y1, ... , yk) if y = �(y1, ... , yk),

where fy (for y ∈ ATL ∪ BM ) and g� ( for each relevant � ∈ ΣL ∪RM ) are
recursive s≺, and either y ∈ GTL and � ∈ ΣL, or y ∈M and � ∈ RM .

vi) h = Mn≺(f) is defined by minimization, where f is recursives≺. Then
Mn≺(f)(x1, ... , xn) = x iff f(x1, ... , xn, x) = @, f(x1, ... , xn, x

′) is defined
for all x′ ≺ x, and for no x′ ≺ x does it hold that f(x1, ... , xn, x

′) = @.

This definition largely parallels the standard definition of a recursive function
on the natural numbers (cf. Boolos, Jeffrey, & Burgess, 2002). Projection and
function composition are the same. Instead of a single successor function, each element
in ΣL ∪RM has the role of a successor function. Instead of a single basic constant
function giving 0 as value, there is a constant function for each element in ATL ∪ Bm.
Analogously for primitive recursion: instead of a single basic step, there is one basic
step for each element of ATL ∪ Bm. Also, the recursion must distinguish between the
case where the successor operation belongs to Σl and the case where it belongs to RM .
Finally, for minimization we need a total order ≺, but this has no natural definition
within the algebra itself, and must be imposed from outside. If we were to use arithmetic
coding, ≺ would simply be natural ordering of the natural numbers.

With respect to a semantic algebra SALM , a recursives≺ semantic function is a
recursives≺ function from GTL to M.

We can quickly convince ourselves that recursives≺ functions are computable.
The successor operations are computable, constant functions with specified values are
computable. Projection functions are computable. Function composition, primitive
recursion and minimization preserve computability (since the semantic ordering
relation ≺ is required to be computable).

Furthermore, we can show that recursive s≺ functions can be represented by recursive
number theoretic functions. The proof of the following fact is given in Appendix A.
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Proposition 1. Representation theorem
Given a semantic algebra SALM, there is a semantic algebra ordering ≺ of GTL ∪M

and a Gödel numbering �·� from GTL ∪M to N, to the effect that for any recursives≺
function f : (GTL ∪M )n −→ GTL ∪M there is a function f : Nn −→ N such that

a) for any x1, ... , xn ∈ GTL ∪M , �f(x1, ... , xn)� = f(�x1�, ... , �xn�),
b) f is recursive.

Hence, the concept of a recursives≺ function is well-defined and analogous to the
concept of a recursive function. However, despite the fact that use of Minimization is
essential for computability in principle, there are three reasons to restrict our attention to
semantic functions whose definitions do not require Minimization, i.e. to the semantic
counterpart of primitive recursive functions. These are the functions definable by clauses
i)–v) of Definition 9.

The first reason is that Minimization requires a total order of the objects of the
algebra, and there is no total order in a semantic algebra that is defined from the basic
operators themselves. At least there are two separate subdomains, GTL and M, and
on top, neither need have just one unary operation. So a total order apparently needs
to be imposed from outside.12 This breaks the analogy with arithmetic.

The second reason is that it is very implausible that Minimization would ever be an
operation involved in human interpretation. So to the extent that this is what we want
to model, there is reason not to include Minimization.

The third reason is that from the point of view of computational complexity, the
primitive recursive functions suffice. In arithmetic, all tractable functions (see §4) and
many more are primitive recursive (cf. Immerman, 2008). And, as we will see in §7,
the results from considering only primitive recursives≺ functions are strong enough.13

From now on, unless otherwise noted, by ‘recursives semantic function’, and ‘recursives

operation’, I shall mean a semantic function or an operation definable by clauses i)–v)
of Definition 9.

Then we can define:

Definition 10. Given a semantic algebra SALM , a semantic function � : GTL −→M is
recursives iff � is definable by clauses i)–v) of Definition 9.

From now on, I will drop the superscript, except for cases where disambiguation is
required.

Now, it is clear that a compositional semantic function need not be recursive. For
the semantic function � is recursive just in case the meaning operations are recursive,
but it is not required in Definition 3 (or in any common definition of compositionality)
that meaning operations be recursive.

It is also clear that a recursive semantic function need not be compositional.14

Using primitive recursion in the definition of � we will have the condition that

(REC) LetRM be the recursive closure ofRM . Then for each n-ary operation� ∈ Σ
there is a recursive operation r� ∈ RM such that for all terms t1, ... , tn, if �

12 This remains to be proved.
13 It is not known whether all semantically computable functions are also semantically recursive.

An earlier argument for the truth of that proposition turned out to be flawed.
14 This has been observed many times before, e.g. in Janssen (1997), by means of an example

from arithmetic.
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is defined for �(t1, ... , tn), then

�(�(t1, ... , tn)) = r�(�(t1), ... , �(tn), t1, ... , tn).

The fact that the meaning operations may take the syntactic terms t1, ... , tn
themselves as arguments, has the effect that the compositional substitution laws need
not hold. For

r(�(t1), �(t2), t1, t2)

may well differ from

r(�(t1), �(t3), t1, t3)

even if �(t2) = �(t3). Hence, recursiveness does not entail compositionality.
Then, given that recursive semantic functions are computable, a single example of a

recursive semantic function that is not compositional is enough to show a computable
semantic function need not be compositional.15 An example will be given in term
rewriting format in §4. We now turn to complexity.

§4. Complexity and efficiency. In computational complexity theory, three types of
measure have been studied extensively, all defined in terms of Turing machines:

The time complexity of a problem P (relative to a way of describing P) with respect
to an algorithm A, is the maximum number of computation steps that are needed for
a Turing machine that implements A to solve a problem instance of the same size as P
(cf. Garey & Johnson, 1979, pp. 6, 26).

The space complexity of a problem P (relative to a way of describing P) with respect
to an algorithm A, is the maximum number of distinct tape squares visited by a Turing
machine that implements A to solve a problem instance of the same size as P (cf. Garey
& Johnson, 1979, p. 170).

The Kolmogorov complexity of a problem P (relative to a way of describing P) is the
size (relative to a linear encoding of Turing machines) of the smallest Turing machine
needed to solve P (cf. Li & Vitányi, 1997, pp. 93–98).

In these contexts, a “problem” is usually a problem type, and what is solved in each
particular case is an instance of that problem type. Such a problem type is e.g. The
Traveling Salesman: a salesman is to visit a number of cities exactly once and then
return home, and the task is to find a visiting order that minimizes the total distance
traveled. The number of cities is the size of the instance.

Depending on the choice of complexity measure and on the choice of method for
solving problems of a chosen type, a particular problem instance gets assigned a natural
number as the complexity of that instance, numbering e.g. the squares that a chosen
Turing machine has visited for computing the solution. One is interested not only and
not primarily in the complexity of individual instances, but in the maximal complexity
of instances of the same size: given e.g. a number of cities to visit (disregarding further
information), what is the maximal number of steps needed to determine the best order?
Given a problem type P and a method �, one is therefore interested in the complexity

15 As pointed out in Werning (2005) and developed in Pagin & Westerståhl (2010c), we can have
a natural recursive semantics for quotation that is not compositional. An example can be
found in Potts (2007). Quotation is, however, given a semantics that is general compositional
in Pagin & Westerståhl (2010c).
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function CP,� from natural numbers to natural numbers which, for a given argument k
gives as value the maximal complexity of P-instances of size k.

Suppose we can hold P constant. We can then simply associate each method �
with a complexity function C�. When each method is associated with a complexity
function, we can compare methods with respect to efficiency: if for all k it holds
that C�(k) < C�(k), then we can say that method � is more efficient than method �.
In general, the efficiency comparison is less straightforward, since one method may be
more efficient than another only in the long run. The most natural way of capturing
this idea is to require that from some size onwards the C values are lower for the one
than for the other:

(EC) � is more efficient than � iff there is an n such that

∀k > n (C�(k) < C�(k)).

We are interested in finding out the properties of those interpretation methods, i.e.
semantic functions, that are most efficient in this sense. As we shall see below, however,
this comparison is significant only for large differences.

§5. Measures of complexity. We turn to the question of selecting an appropriate
complexity measure. Which of the three aforementioned types of complexity are
relevant to an intuitive measure of the difficulty of the cognitive task? Time complexity
appears to be most directly relevant, since considerations of time pressure motivated
looking at complexity in the first place.16 The general idea of time complexity is that we
count the number of steps that have to be taken for completing a process. It is plausible
to assume that by and large, an increase of the number of steps required in the formal
computation corresponds to an increase of the real time needed for human processing.
I shall assume so. Hence, we will in the first place want to minimize time complexity
of individual tasks, and therefore to maximize efficiency of semantic functions with
respect to time complexity.

The next questions to answer are: What is the character of the relevant problem
type? How do we measure the size of an instance? What constitutes an individual step
of the computation process?

