
Math. Struct. in Comp. Science (2018), vol. 28, pp. 1415–1450. c© Cambridge University Press 2018

doi:10.1017/S0960129518000208 First published online 2 August 2018

Linear pattern matching of compressed terms and

polynomial rewriting

MANFRED SCHMIDT-SCHAUß

Institut für Informatik, Fachbereich Informatik und Mathematik, Johann Wolfgang

Goethe-Universität, Postfach 11 19 32, D-60054 Frankfurt, Germany

Email: schauss@cs.uni-frankfurt.de

Received 1 February 2012; revised 1 November 2017

We consider term rewriting under sharing in the form of compression by singleton tree

grammars (STG), which is more general than the term dags. Algorithms for the subtasks of

rewriting are analysed: finding a redex for rewriting by locating a position for a match,

performing a rewrite step by constructing the compressed result and executing a sequence of

rewrite steps. The first main result is that locating a match of a linear term s in another term

t can be performed in polynomial time if s, t are both STG-compressed. This generalizes

results on matching of STG-compressed terms, matching of straight-line-program-

compressed strings with character-variables, where every variable occurs at most once, and

on fully compressed matching of strings. Also, for the case where s is directed-acyclic-graph

(DAG)-compressed, it is shown that submatching can be performed in polynomial time. The

general case of compressed submatching can be computed in non-deterministic polynomial

time, and an algorithm is described that may be exponential in the worst case, its complexity

is nO(k), where k is the number of variables with double occurrences in s and n is the size of

the input. The second main result is that in case there is an oracle for the redex position, a

sequence of m parallel or single-step rewriting steps under STG-compression can be

performed in polynomial time. This generalizes results on DAG-compressed rewriting

sequences. Combining these results implies that for an STG-compressed term rewrite system

with left-linear rules, m parallel or single-step term rewrite steps can be performed in

polynomial time in the input size n and m.

1. Introduction

An important concept in various areas of computer science like automated deduc-

tion, first-order logic, term rewriting, type checking, are terms (ranked trees), and also

terms containing variables (see, e.g., Baader and Nipkow 1998). The basic and widely

used algorithms in these areas are matching, unification, term rewriting, equational

deduction and asf. For example, a term f(g(a, b), c) may be rewritten into f(g(b, a), c)

by the commutativity axiom g(x, y) = g(y, x) for g. Since implemented systems of-

ten deal with large terms, perhaps generated ones, it is of high interest to look for

compression mechanisms for terms and, consequently, also investigate variants of the

known algorithms that also perform efficiently on the compressed terms without prior

decompression.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1416

The device of straight line programs (SLP) for the compression of strings is a general

one and allows analyses (Rytter 2004) of correctness and complexity of algorithms,

see the overview (Lohrey 2012). SLPs are polynomially equivalent to the LZ77-variant

of Lempel–Ziv compression (Ziv and Lempel 1977). SLPs are non-cyclic context free

grammars (CFGs), where every non-terminal has exactly one production in the CFG,

such that any non-terminal represents exactly one string. Basic algorithms are the equality

check of two compressed strings, which requires polynomial time (Plandowski 1994) (see

Lifshits 2007 for an efficient version and Jez 2012 for a proposal of a further improvement),

and the compressed pattern match, i.e. given two SLP-compressed strings s, t, the question

whether s is a substring of t can also be solved in polynomial time in the size of the

SLPs.

A generalization of SLPs for the compression of terms are singleton tree grammars

(STG) (Gascón et al. 2008; Levy et al. 2006, 2011; Schmidt-Schauß 2005), a specialization

of straight line context free (SLCF) tree grammars (Busatto et al. 2005, 2008; Lohrey

et al. 2009, 2012), where linear SLCF tree grammars are polynomially equivalent to STGs

(Lohrey et al. 2009). Basic notions for tree grammars and tree automata can be found

in Comon et al. (1997). Besides using the well-known node sharing, also partial subtrees

(contexts) can be shared in the compression. The Plandowski–Lifshits equality test of

non-terminals can be generalized to STGs and requires polynomial time (Busatto et al.

2005; Schmidt-Schauß 2005) in the size of the STG.

A naive generalization of the pattern match is to find a compressed ground term

in another compressed ground term, which can be solved by translating this problem

into a pattern match of compressed pre-order traversals of the terms. The interesting

generalization of the pattern match is the following submatching problem (also called

encompassment): given two (STG-compressed) terms s, t, where s may contain variables, is

there an occurrence of an instance of s in t? A special case is matching, where the question

is whether there is a substitution σ, such that σ(s) = t, which is shown to be in PTIME

in Gascón et al. (2008, 2011), including the computation of the (unique) compressed

substitution. Other related works are Comon (1995), Salzer (1992) and Hermann and

Galbavý (1997) on term schematizations that investigate a form of compression as well

as representing infinite sets of terms, and related algorithms.

In this paper, we describe algorithms for answering the submatching question, and

which only operate on the STGs. We show that if s is STG-compressed and linear, then

submatching can be solved in polynomial time (Theorem 3.17). In the case that s is ground

and compressed or that s is directed-acyclic-graph (DAG)-compressed, we describe less

complex algorithms that solve the submatching question in polynomial time (Theorems

4.2 and 4.8). In the general case, we describe a non-deterministic algorithm that runs in

polynomial time, or making it deterministic, an algorithm that runs in time O(nc|FVmult(s)|)

(Theorem 5.2), where n is the size of the STG, and |FVmult(s)| is the number of variables

that occur more than once in s. This is an exponential-time algorithm, but in a well-

behaved parameter: If the number of multiply occurring variables in s is bounded by k,

then the matching algorithm runs in polynomial time (in the input size). In Theorem 5.4,

it is shown that in case the number of occurrences of variables is small, then submatching

under STG-compression can be computed in polynomial time.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1417

As an application and an easy consequence of the submatching algorithms, a single

(parallel or single-position) deduction step on compressed terms by a compressed left-

linear rule can be performed in polynomial time. We also show that a sequence of n

rewrites with a left-linear term rewriting system (TRS) can be performed in polynomial

time, where the TRS as well as the to-be-reduced term are compressed by STGs (see

Theorem 6.4). Our result confirms results on complexity of rewrite derivations under DAG-

compression (Avanzini and Moser 2010), namely that rewrite systems with a polynomial

runtime complexity can be implemented such that the algorithm requires polynomial time.

Another potential application is a querying mechanism for compressed XML databases

(Lohrey et al. 2010).

An introductory example illustrating the compression and equational deduction is as

follows.

Example 1.1. Consider the term rewriting rule f(x) → g(x, b), and let the term t1 =

f(f(f(a))) be compressed as C1 → f(·), C2 → C1C1, T → C2(T
′), T ′ = f(a). A single

term rewriting step on the compressed term t1 by the rule f(x) → g(x, b) would produce

T ′ → g(a, b), and hence the reduced and decompressed term is f(f(g(a, b))). Other

rewriting steps on the compressed term that do not decompress the term have to analyse

the contexts. Let another term be t2 = f16(a), compressed as C1 → f(·), C2 → C1C1,

C3 → C2C2, C4 → C3C3, C5 → C4C4, T → C5(a). A term rewriting step on T using

f(x) → g(x, b) may rewrite the context f(·) and thus would produce C1 → g(·, b), and

hence reduces the term in one blow to g(. . . , (g(. . . , b) . . .), b). In fact, this is a form of a

parallel rewriting step, see also Algorithm 6.1 (4).

The structure of the paper is as follows. First, the basic notions, in particular STGs,

are introduced in Section 2. The first main part is an algorithm for linear submatching

in Section 3. In Section 4, we analyse submatching for some special cases and also give

a general algorithm for term submatching of compressed patterns and terms, and show

that it can be performed in polynomial time for a fixed number of variables. Finally, in

Section 6, we illustrate the application in term rewriting and equational deduction and

show that n rewrites for a left-linear TRS can be performed in polynomial time.

2. Preliminaries

We will use standard notation for signatures, terms, positions and substitutions (see e.g.

Baader and Nipkow 1998). Let FVmult(s) be the set of variables occurring more than

once in s. A position is a word over positive integers. For two positions p1, p2, we write

p1 � p2, if p1 is a prefix of p2, and p1 < p2, if p1 is a proper prefix of p2. We call two

strings w1, w2 compatible, if w1 is a prefix of w2, or w2 is a prefix of w1. We write p[i] for

the ith symbol of p, where 0 is the start index, and p[i, j] for the substring of p starting

at i ending at j. The set of free variables in a term t is denoted as FV (t). Terms without

occurrences of variables are called ground. A term where every variable occurs at most

once is called linear. A context is a term with a single hole, denoted as [·]. Sometimes,

it is convenient to view a linear term containing one variable as a context, where the

single variable represents the hole. As a generalization, a multicontext is a linear term,

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1418

where the variable occurrences are also called holes. Let holep(c) be the position (as

a string of numbers) of a hole in a context c, and let the hole depth be the length of

holep(c). If c = c1[c2] for contexts c, c1, c2, then c1 is a prefix context of c and c2 is a

suffix context of c. The notation c[s] means the term constructed from the context c by

replacing the hole with s. An n-fold iteration of a context c is denoted as cn; for example,

c3 is c[c[c]]. A substitution σ is a mapping on variables, extended homomorphically to

terms by σ(f(t1, . . . , tn)) = f(σ(t1), . . . , σ(tn)).

Definition 2.1. A TRS R is a finite set of pairs {(li, ri) | i = 1, . . . , n}, called rewrite

rules, usually written {li → ri}, where we assume that for all i : li is not a variable, and

FV (ri) ⊆ FV (li).

A term rewriting step by R is t
R−→ t′, if for some i: t = c[σ(li)] and t′ = c[σ(ri)] for some

context c and some substitution σ.

This can also be seen as an equational deduction step, where the rules in R are the

equational axioms.

2.1. Tree grammars for compressions

Definition 2.2. A singleton context-free grammar (SCFG) G, also called SLP is a 3-tuple

〈N ,Σ, R〉, where N is a finite set of non-terminals, Σ is a finite set of symbols (a signature)

and R is a finite set of productions of the form N → α, where N ∈ N and α ∈ (N ∪ Σ)∗.

The sets N and Σ must be disjoint, each non-terminal X appears as a left-hand side of

exactly one production of R, and >G on N is defined as X >G Y iff X → A ∈ R and

Y occurs in A. The transitive closure >+
G must be irreflexive, i.e. there are no >G-cycles.

The word generated by a non-terminal N of G, denoted by valG(N) or val (N) when G is

clear from the context, is the word in Σ∗ reached from N by successive applications of

the productions of G. We omit a start symbol, but this is not essential.

An application for SLPs is the representation of compressed positions in compressed

terms. We will use the well-known (polynomial-time) algorithms, constructions and their

complexities on SLPs like equality check of compressed strings, computing prefixes, suffixes

and the common prefix (suffix) of two strings asf (see Gasieniec et al. 1996a; Karpinski

et al. 1995; Levy et al. 2008; Lifshits 2007; Plandowski 1994; Plandowski and Rytter

1999; Rytter 2004).

Definition 2.3. An STG is a 4-tuple G = (T N , CN ,Σ,R), where T N are tree/term non-

terminals of arity 0, CN are context non-terminals of arity 1, and Σ is a signature of

function symbols (the terminals), such that the sets T N , CN and Σ are finite and pairwise

disjoint. The set of non-terminals N is defined as N = T N ∪ CN . The productions in R
must be of the following form:

— A→ f(A1, . . . , Am), where A,Ai ∈ T N , and f ∈ Σ is an m-ary terminal symbol.

— A→ C1A2, where A,A2 ∈ T N , and C1 ∈ CN .

— C → [·], where C ∈ CN .

— C → C1C2, where C,C1, C2 ∈ CN .

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1419

— C → f(A1, . . . , Ai−1, [·], Ai+1, . . . , Am), where A1, . . . , Ai−1, Ai+1, . . . , Am ∈ T N , C ∈ CN ,

and f ∈ Σ is an m-ary terminal symbol.

— A→ A1 (λ-production), where A and A1 are term non-terminals.

