
Proceedings of the Royal Society of Edinburgh, 149, 1473–1479, 2019

DOI:10.1017/prm.2018.118

Generalized monotonicity in terms of differential
inequalities
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The classical notions of monotonicity and convexity can be characterized via the
nonnegativity of the first and the second derivative, respectively. These notions can
be extended applying Chebyshev systems. The aim of this note is to characterize
generalized monotonicity in terms of differential inequalities, yielding analogous
results to the classical derivative tests. Applications in the fields of convexity and
differential inequalities are also discussed.
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1. Introduction

The well-known characterization theorems of monotonic or convex functions via
derivatives motivates the next problem: Find a suitable, and in some sense,
important class of functions and then an adequate differential operator which is
nonnegative exactly on this class. A natural candidate for such a suitable class can
be obtained via Chebyshev systems:

Definition. Let I be a real interval. A continuous mapping ωωω : I → R
n is an

n-dimensional Chebyshev system if det
(
ωωω(t1) . . .ωωω(tn)

)
> 0 holds for any elements

t1 < · · · < tn of the domain. We say that a function f : I → R is monotone with
respect to ωωω (or briefly: ωωω-monotone), if, for all elements t0 � · · · � tn of I, the
next inequality holds:

det
(

ωωω(t0) . . . ωωω(tn)
f(t0) . . . f(tn)

)
� 0. (1.1)

Obviously, a Chebyshev system generates a base if it is evaluated at pairwise
distinct points (the number of points coincides to the dimension of the range).
Moreover, the base is positive for increasingly ordered points. This property implies
that the linear hull of the components of a Chebyshev system consists of continuous
functions having a unique interpolation property. Therefore the functions in the
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linear hulls behave like polynomials. Among Chebyshev systems, extended complete
ones play a distinguished role. Such a system can be equivalently described via the
positivity of its Wronskians’ minors. Instead of the rigorous definition, we shall use
this characteristic property (for precise details, see lemma 2.2 below).

The ωωω-monotonicity of a function has a geometrical meaning: Any element of
the linear hull of ωωω which agrees the function at n points, intersects the graph
alternately in such a way, that it leaves below the function’s graph. If the defining
inequality is valid with equality, then the function is said to be affine with respect
to ωωω (briefly: ωωω-affine). Clearly, a function is ωωω-affine exactly if it belongs to the
linear hull of the components of ωωω.

One of the most important example of a Chebyshev system is the so-called poly-
nomial system, which is defined by ωωω(t) = (1, . . . , tn−1). The induced monotonicity
notion is quoted as higher-order monotonicity, and was studied intensively first by
Hopf [5] and by Popoviciu [10].

It is immediate to see that 1-monotonicity corresponds to the classical mono-
tonicity, while 2-monotonicity reduces to the classical convexity. An excellent and
detailed study on Chebyshev systems and generalized monotonicity is presented in
the book of Karlin and Studden [6].

The aim of this note is to construct a differential operator dωωω corresponding to
a given Chebyshev system ωωω, so that, for smooth enough functions, dωωω(f) � 0 be
valid exactly when f is monotone with respect to ωωω. Applications of the main result
are also presented.

2. The main results

Throughout this note, we use the notation C n(I, X) for the vector space of n
times continuously differentiable functions acting on an interval I and mapping to
a normed space X. As usual, the operator of the kth order differentiation is denoted
by d(k). For ωωω ∈ C n(I, R

n), define the nth order linear differential operator

dωωω := det
(

ωωω(0) . . . ωωω(n)

d(0) . . . d(n)

)
.

This formal Wronskian is the key tool in characterizing both ωωω-affinity and
ωωω-monotonicity. Among smooth enough functions, the first property is equivalent
to belonging to the kernel of dωωω.

Theorem 2.1. Let I be an interval, and let ωωω = (ω1, . . . , ωn) ∈ C n(I, R
n) be a

Chebyshev system. Then a function f ∈ C n(I, R) is ωωω-affine if and only if dωωω(f) =
0 holds.

Proof. Assume first that f is affine with respect ωωω, that is, f = α1ω1 + · · · + αnωn

holds. Then for all k = 1, . . . , n, we have

α1ω
(k)
1 + · · · + αnω(k)

n − f (k) = 0.

These equations can be considered as a homogeneous system of equations having a
nontrivial solution (α1, . . . , αn, −1). Hence the base determinant, which is exactly
dωωω(f), must be singular.
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Conversely, if dωωω(f) = 0, then the rows of the determinant are linearly dependent.
In particular, there exists coefficients β0, β1, . . . , βn such that 0 = β0f + β1ω1 +
· · · + βnωn. The Chebyshev property ensures that β0 �= 0. This yields the ωωω-affinity
of f . �

Moreover, under some additional conditions, ωωω-monotonicity is equivalent to the
nonnegativity of dωωω. To prove this fact, two lemmas are needed. The first one charac-
terizes extended and complete Chebyshev systems (consult [6, theorem 1.1, p. 376]
and [6, theorem 1.2, p. 379]).