It would be very natural at first glance to take efficiency maximizing to consist in
finding the most efficient semantic function for a given language L and a given domain
M of meanings, where L is understood purely syntactically. That is, measure the size
of the problem instance as the size of the term, and look for the longest computation
needed for a term of that size. But although this question is important, computation

16 Henry (2005) appeals to Kolmogorov complexity in supporting compositionality from a
learning perspective. A machine is taken to generate string-meaning pairs, and complexity is
low if the length of the description of the machine is small in relation to the size of the data it
outputs. Compositionality offers low complexity in this sense. And if the language learner is
equipped with a compositionality hypothesis, the learning of a language with compositional
semantics will be much faster than if meanings are paired with strings in a more random
way. Hence, Brighton concludes, it makes sense from an evolutionary perspective to believe
that natural languages are compositional.

This is no doubt true, but any systematic semantics would have the same advantage
over random pairing, and so the result does not throw much light on compositionality in
particular. Cf. Pagin (2013).
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length relative to input size cannot be the whole story. For with some choices of L
and M, semantic interpretation becomes intractable, whatever the semantic function.
To see this, consider the following example of Lisa (cf. §8.3.1 for the term rewriting
system).

We have a language L consisting of α and the successor operator � as basic elements.
So L consists of the terms α, �(α), �(�(α)), etc. Then we have a conceptual domain
consisting of the object l (Lisa) and the two conceptual functions f (father) and m
(mother). So M consists of l, m(l), f(l), m(m(l)),m(f(l)), f(m(l)),f(f(l)), etc. Let
the size of an object of either domain consist in its number of basic elements (basic
object plus number of function/operator occurrences), and let the size n of a domain
be the number of elements of at most size n that it contains. The growth rate of the
domain is a rate of increase of the function g(n) that maps a number n on the number
of elements of the domain with size n or lower. In these terms, we have a conceptual
domain with a growth rate of g(n + 1) = 2g(n) + 1 and a syntactic domain with a
growth rate of g(n + 1) = g(n) + 1.

In order that the semantic function � for each element m in M up to size n maps a
term t on m, 2n+1 – 1 distinct terms will be needed, since there are that many elements
of M of size n or lower. Therefore, there will be at least one element mi and one term
tj of L such that �(tj) = mi and the size of tj is 2n+1 – 1 or greater. Assuming that
exactly one computation step is needed for processing each element of a term t, at
least 2n+1 – 1 steps are needed to compute tj .17 Hence, the maximal number of steps
needed to process a term referring to an object of a certain size grows exponentially
with the size of the object, regardless of the choice of semantic function. In terms of
computational complexity theory, using L for referring to M in the Lisa example is
a strictly intractable task. When tasks are considered tractable, the increase in time
complexity (number of steps needed) is at most a polynomial function (known as the
Cobham-Edmonds thesis).

More precisely, we get the intractability result if we regard the problem type as the
type of understanding the expression of a concept, for then the size of a problem
instance is the size of that concept. If by contrast we regard the problem type as that
of processing a term, then the size of the problem instance is the size of the term. The
time complexity function, under the assumption above, is then simply x: as many steps
are needed as there are elements in the term. From that point of view, the semantic
function appears very efficient. For the same conceptual domain M we could have a
more appropriate languageL′ and a semantic function�′ mappingL′ on M that would
require, say, terms that are twice as large as the concepts they are mapped on. With the
same assumption of one step per element of the term, �would be as efficient as �′ if the
problem type is that of processing terms, but exponentially less efficient if the problem
type is that of arriving at contents. In this particular example, the latter is clearly what
is cognitively more relevant: L+ � form an intractably cumbersome combination for
talking about or expressing M, while the alternative L′ + �′ would be manageable.

As a conclusion from this, we need to consider the task of interpreting expressions of
content as a problem type, and hence to treat as a measure of the size of an instance of
a problem simply the size of the content to be expressed. That is the invariant factor in

17 This assumption is made for ease of exposition. It does not matter much. It will in any case
hold that there is a finite number k such that in the long run, at most k elements can be
computed in each step. Then there is still exponential growth.
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the comparison between methods in the example above.18 We have to take account not
only of the efficiency of the mapping from code to concepts, but also of the efficiency
of the encoding itself, i.e. the size of the code.19

We shall return below to the question of how to measure sizes of contents. But
we must first note that just as the relation of computation length to the size of the
input term can be misleading with respect to real complexity, so can the relation to the
output. For it may be that a computation grows exponentially in relation to the size
of input, but that the complexity measure in relation to output size is nonetheless low
for the simple reason that the output itself grows exponentially. We will in fact see an
example of this in §8 (the Godzilla example). The upshot is therefore that we need to
care both about the input complexity C i� of a method �, i.e. the length of a computation
in relation to the size of the input, and the output complexity Co� , the length of a
computation in relation to the size of the output. Both need to be reasonable.

But how do we measure the size of output, i.e. contents? Does it make sense to say
that one concept or one proposition is larger than another? There is no immediate way
of making a relevant sense of that idea, but it does not matter so much. Computations
can anyway not be defined over contents, only over symbols. What we can and must
do, then, is to measure the size of representations of content. We shall need a formal
language where we give canonical representations of conceptual contents. With such
a formal, unambiguous language of canonical representations, we can again count
the number of symbols in its expressions for determining the relevant size of contents
represented.

The final question concerns the nature of the computation steps that are to
be counted. As mentioned above, standard time complexity takes the number of
operations of Turing machines as the measure. If that were the choice, we would
have to settle for some particular kind of Turing machine, whether a standard single-
tape machine with a tape that is infinite in both directions, or something else. There
is no uniquely right choice, and no absolute measure. Turing machine operations will

18 A further reason not to use only the term size as the size of the problem instance is that
we can make terms arbitrarily much larger by throwing in junk constituents that are not
needed for the semantics and therefore do not add to computation complexity. With a lot
of junk in the terms, a semantic function can appear to be more efficient, which is again
counterintuitive.

19 This aspect of the issue shows the similarity with questions of efficient encoding handled
in Mathematical Information Theory, as originated in Shannon (1949). There are also
important differences, however. An encoding E is efficient in the information theoretic sense
if the average rate of information sent over an information channel and encoded by E is high.
In that context, a signal conveys more information if the fact that it reports is less probable.
States of affairs that are highly probable will in the long run occur more often, and should
be reported by means of shorter codes. So the efficiency of an encoding depends on the
matching between the distribution of lengths of codes and the distribution of probabilities,
over the same possible states of affairs.

In the present case, the questions of truth or falsity of sentences used or the probabilities
of facts reported on, do not arise. We are only concerned with the expressive power and
the efficiency of the interpretation. In the information theoretic case, questions of efficient
encoding arise even if there is only a small finite number of signal types (sentences) used over
and over. In the present context, having only a finite number of sentences would reduce the
interpretation problem to triviality, since then the meaning of all sentences could be given by
a finite list. This would reduce the total number of processing steps needed for any sentence
to exactly 1.
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involve steps needed in order to find the relevant information (on other tape squares)
and moving symbols in order to make room for others, etc., and how many such
operations are needed will depend on the choice of machine. Therefore, these operations
are to some extent arbitrary, and to that extent less essential to the complexity measure.

There is a natural alternative, which is to employ the equation system used for defining
a function also as a method for computing the function. Take as a simple example,
Donald Davidson’s Annette (Davidson, 1967, pp. 17–18):

i) Ref(‘Annette’) = Annette. (2)
ii) Ref(‘the father of’ 	t) = the father of Ref(t).

This simple definition provides a method for deriving the interpretation of ‘the father
of the father of the father of Annette’ in four steps of substitution. Let ‘F ’ be the OL
father operator and ‘F’ its analogue in the ML, and let ‘a’ be the OL name of Annette.
Then we have in four steps with the semantic function �a :

�a(F (F (F (a))))
= F(�a(F (F (a))))
= F(F(�a(F (a)))) (3)
= F(F(F(�a(a))))
= F(F(F(Annette))),

where (what corresponds to) the second clause of (2) is applied three times and the
first clause once.

Each derivation step in (3) is a substitution step. Each substitution is performed in
accordance with equations in (2). These equations are applied only for substitution
from left to right: an instance of the left-hand side is replaced by the corresponding
instance of the right-hand side. This makes the system into a so-called term rewriting
system.

Term rewriting systems are sets of rewrite rules. Rewrite rules apply to terms and
license formal substitutions of/in those terms. Rewrite rules can contain variables,
in which case an instance of the left-hand-side is allowed to be transformed to the
corresponding instance of the right-hand-side. Clause ii) of (2) can be regarded as
such a rule, with the variable t occurring once on each side. Relative to some rewriting
system R, when no rule of R applies to a term u, u is said to be in normal form. The
little derivation in (3) transforms the initial term ‘�a(F (F (F (a))))’ to its normal form
‘F(F(F(Annette)))’ in four steps.

Transforming terms to normal form by means of a sequence of rewrite rule
applications is a completely general form of computation. It has been shown that
any both-way infinite one-tape Turing machine can be simulated by a term rewriting
system such that each rule of the rewriting system corresponds to a machine transition
and each machine transition is represented by at least one rewrite rule (cf. Baader &
Nipkow, 1998, pp. 94–97). In virtue of this relation it is not only very convenient but
also well motivated to use the count of rewrite rule applications as a measure of time
complexity.