Let N1 >G N2 for two non-terminals N1, N2, iff (N1 → t) ∈ R, and N2 occurs in t. The

STG must be non-cyclic, i.e. the transitive closure >+
G must be irreflexive. Furthermore,

for every non-terminal N of G there is exactly one production having N as left-hand

side. Given a term t with occurrences of non-terminals, the derivation of t by G is an

exhaustive iterated replacement of the non-terminals by the corresponding right-hand

sides. The result is denoted as valG(t). We will write val (t) when G is clear from the

context. In the case of a non-terminal N of G, we also say that N (or G) generates valG(N)

or compresses valG(N). The depth of a non-terminal N is the maximal number of >G-steps

starting from N, and the depth of G is the maximal depth of all its non-terminals. The

size of an STG is the number of its productions, denoted as |G|.

Definition 2.4. Let G be an STG and V be a set of variables. Then, (G,V) is an STG with

variables, where additional production forms are permitted:

— A→ x, where A ∈ T N and x ∈ V .

— x→ A (λ-production), where x ∈ V and A ∈ T N .

This means that variables may be terminals or non-terminals, depending on the existing

productions. The measure Vdepth(N,V) is defined as the maximal number of >G-steps

starting from N until an element of V or a terminal is reached.

In the following, we always mean STG with variables if variables are present.

Definition 2.5. An STG G is called a DAG, if there are no context non-terminals. The

terms val (S) for term non-terminals S of G are also called DAG-compressed.

Note that the term depth of DAG-compressed terms is at most the size of the DAG,

whereas the term depth of STG-compressed terms may be exponential in the size of

the STG. Note also that every subterm in a DAG-compressed term is represented by a

non-terminal, whereas in STG-compressed terms, there may be subterms that are only

implicitly represented.

2.2. Grammar extensions

We list the main grammar extensions required in this paper and give also their estimations

for the size increase.

Definition 2.6 (Grammar extension). We say that the STG with variables (G′, V ′) is an

extension of the STG with variables (G,V), where G = (T , C,Σ,R), G′ = (T ′, C ′,Σ,R′)
denoted (G′, V ′) ⊇ (G,V), if R ⊆ R′, C ⊆ C ′ and V ⊆ V ′.

We repeat the constructions and their properties (see Gascón et al. (2011); Levy et al.

(2011)).

Lemma 2.7. Let G be an STG with variables.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1420

Term-construction. Let f ∈ Σ be an n-ary function symbol and assume there are n terms

t1, . . . , tn that are compressed by G. Then, there exists a grammar extension G′ ⊇ G

generating the context f(t1, . . . , [·], . . . , tn−1) and also a grammar extension generating

the term f(t1, . . . , tn) satisfying

|G′| � |G|+ 1,

Vdepth(G′, V) � Vdepth(G,V) + 1.

Concatenation. Let the contexts c1, . . . , cn for n � 1 be generated by G. Then, there exists

a grammar extension G′ ⊇ G that generates the context c1[c2[. . . [cn] . . .]] and satisfies

|G′| � |G|+ n− 1,

Vdepth(G′, V) � Vdepth(G,V) + log n + 1.

Exponentiation. Let the context c be generated by G. For any n � 1, there exists a grammar

extension G′ ⊇ G that generates the context cn and satisfies

|G′| � |G|+ 2 log n,

Vdepth(G′, V) � Vdepth(G,V) + log n + 1.

Prefix and suffix. Let the context c be generated by G. For any non-trivial prefix or suffix

c′ of the context c, there exists a grammar extension G′ ⊇ G that generates c′, and

satisfies

|G′| � |G|+ depth(G)− 1,

Vdepth(G′, V) � Vdepth(G,V) + log(depth(G)) + 1.

Subterm. Let the context c or term t be generated by G. For any non-trivial subterm t′ of

the context c or of the term t, there exists a grammar extension G′ ⊇ G that generates

t′ and satisfies

|G′| � |G|+ depth(G),

Vdepth(G′, V) � Vdepth(G,V) + log(depth(G)) + 2.

Subcontext. Let the term t be generated by G. For any non-trivial prefix context c of the

term t, there exists a grammar extension G′ ⊇ G that generates c and satisfies

|G′| � |G|+ depth(G)(depth(G) + 3/2),

Vdepth(G′) � Vdepth(G) + 2 log(depth(G)) + 4.

Instantiation. Let the term t be generated by G, and let x ∈ V be a terminal and let N

be a term non-terminal. Then, the grammar extension G′ ⊇ G with the additional

production x �→ N satisfies

|G′| � |G|+ 1,

Vdepth(G′) = Vdepth(G).

Lemma 2.8. For an STG with variables, we have depth(G) � (Vdepth(G,V)+1) · (|V |+1).

Definition 2.9 (Grammar extension step). We say that the pair (G′, V ′) is constructed

from the pair (G,V) using an α-bounded grammar extension step if it can be constructed

by term-construction, concatenation, exponentiation, prefix, suffix, subterm, subcontext

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1421

or instantiation, where the exponent used for exponentiation is bounded by 2α, and the

number of concatenated contexts is bounded by α.

Lemma 2.10. If G′ is an α-bounded extension of G according to Definition 2.9, then the

following inequations hold:

|G′| � |G|+ O(depth(G)2) + O(α),

Vdepth(G′) � Vdepth(G) + O(log(depth(G))) + O(log α).

In Levy et al. (2011), it is shown that a polynomial number of grammar extension

as above under certain restrictions for concatenation and exponentiation leads to a

polynomial-sized grammar.

Theorem 2.11. If the grammar G has size |G| = O(n), and (G′, V ′) is constructed from

(G,�) using O(nk) many O(n)-bounded grammar extension steps, then

|G′| = O(n5k+2),

depth(G′) = O(n2k+1),

Vdepth(G′, V ′) = O(nk+1),

|V ′| = O(nk).

The extension steps above can be performed in polynomial time, where proofs can be

found in Gascón et al. (2011), and missing ones can be easily derived from these proofs.

Proposition 2.12. Let G be an STG and S be a term non-terminal. Then, G can be

transformed in linear time into an STG G′, such that valG(S) = valG′ (S), where every

production for term non-terminals in G′ is of the form A→ a for a terminal a, or A→ CA′

and A′ → a for a terminal a.

Proof. The modification of the grammar can be done bottom-up in the grammar: If

there is a production A → CA′, then we can assume that A′ → a, or A′ → C ′A′′, where

A′′ → a′ for a terminal. Then, we replace the production for A by A→ C ′′A′′, C ′′ → CC ′.

2.3. Submatching

Given two first-order terms s, t, where s (the pattern) may contain variables, the sub-

matching problem is to identify an instance of s as a subterm of t. The submatching (also

called encompassment relation) is a prerequisite for term rewriting.

Definition 2.13. The compressed term submatching problem is as follows:

Let s be a term that may contain variables, and let t be a (ground) term, where both

are compressed with an STG G = GS ∪ GT , such that val (T) = t and val (S) = s for

term non-terminals S ∈ GS , T ∈ GT . Sometimes, we assume that GS , GT are disjoint.

The task is to compute a (compressed) substitution σ such that σ(s) is a subterm of t;

also, the (compressed) position (all positions) p of the match in t should be computed.

Specializations of the submatching problem are as follows:

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1422

uncompressed: If s is given as a plain term without any compression.

ground: If s is ground.

DAG-compressed: If s is DAG-compressed.

linear: If s is a linear term, i.e. every variable occurs at most once in s.

Note that (compressed) term matching is a special case: It asks whether there exists a

substitution such that σ(s) = t, which can be answered in polynomial time (Gascón et al.

2008, 2011).

We derive the following lemma on the possible submatching positions by an easy case

analysis.

Lemma 2.14. Let G be an STG, s be a term and let T be a non-terminal with valG(T) = t,

where t is ground. If there is some substitution σ, such that σ(s) is a subterm of t, then

there exist following possibilities:

1 There is a term non-terminal B of G such that valG(B) = σ(s).

2 There is a production B → CB′ in G, such that σ(s) = c[valG(B′)], where c is a

non-trivial suffix context of valG(C). There are subcases for the hole position p of c.

(a) (overlap case) p is a position in s.

(b) p = p1p2, where p1 is the maximal prefix of p that is also a position in s. Then,

s|p1
= x is a variable. The algorithms below have to distinguish further subcases:

i (subterm case) x occurs more than once in s,

ii (subcontext case) x occurs exactly once in s.

Example 2.15. The number of possible substitutions for a submatch may be exponential:

Let the productions be S → f(x), and T → Cn[a], C0 → f([.]), C1 → C0C0, . . . Ci →
Ci−1Ci−1. Then, val (T) = f2n (a), and every substitution σ(x) = fi(a) with 0 � i � 2n − 1

corresponds to a submatch. However, distinguishing the subterm (Lemma 2.14, case

2a) and subcontext case (Lemma 2.14, case 2b), we see that the exponentially many

substitutions correspond to a single output for the subcontext case.

3. Term submatching with linear terms

In this section, we describe a polynomial algorithm for compressed term submatching,

where the pattern term is linear.

3.1. Overlaps of strings with character-holes

We will need results for so-called partial words and their overlaps as a prerequisite for

results on a multiple overlap of a linear term (multicontext) with itself.

A partial word w is a word over Σ ∪ V , where Σ is an alphabet and V is a set of

variables, and where every variable occurs at most once in w. The variables are also

considered as character-holes (notation: ◦), i.e. the variables are substitutable only with

single characters. We analyse overlapping partial words and will apply the obtained results

to overlaps of a linear term with itself.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1423

We repeat the definition and the theorem from Schmidt-Schauß (2012).

If for a partial word s there is a number p < |s| such that s[i] = s[i + p] for all i, where

s[i], s[i+p] are defined and are not holes, then we say that s is locally periodic with period

p. For example, the partial word ababa◦acac is 2-locally periodic. If there is a number

p < |s| such that i ≡ j mod p implies s[i] = s[j] for all 0 � i, j � |s| − 1 if s[i], s[j] are

defined and not holes, then s is called periodic (also strongly periodic), and p is a period

of s.

Definition 3.1 (Schmidt-Schauß 2012). Let s be a partial word and n � 2. An n-fold overlap

of s (with itself) is given by starting positions 0 � p1 < p2 < p3 < · · · < pn � |s| − 1,

such that for all i, j = 1, . . . , n and 0 � k � |s| − 1: if 0 � k − pi, 0 � k − pj , then

s[k − pi] = s[k − pj], provided neither s[k − pi] nor s[k − pj] is a hole.

If not stated otherwise, we assume that p1 = 0.

Theorem 3.2 (Schmidt-Schauß 2012). Let w be a partial word with n holes, and assume that

there is an overlap of m � n+2 occurrences of w. Let pmax be max{pi+1−pi | i = 1, . . . , m−1}.
Assume |w| − pm � 2n · pmax ; this means there are 2n · pmax common positions of all

occurrences of w.

Then, the partial word w is periodic, and a period is pall := gcd (p2 − p1, p3 − p2, . . . ,

pm − pm−1). Moreover, the overlap is consistent with using the same substitution for every

occurrence of w.

3.2. Overlaps of multicontexts

For a linear term (a multicontext) s and two positions p1, p2 of s with p1 < p2, we write

s[p1, p2] for the (multi-)context starting at p1 with hole at p2, i.e. s[p1, p2] := s[[·]/p2]|p1
,

i.e. for the context constructed from s by first replacing the subterm at p2 by a hole, and

then selecting the subcontext at p1.

Let c be a multi-context, let p be a path to a hole of c and let there be a number

m < |p| such that for all 0 � i, j � |p| − 1: i ≡ j mod m implies that c[p[0, i], p[0, i+ 1]] and

c[p[0, j], p[0, j + 1]] are unifiable (as linear terms); then, c is called periodic (also strongly

periodic) (along p) and m is a period of c (along p). If additionally, there is a position q

such that p is a prefix of qk for some positive integer k, then we say that c is periodic

along q∞.

From Theorem 3.2, we derive a theorem for periodicity of multicontexts if there is a

sufficiently dense overlap. Note that for the overlap, we first have to select a direction.

Definition 3.3. Let c be a multi-context with h � 1 holes. Let p be the position of a fixed

hole of c, and let pi, i = 1, . . . , n be prefixes of p such that i < j implies pi < pj with

n � h+2. Assume that there are n copies of c starting at position pi such that p is a prefix

of pip, i.e. the hole position of c starting at pi is compatible with p for all i.

