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SUMMARY
The estimation of the 2D relative motion of an indoor robot
using monocular vision is presented. The camera calibration
is known, and its motion is limited to be planar. These
constraints are included in the robust regression of epipolar
geometry from point matches. Motion is derived from the
epipolar geometry. A sequence of 54 real images is used to
test the algorithm. Accurate motion, both in rotation and
translation angles of 0.4 and 1.7 deg, is successfully
derived.

KEYWORDS: Monocular vision; Robust epipolar geometry;
Indoor robot; Accurate motion.

I. INTRODUCTION
The goal of this work is to compute the motion of an indoor
mobile robot using monocular vision. To achieve it, some of
the recent results in geometric computer vision research
have been used. Our aim is to adapt the general computer
vision algorithms to solve this particular task in the robotics
field.

To compute the camera motion between two images, a
two stages approach can be applied: First, a set of point
matches between both images is computed. Then, the
camera motion is computed from those matches. The
previous strategy can be traced back to the origins of
photogrammetry, and has been successfully applied along
the last century by manually computing the matches.1 The
lack of robustness against spurious matches of the previous
approach is well known. This lack of robustness impeded
the availability of a reliable automatically computed motion
using only images.

One of the key factors for the lack of reliability of the
motion derivation comes from the lack of reliability of the
automatic point matching computation. In fact, the robust
algorithms proposed recently give as a joint result both
reliable matchings and motion computation.2,3

The theoretical support to produce nearly spurious-free
matches comes from robust statistics. A compendium of
these techniques can be found in references [4,5]. The basic
idea is to fit a model with the matches, considering as
outliers those matches inconsistent with the fitted model.
Robust statistics techniques have been used in perception
for fitting models6 and for registering range images.7,8 It is

also a valid technique for primitive fitting in contour
detection.

To apply a robust method, it is necessary to have a model
to fit. Computer vision research has done a great progress in
producing geometrically based models to encode the
constraints between different views observing the same 3D
rigid scene. The applied models are very general. On one
hand, they are uncalibrated, that is, they do not need
knowledge of camera calibration. On the other hand, the
camera motion is also unknown. Despite its generality, good
experimental performance with real images is achieved. For
two images,2 the uncalibrated epipolar geometry, repre-
sented by the fundamental matrix,9 encodes the rigidity
between two views. Torr3 uses uncalibrated three view
relations by means of the trifocal tensor. It encodes the
rigidity among three views.10,11

The problem of overparameterisation is well known. In
fact, in reference [12] the importance of model selection is
stressed in order to successfully automatically compute
matches and motion from image sequences. For an indoor
mobile robot with a fixed camera, the number of parameters
of the motion model can be reduced by imposing the
knowledge of planar motion and known camera calibration.
The parameter reduction improves the results both in
performance and in computing time.

The work presented in this paper is a robust regression of
the epipolar geometry between two images taken with a
calibrated camera on board a mobile robot. Motion is
computed from epipolar geometry. Epipolar geometry is
computed from point matches. In order to reduce the
number of model parameters as much as possible, all the
available knowledge has been considered. So, the camera
calibration and the planarity of the motion were included in
the model. In order to validate it experimentally, the
proposed algorithm has been applied to a 54 image
sequence and the results are compared with respect to the
ground true motion. The mean error in the computed
rotation is 0.4 deg. and for the computed translation
direction it is 1.7 deg.

The epipolar geometry is only meaningful when the
camera translation between two views is non-zero (not pure
rotation). Otherwise, it is not well defined. In the case of a
pure rotating camera, a homography model between the two
views can be fitted. It is also shown how, when motion is
close to a pure rotation, the translation is unreliably
computed. However, in such a case, a homography can be
fitted to the matches. This problem of model selection has
been addressed generally in reference [13]. In this paper we* Corresponding author.
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have focused on determining the models to fit, including the
planarity and the calibration, which reduces the number of
independent parameters. The proposed models have been
tested over a real image sequence.