Then, for each non-normal rewriting term s, we consider the shortest derivation by
which s is normalized. Only normal terms correspond to full interpretation, i.e. to our
representations of the world; other terms only have a role in deriving the normal terms.
Let input terms of the rewriting system be terms of the form ‘�(t)’, with t a syntactic
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term. For a normal term s we consider the shortest derivation by which some input
term �(t) is normalized to s.20 Let that be the term complexity CtR(s) of s relative to
R. The input time complexity C iR(k) for the size k relative to the system R is then the
maximal CtR(s) such that s has size k. We have the corresponding definition of the
output time complexityCoR(k) in relation to the size of the output expression in normal
form.

With this much of background, I turn to characterizing time complexity of rewrite
systems in relation to some crucial properties of those systems.

§6. Term rewriting.

6.1. Term rewriting and u systems. A term rewrite system (TRS) Φ is a pair (ΣΦ, RΦ)
of a signature ΣΦ and rule-system RΦ over the signature.21 The signature consists of a
set of operator symbols of different arities, including the null-arity (for constants). We
shall here require that ΣΦ is finite. TΦ is the set of terms over ΣΦ.

The rule-system provides transformations, or reductions, from terms to terms in
TΦ. The rules are stated by means rewrite variables, normally from a denumerable set
VΦ = {x1, x2, ...}. Rules are then of the form

F (−→x ) → G(−→y )

(where the arrows over the variables indicate that it is a sequence of variables). The
main arrow indicates that any uniform substitution instance of the lhs (left-hand-side)
reduces to the corresponding substitution instance of the rhs (right-hand-side). The
lhs and rhs of rule formulations are patterns or schemes formed from TΦ ∪ VΦ.

A rule example would be

h(x1)bx2 → g(x1, c)bd,

where ‘b’, ‘c’ and ‘d’ are constants. Assuming t1, t2 are terms in TΦ, application of the
rule reduces ‘h(t1)bt2’ to ‘g(t1, c)bd ’. Since reductions can take place in contexts of
larger terms, the same rule reduces ‘j(h(t1)bt2)’ to ‘j(g(t1, c)bd )’.

A derivation is a sequence of rule applications in a rule-system, where the result
(called “contractum”) of each application except the last provides the input (called
“redex”) to the next. A term that cannot be reduced further is said to be in normal
form. A rewrite system Φ is said to terminate iff every derivation in RΦ eventually
leads to a term in normal form. R is said to be confluent iff it holds for any terms
t1, t2, t3 such that both t2 and t3 can be derived from t1, that there is a term t4 such
that t4 can be derived from both t2 and t3. R is convergent iff R both terminates and
is confluent. Not all term rewriting systems terminate and not all are confluent, and
neither property is in general decidable. However, the systems we will be concerned
with, involve substitutions of a very restricted kind, and they are convergent, as we
shall see.

For our purposes we will need two generalizations of standard TRSs. The first is
that of many-sorted systems (cf. Terese, 2003, pp. 254–259). In a many-sorted TRS, the
set of terms is partitioned into subsets, where each such subset is the set of terms of a
distinct sort. Rewrite variables are also typed for sorts, so that the possible instances

20 There need not be any longest derivation, since it is possible that there is no upper bound to
the size of terms that reduce to the same normal form.

21 For excellent introductions to term rewriting, see Baader & Nipkow (1998) and Terese (2003).
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are terms of only one sort. A complex term t of a sort si can have subterms of
different sorts sj1 , ... , sjn . Argument places for operators are then associated with sort
restrictions. A complex term all of whose subterms satisfy the sort restrictions is called
a well-sorted term. This of course is the counterpart to grammaticality.

The first reason why we need many-sorted systems is that they will handle both an
OL and a ML. We will then have an OL sort and an ML sort. In case the ML is an
extension of the OL, this need for a sort distinction vanishes, but in the general case,
the ML does not overlap at all with the OL. In particular, in the normal case, the OL
contains structurally ambiguous expressions. Since semantics only assigns meaning to
disambiguated expressions, we will need a special set of unambiguous grammatical
terms that are the arguments to the semantic functions. In the present context, we will
not be concerned with the expressions of the OL at all, only with the grammatical
terms. The ML, on the other hand, is required not to contain structural ambiguity
at all. It shall provide canonical meaning representations, and hence we will require
that distinct ML expressions represent distinct meanings. No grammatical terms for
the ML will therefore be needed. For this reason, where there is no risk of confusion,
I shall refer to ML terms simply as “expressions.”

There will be a set of rewrite variables v1, v2, ... of the sort OL, i.e. variables that take
OL grammatical terms as substituends. But just having one sort for OL terms risks not
respecting the syntactic restrictions of the object-language. We will need to instantiate
schemes like

�(�(v1, ... , vn)),

where � is a semantic function symbol, � is an OL syntactic operator, and v1, ... , vn
are rewrite variables. The argument of the instance must be a grammatical term
�(t1, ... , tn), where t1, ... , tn themselves are grammatical terms. But no operator �
is defined for all sequences t1, ... , tn of grammatical terms. If � is the NP-VP operator,
then there are two arguments, where the first must be an NP and the second a VP. So
we need to impose restrictions on instantiations.

One method for doing this is to introduce further subcategorizing of the OL sort
into sorts that correspond to grammatical categories, like NP. I shall here use the other
method (which is anyway needed for further reasons discussed below): generalizing
TRSs to conditional term rewrite systems (CTRSs). A CTRS Φ is again a pair (ΣΦ, Rφ)
of a signature and a set of rules, except only that the rules in general will be conditional.
A conditional rule r is an ordinary rule together with conditions for its application22 :

t → s ⇐ C1, ... , Cn.

We can apply this method to implement the grammaticality restriction, by simply
adding the condition that the complex term �(t1, ... , tn) is grammatical. I shall choose
this method for reasons of simplicity.

There would be a second reason why both many-sorted and conditional rewriting
would be needed for some systems. This reason would concern the existence of variable
binding operators in the OL, and the need that it induces for varying semantic

22 Cf. Terese (2003), pp. 80–85.
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assignments to free variables. However, variable binding in the OL introduces a number
of complications, and cannot be treated in this paper.23

The systems we shall focus on are transformed into rewrite systems from algebraic
specifications of semantics for some OL. They will be called �-systems.

Definition 11. A �-system Φ is a pair (ΣΦ, RΦ) of a signature and a set of rules. Every
� signature Σ is a pair (Σo,Σm) of an object-language signature Σo and a meta-language
signature Σm.

Σo is pair (Ao,Σ′
o) of a set of atomic OL terms Ao and a set Σ′

0 of n-place syntactic
operators � ∈ Σ′

o, for variable n. The operators in Σ′
o are in general partial.24 The set of

OL terms To is the closure of Ao ∪ Vo under Σ′
o. Thus (To, Ao,Σ′

o) is a syntactic algebra,
the grammatical term algebra of OL. To is the set of OL grammatical terms.

Σm is a structure (Am,Σ′
m, S, F,G) of a nonempty set Am of atomic ML expressions, a

nonempty set Σ′
m of ML syntactic operators, a nonempty set S of ML elementary semantic

function symbols, and two (possibly empty) sets F and G of additional meta-linguistic
recursive function symbols. They are needed for so-called indirect systems. Members of
F perform recursion over OL terms and members of G over ML expressions.

Cm is the closure of Am under Σ′
m. It is the set of canonical expressions of ML, which

are canonical representations of meanings. It does not contain any � operator or F or G
functor.

S is the set of semantic vocabulary of Φ. It contains at least one member, the semantic
function symbol ‘�’. In the general case, S may be a finite set {�1, ... , �n} of semantic
function symbols. S(To) = {�i(t) : t ∈ To, �i ∈ S} is the set of �-terms. It is the set of
symbols consisting of a semantic function symbol applied to an OL term.

F may include additional function symbols f1, f2, ... that do not represent semantic
functions strictly speaking, but are involved in the computation of semantic values.
Members of F can take arguments from both To, S(To) and Cm. They are part neither of
the input to RΦ nor of the normal form, but play a role in recursion. Again the operators
in Σ′

m and the function symbols in F are in general partial. The same holds for G.
Tm is the set of meta-linguistic terms of ΣM . Tm is the closure of Am ∪ To under

Σ′
m ∪ S ∪ F ∪G . There are two privileged subsets of Tm: S(To) is the set of input terms

to derivations, and Cm the set of canonical expressions, i.e. expressions in normal form,
with which rewrite derivations terminate.

In §8 we shall characterize systems of the different kinds and determine the
complexity of examples. First, we shall look at the general issue of complexity and
term rewriting.

§7. Term rewriting and complexity. Any terminal symbol occurring in a term is
produced by means of a rule where it is explicitly used on the rhs. At most finitely
many terminal symbols can occur on the rhs of any rule. Since the rule system is finite,
there is a largest number w of terminal symbol occurrences that can be produced in

23 In Pagin (2012b) I have devised a rewrite system for a first-order language, with the existential
quantifier as only variable-binding operator. The requirement of matching quantifiers with
variables in the rewriting process increases complexity, making it quadratic instead of linear.