— This is an overlap with a cut if for all positions that are also positions in c at p0,

equality must hold, i.e. parts of other c that are positioned in the hole of the first c

are ignored. This corresponds to the overlap definition in Schmidt-Schauß (2012) and

Definition 3.2.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1424

— This is a full overlap if for all common positions, equality must hold, i.e. also subterms

in the hole of the first c have to be compared. Note that this is also an overlap with

cut.

Theorem 3.4 (Periodicity theorem). Let c be a multi-context with h � 1 holes. Let there

be an overlap with cut of n copies of c with positions p, pi as in Definition 3.3. Let pmax

be max{|pi+1| − |pi| | i = 1, . . . , n− 1}, and assume |p| − |pn| � 2h · pmax ; which means there

are 2h · pmax common positions on the path p of all occurrences of c.

Then, the multicontext c is periodic (in the direction p), and a period length is pall :=

gcd (|p2| − |p1|, |p3| − |p2|, . . . , |pn| − |pn−1|). Moreover, the overlap is consistent with using

the same substitution for the variables for every occurrence of c.

If it is a full overlap, then for the indices i with h + 2 � i � n− h + 2, the substitutions

into the variables of c are identical, with the possible exception of the hole-variable at p.

Proof. We translate c into a partial word w as follows: Along the path p, we split c

into the contexts c1, . . . , cm with m = |p| and such that ci are multi-contexts with a hole at

depth 1 and such that the hole path of this hole of ci is exactly the integer in p at position

i. Then, c = c1 . . . cm. Now, there are at most h− 1 contexts among the ci that have more

than one hole. The partial word w is constructed as w = w1 . . . wm, where wi := ci if ci is a

context with exactly one hole, and wi := Xi if ci is a context with at least two holes. The

variables Xi stand for contexts with the same hole path as ci. Now, w can be viewed as a

partial word where the variables Xi act as character-variables and so we can apply results

from partial words. Now, we have a multiple overlap of the partial word w with itself

and can apply Theorem 3.2, which shows periodicity of w. The periodicity of w and the

consistent instantiation into the holes of w then imply a periodicity of c, since we have

started with an overlap. The overlap enforces that every variable Xi of w is instantiated

with a context ci′ that is ground. Since we have assumed that we have a multiple overlap,

and since every hole must be instantiated, the condition on unifiability in the periodicity

definition is satisfied, also for the multicontexts ci with more than one hole.

The condition for full overlaps is satisfied, since every instantiation in the range is

forced by one subterm in the period subcontext.

3.3. Overlaps of linear terms and contexts

We consider the overlap of multicontexts c, c1, c2, . . . and a context d in this section. In

particular special variants of overlaps have to be analysed: Overlaps where the hole of d

is not compatible with any hole of c. The overlaps where a hole of c is compatible with a

hole of d are later dealt with in a standard fashion.

This exhibits a difference between strings and linear terms: Periodicities in linear terms

are not only possible along a hole-path but also along other paths, and there are two

different kinds of such periodicities (see Proposition 3.7), which for contexts (linear terms

with a single variable) already appeared in Schmidt-Schauß (2005).

Definition 3.5. Let c be a multicontext with at least one hole, and let d be a context

with exactly one hole. An overlap of c with d is an occurrence of c starting at a position

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1425

d

c

d d

(a) non-compatible overlap (b) parallel (c) sequential

Subfigures (b) and (c) only show the hole path of two occurrences of the context c.

Fig. 1. Non-compatible, parallel and sequential overlap of c with d. (a) Non-compatible overlap.

(b) Parallel. (c) Sequential. Subfigures (b) and (c) only show the hole path of two occurrences of

the context c.

p of d, where p is a prefix of the hole-path holep(d). More exactly, there is a ground

substitution σ, a ground term r and a ground context d0 that is a prefix context of d, such

that d0[σ(c)] = d[r]. A compatible overlap of c with d is an occurrence of c with starting

position p, where p is a prefix of the hole-path holep(d), and for some hole position q of

c, pq is compatible with holep(d). If for every hole position q of c, pq is not compatible

with holep(d), then the overlap is called non-compatible. For a non-compatible overlap, let

the maximal common hole path (mchp) be the maximal path q, such that pq is a prefix of

holep(d), and q is a prefix of some hole path of c.

Example 3.6. Let d = f(a1, f([·], a1)) and let c = f(a1, [·]). Then, c overlaps d at position

ε, which is a compatible overlap, since the start as well as the hole position of c is on the

hole path of d. The overlap of c with d at position 2 (in d) is a non-compatible overlap,

since the hole of c is at 2.2, which is not a prefix or suffix of the hole path of d, which is

2.1. Further examples for non-compatible overlaps can be found in Example 3.8.

Note that overlaps of c with d at other positions than on the hole path occur in the

bookkeeping of overlaps, but are tabled as overlaps with other contexts (i.e. subcontexts)

or terms.

Proposition 3.7. Let c be a multicontext with at least one hole, and let d be a context with

exactly one hole, and let p1 < p2 be two positions of non-compatible overlaps of c in d.

Let qi be the mchp of c at pi for i = 1, 2.

Then, there are the following two cases (see Figure 1):

1 q1 = q2 (the parallel overlap case). Then, for p′ such that p1p
′ = p2 the path p1(p

′)n

is compatible with holep(d) for all n. Also, this is a multiple overlap of c′ with itself

at positions (p′)i, where c′ is constructed from c with an extra hole at p′′, where

p1p
′′ = holep(d).

2 q2 < q1 (the sequential overlap case). Then, p2q2 = p1q1, i.e. there is a fixed position

on the hole path of d, where the hole paths of occurrences of c deviate.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1426

Proof.

1 Let q1 � q2, and assume for contradiction that q1 < q2. For simplicity, we assume

that qi = ε, the case for non-empty qi is similar. Then, c = f(. . . , ck, . . . ,) and p1k is a

prefix of holep(d), where ck does not contain holes of c. The term at position p1p
′ in

d is also equal to ck , since we have assumed q1 < q2; hence, we have a contradiction.

Thus, q1 = q2, and the term at position p1p
′ in d is also equal to ck up to the hole of

d. Thus, p1(p
′)n must hit the hole of d, since otherwise there is an infinite path in c.

2 Now, let q2 < q1. Again we assume for simplicity that q2 = ε. Note that p2q2 and

p1q1 are compatible. We exclude p2q2 �= p1q1 by showing that the following cases are

impossible:

— p1q1 < p2 is not possible: Assume this holds, then the term t = c|q1
does not

contain a hole. Moreover, it is contained in a term ci, where c = f(c1, . . . , cn) and

p2i is not a prefix of holep(d). Looking at the second overlap of c, we see that t is

properly contained in itself.

— p2 < p1q1 is impossible: We look for a construction of positions that leads to an

infinite path. Let p′ such that p1p
′ = p2. Then, we start the walk at p1 with p′.

It arrives at p2. Now, we again look into the occurrence of c that has its top at

p2. Again we can walk p′ and now reach a position in c that is not a prefix of

holep(d). The reason is that c at p2 has its holes not above the hole of d. But then,

we can repeat this walking infinitely, which is a contradiction.

Example 3.8. Let c′ = f(f(a1, a2), [·]) be a context, c = f(f(x, y), (c′)100[.]), and let d =

(c′)100[·]. Then, there is an overlap of c with d at positions ε, 2, 2.2, . . . It is an overlap of

the first kind, i.e. a parallel overlap.

An overlap of the second kind, i.e. a sequential overlap is the following: Let c =

f(a1, f(a1, f(a1, [·]))) and let d = f(a1, f(a1, f(a1, f([·], f(a1, f(a1, a1)))))). Then, the overlap

positions are ε, 2, 2.2, 2.2.2.

Remark 3.9. If there are three or more non-compatible overlaps of a multicontext c with

a context d, then there are only two possible configurations:

— a parallel overlap,

— a sequential overlap.

Mixtures of them are not possible for the non-compatible overlaps. The argument is as

follows: look for the shortest mchp qi. If it is the first one, then it must be a parallel

overlap for all occurrences. If the shortest mchp qj is not the first one, then the one with

k > j are parallel w.r.t. overlap j, but then the overlap for i = 1 has to be sequential w.r.t.

j and j + 1, which is impossible.

3.4. Tabling prefixes of multicontexts in contexts

In this section, we define the algorithm for constructing tables in a dynamic programming

style, where the tables represent the prefix matchings of a multicontext c in a context d.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1427

The construction is similar to the string matching with character-variables in Schmidt-

Schauß (2012). Note that matchings of c in val (A) for non-terminals A given a compressed

position can be recognized in polynomial time using the compressed matching algorithm

in Gascón et al. (2011).

Let G be an STG, and let S be a non-terminal in G representing the linear term

s = val (S). Let Gt be an STG, T be a non-terminal in Gt, with t = val (T), which is

the term in which we are searching for a match of s. In order to find the matches, a

complete table is computed for all prefix matches of s in all non-terminals T ′ that occur

in a derivation of T .

For convenience, we will assume that in the used STGs, the right-hand sides CA of

productions of term non-terminals only permit val (A) = a, where a is a constant. This is

possible according to Proposition 2.12 without much overhead.

In the following, we say that A compatibly matches B for a term non-terminal A and

a context non-terminal B, if there is a substitution σ, such that σ(val (A)) = val (B)[r] for

some term r. If there is a substitution σ, such that the match is exact, i.e. σ(val (A)) = val (B),

then we say that A exactly matches B. Here, we allow that the substitution may introduce

a single hole into σ(val (A)).

Definition 3.10. We define a result table and h + 1 prefix tables, with coordinate A for

context non-terminals A of Gt, where h is the number of variables (number of holes) in

s = val (S), and the extra table is for non-compatible overlaps. For every 0 � i � h, there

is a table of prefixes where the ith hole of val (S) and the hole of val (A) are compatible,

and there is a table for the prefixes with non-compatible overlap. We explain the following

two kinds of tables:

— A result table that contains entries C or (C, P , n), where C and P are context non-

terminals for ground contexts, n is a number, and the hole path of val (C) is a prefix

of the hole path of val (A), such that

– for the entry C , CS matches A exactly;

– for the entry (C, P , n), for k = 0, . . . , n, every CPkS matches A exactly.

— A prefix table that contains the following two different kinds of entries:

– C where the hole path of C is a prefix of the hole path of val (A), such that CS

compatibly matches A;

– (C, P , n), (we allow ∞ for n), where the hole path of val (CP i) is compatible with the

hole path of val (A) for all i = 0, . . . , n. This means that CP i compatibly matches A

for all i.

The third component n is only a number for the table of the non-compatible

overlaps that are sequential overlaps, and otherwise it is ∞.

The generation of the entry will guarantee the following periodicity claims, since

only compaction can generate such entries, and this in turn is only possible if the

periodicity theorem is applicable:

1 If it is an entry in a table corresponding to a hole of S , then the context c′

with val (A) = val (C)[c′] is periodic in the direction (holep(val (P)))∞, and also

val (S) is periodic in the direction (holep(val (P)))∞.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1428

2 If it is an entry in a non-compatible table corresponding to a hole of S , then the

context c′ with val (A) = val (C)[c′] is periodic in the direction (holep(val (P)))∞,

and also val (S) is periodic in the direction (holep(val (P)))∞.

If the third component is n, then s′ is periodic, which is val (S) cut at the hole

position of holep(val (P))n, i.e. s′ := val (S)[[·]/p], where p = (holep(val (P)))n.

If the third component is ∞, then the context c′ with val (A) = val (C)[c′] is

periodic in the direction (holep(val (P)))∞, and also val (S) is periodic in the

direction (holep(val (P)))∞.

Example 3.11. We describe several small examples for compatible entries in a prefix table.

Therefore, we slightly extend Example 3.8. Let the STG be S → A2;A → A1A1;A1 →
A2A2, A2 → f(a1, [·]).

1 Then, (C,A2,∞) for C → [·] is a potential entry in a result table for A.

2 Let A4 → g([·])), B → A4A,C
′ → A4. Then, (C ′, A2,∞) is an entry in the result table

for B.