Section II states the problem to be addressed. Next,
Section II is devoted to presenting the relation between two
images of the same 3D scene, when the camera motion is
planar and the camera calibration is known. Section IV, for
a complete review, includes a summary of robust regression;
it also details how to apply the robust regression to fit the
two view relations. Next Section V details with how to
compute the motion from the two view relations. Section VI
is devoted to the experimental verification with real images
of the proposed algorithm. Finally, Sections VII and VIII
present the conclusions and the discussion.

II. PROBLEM STATEMENT
Given two locations for a mobile robot, their relative motion
next can be computed following the following procedure.
First, an image is taken at each position. Second, putative
point matches are selected by correlation techniques
between the images. Third, they are used to perform a robust
regression of the fundamental matrix. The intrinsic parame-
ters of the camera and the planarity of motion are used to
further constrain the epipolar geometry. Finally, both
rotation and the direction of translation are estimated from
fundamental parameters.

The previous algorithm was applied to every single
movement described in a 54 step evaluation trajectory (see
Section VI-A). The automatically computed motion was
compared with the ground true one available for the
sequence.

Some modifications have been applied with respect to the
classical 3D uncalibrated algorithm, in order to improve its
performance and computing time:

(i) Epipolar geometry is computed after correcting the
radial distortion of the lens.14

(ii) Planar motion and camera calibration are included in
the model, reducing the parameters to adjust.

(iii) Neither back projection nor optimal motion and
structure estimation are computed.

As additional constraints are included in the model, the
number of independent parameters to compute epipolar
geometry is reduced to two. This also reduces the number of
subsamples required for robust regression, speeding up the
process and improving its reliability.

III. TWO VIEW RELATIONS
This section is devoted to presenting the constraints that
relate the point matches between two views. First, the
relations for planar motion and known calibration are
presented. Two cases are detailed: general planar motion
and pure planar rotation. The section ends by detailing how
the constraints between images can be computed from
image matches.

A. Epipolar geometry for a calibrated camera with planar
motion
Given two images acquired from different viewpoints, the
epipolar constraint is the relation between their points in
terms of only geometric criteria. It forces optical centres,
spatial point and its projections on the images to be on the
same ‘epipolar plane’ (see Figure 1). In mathematical terms
both projections, x and x9, are related with the essential
matrix E by

xT Ex9 = 0

where x = (xi, yi, 1)T and x9 = (x9i , y9i , 1)T are the homoge-
neous image coordinates in the first and the second cameras.
These coordinates should be referred to the normalised
retina.15

As the camera is supposed to be moving on the horizontal
plane (see Figure 2), the relative rotation and translation in
the first camera reference are:

R =

cos(w)

0

2sin(w)

0

1

0

sin(w)

0

cos(w)

and
t =

sin(u )

0

cos(u )

where w is the rotation angle, and u is the direction of
translation, shown in Figure 2. As only monocular image
matches are used as input data, translation can be recovered
only up to a scale factor. Because of that, only the
translation direction is considered.

The essential matrix E is defined as the following cross-
product: E = t3 R.16 When only planar motion is considered,
E can be defined as follows:

E =

0

cos(w2u )

0

2cos(u )

0

sin(u )

0

sin(w2u )

0

Normalised coordinates x are related with pixel coordinates
m by means of the calibration matrix A: m = A x. It is
defined from intrinsic parameters as:

Fig. 1. Epipolar geometry constraint.
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A =

kx

0
0

s
ky

0

x0

y0

1

where:

• kx and ky measure the different pixel sizes in X and Y
directions, scaled by focal length.

• x0 and y0 give the position of the optical centre of the
image, which usually will not be its middle point.

• s measures the X-Y axis angle. In the following, it is
assumed to be null.