24 Here we follow the format of Hodges (2001), also used e.g. in Pagin (2003), Westerståhl
(2004), and Pagin & Westerståhl (2010a), where we avoid introducing syntactic sorts, in
contrast e.g. to Montague (1973), Janssen (1997), Hendriks (2001).
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any single rule application. This is the MaxApp number of the system. It is immediate
that the smallest number of application steps needed to produce a term s of size k in a
� system R is [k/�], where� is the MaxApp number of R and [z] is the smallest whole
number at least as great as z. Since there are infinitely many terms of normal form, the
ratio [k/�] will be an upper limit of efficiency in the long run. Hence, no � rule system
R can be faster than having a linear time complexity function CR.

The real efficiency may be much lower. If rules that produce new nonterminal
symbols are present, the upper limit of efficiency may be an exponential function
of the size of the canonical terms. If the rule system is direct, every new symbol on
the rhs of a rule is a terminal symbol. In virtue of property (SDCiv) of � systems,
that term cannot itself be an argument, i.e. instantiate the lhs of a rule. Only its proper
subterms can. In direct � systems, substitutions are only performed on subterms
that do not contain terminal symbols. Because of this, � systems that are direct
are guaranteed to transform terms to normal form in an incremental fashion, in
each step replacing nonterminal by terminal symbols, until only terminal symbols
remain.

Let the MinApp of a � system be the minimal number of terminal symbol
occurrences that are produced by any single rule application. Hence, for a direct system
R, MinApp (R) ≥ 1. This means that for a direct rule system R, we can estimate the
complexity function CR as

[k/�] ≤ CR(k) ≤ [k/�] ,

where � is MaxApp (R) and � is MinApp (R). Since � ≥ 1, it follows that CR(k) ≤ k
if R is a direct rule system. I shall say that systems with such a complexity function are
maximally time efficient.

Clearly, since there is no finite upper bound the value of �, there is no highest
efficiency value. Where we have a system R� that computes a function � we can devise
a system R′

� that computes the same function � at roughly twice the speed. We do
this by creating more complex rules, i.e. rules that apply to larger terms. Such rules
are more specialized, and hence many such rules are needed for having an equivalent
system.25 It still makes sense to speak of maximal time efficiency, for the reason that
rewriting computation can be sped-up by more than any finite factor. Any speed-up
of a system whose complexity function is linear is therefore itself linear. Therefore, we
can say more generally that systems with a linear complexity function have minimal
complexity.

Direct rule systems have minimal complexity.26 What happens when we allow
indirect rules, i.e. rules that produce nonterminal symbols that will be eliminated
in the course of the composition? Term rewriting systems that implement recursive
semantics will be indirect, since they produce OL terms in the ML, and these OL
terms will have to be eliminated. Therefore, it seems that to the extent that indirectness
of a � system leads to an increase of computational complexity, this has the effect
that recursive noncompositional semantics is less efficient than recursive semantics
that is compositional as well. In §8 we shall consider kinds of indirect systems

25 This corresponds to speed-up transformations of Turing machines. For a given Turing
machine M we can e.g. devise a machine M′ that is twice as fast by letting the new one
process two tape squares at a time (cf. Hartmanis & Stearns, 1965).

26 This topic was investigated in Pagin (2012a).
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and the complexity of examples of these kinds. We shall return to the question of
compositionality and complexity in §9.

We shall see in the next section that allowing for indirect rules can lead to
exponential complexity, i.e. C (k) ≥ ik , for some i, and even higher. This is a dramatic
increase of complexity, as measured by the number of term rewriting steps, and
we may wonder whether this is a reasonable measure. The question divides into
two subquestions. The first concerns the relation between cognitive difficulty and
abstract complexity measures, and the second concerns more specifically the relation
between term rewriting complexity and standard Turing machine complexity. Neither
question will be investigated here, but a few remarks will be made regarding the second
question.27

The standard machine model for time complexity is the (multitape) Turing machine.
The question whether some other computational device, like a term rewriting system,
offers a significant complexity measure is known as the question whether it provides a
reasonable machine model for time complexity, in the sense of van Emde Boas (1990).
A time complexity measure by an alternative machine model R is counted as reasonable
if that machine can be simulated by a Turing machine T with at most polynomial
overhead:

There is a k such that CT(n) ≤ CR(n)k.

In Dal Lago & Martini (2009) it is shown that so-called orthogonal constructor term
rewriting systems can be simulated with linear overhead by reductions into a weak
type-free call-by-value Lambda Calculus. In another recent paper by the same authors
(Dal Lago & Martini, 2008), it is shown that Weak Lambda Calculus can be simulated
by a Turing machine with polynomial overhead (k = 4).
� systems are constructor systems and orthogonal, but differ in being two-sorted,

and in the use of conditions. Therefore, the results of Dal Lago and Martini cannot
be directly applied, but they give reason to believe that corresponding results may
be available for � systems, and that therefore the question whether � systems are
reasonable machine models can be answered affirmatively.

§8. Direct and indirect � systems.

8.1. SDC systems. In a simple � system, S contains only one semantic function
symbol �. In a direct � system, the sets F and G are empty. In a constant � system all
atomic terms get constant value assignments: the OL does not contain variable-binding
operators. We shall here be concerned only with constant systems. We shall first outline
the set of rules for simple, direct, and constant �-systems, SDC systems. A set of rules
RΦ for an SDC � system Φ has the following properties:

(SDC) A SDC rule system R:

i) RΦ has a finite number of rules;
ii) For any rule r of the � system, the set of rewrite variables on the rhs

of r is a subset of the set of rewrite variables occurring on the lhs of r;

27 For the first, see for instance van Rooij (2008).
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iii) Rewrite variables take all and only OL grammatical terms as
instances;

iv) Every atomic rule r ∈ RΦ has the form

�(t) → e,

where t ∈ Ao and e is a simple or complex expression in Cm, and for
every t ∈ Ao there is an atomic rule;

v) Every complex rule r ∈ RΦ has the form

�(�(v1, ... , vn)) → K(�(v1), ... , �(vn)) ⇐ Gr(�(v1, ... , vn)),

where K is a simple or complex operator of Σ′
m and Gr(�(v1, ... , vn))

is the condition that the substitution instance �(t1, ... , tn) of the
application is grammatical; and for every operator � ∈ Σ′

o there is a
unique complex rule.

A few comments are in order. The requirement (i) that the rules are finite in
number is not a general requirement on rewrite systems, but is highly motivated
when we use rewrite systems as a model of the human interpretation faculty. The
requirement (ii) that the set of variables in the rhs is a subset of the variables on the
lhs is a general requirement on TRSs. That this condition is satisfied follows from
clause (v).

From clauses (iv) and (v) we can see that for every grammatical term t ∈ To, �(t) is
an instance of the lhs of some rule; i.e. every OL grammatical term gets processed. It is
of course a further question whether every grammatical term gets fully interpreted, but
we shall see that this is in fact the case. This means that the semantic function � that
is formally represented by the rule system is a total function. One cannot in general
require that semantic functions be total, but since the syntactic operations are anyway
partial, it is most convenient to count any � meaningless term as ungrammatical
as well.

The combination of clauses (iii) and (v) entails that every complex grammatical
term has grammatical terms as immediate constituents, since only grammatical terms
can instantiate the variables in clause (v). Given that grammatical terms are also
� meaningful, it follows that the immediate constituents of � meaningful complex
terms are themselves � meaningful. Since Hodges (2001), this is known as the
Domain Principle. Note also that, in virtue of clause (v), Φ represents a compositional
semantics. We can establish some properties of SDC systems.

Proposition 2. SDC systems terminate.

Proof. We can give a simple size measure of terms, as follows:

i) for e ∈ Cm, |e| = 0,
ii) for e = K(e1, ... , en), where ei ∈ Tm, 1 ≤ i ≤ n, and K is a simple or complex

operator of Σ′
m, |e| = |e1| + ··· + |en|,

iii) for any t ∈ To, |�(t)| = |t|,
iv) for any t ∈ Ao, |t| = 1,
vi) for any n-place � ∈ Σ′

o, any terms t1, ... , tn, |�(t1, ... , tn)| = 1 + |t1| + ··· + |tn|.
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It is straightforward to see that every rule application lowers the size of the ML
expression by 1. That is, the redex of the application has a size one unit greater
than the contractum. Since terms in To are well-founded, and no rule applies to any
expression of size 0, every derivation comes to an end. �

Proposition 3. SDC systems are confluent.

Proof. In every rule of a SDC system, the lhs has the form�(v). No expression e in ML
has an occurrence of�within the scope of another occurrence of�. For a complex term
�(t1, ... , tn), the applicable rule is uniquely determined by �. When two rules applies
to the same expression e inML, they apply to nonoverlapping subexpressions. Hence
there are no critical pairs, i.e. pairs of rules that can apply to the same expression.
By The Critical Pair Lemma (Terese, 2003, pp. 54–55, Baader & Nipkow, 1998, pp.
139–140), the system is confluent. �

8.2. Complex DC systems. Complex direct constant� systems, CDC systems, differ
from SDC systems in that the set S contains more than one semantic function. Cf. §2.3.