3 Let B′ → BA4, then (A4, A2, 2) is an entry in the result table for B′.

4 The tuple (A4, A2, 3) is an entry in the prefix table for B.

5 Let B′′ → A6A4, A6 → A4A1. The context A6 is then a potential entry in the result an

prefix tables of B′′.

Note that item 4 cannot be used as a result, since composing B as in B′ → BA4 in item 3

may render an overlap invalid.

Example 3.12. We describe an example for a non-compatible entry in a prefix table.

Therefore, we slightly modify Example 3.8. Assume there is an STG G. Let c =

f(a1, f(a1, f(a1, f(a1, [·])))), d = f(a1, f(a1, f(a1, f([·], f(a1, f(a1, a1)))))), and let P ,D, C0, S

be a non-terminals such that val (P) = f(a1, [·]), val (D) = d, val (S) = c, val (C0) = [·].
Then, an entry in the non-compatible prefix table for D could be (C0, P , 3).

In the construction of the tables, we detail the different treatments of the hole-i table

and the non-compatible table if necessary. Note that during construction of the tables, the

STG G may be extended to G′. Note that the single entries C are explicitly constructed,

whereas the entries (C, P , n) indicating periodicity are only generated in the compaction

step. The construction of the prefix table in the case A→ A1A2 and the periodic cases is

depicted in Figure 3 where (a) shows the case where A has a periodic suffix, (b) shows the

case where A has an inner part that is periodic, (c) shows a case where the periodicity goes

into a direction that is not compatible with the hole of A2, which leads to the sequential

overlap case and (d) is a case of a sequential overlap already in the table for A1.

Note that we do not give every detail: For example, length computations in STGs can

be done in linear time; positions are always SLP-compressed. For compressed strings, it is

known how to compare them for equality, and how to compute common prefixes of two

compressed strings, in polynomial time. Similar for contexts, operations of the following

kind are performed several times: Given a non-terminal S such that s = val (S) is a linear

term and P is a ground context, find a maximal k, such that val (P)k is a prefix of s

(or such that s compatibly matches val (P)k , respectively). This is done as follows: First,

compute the size of s, which gives an upper bound for k. Then, construct a non-terminal

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1429

A2

P

C
A1

A2

P

C
A1

A2

P

C
A1

A2

P

C
A1

)d()c()b()a(

Fig. 2. Cases in the construction of the prefix tables for periodic entries.

Pk with val (Pk) = val (P)k , and apply a prefix test to S and Pk . Use a interval bisection

for the interval {1, . . . , k} to iterate the test until the maximum is found. These algorithms

can be performed in polynomial time.

Algorithm 3.13 (Construction of suffix and prefix tables for overlaps of linear terms with

context-non-terminals). We construct the table entries for all context non-terminals A

in G, and where S is the fixed term non-terminal for the linear term s = val (S). The

construction is bottom-up w.r.t. the STG. If the tables for a context non-terminal A are

constructed with grammar production A→ A1A2, then the tables are already filled for A1

and A2, and for every entry, one of the five cases may apply. The final step for A is then

the compaction step below for every prefix table of A.

The first case is that the hole depth of val (A) is 1.

If S does not compatibly match A, then there are no entries in the tables. If S exactly

matches A, then the empty context is in the result table. If S does not exactly match A, but

compatibly matches A, then the empty context is in the prefix tables: If holep(val (A)) = k,

and the ith hole-path of val (S) starts with k, then the entry is in the prefix table i. If there

is no such hole-path of val (S), then the entry is in the non-compatible prefix table.

The second case is that A→ A1A2 is the production for A, inheriting entries of A2.

For every entry C or (C, P , n) in the prefix table of A2, there is an entry C ′ or (C ′, P , n),

respectively, in the prefix table with new production C ′ → A1C .

The third case is that A → A1A2 is the production for A, inheriting an entry C in the

prefix table of A1.

If CS exactly matches A, then there is an entry C in the result table of A.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1430

Otherwise, if CS compatibly matches A, then we insert C into some prefix tables of A.

The exact tables that are to be filled are determined according to the relative positions of

the hole of val (CS) and val (A).

The fourth case is that A→ A1A2 is the production for A, and that (C, P , n) is an entry

in the prefix table of A1 where n is an integer. This is case (d) of Figure 3.

Since n is a number, it is an entry in the non-compatible overlap table, for a sequential

overlap. In this case, we only have to check whether the leftmost single entry represented

by the sequence can be extended to A1A2: That is, only the check whether CS compatibly

matches A1A2 has to be performed. If yes, then the entry is also in the (same) prefix table

for A.

The fifth case is that A → A1A2 is the production for A, and that (C, P , n) is an entry

in the prefix table of A1, where n is ∞.

Note that for all these cases, only start positions of S need to be considered, which are

in A1, since the other ones are already inherited.

Then, we first construct context non-terminals P1, P2, P
′ with val (P) = val (P1P2), such

that there is a k with val (CPkP1) = val (A1) and with P ′ → P2P1. Figure 3 indicates the

cases for the periodicities in val (A). The case distinction also has to take care of the

periodicities (as a multicontext) of val (S) and of prefixes of val (S). There are several

cases, listed as follows:

1 val (A2) is a prefix of val (P ′)i for some i. This is case (a) of Figure 3.

Then, a (maximal) context non-terminal P3 and the maximal m can be computed

(using interval bisection and matching) such that val (A2) = val ((P ′)mP3) and val (P3) is

a prefix of val (P ′). Also, the maximal context non-terminal P4 is computed by interval

bisection, such that val (P4) is a prefix of val (P) and val (CPk′P4) = val (A). The cases

are as follows:

(a) val (S) is periodic in the direction val (P)∞: There is some h such that S exactly

matches PhP4.

Compute the minimal h such that S exactly matches PhP4. This computation is

possible by interval bisection, since val (A2) = val ((P ′)mP3), and since val (S) is

periodic in the direction val (P)∞. Then, the entry in the result table is (C, P , k′ −h).

If h �= 0, then for the exponents h′ < h, S must compatibly match; hence, we add

the entry (C ′, P) to the prefix table, where C ′ → CPh+1 is the production for C ′.

(b) Item 1a does not hold, but there is some h such that S compatibly matches PhP4.

Then, compute the maximal h such that S compatibly matches PhP4. This

computation is possible by interval bisection. The entry in the prefix table is (C ′, P)

with C ′ → CPk′−h, which is an entry for a non-compatible (parallel) overlap. There

is no entry in the result table.

2 val (A2) is not a prefix of val (P ′)i for any i. (P ′)k1 matches A2 exactly, where k1 is

chosen maximal. The condition is that (P ′)k1+1 does not match A2 compatibly. This is

case (b) of Figure 3.

Note that there is some redundancy compared with the next item.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1431

Then, compute a context non-terminal P3 such that val ((P ′)k1P3) = val (A2). There are

k + k1 + 1 full periods of P in val (A) on the hole path starting from the hole of C .

There are several cases.

(a) val (S) is periodic in the direction val (P)∞, i.e. S can be split into S =

S ′0S1S
′
1S2S

′
2 . . . SmS

′
m, where Si, S

′
i are fresh context non-terminals, val (Si) = val (P)ji

for some ji � 0, and holep(val (S ′i)) = holep(P) for all i, S ′i matches P for all i, and

m + 1 � |FV (val (S))| − 1.

If h � k + k1 + 1, then S exactly matches D if val (CP iD) = val (A1A2) for all

appropriate i, and hence there is a new entry in the result table: (C, P , k + k1 − h).

For every entry CPk′ , such that the position of S ′i is exactly at the start position of

P3, an extra match test has to be made, whether or not it is in the result table, or

in the prefix table, and if yes in which prefix table.

Note the number of these tests is at most the number of holes in val (S).

(b) Only a prefix of val (S) is periodic in the direction val (P)∞, i.e. S can be split

into S = S ′0S1S
′
1S2S

′
2 . . . SmS

′
mR, where Si, S

′
i , R are fresh context non-terminals,

val (Si) = val (P)ji for some ji � 0, and holep(val (S ′i)) = holep(P) for all i, S ′i
matches P for all i, and m+1 � |FV (val (S))| − 1, and m is maximal. Then, there is

no periodic entry. For every potential entry CPk′ , such that the position of S ′i or R

is exactly at the start position of P3 an extra match test has to be made, whether

or not it is in the result table, or in the prefix table, and if yes in which prefix table.

Note the number of these tests is at most the number of holes in val (S).

3 Items 1 and 2 do not hold. Then, val (A2) = val (P2)val (P)k1d5val (P)k2P6, where d5 is

a multicontext with two holes, one of its holes has position holep(val (P)) and the

other hole corresponds to the hole of val (A2), val (P) matches d5, and P6 is a term

non-terminal without prefix val (P). This is case (c) of Figure 3.

There are k+1+ k1 + 1+ k2 full periods of P in val (A) on the hole path starting from

the hole of C , with one exception at the hole of val (A2): The contribution of val (P)

may only fit after an instantiation into the hole of val (A2). The 2-hole-context d5 can

easily be represented in an STG by using term and context non-terminals, where the

trick is to locate the forking position of the two holes and use a grammar production

with right-hand side of the form f(. . . , B, . . . , D, . . .), where B is a term non-terminal

and D a context non-terminal containing the hole of A2, and B represents the rest

of the exceptional P -occurrence, and val (B) = val (Pk2P6). There are several cases as

follows.

(a) val (S) is periodic in the direction val (P)∞. Let h be such that S exactly matches

PhP7, such that holep(S) = holep(PhP7), where holep(P7) is a proper prefix of

holep(P). If h � k+k1, then there is a new entry in the result table: (C, P , k+k1−h).
The prefix table has a new entry (C ′, P , 1 + k2), in the non-compatible table,

corresponding to a sequential overlap, where C ′ is constructed to represent

CPk+k1+1−h.

In order to find the entries where S overlaps a part of P6, we split S into S =

S ′0S1S
′
1S2S

′
2 . . . SmS

′
m, where Si, S

′
i are fresh context non-terminals, val (Si) = val (P)ji

for some ji � 0, and holep(val (S ′i)) = holep(P) for all i, S ′i matches P for all i, and

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1432

m + 1 � |FV (val (S))| − 1. Here, S ′m is another name for P7. For every potential

entry CPk′ , such that the position of S ′i is exactly at the start position of P6 an

extra match test has to be made, whether or not it is in the result table, or in the

prefix table, and if yes in which prefix table.

Note the number of these tests is at most the number of holes in val (S).

(b) Only a prefix of val (S) is periodic in the direction val (P)∞, i.e. S can be split

into S = S ′0S1S
′
1S2S

′
2 . . . SmS

′
mR, where Si, S

′
i , R are fresh context non-terminals,

val (Si) = val (P)ji for some ji � 0, and holep(val (S ′i)) = holep(P) for all i, S ′i
matches P for all i, and m + 1 � |FV (val (S))| − 1, and m is maximal. Then, there

is no periodic entry.

For every potential entry CPk′ , such that the position of S ′i or R is exactly at the

start position of d5, an extra match test has to be made, whether or not it is in the

result table, or in the prefix table, and if yes in which prefix table.

The same for the potential entries CPk′ , such that the position of S ′i or R is exactly

at the start position of P6, an extra match test has to be made, whether or not it

is in the result table, or in the prefix table, and if yes in which prefix table.

Again, the number of these tests is at most twice the number of holes in val (S).

The final step is to perform a compaction of the prefix tables for A as follows:

The entry forms are (C) and (C, P , n). First, we look for the entries in a fixed prefix

table for A and for hole j: Since the hole path of hole j of val (S) is compatible with the

hole path of A for all the entries, it is possible to apply the Periodicity Theorem 3.4 for

overlaps with cut.

We scan through the main path of val (A) to check for redundant entries as follows. We

start with c0 := |holep(A)|, and make a compaction for values 2−ic � c0 and describe the

compaction with c as parameter: Let c � c0 be a positive integer, let h be the number of

holes of val (S). Then, let d := |holep(A)| − c and e := �d/(2(h+ 2))�. Now, we check every

interval c, c + e, c + 2e . . . c + ((h + 2) − 1)e whether the number of entries in the interval

exceeds (h + 2), where we interpret the periodic entries in the interval as if at least h + 2

single entries are expanded. If this is the case for the interval [c + ie, c + (i + 1)e], we can

apply the periodicity theorem for multicontexts with h holes and a fixed path p, which is

the hole path for hole j of val (S), and generate an entry (C, P). C is determined as the

context in val (A) with hole at the first entry in the interval, and P is the context starting

there with hole path as given by A, and with a hole depth that is the gcd as computed in

Theorem 3.4. The fresh non-terminals C, P are to be constructed by extending the STG.