The epipolar constraint can be also expressed in pixel
coordinates by means of the fundamental matrix F9 as:

mT Fm9 = 0

Then:

F = A2T EA21

F can be expressed from calibration and motion parameters
as:

F =
1

kx ky

0
C(w2u)

2y0C(w2u)

2Cu

0
kxSu + x0Cu

y0Cu

kxS(w2u) 2x0C(w2u)

x0y0(C(w2u) 2Cu)2kxy0(Sw2u + Su)

(1)

where:

Cu = cos(u)
Su = sin(u)

C(w2u) = cos(w2u)
S(w2u) = sin(w2u)

Planar motion will be derived from this fundamental matrix
parameterisation.

B. Epipolar geometry from point matches
As seen in Section III-A, the fundamental matrix F is
defined from intrinsic camera calibration (matrix A) and
relative motion (matrices R and t):

F = A2T (t3 R)A21

Motion can be computed from A and F. Matrix A is derived
from camera parameters, and the fundamental matrix can be
computed from matches, using

mT Fm9 = 0

if m = (u, y, 1)T, and m9 = (u9, y9, 1)T, then the previous
equation can be rearranged as

uu9f11 + uy9f12 + uf13 + yu9f21 + yy9f22

+ y f23 + u9f31 + y9f32 + f33 = 0 (2)

Given the projections of different 3D points on every
camera (m and m9), they are replaced in equation (2), and
fundamental matrix parameters are computed. Reference
[17] presents how to compute the fundamental matrix from
point matches in the general 3D motion with uncalibrated
cameras.

The next sections cover how to include planar motion and
camera calibration constraints in the derivation of matrix F
from point matches.

B.1 Uncalibrated camera: Linear 6-points algorithm.
For an uncalibrated camera with planar motion, each point
match imposes the following constraint:

f12

f13

f21

[ uy9 u yu9 y u9 y9 1 ] f23 = 0

f31

f32

f33

f11 and f22 have been removed from the unknowns vector as
they are null according to equation (1).

As the fundamental matrix is defined up to a scale factor,
only six equations (and therefore, six matches) are required
to find a linear solution for the uncalibrated planar motion.

The equations to determine F can be solved using
singular value decomposition of coefficient matrix M,18 as:

M = USV T

Fundamental matrix parameterisation is the singular vector
associated to the minor singular value of M.

According to reference [19], rank-two constraints should
be imposed in the final solution. So, if S = diag(s1, s2, s3),
and s1 > s2 > s3, matrix M is projected on M9, where

Fig. 2. Motion scheme
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M9 = US9V T

being S9 = diag(s1, s2, 0). This linear estimation can be
further refined using nonlinear methods.

B.2 Calibrated camera: Linear 3-points algorithm. As
our aim is to derive Euclidean motion, it is advantageous to
use camera calibration not only to derive motion, but also to
compute epipolar geometry parameters (see equation (1)).
Then, as only motion parameters are undefined, equation (2)
becomes:

1
kxky

FCu Su Cw2u Sw2uG
x0(y92y0)2u(y92y0)

kx(y92y0)
u9(y 2y0)2x0(y 2y0)

kx(y2y0)

T

= 0

(3)

Like in Section III-B.1, it can be solved by singular value
decomposition of the coefficient matrix, being [Cu, Su, Cw2u,
Sw2u] the unknown vector.

The angles that define motion can be derived by means of
a four quadrant arctan. Anyway, as the elements of the
unknown vector are not independent from each other, non-
linear optimisation could be applied to recover more
accurate estimations. Section III-B.3, next, covers how to
deal with it.

B.3 Calibrated camera: Non-linear 2-points algorithm.
As shown in Section III-B.2, the epipolar constraint can be
reduced to a nonlinear equation f (u, w) = 0. This can be
solved by Newton’s iterative method. Classical Taylor’s
expansion was used to approximate equation (3) to a linear
function. Then,

f (u, w) ≈ f (u0, w0) + J f (u0, w0) F u2u0

w2w0
G

f (u0, w0) can be computed from equation (3), and the
Jacobian, J f (u0, w0), can be written as:

J f (u, w) =
1

kx ky
F2Su

0
Cu

0
Sw2u

2Sw2u

2Cw2u

Cw2u

G
x0(y92y0)2u(y92y0)

kx(y92y0)
u2(y 2y0)2x0(y 2y0)

kx(y2y0)

T

As the epipolar constraint is defined only up to a scale
factor, the term 1

kxky
can be disregarded in both f(u, w) and

J f (u, w) equations.
Experimental results, (see Section VI) show convergence

taking the point u = 0, w = 0 as initial seed. Since only two
unknowns are determined, two is the minimum number of
matches required to compute any solution from scratch.