(CDC) A CDC rule system R:

i) RΦ has a finite number of rules;
ii) For any rule r of the � system, the set of rewrite variables on the rhs

of r is a subset of the set of rewrite variables occurring on the lhs
of r;

iii) Rewrite variables take all and only OL grammatical terms as
instances;

iv) Every atomic rule r ∈ RΦ has the form

�i(t) → e,

where �i ∈ S, t ∈ Ao and e is a simple or complex expression in Cm,
and for every pair (�i ∈ S, t ∈ Ao) there is an atomic rule;

v) Every complex rule r ∈ RΦ has the form

�i(�(v1, ... , vn)) → K(�k1(v1), ... , �kn (vn)) ⇐ Gr(�(v1, ... , vn)),

where K is a simple or complex operator of Σ′
m, �k1 , ... , �kn ∈ S,

and Gr(�(v1, ... , vn)) is the condition that the substitution instance
�(t1, ... , tn) of the application is grammatical; and for every pair
(�i , �), �i ∈ S, � ∈ Σ′

o, there is a unique complex rule.

The differences between a complex system and the corresponding simple system
are in clauses (iv) and (v). According to clause (v) the semantic function symbol �kj
that will apply to a subterm tj in the contractum may be different from the semantic
function symbol �i of the redex, and different from �km , for j �= m. This is what
characterizes general compositionality. The proof of the facts below are completely
analogous to the proofs of Facts 2 and 3.

Proposition 4. CDC systems terminate.
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Figure 1. OL for Lisa.

Proposition 5. CDC systems are confluent.

8.3. Indirect systems. Indirect systems are characterized by the fact that complex
rules may introduce operators on the rhs that are not terminal symbols, operators in
either the set F or G. Such rules are of two kinds, the F kind and the G kind. An F-kind
rule represents a noncompositional recursive semantics, and is of the form:

�(�(v1, ... , vn)) → f(�(v1), ... , �(vn), v1, ... , vn) ⇐ Gr(�(v1, ... , vn))

with f ∈ F . A G-kind rule does not violate compositionality, and has the form:

�(�(v1, ... , vn)) → g(�(v1), ... , �(vn)) ⇐ Gr(�(v1, ... , vn))

with g ∈ G . Accordingly, in both cases there will also have to be a rule for eliminating
rewrite terms of the form f(...), or g(...). I shall provide examples. A compositional,
G-kind example first.

8.3.1. The Lisa example. The following example, Lisa, is closely related to
Davidson’s Annette example.28 As in Davidson’s case, the language will only contain
noun phrases.

OL = (To, Ao,Σ′
o), where (4)

i) AL = {α}
ii) Σo = {�}.

OL is totally ordered by the immediate subterm relation, as shown in Figure 1.
The canonical part of ML will have one atomic expressions and two operators. There

will also be a member in M:

ML = (Tm,Am,Σ′
m, S, F ), where (5)

i) Am = {l}
ii) Σ′

m = {m, h}
iii) S = {�}
iv) F = {f}.

The canonical part of ML, Cm, is partially ordered by the immediate subexpression
relation, as illustrated in Figure 2.

28 I presented the Lisa example, in a slightly different form, without a fully worked out analysis,
at the conference New Aspects of Compositionality, in Paris in June 2004. It subsequently
appeared in Cohnitz (2005).
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Figure 2. ML for Lisa.

We will have v, v1, v2, ... as OL rewrite variables, and x, x1, x2, ...as ML rewrite
variables. The set of rules RLisa is as follows:

i) �(α) → l (6)
ii) �(�(v)) → f(�(v))
iii)f(l) → m(l)
iv)f(m(x)) → h(x)
v) f(h(x)) → m(f(x)).

A sample derivation in RLisa, reducing �(�(�(�(�(α))))) to normal form:

�(�(�(�(�(α))))) → f(�(�(�(�(α))))) rule ii)
→ f(f(�(�(�(α))))) rule ii)
→ f(f(f(�(�(α))))) rule ii)
→ f(f(f(f(�(α))))) rule ii)
→ f(f(f(f(l)))) rule i)
→ f(f(f(m(l)))) rule iii)
→ f(f(h(l))) rule iv)
→ f(m(f(l))) rule v)
→ h(f(l)) rule iv)
→ h(m(l)) rule iii)

(7)

As is illustrated in the example, derivations are longer in relation both to the size of
the input term and, even more, in relation to the size of the normal form.

The Lisa system is compositional. Yet the output complexity CoL of the system is
high:

Proposition 6. CoL(k) ≥ 2k+1 – 2k + 1.

The proof is given in Appendix B.
The system thus has exponential output complexity, and so is intractable. The result

agrees with the outcome of abstract reasoning in §5 about the difference in growth
rate between the domain of OL terms and the domain of ML expressions. The input
complexity is linear, C iL(k) � 2k, because of the corresponding size of the input term,
again in accordance with §5.29

29 It can be noted that the rule system represents a semantic function only for certain domains.
For, if m(l) = h(l), then we have

m(l) = h(l) = f(m(l)) = f(h(l)) = m(f(l)) = m(m(l)),
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Figure 3. OL for Polly.

8.3.2. The Polly example. For a noncompositional example, consider Polly.

OL = (To, Ao,Σ′
o), where (8)

i) Ao = {α, �}
ii) Σ′

o = {�}.
OL here is a forest of two linear trees, ordered by the immediate subterm relation,

as shown in Figure 3.
The ML is the same as in Lisa, but the rules differ somewhat:

i) �(α) → l (9)
ii) �(�) → l
iii) �(�(v)) → f(�(v), v)
iv) f(x, �(v)) → f(x, v)
v) f(x, α) → m(x)
vi) f(x, �) → h(x).

That this system is noncompositional is quickly demonstrated:

�(α) → l and �(�) → l , but (10)

a. �(�(α)) → f(�(α), α) → f(l, α) → m(l)
b. �(�(�)) → f(�(�), �) → f(l, �) → h(l).

For the output complexityCoP of Polly, where |x| is the size of the term x, notice that
the elimination of f fromf(�(t), t) requires |t| steps, where the last is an application of
rule v) or vi), and the preceding steps are applications of rule iv). Hence, the number
of steps required to normalize a term �(�(t)) is 1 + |t| + k, where k is the number
of steps needed normalize the term �(t). Since in the Polly example, the output size
equals the input size, this gives us:

CoP(k) =
k∑
i=1

i + 1 =
(k + 1) · (k + 2)

2
.

The complexity of Polly is therefore polynomial. Polly is cumbersome but tractable.
The reason it is not intractable depends on the fact that it only has a unary

using the assumed identity and rules iii)–v), and if in factm(l) �= m(m(l)), then there just is
no function represented by the function symbol ‘f ’.
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Figure 4. OL for Godzilla.

operator. Adding a binary operator, the complexity turns intractable, as we shall see
next.

8.3.3. The Godzilla example. The Godzilla example is like the Polly example, except
that we replace the unary syntactic operator � with the binary operator � and add a
binary operator O to the ML (Figure 4).

OL = (To, Ao,Σ′
o), where (11)

i) AL = {α, �}
ii) Σo = {�}.

The ML has a binary function O and two unary functions h and m. The rule system
is as follows:

i) �(α) → l (12)
ii) �(�) → l
iii) �(�(u, v)) → f(�(u), �(v), u, v)
iv) f(x, y, u, �(v1, v2)) → O(f(x, y, u, v1), f(x, y, u, v2))
v) f(x, y, u, α) → m(f′(x, y, u))
vi) f(x, y, u, �) → h(f′(x, y, u))
vii) f′(x, y, �(v1, v2)) → O(f′(x, y, v1), f′(x, y, v2))
viii) f′(x, y, α) → m(x, y)
ix) f′(x, y, �) → h(x, y).