All other entries in the interval are then removed: removing the single entries and by

shifting the start of the periodic entries to the right.

The scan then proceeds in the second half of the interval, but with freshly computed

c, e. The scan stops if the interval is of length 2.

In case we work on the table for A for the non-compatible entries, the compaction has

to perform extra checks: First, two different entries C1, C2 are compared for the mchp say

q1, q2 of val (S) starting at the hole of C1 (C2, respectively) with the path of A. If q1 = q2,

then we are in the parallel overlap scenario, otherwise, we are in the sequential overlap

scenario.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1433

In the parallel overlap scenario, the compaction is performed exactly as for the entries

in the compatible entries.

In the sequential overlap scenario, first the position q0 has to be determined, which is

the maximal position where all the hole paths of the prefixes deviate from the hole path

of A. Therefore, it is sufficient to compute for one entry C1 with hole position p1 the

mhcp q1 with val (A). Then, we use q0 as the right end of the interval, i.e. we compute

the overlaps with A′ which represents the prefix of val (A) with hole path q0. Then, the

compaction is performed exactly as the other compaction steps. �

Note that all positions in the algorithm have to be compressed by SLPs. Note also that

non-terminals are never expanded. Every mention of val (A), val (P) and val (S) is only for

being precise, but the computation is always on the STG-level.

It remains to describe an algorithm for the positions of the matchings in term non-

terminals using the prefix tables.

Algorithm 3.14 (Construction of the matchings of linear terms with term-non-terminals).

Let G be an STG, and let S, T be the non-terminals, such that val (S) is a linear term

and we search for submatchings in val (T). Note that we have assumed that G has only

productions for term non-terminals of the form A → CA′, where |val (A′)| = 1, which is

possible without much overhead by Proposition 2.12. Assume that the prefix and result

tables are constructed as described in Algorithm 3.13. Then, Lemma 2.14 shows that

the following tests are sufficient to obtain all positions. Let GT be the subgrammar that

contains all productions for a computation of val (T). The matching positions can be

found as follows:

1 Every position in the result table of Algorithm 3.13 is a submatching.

2 For every term non-terminal A of GT , if S exactly matches A, then a submatching is

found.

3 If a non-terminal A has grammar production A→ CA′, then we know that |val(A′)| = 1

and A′ → a′ for a constant a′. We use the entries in the prefix tables for C .

(a) For a single entry C ′, we determine the compressed position p (the hole position

of C ′), and then we try to match S at p in CA′.

(b) For a periodic entry (C ′, P ′, n), we have to test whether S exactly matches (P ′)kP1[a
′]

where the names and the tests are similar, but far more restricted, as in the fifth

case of Algorithm 3.13. I give some hints: The compatible case is not possible,

since such an entry would already be contained in the result table. For the non-

compatible overlaps, we have to determine the single critical position that fits,

which is possible since periodic positions can be determined from the entry and

from S .

3.5. Properties of the linear Submatching algorithm

The compaction step is correct, which follows from Theorem 3.4 and Proposition 3.7, and

since the construction obeys the assumptions of the theorems.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1434

The potentially dangerous step, which might lead to an explosion (iterated doubling)

of entries, is the inheritance of the entries of A1, A2 as entries of A with production

A → A1A2, since there may be several occurrences of A1, A2 in other productions. This

explosion is prevented on the one hand by placing completed matchings into a result table,

and on the other hand by the compaction using a compact representation of periodicities.

We show that the compaction step guarantees a polynomial size of the table(s).

Proposition 3.15. Given an STG G as input, the size of the tables generated in Algorithm

3.13 is O(|G|5) due to the compaction step.

Proof. The number of tables is at most O(|G|2), since the number of holes is linear in

the size of G and also the number of non-terminals A is at most |G|. It remains to show

that the number of entries is polynomial. The size, and hence the hole depth of val (A) for

non-terminals A is at most 2|G|, and by the interval division method and the compaction,

at most (h+1) · (h+2) · |G| entries will remain in an entry for A, which is of order O(|G|3).

The tabling algorithm increases the STG by further non-terminals. We argue that this

increase is moderate, i.e. is within the overall polynomial time complexity.

Lemma 3.16. The subtasks of Algorithms 3.13 and 3.14 that increase the STGs that

represent the matching positions lead to an at most polynomial size increase, and can be

performed in polynomial time.

Proof. The compaction step is responsible for keeping the overall size of the tables at

most O(|G|5). There are several constructions of new non-terminals, for example in the fifth

case, like C, P , P1, . . . , P7, whose size and depth increases are estimated in Lemma 2.7. The

number of these construction operations is polynomial. Since there may be an iterated

increase, i.e. the freshly constructed non-terminals may make use of other previously

constructed non-terminals, we have to take care of iterated increase. Thanks to Theorem

2.11, also an iterated increase only leads to a polynomial size increase of the final STG.

As a summary, we have the following theorem.

Theorem 3.17. Let G be an STG, and S, T be two term non-terminals such that val (S)

is a linear term, and the submatching positions of val (S) in val (T) are to be determined.

Then, Algorithm 3.14 together with Algorithm 3.13 computes a polynomial representation

of all submatchings of val (S) in val (T) in polynomial time dependent on the size of G.

4. Submatching algorithms for other cases

In this section, we consider several specialized situations, for example, uncompressed

patterns, DAG-compressed terms and also an algorithm for the general case of non-linear

terms, which may, however, require exponential time in the worst case.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1435

4.1. Ground term submatching

The investigation in Gascón et al. (2008) shows that (exact) term matching, also in

the fully compressed version including the computation of a compressed substitution,

is polynomial. That is, given two non-terminals S, T , where S may contain variables,

there is a polynomial time algorithm for answering the question whether there is some

substitution σ such that σ(val (S)) = val (T), and also for computing the substitution,

where the representation is a list of variable-non-terminal pairs, and the non-terminals

belong to an extension of the input STG.

Algorithm 4.1 (Ground compressed term submatching). The special case of submatching

where s is ground and compressed by a non-terminal S can be solved in polynomial time by

translating both compressed terms into their compressed preorder traversals (i.e. strings)

(Busatto et al. 2005, 2008), and then applying string pattern matching (see Lifshits 2007;

Rytter 2004 for further references on the subject). The translation efficiently computes an

SLP for the preorder traversal of val (S) and val (T) and asks whether one is a substring

of the other (see Gascón et al. 2011 for more information on the preorder traversal).

The string matching algorithm in Lifshits (2007) computes a polynomial representation

of all occurrences. Note that in our case, the structure of ground terms is very special

as a string matching problem: periodic overlaps of the preorder traversal as strings are

not possible. Thus, the complete output of the algorithm is a follows: (i) a list of term

non-terminals N of the input STG G, where val (σ(S)) = val (N), and (ii) a list of pairs

(N, p), where the production for N is of the form N → CN ′, p is a compressed position,

and val (C)|val (p)[val (N
′)] = val (S). Moreover, every non-terminal N appears at most once

in the list.

There are efficient algorithms for the compressed string pattern match (Jez 2012; Lifshits

2007). The required time is O(n2m), where n is the size of the SLP of T and m is the size

of the SLP of S (the pattern). Since the preorder traversal can be computed in linear time

(see Gascón et al. 2011), we have the following theorem.

Theorem 4.2. Let S, T be non-terminals compressed with STGs GS , GT , respectively, such

that s is ground. Then, the ground compressed term submatching, whether s occurs in t,

can be computed in time O(|GT |2|GS |), and the output is a list of linear size.

Note that there may be exponentially many matching positions, even if the output list

has only a single element N, since N may occur at an exponential number of positions in

the derivation of val (G).

4.2. Decision algorithm for uncompressed linear submatching

Given an uncompressed and linear term s and an STG G together with a non-terminal T ,

the following algorithm solves the submatching decision problem, but does not compute

the substitution: Construct a non-deterministic tree automaton Ts (Comon et al. 1997) that

recognizes whether s is a subterm of another term ignoring the variables. This automaton

can be easily constructed and has a linear number of states, where Ts has an accepting

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1436

C

s

C

s

)b()a(

Fig. 3. Cases in the construction of the s-in-C-table.

run on val (T) if and only if s occurs in val (T) as a multicontext (i.e. there is some σ, such

that σ(s) is a subterm of val (T)). It is known that acceptance of a compressed term by

nondeterministic tree automata (NTAs) can be decided in time O(|G|3 + |G|2a3), where a

is the size of the automaton (Lohrey and Maneth 2005; Lohrey et al. 2009), which means

that uncompressed linear submatching can be decided in time O(|G|5).
This method does not answer further questions like: What is the substitution, all

matching positions or matching positions satisfying further constraints. The reason is that

this method cannot identify the matching position, since it computes only functions from

states to states.

4.3. DAG-compressed non-linear submatching

Now, we look for the case of DAG-compressed s, which is slightly more general than the

uncompressed case, and where variables may occur several times in s. We show that also

in this case, there is an algorithm for submatching that requires polynomial time. The

algorithm outputs enough information to determine all the positions of a submatch.

Example 4.3. The number of possible substitutions for a submatch in a DAG-compressed

term may be exponential: Let the productions be S → f(x, y), and T → f(A1, A1), A1 →
f(A2, A2), . . . , An−1 → f(An, An), An → a. Then, val (T) is a complete binary tree of depth n

and there is a submatch at every non-leaf node. Clearly, it is sufficient to have all Ai as

submatchings in the output, which is of linear size.

Algorithm 4.4 (DAG-compressed submatching: overview). We give an overview description

of the algorithm for DAG-compressed submatching in the following:

The following task is solved: Let G be an STG, T be a term non-terminal of G, and

let GS be a DAG for the term non-terminal S .

Then, find one (or all) possibilities for: a substitution σ, a term non-terminal S of GS

and a position p such that σ(val (S)) occurs in val (T) at position p.

We assume that the substitutions are STG-compressed and that the positions are

SLP-compressed.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1437

The output will be a list with elements of a kind according to the cases in Lemma 2.14:

1 a term non-terminal N such that s matches N exactly (case (1));

2 a term non-terminal N with production N = CB and a position and a compressed

substitution, such that s overlaps C and B (case (2a));

3 a substitution ρ such that ρ(s) is ground, where the positions can be determined using

Algorithm 4.1 (case (2(b)i)) with multiple occurrences of the variable x);

4 a context non-terminal C , a substitution ρ, and a compressed position of an occurrence

of s in C , where σ(s) occurs in val (C), and a variable x with a single occurrence in s,

where x matches a superterm of the hole (case (2(b)ii)). �

Definition 4.5 (s-in-C-table, result-list). Let S be a term non-terminal of Gs. The s-in-C-

table has two coordinates: a context non-terminal C , and a position p that is a suffix of the

hole path of val (C) as well as a position of val (S), and there is at most one substitution

entry ρ in the s-in-C-table, representing the possibilities where a match of val (S) starts

in val (C) at the hole path (see Figure 3). The substitution ρ instantiates certain variables

of val (S) with ground terms. We assume that ρ is represented as a list with elements of

the form x �→ Dx, where Dx are non-terminals in an extension of G. The semantics is that

ρ(val(S)) has an overlap with val (C) at some position q in val (C), and p is a position in

val(S), such that q.p is the hole position of val (C).

Entries in the result list are as follows:

— (C, p, D), where C is the context non-terminal, p a position in the context on the path

holep(val (C)), and D a non-terminal representing a ground context that is a prefix of

val (C)|p.

— s0, which is a ground instance of s. �

We use a dynamic programming algorithm for a bottom-up (w.r.t. G) computation of

the s-in-C-table. In a precomputation several attributes and further information can be

computed like an SLP for the position of the holes in val (C) for every context non-terminal

C .