C. Homography for a calibrated camera with plane
rotation motion
When the camera motion is a pure rotation, epipolar
geometry is not defined. In this case, an even more
restrictive point-to-point geometric constraint, a homo-
graphy, should be used.

If relative motion is given only by a rotation of the
camera (see Figure 3), image coordinates in the first and
second images are related by:

x = Rx9

And when rotation is constrained to be on the X-Z axis
plane, they are

x
y
1

=

cos(w)

0

2sin(w)

0

1

0

sin(w)

0

cos(w)

x9

y9

1

As the epipolar constraint, a homography can also relate
pixels coordinates. If A is the camera intrinsic parameter
matrix and x are the normalised coordinates, then pixel
coordinates (m) are: m = Ax. Homography results in:

m = (ARw A21)m9 = Hm9

And matrix H can be parameterised as:

H =
1

kx

KxCw 2x0Sw

2y0Sw

2Sw

0

kx

0

Sw(k 2
x 2x 2

0)
kx y0(Cw 21) + x0 y0Sw

kxCw + x0Sw

(4)

where Cw = cos(w) and Sw = sin(w).

D. Homography from point matches
The matrix H that defines a homography can be computed,
either from calibration (i.e. from matrixes A and R) or from
point matches

If rotation is constrained to be planar, and camera
parameters are known, H, depends only on one parameter,
w. It can be recovered from one point match, solving the
following nonlinear equation:

Fig. 3. Rotation homography scheme
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Fkx(u2u9)
kx( y2y0)

x0(u + u9)2uu9 + x2
0 2k2

x

x0y + y0u92yu92x0y0
GFCw

Sw

G
2F 0

kx (y92y0)
G=F0

0G
(5)

This equation (h(w) = 0) is approximated to a linear
function, h(w) ≈ h(w0) + Jh(w0)(w2w0), where h(w0) is given
by equation (5) and the Jacobian matrix, Jh(w0), is

Jh(w) =Fkx(u2u9)
kx(y 2 y0)

x0(u + u9)2uu9 + x2
0 2k2

x

x0y + y0u92yu92x0y0
GF2Sw

Cw
G

Every match provides two equations, so an initial seed can
be computed linearly (using only one match) by deriving Cw

and Sw from equation (5).

IV. TWO VIEW RELATIONS ROBUST
REGRESSION
Section III-B showed how to compute epipolar geometry
parameters from point matches. In practice, matches
obtained by correlation techniques are unreliable, and
include some spurious rates. Reference [4] shows how just
one of them can completely degrade classical least squares
techniques. Thus, robust regression must be used in order to
compute trustworthy solutions.

A. Robust regression and outlier detection using LMedS
To complete the study, a summary of the Least Median of
Squares robust regression (LMedS), algorithm is included in
the paper, further details can be found in reference [4], from
where this summary has been obtained.

Given n points, LMedS robust regression, solves the non-
linear minimisation problem:

min {median i (r 2
i )}

where {ri} i = 1 . . . n are the residual of the n points used to
fit the model.

There is no analytical solution for this problem, and it
must be solved searching in the space of all possible results.
An exhaustive search requires computing all the possible fits
using p matches; p is the minimum number of matches
required to compute a solution. So the number of fits to
compute would be:

Cp
n =

(n)!
(n2p)!

where n is the total number of point putative matches. For
instance, if n = 70, and p = 2, then near 5000 estimations
would be required. If p=8, they would be 3.83 1014.