A sample derivation:

�(�(�(α, �), �(�, α))) → f(�(�(α, �)), �(�(�, α)), �(α, �), �(�, α))
rule iii) (13)

→ O(f(�(�(α, �)), �(�(�, α)), �(α, �), �),
f(�(�(α, �)), �(�(�, α)), �(α, �), α)) rule iv)

→ O(m(f′(�(�(α, �)), �(�(�, α)), �(α, �))),
f(�(�(α, �)), �(�(�, α)), �(α, �), α)) rule v)

→ O(m(f′(�(�(α, �)), �(�(�, α)), �(α, �))),
h(f′(�(�(α, �)), �(�(�, α)), �(α, �)))) rule vi)

→ O(m(O(f′(�(�(α, �)), �(�(�, α)), α),
f′(�(�(α, �)), �(�(�, α)), �))),
h(f′(�(�(α, �)), �(�(�, α)), �(α, �)))) rule vii)

→ O(m(O(f′(�(�(α, �)), �(�(�, α)), α),
f′(�(�(α, �)), �(�(�, α)), �))),
m(O(f′(�(�(α, �)), �(�(�, α)), α),
f′(�(�(α, �)), �(�(�, α)), �)))) rule vii)
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→ O(m(O(m(�(�(α, �)), �(�(�, α))),
f′(�(�(α, �)), �(�(�, α)), �))),
m(O(f′(�(�(α, �)), �(�(�, α)), α),
f′(�(�(α, �)), �(�(�, α)), �)))) rule viii)

→ O(m(O(m(�(�(α, �)), �(�(�, α))),
h(�(�(α, �)), �(�(�, α))))),
m(O(f′(�(�(α, �)), �(�(�, α)), α),
f′(�(�(α, �)), �(�(�, α)), �)))) rule ix)

→ O(m(O(m(�(�(α, �)), �(�(�, α))),
h(�(�(α, �)), �(�(�, α))))),
m(O(m(�(�(α, �)), �(�(�))),
f′(�(�(α, �)), �(�(�, α)), �)))) rule viii)

→ O(m(O(m(�(�(α, �)), �(�(�, α))),
h(�(�(α, �)), �(�(�, α))))),
m(O(m(�(�(α, �)), �(�(�))),
h(�(�(α, �)), �(�(�, α)))))). rule ix)

The pattern is clear. Reducing a term with the � argument �(�(α, �), �(�, α)) to a
term with � arguments �(α, �) and �(�, α) requires ten steps, as opposed to one in a
compositional system, and multiplies the � terms by four. Hence, the number of steps
needed for the two remaining � terms must be multiplied by four. A lower bound of
the input complexity C iG of Godzilla can be calculated accordingly:

Proposition 7. C iG(k) is factorial.

The proof is in Appendix C.
The output time complexity of Godzilla is only polynomial, because of the fact

that the canonical expression grows at almost the same rate as the length of the
derivation, which illustrates the need to take both input and output complexity into
account. Nevertheless, we can provide a variant that also keeps the output size low,
and thereby has high output time complexity. These are the rules of the Godzilla+

example.

i) �(α) → l (14)
ii) �(�) → l
iii) �(�(u, v)) → U (f(�(u), �(v), u, v))
iv) f(x, y, u, �(v1, v2)) → O(h(x, y, u, v1), f(x, y, u, v2))
v) f(x, y, u, α) → f′(x, y, u)
vi) f(x, y, u, �) → f′(x, y, u)
vii) f(x, y, �(v1, v2)) → O(f′(x, y, v1), f′(x, y, v2))
viii) f′(x, y, α) → m(x, y)
ix) f′(x, y, �) → h(x, y)
x) O(m(v), u) → v
xi) O(h(v), u) → u.

The effects of the last two rules is to delete occurrences of ‘O’ and one of its arguments,
which step by step reduces the canonical expression to about the same size as the
input term (partly because the rules v) and vi) are different from the corresponding
rules in Godzilla). In this system, ‘O’ is not a terminal symbol. Because of the extra
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deletion steps, the derivation length becomes even greater than in the Godzilla example
itself.

8.3.4. The general case. The general format of a complex indirect constant � system
is as follows:

(CIC) A CIC rule system RΦ:

i) RΦ has a finite number of rules;
ii) For any rule r of the � system, the set of rewrite variables on the rhs

of r is a subset of the set of rewrite variables occurring on the lhs of r;
iii) Rewrite variables v1, v2, ... take all and only OL grammatical terms as

instances; rewrite variables y1, y2, ... take all and only expressions in
Cm as instances;

iv) Every atomic rule r ∈ RΦ has the form
• �i(t) → e,
where �i ∈ S, t ∈ Ao and e is a simple or complex expression in Cm,
and for every pair (�i ∈ S, t ∈ Ao) there is an atomic rule;

v) Every direct complex rule r ∈ RΦ has the form
• �i(α(v1, ... , vn)) → K(�k1(v1), ... , �kn (vn)) ⇐ Gr(α(v1, ... , vn))
K is a simple or complex operator of Σ′

m, �k1 , ... , �kn ∈ S, and
Gr(α(v1, ... , vn)) is as above;

vi) Every indirect complex input rule in RΦ has the form
• �i(α(v1, ... , vj)) → f(�k1 (v1), ... , �kn (vn), v1, ... , vn) ⇐
Gr(α(v1, ... , vn))
where the rhs arguments v1, ... , vn are optional and f ∈ F .

vii) For every pair (�i , α), �i ∈ S, α ∈ Σ′
o, there is a unique complex rule,

either a direct rule or an indirect input rule.
viii)Every indirect ground rule in RΦ is of the F-form or the G-form:

• f(y1, ... , yn, t1, ... , tn) → K ′(f′(y1, ... , yn))
• g(e1, ... , en) → K(e1, ... , en),
where f,f′ ∈ F , g ∈ G ,K,K ′ are operators over Σ′

m, e1, ... , en ∈ Am
and t1, ... , tj ∈ Ao, and at most one of the primed operators may be
null.

ix) Every indirect recursive rule in RΦ has an F- form or a G-form:
• f(y1, ... , yn, �(v1, ... , vn)) → K(f(y1, ... , yn, v1), ... , f(y1, ... ,
yn, vn))
• g(K(y1, ... , yn)) → K ′(g ′(y1, ... , yn)),
where f,∈ F , g, g ′ ∈ G , K,K ′ are operators over Σ′

m, � ∈ Σ′
0, and at

most one of the primed operators may be null.

Proposition 8. CIC systems terminate.

The proof in is given in Appendix D.

Proposition 9. CDC systems are confluent.

Proof. This follows again from the critical pair lemma. �

§9. Compositionality and complexity. We have seen in the Godzilla example that the
�-system corresponding to a noncompositional recursive semantics is intractable, since
it has a factorial input complexity. In the Godzilla+ example, we get a corresponding
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output complexity as well. The general case of recursive semantics is therefore
intractable with a complexity function that is at least factorial.

It is nevertheless not the case that a noncompositional recursive semantics forces
exponential complexity. The Polly example is noncompositional but has polynomial
complexity. This is because the Polly OL only has a unary syntactic operator. Adding
a binary operator leads back to intractable complexity. But it does so only if we allow
free embedding of binary (or higher arity) operators under each other. We can retain
tractable complexity with binary operators if there are syntactic restrictions that forbids
such embeddings completely, or limit them to a fixed finite number of levels, or restrict
them to one argument place (other argument places require atomic terms, say30), or
apply some combination of such syntactic limitations.

Thus we can say that blocking semantic intractable complexity in a syntax
independent way requires the semantics to be (general) compositional. That is,
compositionality is, in this sense, a necessary condition for the semantics to be tractable.
In a stronger respect, it is a necessary condition for semantics to be minimal, in the
sense of having linear complexity, for even with only unary operators, as in the Polly
example, complexity is nonlinear.

Compositionality is not, however, a sufficient condition for minimal complexity,
or even for tractability. Because in the Lisa example, the extra recursion is of the
G-type, over expressions in the ML, not over terms in the OL, the Lisa example is
compositional, yet it still has exponential output complexity.31

Nevertheless, since (general) compositionality is a consequence of minimal
complexity, and in a weaker sense a consequence of tractable complexity, it is a
necessary condition for an indispensable property of a semantics. This provides a
theoretical desideratum that a language to be used by humans be compositional, and
an abstract theoretical reason to believe that human languages actually are (general)
compositional.

To put this conclusion in perspective, it should be noted that we have here only
studied the purely semantic part of the comprehension process, i.e. the step from
representation of constituent structure to representation of meaning, leaving out two
others: the step from surface structure to constituent structure, i.e. parsing, and the
integration of the meaning representation into a mental model of a state of affairs.
Both these parts of the overall process have cognitive difficulties that are independent
of the semantic part, but in fact the relative simplicity of the semantic part provides
some help with the others.

The difficulties of parsing emerge in syntactic ambiguity, especially in the embedded
case of garden path sentences, where the more natural incremental parsing result fails
to fit a particular continuation of the sentence. Compare

a. While Anna was dressing the child played in the crib. (15)
a. While Anna was dressing the neighbor played the violin.

In (15a), there is a tendency to first take ‘the child’ as the direct object of ‘was
dressing’, while the continuation of the sentence requires it to be the subject of the

30 This was suggested by a reviewer.
31 But note that if compositionality were only a sufficient condition for low complexity, we would

not automatically get a justification of it, for the question would remain why compositionality
would be preferable to the satisfaction of alternative sufficient conditions.
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matrix clause. This is the garden path effect. The effect is much weaker in (15b),
because of the implausible state of affairs that Anna was dressing the neighbor. This
makes it less natural to read ‘the neighbor’ as direct object. The strengthening of
the garden path effect in (15a) and the reduction in (15b) depends on the relative
ease and speed of the semantic interpretation of the subordinate clause, due to the
compositionality of its semantics.32

The difficulties of representation of states of affairs arise in cases where multiple
simultaneous dependencies. The notorious problems of center-embedding construc-
tions are of this kind. Consider

Dogs [that] dogs [that] dogs attack attack attack. (16)

Without the bracketed complementizers parsing is harder, but the basic problem is not
one of parsing, since it does not get much easier when constituent structure is made
explicit. The difficulty is rather that of keeping the three nested levels of restriction
dependence in the meaning itself in mind in order to create a mental model of the state
of affairs. It is not a problem of semantic interpretation. Rather, the fact that there is
a straightforward pattern of semantic interpretation allows us to exploit the linguistic
articulation as a tool for managing to entertain the proposition in the first place.
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§A. Appendix: Proof of Proposition 1. Representation theorem
Given a semantic algebra SALM, there is a semantic algebra ordering ≺ of GTL ∪M

and a Gödel numbering �·� from GTL ∪M to N, to the effect that for any recursives≺
function f : (GTL ∪M )n −→ GTL ∪M there is a function f : Nn −→ N such that

a) for any x1, ... , xn ∈ GTL ∪M , �f(x1, ... , xn)� = f(�x1�, ... , �xn�),
b) f is recursive.