The s-in-C-table and the result-list for the non-terminal S of GS is as follows. Let

s = val (S) in the following.

Algorithm 4.6 (For DAG-compressed term, construction of the s-in-C-table, result table

and all submatchings). We assume given an STG G, a fixed non-terminal S , a context

non-terminal C .

— The production is C → f(A1, . . . , Aj−1, [·], Aj+1, . . . An). Then, compute a compressed

substitution ρ, such that for S → f(S1, . . . , Sn), val (ρ(Si)) = val (Ai) for all i = 1, . . . , n,

where i �= j. If there is no such ρ, then there are no entries.

Let ρ be the computed substitution.

If val (Sj) = x and x occurs only once in s, then there is no s-in-C-table entry,

and we are in case (2(b)ii) of Lemma 2.14, and the entry in the result-list will be

(C, ε, ρ(s[[·]/x])).

Otherwise, there will be the table entry ρ for (C, j).

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1438

— The production is C → C1C2, and an entry in the table is to be computed from the

entries in the tables for C1, C2. The entries in the table for C2 are simply inherited to

the table for C .

If there is an entry ρ for (C1, p) in the table for C1, then we have to match s|p against

C2. There are several cases as follows:

1 The hole position q2 of val (C2) is a position in s|p. Then, we compute a compressed

substitution ρ′ extending G as follows: For the context non-terminal D with

val (D) := s|p[[·]/q2], the substitution is computed as an exact match such that

ρ′(val (D)) = val (C2).

If there is no such ρ′, then there will be no entries.

If ρ′ and ρ can be joined, then let the ρ′′ be the combined substitution, otherwise

there is no entry in the table.

If s|p.q2
is a variable that occurs exactly once in s, then the entry in the result-list

is (C, q′, D′), where D′ is a context non-terminal representing ρ′′(d), and q′ is such

that q′p = holep(val (C1)).

Otherwise, ρ′′ is the new entry for (C, p.q2).

2 The hole position q2 of val (C2) is not a position in s|p. Then, let q be the maximal

prefix of p.q2 that is also a position in s. Compute ρ′ for the match of the non-

terminal D with C2, where val (D) = s|p[[·]/q], i.e. such that ρ′(val (D)) = val (C2).

If ρ′ does not exist, or if it is computable but not joinable with ρ, then there is no

entry.

Let ρ′′ be the join of ρ and ρ′. Clearly, s|q is now a variable, say x. If x occurs

exactly once in s (case (2(b)ii)) of Lemma 2.14), then the entry in the result-list is

(C, p.q2, D
′), where D′ represents ρ′′(val (D)).

Otherwise (case (2(b)i)) of Lemma 2.14) ρ′′(s|q) is a ground term. Then, the entry in

the result-list is simply the compressed substitution ρ′′, such that ρ′′(s) is a ground

term.

The representation of all occurrences of submatchings of S in non-terminals of G is as

follows:

1 The representation of all occurrences of ground terms in the result list are computed

using Algorithm 4.1.

2 The entries (C, p, D) in the result-list are kept.

3 For all term non-terminals N of G, check whether there is a substitution σ, such that

σ(s) = val (N). If this is true, then a match is found.

4 For all non-terminals N with production N → CB, and every position p of s that is

also a suffix of holep(C), compute a compressed match ρ′ for s|p with B. If ρ′ and the

s-in-C-table entry ρ for p are compatible, then a match is found, where the substitution

is ρ′′, the join of ρ and ρ′. �

Proposition 4.7. Algorithm 4.6 for submatching in the case that s is uncompressed or

DAG-compressed has polynomial running time in |Gs| and the size of G. Moreover, a

polynomial sized representation of all matching possibilities can be computed.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1439

The number of necessary matching substitutions is polynomial, if the subcontext case,

i.e. case (2(b)ii) of Lemma 2.14 is represented as a partial substitution, as done in

Algorithm 4.6

Proof. The table is of at most quadratic size, and the number of entries is at most

linear. The number of potential positions appearing in the table is the set of non-trivial

positions p in s, which are suffixes of the hole path of val (C) of the context non-terminal

C . For fixed C , upper bound for this number is depth(s). However, the non-terminals

used in the substitutions ρ have to be constructed in the STG G′. This constructions can

be done independently of each other. The join of (compressed) substitutions requires an

equality comparison of compressed terms, which can be performed in polynomial time

(Busatto et al. 2005). Hence, the size of the table, and of the output, is polynomial.

Note that the number of submatching positions may be exponential, since for example

a matching non-terminal N may have an exponential number of occurrences in the input

term val (T), but those can be represented in polynomial space. Also, the number of

substitutions may be exponential, if all ρ are requested such that ρ(s) is a subterm of t.

Note that we avoid the construction of substitutions in the cases where s = d[x], x occurs

exactly once in s and d occurs as a subcontext of some context val (C), where C is a

context non-terminal.

As a summary, we have the following theorem.

Theorem 4.8. Let Gs, Gt be a STGs, S, T be two term non-terminals in Gs, Gt, respectively,

where Gs is a DAG. Then, the submatch computation problem can be solved in polynomial

time. Also, an explicit polynomial representation of all matching possibilities can be

computed in polynomial time.

5. Submatching in the non-linear STG-compressed case

A non-deterministic polynomial (NP) time submatching algorithm is given in the general

case, where s as well as t are STG-compressed and a submatching of s in t is requested.

Also, a deterministic polynomial time submatching algorithm is described if there are a

few variable occurrences.

5.1. A non-deterministic algorithm for sub-matching in the general case

We describe a simple and sufficiently efficient non-deterministic algorithm, which, after

making it deterministic, may require exponential time in the worst case.

Given an STG G, two term non-terminals S, T , where val (S) may contain variables,

compute an extension G′ of G and a compressed substitution σ such that σ(valG′(S)) is a

subterm of valG(T). Also, representations of the position(s) of the match in val (T) have

to be computed.

Algorithm 5.1 (Non-deterministic submatching for non-linear terms). Assume given non-

terminals S, T with s = val (S), t = val (T). The (non-deterministic) algorithm for matching

s against a subterm of t proceeds in several steps: The algorithm consists of an iteration

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1440

that in every step (non-deterministically) generates instantiations for at least one variable

of val (S) and extends G. The iteration is described as a single step with input (G, S), and

constructing (G′, S ′) for the next iteration step, and also collecting instantiations. Note

that GT , which is the part of the STG that generates T , is unchanged during the iteration.

There are following two cases:

1 If s contains a variable with more than two occurrences, then do the following:

Construct an extension G1 of G and non-terminals S1, C, A such that S1 → CA is a

production, val (S1) = s, val (C) is a linear context, val (A) = f(r1, . . . , rn), n � 2 and there

is a variable that occurs in at least two ri. This prefix construction is a slight variation

of the prefix construction in Lemma 2.7 with an extra test for variable-occurrences.

Then, (non-deterministically) select a right-hand side f(B1, . . . , Bn) of a production in

GT contributing to T .

The first case is that val (f(B1, . . . , Bn)) is a term. Then, compute σ as matching A

against f(B1, . . . , Bn) (see Gascón et al. (2008, 2011)). If it fails, then there is no result

in this path of the non-deterministic computation. If it succeeds, then it means to

construct an extension G2 of G1 such that valG2
(A) = valG(f(B1, . . . , Bn)). Note that

G2 contains the instantiations for the variables occurring in val (A). Now, valG2
(A) is

ground. The next step of the iteration with G′ := G2 and S ′ := S1 will use the item for

the linear case.

The second case is that f(B1, . . . , Bn) is a context, and where i is the hole position.

Then, construct context non-terminals A1, . . . , An, such that val (A) = val (f(A1, . . . , An))

and add them to the STG G giving G2. Then, compute σ as matching f(A1, . . . , An)

against f(B1, . . . , Bi−1, [.], Bi+1, . . . , Bn) ignoring the index i, which is the hole position.

In the case of a successful match, this means to construct an extension G3 of G2,

matching Aj against Bj for all j �= i. The extension G3 contains the instantiations for

the variables occurring in Aj such that valG3
(Aj) = valG(Bj). Now, valG3

(S1) contains

less variables than s and we can perform the next iteration step with G′ := G3, and

S ′ := S1.

2 If s is linear, then Algorithm 3.13 is applied for the now linear compressed term s and

the compressed ground term t.

Theorem 5.2 (Non-deterministic general submatch). Let G be an STG and let S, T be

two non-terminals, and s = val (S), t = val (T), where s may contain variables. Then,

the algorithm for fully compressed submatch for compressed terms s, t requires at most

searching in |G||FVmult(s)| alternatives for the substitution and the computation for one

alternative can be done in polynomial time. Thus, the submatching problem is in NP.

Proof. A single computation path of Algorithm 5.1 can be completed in polynomial

time, which follows, since in every iteration step at least one variable will be instantiated,

and the overall increase of the STGs is at most polynomial due to Lemma 2.7. The time

for the subalgorithms is polynomial, see Theorems 4.2 and 3.17. Thus, the submatching

decision problem is in NP.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1441

5.2. Non-linear compressed submatching

In the general submatching case, if there are a large number of variable occurrences in s,

then the method to first linearize terms and then to post-process the result is prohibitive,

since even comparing two linear STG-compressed terms for equality (if variables are rep-

resented in the STG using a single symbol for a hole, and every hole is implicitly a different

variable) is coNP-hard (M. Lohrey, personal communication, 2013), and since such equal-

ity comparisons were required in the linear submatching computations. However, if the

number of occurrences of variables in s is small, then this method can be applied, as we will

show.

The non-linear submatching problem can be computed as follows.

Algorithm 5.3. Given the non-terminal S , where s = val (S) is a non-linear term, first

linearize s as follows: construct a non-terminal Slin from S such that slin := val (Slin), the

linearized term s, and solve the submatching problem for Slin and generate the result tables

for the term or context non-terminals A. This results in polynomial-sized result-tables with

single and periodic entries and submatchings from the term-non-terminal Algorithms 3.13

and 3.14.

Then, check consistency of the entries with the variable structure of s as follows:

1 Let C be a single entry in the result table of the context non-terminal A. Note that

val (C) is a prefix of val (A) such that also val (C)(val (Slin)) is a prefix of val (A). Now,

fix this position of s in val (A).

For all variables x in s, where x has an occurrence not on the hole path of val (A):

compute the instantiation for x. After an exhaustive instantiation, σ(s) is either ground

or contains a single variable occurrence. Then, compute the submatchings of σ(s) using

the known methods. This can be done in polynomial time.

2 Check consistency of the periodic entries:

Consider the first and last h + 1 subentries as single entries using the previous item.

Now, consider the other subentries. Note that the periodicity Theorem 3.4 for full

overlaps shows that for every variable x of slin , the instantiation of x for all the

occurrences of slin in the remaining periodic sequence are equal. Hence, it is sufficient

to consider a single one. So, check the first instance subentry like a single entry, which

will produce a representation of submatches of the instance of s.

The submatches in the term non-terminals obtained by first linearizing s, applying

Algorithm 3.14, and then post-processing the solutions is done in a similar way as

for context non-terminals. �

Theorem 5.4. Let S, T be non-terminals with s = val (S), and where OccS (V) is the number

of occurrences of variables in val (S). Then, a representation of all submatches of s in

val (T) can be computed in time polynomial in |G| and OccS (V). In particular, if the

number of occurrences of variables in s is not greater than |G|, then submatching can be

performed in polynomial time in |G|.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1442

Proof. This follows by using Algorithm 5.3, Theorem 3.17, the methods for suc-

cinctly constructing extensions of the STG and estimating the size and computation

time.

Note that Theorem 5.4 does not lead to a polynomial algorithm for submatching and

rewriting if the number of occurrences of variables in the pattern term is too large.

6. Polynomial compressed term rewriting

In this section, we apply the results on the compressed submatch to sequences of reductions

by a TRS, which is also applicable to an equational deduction step.