Very often this is an unaffordable problem, and only
random subsets of data can be analysed. Their number is
given by:

m =
log(12P)

log(12 (12«) p)
(6)

where P is the desired probability of finding one subsample
without any spurious match, « is the estimated fraction of
outliers and p is the number of points used to compute any
solution.

For example, if P = 90%, and « is supposed to be about
the 50%, using p = 8 points, the number of required random
subsamples is near 600, whereas if only two are required
(p = 2) just 9 are enough.

The m different solutions are compared, and the one that
minimises the median of squared residuals is selected. As
the median does not include the 50% of greater errors, it is
not spoiled by outliers, and this solution copes with bad
locations and false matches.

When this estimation is selected, every putative match
can be classified as outlier or inlier, in function of its
residual with respect to the selected model.

H If r 2
i ≤ (1.96(1.4826[1 + 5

(n2p) ]ÏM ))2 point i is classified as match.

Else, it is classified as outlier. (7)

where M is the computed minimal median, n is the total
number of point putative matches and p is the minimum
number of point matches required to compute any solution.

Finally, to derive an efficient solution in presence of
noise, all the inliers are used to compute a least squares
regression.

B. Algorithm for epipolar geometry robust regression
Given a set of putative matches between two images, the
final LMedS algorithm for computing the fundamental
matrix when motion is planar and camera parameters are
known, results in:

1. Derive the number of m random samples to evaluate,
according to equation (6).

2. Select m random samples, with two matches each, to
compute m fundamental matrixes (Sec. III-B.3). Use the
initial location as an initial seed.

3. Compute the median of the squared residuals for every
solution, using the whole set of n matches. Given a
fundamental matrix F and a point match in pixel
coordinates: {m, m9}, its corresponding residual is:

r2 =S mFm9

(Fm9)2
1 +(Fm9)2

2
D2

+S m9FTm
FTm)2

1 +(FTm)2
2
D2

4. Select the fundamental matrix that minimises these
medians of squared residuals.

5. Classify matches as inliers or outliers according to
equation (7).

6. Use inliers to compute the final fundamental matrix
(Sec. III-B.3), using the linear solution (Sec. III-B.2) as
an initial seed.
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C. Algorithm for rotation homography robust regression
Given a set of putative matches between two images, the
final LMedS algorithm for computing the rotation homo-
graphy when motion is planar and camera parameters are
known, results in:

1. Compute the number of solutions m to evaluate (6).
2. Derive m rotation homographies from m different

randomly selected points (Sec. III-D).
3. Compute the median of the squared residuals (5) for

every homography, using the whole set of n matches.
Given a homography matrix H and a point match given
in pixel coordinates: {m, m9}, the corresponding resid-
ual is:

r2 = i m2Hm9 i 2 + i m92H21m i 2

4. Choose that solution that minimises the median of
residuals.

5. Classify matches as outliers or inliers in function of (7).
6. Compute a final rotation homography with all the inliers

(Sec. III-D).

V. MOTION COMPUTATION
Section III-C shows that if the motion is a rotation, the
fundamental matrix cannot be defined uniquely. In these
cases, the derived direction of the motion will not be
reliable. Homographies can be used in order to identify
them.

So, given a set of putative matches, LMedS robust
regression is applied to compute one homography and
classify matches as inliers or outliers (see Section IV). After
that, the median residual of the inliers are derived according
to next expression:

1

2 Ï 1

ni
O
inliers

i m2Hm9 i2 + im92H21 m i2

When resulting residuals are small enough, and similar to
those acquired using epipolar geometry (the latter will
always be smaller, as more parameters are used to fit the
same data), motion can be approximated to be a pure
rotation. In this case, the azimuth direction would be
inaccurate, and translation should not be taken into
account.

The automatic model selection is not an easy matter.13 In
this work we only analyse the validity of the epipolar and
homography to model two different cases, but not how to
select the valid model automatically. Section VI shows how
this simplistic low residual criteria can be validated
experimentally with real data.