Proof. Let �·� be a Gödel numbering satisfying the condition that

(i) for each � ∈ ΣL ∪RM , there is a strictly monotone increasing arithmetic function
� such that ��(x1, ... , xn)� = �( �x1�, ... , �xn� ).

Condition (i) can be satisfied. For instance, an adaptation of the Gödel numbering
method given in Boolos et al. (2002), chap. 15, does meet it. Each simple term-building
symbol e is assigned a value �e�. Where 10k ≤ i < 10k+1, let x̃i = k + 1. Then, as part
of the definition of �·�, we let

��(x1, ... , xn)� = ��� · 10x̃1+···+x̃n + �x1� · 10x̃2+···+x̃n + ··· + �xn–1� · 10x̃n + �xn�.

(that is, in decimal notation we get the codes for complexes by writing the codes of
the constituents in sequence from left to right). Clearly, condition (i) is met. We now
define ≺ such that t ≺ t′ iff �t� < �t′�.

It is easily seen that conditions of Definition 8 are met. For complex terms, the term
with the greater | · | size has the greater �·� number. For terms of equal size, the value
of the main operator is most significant, and after that the arguments from left to right,
both for ≺ between terms and for < between Gödel numbers.

Now we can check that any for any recursives≺ function h, there is a function h
satisfying a) and b):

i) h is a constant basic function: since for each natural number k there is a recursive
constant function with k as value, let h be a constant function such that for any
argument �x�, h( �x� ) = �h(x)�.

ii) h is a function � ∈ ΣL ∪RM . By (i) we let h be �. Hence a) is satisfied. Since h is
an arithmetic function, it is recursive, and so b) is met.

iii) h is a projection function. Then let h be a corresponding projection function. a)
and b) are immediately satisfied.

iv) h is defined from f, g1, ... , gn by function composition, where f, g1, ... , gn are
recursives≺ and we can assume as induction hypothesis that there are f, g1, ... , gn
that satisfy conditions a) and b). Let h be defined such that

h(�x1�, ... , �xn�) = f(g1(�x1�, ... , �xn�), ... , gn(�x1�, ... , �xn�)).

It immediately follows that h is recursive. It is also easy to verify, using the induction
hypothesis, that condition a) is met.
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v) h is defined by primitive recursion from functions fy and g� :

h(−→x , y) =

{
fy(

−→x ), if y ∈ ATL ∪ BM
g�(h(−→x , y1), ... , h(−→x , yk),−→x , y1, ... , yk), if y = �(y1, ... , yk),

where it is assumed that for each relevant g� and fy there are functions g� and fy ,
respectively, that satisfy conditions a) and b).

Then we define a function h by cases:

h(k1, ... , kn, k) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
undefined, if h undefined, or k1, ... , kn or k is not a code

fy(
−−→�x�), if k = �y�, ki = �xi�, y ∈ ATL ∪ BM

g�(h(
−−→�x�, �y1�), ... , h(

−−→�x�, �yk�),
−−→�x�, �y1�, ... , �yk�),

if k = �y�, ki = �xi�, y = �(y1, ... , yk).

Here 1 ≤ i ≤ n. Since definition by cases is recursively definable, h is (partial)
recursive.

It is almost immediate from the induction hypothesis that condition a) is met
in the second case of the definition of h. For the third case, we use induction over
the complexity of the y argument, and use the induction hypothesis to show that
condition a) is met in the induction step. That completes both induction proofs,
and condition a) is met.

vi) h is Mn≺(f), where we can assume that there is a functionf that meets conditions
a) with respect to f and is recursive. We first define a functionf′ fromf such that if

f(�x1�, ... , �xn�, �x�) = �@�,

f is defined for �x1�, ... , �xn�, �x′�, for all �x′� < �x�, and for no �x′� < �x�
does it hold that f(�x1�, ... , �xn�, �x′�) = �@�, then

f′(�x1�, ... , �xn�, �x�)) = 0.

We let f′(�x1�, ... , �xn�, �x�)) = 1 if f(�x1�, ... , �xn�, �x�)) is undefined, and
otherwise f′(k1, ... , kn, i)) = f(k1, ... , kn, i). We then define a partial function
h : Nn −→ N, such that,

a) if h(x1, ... , xn) is undefined, then h(�x1�, ... , �xn�) is undefined;
b) if h(x1, ... , xn) is defined, then

h(�x1�, ... , �xn�) = Mn(f′)(�x1�, ... , �xn�).

Now,f′ is definable fromf by cases in terms of �@�.f is recursive by assumption,
so f′ is recursive.

Then we can verify that h satisfies condition a) with respect to h:

h(�x1�, ... , �xn�) = �x� iff f′(�x1�, ... , �xn�, �x�) = 0 and C
iff f(�x1�, ... , �xn�, �x�) = �@� and C ′

iff �f(x1, ... , xn, x)� = �@� and C ′′

iff �h(x1, ... , xn)� = �x�,

where

i) C iff f′(�x1�, ... , �xn�, �x′�) is defined but �= 0 for all �x′� < �x�,
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ii) C ′ iff @ is ≺-minimal, f(�x1�, ... , �xn�, �x′�) is defined and �= �@� for all
�x′� < �x�,

iii) C ′′ iff @ is ≺-minimal, �f(x1, ... , xn, x
′)� is defined and �= �@� for all

x′ ≺ x.

It can be verified that C iff C ′ iff C ′′, because of the construction of f′, because
of the induction hypothesis concerning f and f, and because of the definitions of
�·�, ≺, and @. �

§B. Appendix: Proof of Proposition 6. CoL(k) ≥ 2k+1 – 2k + 1.

Proof. An inspection of the rules of (4) shows that only rules i) and iii) produce a
new canonical symbol occurrence, and that only a term of the form h(f(... f(l))), by
repeated applications of rule v) leads to an application or rule iii). We first show that
for a term of the form

f(f(... f(m(m ...m(x))))) (17)

with i occurrences of ‘f ’ and k occurrences of ‘m’ outside x to be reduced, by means of
alternating applications or rules iv) and v) to

h(... h(x))

with k occurrences of ‘h’ outside x, i must be at least 2k – 1. We show this by induction
over k. It does hold for k = 1 (i.e.f(m(x))). Suppose it holds for k = n. For k = n + 1,
note that a term t of the form (17) with n + 1 occurrences of m outside x is also a
term t′ of the form (17) with n occurrences of m outside x′, where x′ = m(x). By the
induction hypothesis, therefore, 2n – 1 occurrences of f are required to reduce t′ to the
term u

u = f(f(... h(h(... m(x) ...)) ...))

with n occurrences of h outside x. Now, by successively applying rule v) to the outermost
occurrence of h, in n steps we arrive at term u′

u′ = f(f(... m(m(... f(m(x))))))

with n occurrences of m outside x. This lets us apply the induction hypothesis again,
again requiring 2n – 1 occurrences of f for reduction to a term s

s = f(f(... h(h(... f(m(x) ...)) ...)))

with n occurrences of h outside x. A final application of rule iv) to the subtermf(m(x))
transforms it to h(x), leaving us with the term s ′

s ′ = f(f(... h(h(... (x)) ...)))

with n + 1 occurrences of h outside x. To achieve this we needed 2 × (2n – 1) + 1 =
2n+1 – 1 occurrences of f outside x, which completes the induction step.

Second, we note that a term of the form with f(f(... f(m(m ...m(l))))) with k + 1
occurrences of m results from k applications of rule v) and one application of rule iii) to
a term f(f(... f(h(h ... h(l))))) with k occurrences of h. This term must then first be
generated, from the corresponding termf(f(... f(m(m ...m(l))))) with k occurrences
of m, and so on. This means that the total number of occurrences of f required for

https://doi.org/10.1017/S1755020320000027 Published online by Cambridge University Press

https://doi.org/10.1017/S1755020320000027


586 PETER PAGIN

generating a term f(f(... f(h(h ... h(l))))) with k occurrences of h is

k∑
i=1

2i – 1.

For each occurrence of f, at least one application of rule ii) is needed to generate it,
and at least one application of rule iv) or rule iii) is needed to eliminate it. Hence, the
number of derivation steps will be at least

k∑
i=1

2i+1 – 2 = 2k+2 – 2k – 1,

where k is the number of occurrences of terminal symbols except l. Translated into the
number of terminal symbols simpliciter, including l, we have

CoL(k) ≥ 2k+1 – 2k + 1.