Lemma 2.2. A mapping ωωω = (ω1, . . . , ωn) ∈ C n([a, b], R
n) is an extended complete

Chebyshev system if and only if the Wronskians W (ωωω1), . . . , W (ωωωn) are positive,
where ωωωk := (ω1, . . . , ωk).

The second lemma is a consequence of the mean value theorem obtained by Páles
[7]. This result subsumes a wide range of classical mean value theorems and can
even be extended [8]. In what follows, we recall it here in a slightly rewritten form.

Lemma 2.3. Let f, g ∈ C n([a, b], R), and let ωωω ∈ C n([a, b], R
n) be an extended

complete Chebyshev system. Then, for all elements t0 � · · · � tn of [a, b], there
exists ξ ∈ [a, b] such that

det
(

ωωω(t0) . . . ωωω(tn)
f(t0) . . . f(tn)

)
· dωωω(g)(ξ) = det

(
ωωω(t0) . . . ωωω(tn)
g(t0) . . . g(tn)

)
· dωωω(f)(ξ).

(2.1)

Now we are in the position to formulate and prove our main result.

Theorem 2.4. Let I be an open interval, and let ωωω ∈ C n(I, R
n) be an extended

complete Chebyshev system. Then a function f ∈ C n(I, R) is ωωω-monotone if and
only if dωωω(f) � 0 holds.

Proof. Assume first that f is monotone with respect to ωωω, and fix t0 ∈ I arbitrarily.
Then (1.1) holds for all points t0 < · · · < tn belonging to I. Assume that, for some
k ∈ {1, . . . , n}, we have already proved the inequality

0 � det
(

ωωω(t0) . . . ωωω(k−1)(t0) ωωω(tk) . . . ωωω(tn)
f(t0) . . . f (k−1)(t0) f(tk) . . . f(tn)

)
. (2.2)

Taylor’s Theorem guarantees the existence of a vector ξξξ = (ξ1, . . . , ξn) ∈ ]t0, tk[n

satisfying

ωωω(tk) =
k−1∑
l=0

(tk − t0)l

l!
ωωω(l)(t0) +

(tk − t0)k

k!
〈ωωω(k), ξξξ〉 (2.3)

under the convention 〈ωωω(k), ξξξ〉 :=
(
ω

(k)
1 (ξ1), . . . , ω

(k)
n (ξn)

)
. Substitute now the for-

mula (2.3) into the inequality (2.2). Then, applying Taylor expansion also in the last
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row, the (k + 1)st column can be written as the linear combination of the previous
columns and a remainder. Thus,

0 � det

⎛
⎝ . . . ωωω(k−1)(t0)

∑k−1
l=0

(tk−t0)
l

l! ωωω(l)(t0) +
(tk−t0)

k

k! 〈ωωω(k), ξξξ〉 ωωω(tk+1) . . .

. . . f (k−1)(t0)
∑k−1

l=0
(tk−t0)

l

l! f (l)(t0) +
(tk−t0)

k

k! f (k)(ξ) f(tk+1) . . .

⎞
⎠

= det

(
. . . ωωω(k−1)(t0) 〈ωωω(k), ξξξ〉 ωωω(tk+1) . . .

. . . f (k−1)(t0) f (k)(ξ) f(tk+1) . . .

)
· (tk − t0)

k

k!
.

Clearly, 〈ωωω(k), ξξξ〉 → ωωω(k)(t0) as tk → t0. Therefore, eliminating the positive term
(tk − t0)k/k! and then passing the limit tk → t0, we arrive at the inequality (2.2)
with (k + 1) instead of k. Repeating this process, finally, we arrive at dωωω(f)(t0) � 0.

To verify the converse implication, take a function g ∈ C n(I, R) fulfilling
dωωω(g) > 0. Such a function does exist: Let τ ∈ I be fixed and define the space

C n
0 (I, R) := {g ∈ C n(I, R) | g(0)(τ) = 0, . . . , g(n−1)(τ) = 0}.

By the Global Existence and Uniqueness Theorem, dωωω : C n
0 (I, R) → C (I, R) is a

bijection. In particular, if ϕ ∈ C (I, R) is positive, then there exists g ∈ C n
0 (I, R)

such that dωωω(g) = ϕ, and hence the required property holds, indeed. Moreover, in
this case (ω1, . . . , ωn, g) is an extended (n + 1)-dimensional Chebyshev system on
any compact subinterval of I by lemma 2.2.

Let t0 < · · · < tn be fixed elements of I. Then the right-hand side of (2.1) in
lemma 2.3 is nonnegative by the above facts and by the assumption. Therefore the
left-hand side of (2.1) is nonnegative, yielding the ωωω-monotonicity of f . �

The book of Karlin and Studden also presents a result linking generalized mono-
tonicity with differential operators [6, theorem 3.2, p. 395]. Their operator is defined
via a recursive process, and relays on the integral representation of extended com-
plete Chebyshev systems [6, theorem 1.2, p. 379]. We believe, that our method
is more direct, the connection between ωωω and dωωω is more concrete, and hence
theorem 2.4 may give a new insight on the topic.