A. Full motion computation algorithm
The resulting algorithm to compute the motion would be the
following:

1. Given two images acquired with planar motion, derive
putative matches using correlation techniques. The
program “image-matching”, by Z. Zhang, was used to
complete it.

2. Use those matches (after correcting radial distortion) to
compute a robust regression of the fundamental matrix,
according to Section IV.

3. Derive motion parameters from equations (3) or (5),
according to the kind of selected motion.

4. Select motion direction according to the results of
structure reconstruction (Section V-B).

B. Structure reconstruction
Motion results have an ambiguity and can be either [Cu, Su,
Cw2u, Sw2u] or [2Cu, 2Su, 2Cw2u, 2Sw2u] depending on
wether the scene is in front of or behind the camera.

The ambiguity can be solved by checking if the scene
reconstruction19 is in front of the camera. 3D points in the
initial location reference can be computed as

If A =

aT
1

aT
2

aT
3

and B = ART

=

bT
1

bT
2

bT
3

⇒
aT

1 2uaT
3

aT
2 2yaT

3

bT
1 2u9bT

3

bT
2 2y9bT

3

X
Y
Z

=

0
0

2 (u9a3 2a1)
TRTt

2 (n9a3 2a2)
TRTt

The median depth (median i (Zi )) was used to classify the
motion, to ensure that the structure was also robust to
outliers.

C. Pure rotation computation algorithm
When the motion can be approximated by a rotation, the
algorithm to compute it is:

1. Find putative matches between initial and final images
by correlation techniques.

2. Correct their radial distortion, and use it to compute a
robust regression of a rotation homography, according to
Section IV.

3. Derive motion parameters from equation (5).

VI. EXPERIMENTAL RESULTS

A. Experiments description
In order to evaluate the studied algorithm against real data,
it is applied over the track shown in Figure 4. This is the 2D
motion of a mobile robot in an indoor environment,
described in reference [20]. Images, camera calibration and
ground-true motion are available. The images correspond to
a real, complex environment, with symmetries in the scene,
light reflection and moving objects, such as people.
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The camera, a B/W Pulnix TM-6EX, was fixed horizon-
tally by means of a spirit level. Its intrinsic parameters are
shown in Table I. The image size was 5123 512 pixels.

Analysing the sequence of images, we found that there
were 11 steps (17–19, 29–33, 37–38 and 40–44) in which

the observed scene was different in initial and final images.
In these cases, the overlap was less than 20%, and epipolar
geometry could not be computed. Therefore, they are not
considered in the next discussions; results are referred to the
other 42 cases.

Fig. 4. Robot ground-true trajectory

Table I. Camera intrinsic parameters.

NCX Number of columns in the camera CCD sensor 752.0

NFGX Number of columns in the frame grabber 512.0

dX Size in X direction of a CCD sel (mm) 0.0086

dY Size in Y direction of a CCD sel (mm) 0.0083

d 9X Size in X direction of a frame grabber pixel (mm) 0.0126313

d 9Y Size in Y direction of a frame grabber pixel (mm) 0.0083

CX X coordinate of the image centre (pixels) 257.476

CY Y coordinate of the image center (pixels) 252.378

sX Scale correction factor in X direction 1.03563

f Effective focal length (mm) 6.14495

k Radial distortion factor (mm22) 0.00374955
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Although it is clear that no computational improvement
can cope with this lack of matches, choosing appropriate
lenses and reducing the image acquisition time can limit its
effects.

In the following, the derived motion, robust matching
results, and computing time are analysed.

B. Motion results
Figure 5 shows the resulting errors between ground-true and
computed motion. As remarked in Section VI-A, steps

17–19, 29–33, 37–38 and 40–44 are not displayed or taken
into account.

If we focus on step 53, its putative matches are shown in
Figure 6. Due to the scene symmetry all of them are wrong,
and robust estimation cannot cope with this image pair.
Without considering the step 53–54, the mean rotation error
is 0.4 deg. and the median rotation error is 0.3 deg. (Figure
5).

Regarding the nearly pure rotations, on steps 1 and 4, a
homography could also have been fitted to the matches.