Given a TRS R and a term t, where we assume that the rewrite rules of R as well

as t are compressed by STGs, we investigate upper bounds for execution time and the

growth of the STG. There are several options for a rewriting strategy, i.e. for choosing

the position(s) for a deduction step: (i) single-position rewritings at leftmost-innermost or

outermost-leftmost or any positions, and also (ii) parallel rewritings of the same subterm

at several positions using the same rewrite rule. For our compressed representation the

natural approach is to use parallel rewriting of the same subterm at several positions

and by the same rewriting rule. Note, however, that the set of redexes that are rewritten

in parallel will depend on the structure of the grammar, and not on the structure of

the rewritten term. We do not investigate rewriting strategies and/or consequences for

computing normal forms. If the rewriting system is confluent, then it is correct to use

(opportunistic) parallel rewriting, which is likely to have less rewriting steps to a normal

form.

First, we define how a (parallel or single-position) rewriting step including the compu-

tation of the redex on an STG-compressed term t is performed.

Algorithm 6.1 (Compressed rewriting step with an oracle for the redex). Assume given a

compressed TRS R and a ground term t compressed with non-terminal T and STG G

with val (T) = t, where we assume that R is compressed by the STG GR as {Li → Ri | i =

1, . . . , n} and Li, Ri are term non-terminals.

A term rewriting step is performed as follows.

First select Li → Ri as the rule. There is an oracle, which is one of our submatching

algorithms applied to Li, for finding the redex for val (Li) or the set of redexes that

provides the following:

1 An extension G′ of G, i.e. additional non-terminals and productions.

2 A substitution σ as a list of pairs: {x1 �→ A1, . . . , xm �→ Am}, where FV (val (Li)) =

{x1, . . . , xm}, Ai are term non-terminals in G′, and val (Ai) is a subterm of t. It is also

assumed that the instantiation is integrated in the grammar G′ as productions xi → Ai

for i = 1, . . . , m.

3 A term non-terminal A in G′ that contributes to val (T), and a compressed position p.

The size-assumption is that G′ is G extended only for the non-terminals Ai representing

subterms of t, and the size of the grammar for p is linear in |G|. We also assume that for

several rule applications, every rewrite step uses a fresh copy of the STG GR .

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1443

The output will be an STG G′′ constructed from G′ ∪GR using one of the cases below.

The oracle will be one of the submatch algorithms above, and act non-deterministically:

First, it computes a submatch of some left-hand side Li of a rewrite rule Li → Ri of R in

val (T). This will lead to a grammar G′ that is an extension of G∪G′R , where G′R is a copy

of GR , and to the representation of the position(s) and substitution of the submatch. This

holds, for example, for Algorithms 3.13, 5.1 and 4.4. Then, one of the parallel redexes is

selected. There are following different cases:

1 If the position is trivial, i.e. p = ε, then val (A) = σ(val (Li)), and the operation is to

modify G′ ∪ GR by replacing the production for A by A→ Ri.

2 The other case is that the production for A is A→ D[A′] and the position p points to

a suffix of val (D), i.e. the match of Li is in the middle between A and A′ in val (D[A′]).

Starting with G′ ∪ GR , and using the returned (compressed) position, we construct

context non-terminals D1, D2, including their corresponding productions, such that

val (D1D2) = val (D) and val (D2[A]) = σ(val (Li)). The rewrite step is then performed

by replacing the production A→ D[A′] by A→ D1[Ri].

3 In case a single-position rewrite step instead of a parallel is requested, only the

construction of the non-terminal corresponding to the position has to be changed. The

overall complexity estimations are not changed by this modification.

4 There is an alternative treatment of the rewriting step in item (2) in the exceptional case

that the rewrite rule can rewrite a context into another context, which is potentially a

very efficient rewriting step in our representation.

Assume given the term non-terminal A with production A→ D[A′] and the position p

that points to a suffix of val (D). The condition for application is that the term val (Li)

has exactly one occurrence of the variable x1, val (Ri) has at most one occurrence of

the variable x1 and holep(val (D)|p) has q as prefix, where q is the position of x1 in

val (Li).

Let σ1 := {x2 �→ A2, . . . , xm �→ Am}, where σ := {x1 �→ A1, . . . , xm �→ Am}.
We start with G′∪GR . Then, we remove the instantiation of x1 and turn Li into a context

non-terminal, by adding x1 → [·]. Construct productions as follows: Let D1, D2, D3 be

fresh context non-terminals with productions, such that val (D) = val (D1D2), val (D2) =

val (LiD3), and p represents the hole path of val (D1).

Then, the exceptional rewriting can take place:

If x1 is not contained in val (Ri), then the rewriting step turns D into a term non-

terminal with production D → D1[Ri], and also adjusts the grammar bottom-up by

turning several context non-terminals into term non-terminals.

If x1 is contained in val (Ri), then the rewriting step is to replace the production for D

by D → D1D2 and the production D2 → LiD3 by D2 → RiD3. �

Now, we estimate the size increase of the STG that is used to represent tn, which is the

final term after n rewrite steps, i.e. t →R . . . →R tn. We distinguish between the STG GR

for the rewrite rules and the STG Gn for compression of tn. Repeating the term rewriting

step is done by using a fresh copy of GR , the STG compressing the TRS R.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1444

In order to complement the estimations in Lemma 2.7, we have to check the size

increase by constructing the substitution, and the estimations for the size increase by the

rewrite step itself.

Lemma 6.2. A rewrite step according to Algorithm 6.1 where the submatching itself is

seen as a free oracle, i.e. is not counted, satisfies the following estimations:

Vdepth(G′, V ′) � Vdepth(G,V) + log(depth(G)) + depth(GR),

|V ′| � |V |+ M,

|G′| � |G|+ Mdepth(G) + M + depth(G)2 + |GR |,

where M = maxi(|FV (ri, li)|).

Proof. Let Li → Ri be the selected rewrite rule.

The contributions are: (i) For every variable x ∈ FV (val (Li)): its substitution construction,

i.e. constructing |FV (val (Li))| times a subterm of t, and then making an instantiation. (ii)

Rearranging G such that the position of the matched subterm val (σ(Li)) is explicit and

(iii) modifying the productions of G by replacing Li by Ri.

The construction (i) is independent from (ii) and (iii). Constructing the substitution

consists in |FV (val (Li))| times independently constructing a subterm of t, which increases

the size by M ·depth(G), the Vdepth only by log(depth(G)) (since we can take the maximum)

and by instantiating, which adds M productions, adds M variables to V , but does not

change the Vdepth . The replacement of Li by Ri may increase the depth and Vdepth

at most by depth(GR). Rearranging requires to construct a prefix-context of a term and

changing a production. This may add depth(G)2 non-terminals for the prefix and the

non-terminal Li plus its definition, which means to add |R| to the size.

Lemma 6.3. Let there be a sequence Gi, i = 0, . . . , n of STGs generated by extension

or transformation and sets Vi, i = 0, . . . , n of instantiated non-terminals, such that the

following holds:

Vdepth(Gi, Vi) � Vdepth(Gi−1, Vi−1) + log(depth(Gi−1)) + r,

|Vi| � |V0|+ r · i,
|Gi| � |Gi−1|+ (depth(Gi−1) + r)2,

where we assume |Vi| < r and 2 � r.

Then, |Gn| is bounded by O
(
r2n7

(
|G0|2 + |G0|(log n + 2r) + (log n + 2r)2

))
.

Proof. From Lemma 2.8, we derive depth(Gi) � i · 2r · Vdepth(Gi, Vi). Therefore, the

recurrence for Vdepth(Gi, Vi) may be replaced by

Vdepth(Gi+1, Vi+1) � Vdepth(Gi, Vi) + log Vdepth(Gi, Vi) + log i + 2r. (6.1)

Let n be the final index i.

A first bound for these recurrence can be computed relaxing the inequality as

Vdepth(Gi+1, Vi+1) � 2Vdepth(Gi, Vi) + log i + 2r that has as solution Vdepth(Gi, Vi) �

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1445

2i
(
Vdepth(G0, V0) + n(log n + 2r)

)
. Replacing this approximate solution in (6.1) results in

Vdepth(Gi+1, Vi+1) � Vdepth(Gi, Vi) + i · log
(
Vdepth(G0, V0) + n(log n + 2r)

)

+n(log n + 2r).

� Vdepth(Gi, Vi) + i · a1 + a2,

where a1 = log Vdepth(G0, V0) and a2 = 2n(log n + 2r).

(6.2)

Now, we get the approximate solution

Vdepth(Gi, Vi) � Vdepth(G0, V0) + a1O(i2) + a2i.

Therefore,

depth(Gi) � i · 2r ·
(
Vdepth(G0, V0) + a1O(i2) + a2i

)

� 2r ·
(
i · Vdepth(G0, V0) + a1O(i3) + a2 · i2

)

� 2r ·
(
|G0| ·O(i3) + a2i

2
)
.

Replacing this in the recursion for |Gi|, we get

|Gi+1| � |Gi|+ (depth(Gi) + r)2

� |Gi|+ r2(|G0| ·O(i3) + 2a2i
2)2.

Thus, |Gn| is of order r2
(
O(|G0|2n7) + O(|G0|a2n

6) + O(a2
2n

5)
)
.

Expanding a2 = n(log n + 2r), we obtain the following:

|Gn| is bounded by O
(
r2n7

(
|G0|2 + |G0|(log n + 2r) + (log n + 2r)2

))
.

Theorem 6.4. Let R be a TRS compressed with GR and t be a term compressed with

an STG G. Then, a sequence of n term rewriting steps according to Algorithm 6.1,

where submatching is a non-deterministic oracle that is not counted, can be per-

formed in polynomial time. The size increase of the STG by n term rewriting steps

is O
(
|GR |2n7

(
|G|2 + |G|(log n + 2|GR |) + (log n + |GR |)2

))
.

Proof. This follows by combining Lemmas 6.2 and 6.3 using the following estimations:

r := |GR |, depth(G) � r, |Vi| � r, M � r and a2 + ar + 2r � (a + r)2 for 1 � a and 1 � r,

then it is sufficient to solve the recurrent inequations under the assumption |Vi| � r:

Vdepth(Gi, Vi) � Vdepth(Gi−1, Vi−1) + (log(depth(Gi−1)) + r,

|Vi| � |V0|+ r · i,
|Gi| � |Gi−1|+ (depth(Gi−1) + r)2.

The time estimation also holds, since every construction step can be performed in

polynomial time and the total size of the final grammar is polynomial.

Looking at the dependency on the different input sizes, and assuming the others are

constant, correspondingly. We have O(n7 log2(n)) if only the dependency on the number

n of rewrites is of interest; O(|G0|2) is the dependency on the size of the grammar of the

reduced term; and O(|GR |4) is the dependency on the size of the rewrite system.

Note that the degree of the polynomial for the estimation of the worst case running

time is worse than the space bound. The term rewriting sequence has to be constructed

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1446

(+1) and Plandowski equality check has to be used in every construction step, which

contributes a factor of 3 in the exponent. But, note that there are faster deterministic tests

(Jez 2012; Lifshits 2007) and even faster randomized equality checks (Berman et al. 2002;

Gasieniec et al. 1996b; Schmidt-Schauß and Schnitger 2012).

6.1. Combinations of the results

We combine the results on submatching and sequences of rewriting. The understanding is

that Algorithm 6.1 is used by selecting some of the rewrite rules of the given TRS R and

some resulting submatch produced by the appropriate algorithm given above. We obtain

the following combination results.

Corollary 6.5. Let R be an STG-compressed TRS and t be an STG-compressed term.

Then, a sequence of n term rewriting steps using submatching Algorithm 5.1 can be

performed in non-deterministic polynomial time.

Proof. This follows from Theorems 6.4 and 5.2.

Corollary 6.6. Let R be a left-linear STG-compressed TRS and t be an STG-compressed

term. Then, a sequence of n term rewriting steps using the submatching Algorithms 3.13

and 3.14 can be performed in polynomial time.

Proof. This follows from Theorems 6.4 and 3.17.

Corollary 6.7. Let R be a TRS with DAG-compressed left-hand sides and STG-compressed

right-hand sides and let t be an STG-compressed term. Then, a sequence of n term rewriting

steps using the submatching algorithm 4.6 can be performed in polynomial time in n.

Proof. This follows from Theorems 6.4 and 4.8.

Corollary 6.8. Let R be an STG-compressed TRS and t be an STG-compressed term,

such that every left-hand side of every rule in R has at most |G| occurrences of variables.

Then, a sequence of n term rewriting steps using the submatching algorithm 5.3 can be

performed in polynomial time in n.