For k ≥ 3, the value will be higher, because of applications of rule v), which neither
introduces nor eliminates any occurrence of f. But it will not be higher by an order of
magnitude. �

§C. Appendix: Proof of Proposition 7. C iG(k) is factorial.

Proof. Let C (x) be the number of steps needed to normalize the term x. We can see
that rules iv) and vii) have the following effects:

C (f(x, y, u, �(t1, t2))) = 1 + C (f(x, y, u, t1)) + C (f(x, y, u, tt2 ))

C (f′(x, y, �(s1, s2))) = 1 + C (f′(x, y, s1)) + C (f′(x, y, s2)).

Let D(t) be the sum of occurrence of α and � in t. We can see from the two
equations above that, for t = �(t1, t2), C (�(t)) ≥ (C (�(t1))) + C (�(t2))) ×D(t).
This is because the processing of the subterms �(t1) and �(t2) will be multiplied
once for each atomic subterm in t. And this pattern will be repeated for each level of
the syntactic term, i.e. the depth of embedding of �.

This motivates the hypothesis

C iG(2k – 1) ≥ (k – 1)! , (18)

where k is the number of occurrences atomic terms, i.e. α and � . We prove this by
means of induction over k.

Base step. For k = 1, the number of steps needed is 1, an application of either rule i)
or rule ii), for the atomic cases. According to the hypothesis, C iG(2 · 1 – 1) = C iG(1) ≥
(1 – 1)! = 1.

For the induction step, suppose that the hypothesis is true for k = n. Assume that
we have a term t = �(t1, t2) with n + 1 occurrences of atomic subterms. An application
of rule iii) leads to the ML term

f(�(t1), �(t2), t1, t2).
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Now, let N (�, ti) be the number of occurrences of � in ti , i = 1, 2. In case t2 is atomic,
N (�, t2) = 0 and in case t1 is atomic, N (�, t2) = n – 1. Observe that in any term in
the OL, the number of occurrences of atomic terms is one higher than the number of
occurrences of �.

AssumeN (�, t2) = 0. The next step is an application of rule v) or rule vi) depending
on whether t2 is α or � . Since now N (�, t1) = n – 1, this step is followed by n – 1
applications of rule vii). Each application of rule vii) replaces one occurrence of the
terms �(t1) and �(t2) by two occurrences. Hence, the result after n – 1 applications
is n occurrences of these terms. According to the assumption, t1 has n occurrences of
atomic subterms and t2 1 occurrence. Thus, the induction hypothesis applies in both
cases. This gives us a lower bound on the maximal numberC0(�(t)) of rule applications
for �(t) on the assumption that N (�, t2) = 0:

C0(�(t)) ≥ 1 + (n – 1) + n((n – 1)! +(1 – 1)! ) = n! +2n ≥ n! .

Notice that for 0 < j < n/2, it holds that (n – j)! +(j – 1)!≥ (n – (j + 1))! +
(j + 1 – 1)!, provided n ≥ 3. Therefore, we get the maximal value of C (�(t)) in
case N (�, t2) = 0, i.e. in case C (�(t) = C0(�(t))). This completes the induction.

Hence, C iG(2k – 1) ≥ (k – 1)!. Note that the size of an OL term is always odd. In
the standard format, we then have C iG(k) ≥ k–1

2 !. �

§D. Appendix: Proof of Proposition 8. We shall prove that CIC systems terminate.
This is more difficult, since applications of the indirect complex rules can actually
increase the size of the term: the contractum will be larger than the redex. Because of
this, we shall need a more complex reduction order. We shall define a strict lexicographic
order >S,F,G from three strict orders >S , >F , and >G . The first will be similar to the
size definition we gave for terms in the proof of Proposition 2 and be defined as the sum
of the sizes of � subterms. The other two will be defined on the height of embeddings
rather than the size of terms.

Proof. We start by defining >S by means of the S-size |s |S of a term in Tm. For the
S-size of s, only the total sum of the S-sizes of occurrences �-terms in s matters:

(>S) i) for any t ∈ To, �i ∈ S, |�i(t)|S = |t|S
ii) for any t ∈ Ao, |t|S = 1
iii) for any n-place α ∈ Σ′

o, any terms t1, ... , tn, |α(t1, ... , tn)|S = 1 + |t1|S +
··· + |tn|S .

iv) Let s be a term in Tm, and let s� = {s1, ... , sn} be the set of occurrences of�-
terms in s. Then |Tm|S = |s1|S + ··· + |sn|S (where the size of an occurrence
is the size of the term that occurs).

v) For s, u ∈ Tm, s >S u iff |s |S > |u|S .

Thus, for a �-free term s in Tm, |s |S = 0.
Next we define >F by means of the F-measure of a term. The F-measure of a term

x is a function sx from natural numbers to natural numbers such that sx(k) is the
number of F subtermsf(y) of x with F-size k. The F-size is defined as syntactic height
of terms in To:
(>F) i) for t ∈ Ao, [t] = 1
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ii) for t ∈ To, t = �(t1, ... , tn), [t] = 1 + max([t1], ... , [tn])
iii) for t ∈ To, [�(t)] = 0
iv) for e ∈ Am, [e] = 0
v) for e1, ... , en ∈ Tm,K ∈ Σm, [K(e1, ... , en)] = max([e1], ... , [en])
vi) for e1, ... , en ∈ Tm, t1, ... , tm ∈ To, f ∈ Σm, [f(e1, ... , en, t1, ... , tn)] =

max([e1], ... , [en], [t1], ... , [tm])
vii) sx(j) = k iff k is the number of subterms (proper or improper) of x of

the form f(y) such that [y] = j
viii) x >F y iff there is n such that sx(n) > sy(n) and for all k > n, sx(k) =

sy(k).

Next we define >G by means of the G-measure of a term. The G-measure of a term
x is a function s ′x from natural numbers to natural numbers such that s ′x(k) is the
number of G subterms g(y) of x with G-size k. The G-size is defined as syntactic height
of terms in Tm:

(>G) i) for t ∈ To, [t]′ = 0
ii) for t ∈ To, [�(t)]′ = 1
iii) for e ∈ Am, [e]′ = 1
iv) for e1, ... , en ∈ Tm,K ∈ Σm, [K(e1, ... , en)]′ = 1 + max([e1]′, ... , [en]′)
v) for e1, ... , en ∈ Tm, g ∈ G , [g(e1, ... , en)]′ = max([e1]′, ... , [en])′

vi) s ′x(j) = k iff k is the number of subterms (proper or improper) of x of
the form f(y) such that [y]′ = j

vii) x >G y iff there is n such that s ′x(n) > s ′y(n) and for all k > n, s ′x(k) =
s ′y(k).

Induction over term complexity shows that [·] and [·]′ are well-defined: for each term
x in Tm, both [x] and [x]′ are natural numbers. Further, since it is also definite what
the occurrences in a term x of subterms of the form f(y) are, sx(j) and s ′x(j) are
well-defined, too. And since for any e ∈ Tm there is a number n such that for all k > n,
sx(j) = 0, the relation >F is also well-defined. Likewise for >G .

Next we define the lexicographic order >SFG :

(>S,F,G) x >S,F,G y iff

i) x >s y, or
ii) |x|S = |y|S and x >F y, or
iii) |x|S = |y|S , [x]F = [y]F , and x >G y.

Finally, we check the rule types to see that if x → y, then x >S,F,G y:

i) If x → y because of application of an atomic rule�i(t) → e, then |x|S = |y|S + 1,
since y contains one atomic � term occurrence less than x and otherwise the same
� terms with corresponding occurrences. Hence, x >S,F,G y.

ii) If x → y because of an application of a direct complex rule, then again
|x|S = |y|S + 1, since y results from x by substituting ‘K(�k1(t1), ... , �kn (tn))’ for
‘�i(α(t1, ... , tn))’, and |�i(α(t1, ... , tn))| = 1 + |K(�k1(t1), ... , �kn (tn))|.

iii) If x → y because of an application of an indirect complex input rule, we have the
same result in (ii).

iv) If x → y by application of an indirect ground rule, then |x| = |y|, but in the
first case (where f(y1, ... , yn, t1, ... , tn) → K ′(f′(y1, ... , yn))) [x] > [y] and in
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the second case (where f(e1, ... , en) → K(e1, ... , en)), |x| = |y| and [x] = [y] but
[x]′ > [y]′. In the first case, this is because sx(n) > sy(n) (since one f term with n
OL term arguments is replaced in the rule application) while sx(k) = sy(k) for any
k > n (no f term with more OL term arguments is affected). In the second case, we
have the corresponding result for s ′.

v) We get the corresponding results for applications of indirect recursive rules as in
(iv). The first case leaves | · | intact and lowers [·], while the second case leaves both
| · | and [·] intact but lowers [·]′. Hence, if x → y with any CIC rule application
x >S,F,G y.

�
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