Fig. 5. Computed motion errors with respect to the ground true solution. Errors in grey correspond to pure rotations. Errors in steps
17–19, 29–33, 37–38 and 40–44 are not considered (Section VI-A)

Fig. 6. Initial putative matches in step 53–54
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Figure 7 shows the RMS residual for the robust fit of a
homography to all the image pairs. It is clear that only in
steps 1 and 4 have low residuals, below 2 or 3 pixels. In
these cases, the parameterisation of pure rotation consider-
ing planarity and camera calibration is valid.

The larger errors in the translation direction are:

• Steps 1 and 4, which correspond to nearly pure rotations,
so the computed translation directions are unreliable.

• Step 53 fails because initial putative matches contain a
100% of mismatches.

As steps 1 and 4 can be modelled as pure rotations, they are
excluded from the mean translation error computation; step
53 is also excluded. Then the mean azimuth error is 1.7 deg,
and the median azimuth error is 1.1 deg. So, the proposed
method provides a reliable way of computing accurate
motions, using only vision-based techniques.

C. Matching results
Another way of measuring the quality of this technique is
analysing the results of matching reliability.

As mentioned, the matching process is composed of two
steps. First, putative matches are selected by correlation.
Then, outliers are detected using robust statistics.

The total number of automatically computed matches is
denoted as AM. A correct match is one pair of image points
corresponding to the same 3D feature. Then, matching
errors can be classified as:

False negative (FN) Initial putative match which is correct,
but that is removed by robust regression. The number of
false negative errors in an image pair is denoted as (FN).

Coherent false positive (CFP) A pair of image points
corresponding to different 3D points that is not detected by

the robust regression because it is coherent with the ground-
true epipolar geometry. Therefore, it cannot be detected
(see, for example, matches 5 to 14 in Figure 10). The
number of coherent false positive matches in an image pair
is denoted as (CFP).

Incoherent false positive (IFP) A pair of image points
corresponding to different 3D points not detected by robust
regression but that is not coherent with the ground-true
epipolar geometry. Ideally, they should be detected as an
outlier. The number of incoherent false positive matches in
an image pair is denoted by (IFP).

False negative ones simply produce a lack of accuracy as
fewer points than possible are used to compute the epipolar
parameters. Coherent false positives would produce right
motion results, because they are coherent with epipolar
constraint, and therefore, with camera motion. On the other
hand, its corresponding 3D location will be incorrect, as
they do not correspond to any physical point. The third ones
are properly outliers, that according to reference [4] could
spoil regression.

In order to evaluate these misclassifications, every
putative match in the sequence has been analysed and
classified by a human operator. Then, the automatically
selected matches have been classified, and the fraction of
every kind of fault has been computed. For every image
pair, the following ratios were computed: FN/AM, CFP/AM
and IFP/AM. Figure 8 shows these ratios vs. the number of
image pairs in the evaluation trajectory. The fraction of
faults is referred to the whole set of matches of that step that
have that fault ratio. For instance, 50% of pairs have neither
false negative mismatches nor incoherent false positive
ones. And 90% of pairs have less than 5% of false negative
(FN) or incoherent false positive mismatches (IFP), and less
than 25% of coherent false positive matches (CFP).

Fig. 7. RMS error for inliers in the robust fit of the homography. Notice how they are lower for steps 1 and 4, which correspond to nearly
pure rotations
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It is clear that robust regression process can detect and
reject most incoherent false matches, and properly classify
true ones. The fraction of coherent false positives is larger,
as they are hardly identifiable by epipolar constraints.
Figure 9 shows the ratio between residuals with respect to
the ground true solution and the estimated standard
deviation used to classify matches. Most errors are due to
CFP and few ones are IFP, both of them with small
residuals.