Proof. This follows from Theorems 6.4 and 5.4.

6.2. Relation to results on runtime complexity

We exhibit a relation of our results to the results on polynomial runtime complexity

(Avanzini and Moser 2010); for further information, see also Lago and Martini (2009,

2012).

Let the function symbols be partitioned into defined symbols FD and constructor

symbols FC . Terms constructed only of symbols from FC and variables are called values.

Then, a TRS is called a constructor-TRS, if every rewrite rule is of the form f(s1, . . . , sn)→ r,

where f is a defined symbol and si are values; the terms f(s1, . . . , sn) are also called basic

terms. Given a constructor-TRS R, its runtime complexity rcR(n) is defined as the maximum

length of an R-reduction sequence for all basic terms t with |t| � n. Confluence of a TRS

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1447

R is defined as usual: for all t1, t2, t3 with t2 R
∗←− t1

∗−→R t3 there is a term t4 with

t2
∗−→R t4 R

∗←− t3. A term t0 is a normal-form of a term t w.r.t. a TRS R if t
∗−→R t0, and t0

is R-irreducible. Note that if a TRS R is confluent, then R-normal-forms are unique.

Since rewriting using DAG-compression is never forced to introduce contexts, and thus

all terms in the sequence remain DAG-compressed, we obtain the following corollary,

which re-establishes a result in Avanzini and Moser (2010); however, in a slightly more

general form.

Corollary 6.9. Let R be a constructor TRS with polynomial runtime complexity. Then,

a sequence of n term rewriting steps, using DAG-compression, can be performed in

polynomial time in n. In particular, if the TRS is confluent in addition, the computation

of (compressed) normal-forms can be done in polynomial time.

Proof. Given a basic term t with |t| � n, the number of single-position rewrite steps

w.r.t. R is also polynomial. Hence, the corollary follows from Theorems 6.4 and 4.8 and

Corollary 6.7.

6.3. Possible extensions

Main Theorem 6.4 tells us that the term rewriting algorithm on STG-compressed terms

will produce a polynomial-sized STG depending on the number of steps. The following

example will show that even for well-behaved equational rules an exponential number of

rewrites may be necessary to obtain an irreducible term. The example also shows that an

extension of STGs to linear SLCF tree grammars as in Busatto et al. (2008); Lohrey et al.

(2009), i.e. tree grammars using contexts with multiple holes, where every hole occurs

once, does not help. Let the TRS be f(x)→ g(x, x), and let the term f2n (a) be represented

as C1 → f(·), C2 = C1C1, C3 = C2C2, . . . Cn+1 = CnCn, T → Cn+1(x). A term rewriting

step on T using f(x)→ g(x, x) that is applied to C1 would produce C1 := g(., .), which is

syntactically not permitted, since there would be two holes. A complete rewriting sequence

of f2n (a) would produce a binary tree t′ of depth 2n with 22n leaves. Since an STG G can

produce only terms of size 2|G|, the STG for t′ would be of exponential size. The result

of the rewrite could be easily expressed in a non-linear SLCF tree grammar (Busatto

et al. 2008); however, the complexity of the equality check is currently only known to be

in PSPACE, and also the complexity of all other operations like matching, extensions,

rewriting etc. has not been investigated yet.

For compressed ground terms and DAG-compressed reduced ground rewrite rules

(Schmidt-Schauß et al. 2011) shows that normal-forms can be computed in polynomial

time, although there may be an exponential number of rewrites for the uncompressed

term.

A further topic to be investigated are rewriting strategies like innermost-leftmost or

leftmost-outermost asf. in connection with STG-compression.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1448

7. Conclusion and future research

We have shown that finding an instance of a linear term s as a subterm of t under

STG-grammar compression can be done in polynomial time in the size of the STG. We

have also shown that the general case of a non-linear term s is in NP, and a representation

of all submatches can be computed in time O(nO(|FVmult(s)|)). As an application to rewriting,

we have shown that a sequence of n (single-position and parallel) rewrites of a compressed

term can be computed in polynomial time in n. We plan an implementation of a selection

of the matching algorithms to assess their performance in practice.

A remaining open question is whether the general compressed submatching, in particular

the case of a non-linear pattern term s with any number of variable occurrences, can

be solved in polynomial time or not, even in the case of partial words (Schmidt-Schauß

2012).

Further research is to optimize the submatchings and the rewriting algorithms and

to investigate rewriting strategies under compression. Also, the exact complexity of the

different cases of submatching may be a subject of future research.

Acknowledgements

I thank David Sabel for discussions and helpful comments. I thank the referees for

their remarks which improved the paper. I also thank Rachid Echahed for his help and

encouragements.

References

Avanzini, M. and Moser, G. (2010). Closing the gap between runtime complexity and polytime

computability. In: Lynch, C. (ed.) Proceedings of the 21st International Conference on Rewriting

Techniques and Applications (RTA ’10), Leibnitz International Proceedings in Informatics, vol. 6,

Schloss Dagstuhl, Germany 33–48.

Baader, F. and Nipkow, T. (1998). Term Rewriting and All That, Cambridge University Press, New

York, NY, USA.

Berman, P., Karpinski, M., Larmore, L.L., Plandowski, W. and Rytter, W. (2002). On the complexity

of pattern matching for highly compressed two-dimensional texts. Journal of Computer and System

Sciences 65 (2) 332–350.

Busatto, G., Lohrey, M. and Maneth, S. (2005). Efficient memory representation of XML documents.

In: Proceedings of the International Workshop on Database Programming Languages (DBPL 2005),

Lecture Notes in Computer Science, vol. 3774, Springer 199–216.

Busatto, G., Lohrey, M. and Maneth, S. (2008). Efficient memory representation of XML document

trees. Information Systems 33 (4–5) 456–474.

Comon, H. (1995). On unification of terms with integer exponents. Mathematical Systems Theory,

28 (1) 67–883.

Comon, H., Dauchet, M., Gilleron, R., Jacquemard, F., Lugiez, D., Tison, S. and Tommasi,

M. (1997). Tree automata techniques and applications. release October 2002. Available at

http://tata.gforge.inria.fr/

Gascón, A., Godoy, G. and Schmidt-Schauß, M. (2008). Context matching for compressed terms.

In: Proceedings of the 23rd Annual IEEE Symposium on Logic in Computer Science (LICS 2008),

IEEE Computer Society 93–102.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

Polynomial rewriting of compressed terms 1449

Gascón, A., Godoy, G. and Schmidt-Schauß, M. (2011). Unification and matching on compressed

terms. ACM Transactions on Computational Logic 12 (4) 26:1–26:37.

Gasieniec, L., Karpinski, M., Plandowski, W. and Rytter, W. (1996a). Efficient algorithms for

Lempel–Ziv encoding (extended abstract). In: Karlsson, R. G. and Lingas, A. (eds.) Proceedings

of the SWAT, Lecture Notes in Computer Science, vol. 1097, Springer 392–403.

Gasieniec, L., Karpinski, M., Plandowski, W. and Rytter, W. (1996b). Randomized efficient

algorithms for compressed strings: The finger-print approach (extended abstract). In: Proceedings

of the 7th Annual Symposium on Combinatorial Pattern Matching (CPM’ 96), Lecture Notes in

Computer Science, vol. 1075, Springer 39–49.

Hermann, M. and Galbavý, R. (1997). Unification of infinite sets of terms schematized by primal

grammars. Theoretical Computer Science 176 (1–2) 111–158.

Jez, A. (2012). Faster fully compressed pattern matching by recompression. In: Proceedings of the

International Colloquium on Automata, Languages, and Programming (ICALP), Part I, Lecture

Notes in Computer Science, vol. 7391, Springer 533–544.

Karpinski, M., Rytter, W. and Shinohara, A. (1995). Pattern-matching for strings with short

description. In: Proceedings of the Annual Symposium on Combinatorial Pattern Matching (CPM

’95), Lecture Notes in Computer Science, vol. 937, Springer-Verlag 205–214.

Lago, U.D. and Martini, S. (2009). Derivational complexity is an invariant cost model. In:

Proceedings of the FOPARA, Lecture Notes in Computer Science, vol. 6324, Springer 100–113.

Lago, U.D. and Martini, S. (2012). On constructor rewrite systems and the lambda calculus. Logical

Methods in Computer Science 8 (3:12) 1–27.

Levy, J., Schmidt-Schauß, M. and Villaret, M. (2006). Bounded second-order unification is NP-

complete. In: Proceedings of the 17th International Conference on Term Rewriting and Applications

(RTA), Lecture Notes in Computer Science, vol. 4098, Springer 400–414.

Levy, J., Schmidt-Schauß, M. and Villaret, M. (2008). The complexity of monadic second-order

unification. SIAM Journal of Computing 38 (3) 1113–1140.

Levy, J., Schmidt-Schauß, M. and Villaret, M. (2011). On the complexity of bounded second-order

unification and stratified context unification. Logic Journal of the IGPL 19 (6) 763–789.

Lifshits, Y. (2007). Processing compressed texts: A tractability border. In: Proceedings of the Annual

Symposium on Combinatorial Pattern Matching (CPM 2007), Lecture Notes in Computer Science,

vol. 4580, Springer, 228–240.

Lohrey, M. (2012). Algorithmics on SLP-compressed strings. A survey. Groups Complexity Cryptology

4 (2) 241–299.

Lohrey, M. and Maneth, S. (2005). The complexity of tree automata and XPath on grammar-

compressed trees. In: Proceedings of the 10th International Conference on Implementation and

Application of Automata (CIAA’05) 225–237.

Lohrey, M., Maneth, S. and Mennicke, R. (2011). Tree structure compression with RePair. In:

2011 Data Compression Conference (DCC 2011), March 29–31, 2011, Snowbird, UT, USA, IEEE

Computer Society 2011, 353–362.

Lohrey, M., Maneth, S. and Schmidt-Schauß, M. (2009). Parameter reduction in grammar-

compressed trees. In: Proceedings of the 12th International Conference on Foundations of Software

Science and Computational Structures (FoSSaCS), Lecture Notes in Computer Science, vol. 5504,

Springer 212–226.

Lohrey, M., Maneth, S. and Schmidt-Schauß, M. (2012). Parameter reduction and automata

evaluation for grammar-compressed trees. Journal of Computer and System Sciences 78 (5) 1651–

1669.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

M. Schmidt-Schauß 1450

Plandowski, W. (1994). Testing equivalence of morphisms in context-free languages. In: Proceedings

of the Annual European Symposium on Algorithms (ESA ’94), Lecture Notes in Computer Science,

vol. 855, Springer 460–470.

Plandowski, W. and Rytter, W. (1999). Complexity of language recognition problems for compressed

words. In: Jewels are Forever, Springer 262–272.

Rytter, W. (2004). Grammar Compression, LZ-encodings, and string algorithms with implicit input.

In Dı́az, J., et al. (eds.), Proceedings of the ICALP 2004, Lecture Notes in Computer Science, vol.

3142, Springer-Verlag 15–27.

Salzer, G. (1992). The unification of infinite sets of terms and its applications. In: Proceedings of

the LPAR ’92, Lecture Notes in Computer Science, vol. 624, 409–420.

Schmidt-Schauß, M. (2005). Polynomial equality testing for terms with shared substructures. Frank

report 21, Institut für Informatik. FB Informatik und Mathematik. Goethe-Universität Frankfurt.

Schmidt-Schauß, M. (2012). Matching of compressed patterns with character-variables. In: Tiwari,

A., (ed.) Proceedings of the 23rd International Conference on Rewriting Techniques and Applications

(RTA ’12), Leibniz International Proceedings in Informatics, vol. 624, Schloss Dagstuhl 272–287.

Schmidt-Schauß, M., Sabel, D. and Anis, A. (2011). Congruence closure of compressed terms in

polynomial time. In: Proceedings of the FroCos, Lecture Notes in Computer, vol. 624, Springer

227–242.

Schmidt-Schauß, M. and Schnitger, G. (2012). Fast equality test for straight-line compressed strings.

Information Processing Letters 112 (8–9) 341–345.

Ziv, J. and Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE

Transactions on Information Theory 23 (3) 337–343.

https://doi.org/10.1017/S0960129518000208 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129518000208