Figure 10 illustrates the matching results. It shows a pair
of images, and the epipolar geometry derived from ground-
true motion. As the robot advances towards the end of the
corridor, the epipole (the intersection of epipolar lines) is
close to the vanishing point. Then, any features lying on
these epipolar lines are easily mismatched. Mismatches 5 to
14 are hardly recognisable, as they lie on the right epipolar
line; they are CFP. Some other points (see matches 0 to 2)
are right matches rejected by the robust fit. They are FN

Fig. 8. Accumulated distributions of misclassified matches. Errors are represented as the ratio of misclassified matches to the total
number of putative matches in the corresponding image pair

Fig. 9. Distance of CFP and IFP with respect to the ground true geometry. Distance is represented as the ratio of distance in pixels to
standard deviation computed in Section IV-A
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mismatches. Finally, points 3 and 4 are examples of IFP
errors.

D. Computing time
Computing times for every step in the evaluation trajectory
are displayed in Figure 11. This shows the accumulated
computation time vs. the number of steps for epipolar
geometry and rotation homography models. As one can see,
the mean time is about 0.9 sec for epipolar geometry (a),
and for instance, the 90% of steps need less than 1.25 sec to
compute the motion from matches. The final time is always
under 1.5 sec.

Similarly, Figure 11 shows the computing time for the
robust fit of the homography and motion derivation. The
mean time is 0.4 sec. and for all the steps it is lower than

0.7 sec. As only one parameter is fitted, the computing time
is smaller than in the previous case (a).

The algorithm was computed using MATLAB functions,
on a 450 MHz Pentium III PC.

It is important to realize how the previous knowledge
about motion and camera parameters is essential to reduce
the number of required subsamples. So, as the number of
parameters to adjust goes down from seven (general motion)
to two (the planar motion of a calibrated camera), the
number of randomly tentative solutions to compute is
reduced, thus speeding up the process. The inclusion of
additional constraints in the epipolar geometry computation
also provides more reliable solutions, as overparameterisa-
tion is avoided.

The previously analysed times are necessary to derive the
motion from matches. The putative matches computation

Fig. 10. Examples of misclassified matches: False negatives 0–2 (regarded as outliers), coherent false positive errors 5–14 and two
incoherent false positive, 3 and 4 not removed by the robust fit

Fig. 11. Accumulated robust regression and motion derivation computing time distribution. (a) Epipolar geometry (b) Rotation
homography
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time should also be taken into account. This mean time is
about 3 seconds per image pair.

VII. CONCLUSIONS
Using epipolar geometry robust regression, the planar
motion of a robot carrying one vision camera can be
computed accurately. Constraining the trajectory of the
camera to be plane and including its intrinsic parameters to
derive motion, the minimum number of required matches is
only two.

The robust fit of only two parameters (compared with
seven in the general uncalibrated case) reduces the compu-
tation overhead, and avoids overparameterisation problems.

The experimental trajectory was composed of 54 image
pairs. The results after processing have been:

• 11 image pairs cannot be processed because the over-
lapping is less than 20%. These 11 pairs were removed
from the experiment.

• One image pair gave a completely wrong result because
of the initial 100% spurious putative matches.

• 2 image pairs where the translation module was less than
10 cm were successfully processed fitting a homography.

• 41 image pairs yield results, with the following perform-
ance:

Orientation error: mean 0.4 deg. median 0.3 deg.

Direction of translation: mean 1.7 deg. median 1.1 deg.
(the two pure rotation steps have not been considered in
these mean values)

Computing time: 3 sec. for putative matches and 0.9 sec. to
derive general motion.

No precision device was used to keep the camera horizontal.
It was archived by means of a spirit level, used to fixate it to
the robot before the experiment was carried out.

VIII. DISCUSSION AND FUTURE WORK
This work has pointed out the capability of some recent
computer vision techniques to assist robotic tasks. We
consider that this is a promising direction where more
results should be exploited in order to improve the robot
perception of its environment.

We have shown the importance of considering the
degeneration of epipolar geometry when the camera motion
is nearly a pure rotation. We have also described the one-
parameter model that should be fitted in such a case.

Future work will be directed towards automatic model
selection between homography and epipolar geometry.
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