Observe that the necessity part of theorem 2.4 holds in case of arbitrary Cheby-
shev systems. Let us also mention that the main result of [7,8] involves the Taylor
Theorem, as well. In this point of view, we might have applied the result of Páles
in itself during the entire proof.

3. Applications

Two dimensional extended Chebyshev systems, quoted also as positive regular pairs,
play a distinguished role in the field of Inequalities [2]. For positive regular pairs,
theorem 2.4 reduces to the next statement:

Corollary 3.1. If I is an open interval and ωωω ∈ C 2(I, R) is an extended complete
Chebyshev system, then f ∈ C 2(I, R) is monotone with respect to ωωω if and only if

(ω1ω
′
2 − ω′

1ω2)f ′′ − (ω1ω
′′
2 − ω′′

1ω2)f ′ + (ω′
1ω

′′
2 − ω′′

1ω′
2)f � 0.
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Not claiming completeness, let us list here some direct consequences of this
Corollary. In each case, dωωω can be written into a simpler form. The first case refers
to relative convexity, of which classical convexity is a special case. The second
and the third applications are about the hyperbolic and trigonometric pairs. The
induced convexity notion of the trigonometric one was studied by Pólya [4, theorem
123, p. 98], who first noticed the corresponding differential inequality.

• If ωωω = (1, ϕ) provided that ϕ′ > 0, then dωωω = ϕ′d(2) − ϕ′′d(1).

• If ωωω = (cosh, sinh), then dωωω = d(2) − d(0).

• If ωωω = (cos, sin) and I =] − π/2, π/2[, then dωωω = d(2) + d(0).

In fact, convexity induced by regular pairs can be studied in the more general
framework of convexity induced by Beckenbach families [1]. According to a result
of Peixoto [9], if the kernel of a second order nonlinear differential operator forms a
Beckenbach family, then the solution set of the corresponding differential inequality
can completely be described: A twice differentiable function is a solution of the
differential inequality if and only if it is convex with respect to the Beckenbach
family. Furthermore, by a theorem of Bonsall [3], Beckenbach convex functions
are always twice differentiable in almost everywhere provided that the differential
operator is linear.

However, the results of Peixoto and Bonsall cannot be applied in the case of
higher-order monotonicity. On the other hand, theorem 2.4 still applies: One can
easily see that the polynomial system ωωω(t) = (1, . . . , tn−1) induces the differential
operator

dωωω = (n − 1)!(n − 2)! . . . 0!d(n).

This easy observation immediately implies the theorem of Popoviciu [10] on the
characterization of smooth enough higher-order monotone functions:

Corollary 3.2. Let I be an open interval. Then, a function f ∈ C n(I, R) is
n-monotone if and only if f (n) � 0 holds.

The final applications of theorem 2.4 are about higher-order linear differential
inequalities. In a sense, they are counterparts of the result of Peixoto [9]: Under
suitable conditions, the solution of such an inequality are monotone functions with
respect to a suitable Chebyshev system.

Corollary 3.3. Let α0, . . . , αn−1 : I → R be continuous functions on an open
interval I, and assume that the fundamental system of the linear differential
equation

d(ω) := ω(n) + αn−1ω
(n−1) + · · · + α0ω

(0) = 0

forms an extended complete Chebyshev system ωωω : I → R
n. Then a function f ∈

C n(I, R) is a solution of the linear differential inequality d(f) � 0 if and only if it
is ωωω-monotone.
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Proof. Let W (ωωω) be the Wronskian of ωωω, and let d = d(n) + αn−1d
(n−1) + · · · +

α0d
(0). Furthermore, use the notation

detk

(
ωωω(0), . . . ,ωωω(n)

)
for the determinant of that matrix which is obtained by cancelling the kth column
of the matrix

(
ωωω(0), . . . , ωωω(n)

)
. Obviously,

W (ωωω) = det
(
ωωω(0), . . . ,ωωω(n−1)

)
= detn

(
ωωω(0), . . . ,ωωω(n)

)
.

Since d(ωωω) = 0, we have ωωω(n) = −(αn−1ωωω
(n−1) + · · · + α0d

(0)). Applying the expan-
sion rule of determinants and these facts, one can arrive at

det
(

ωωω(0) . . . ωωω(n)

d(0) . . . d(n)

)
=

n∑
k=0

(−1)n+kdetk

(
ωωω(0), . . . ,ωωω(n)

)
d(k)

= W (ωωω)d(n) +
n−1∑
k=0

(−1)n+kdetk

(
ωωω(0), . . . ,ωωω(n−1),ωωω(n)

)
d(k)

= W (ωωω)d(n) +
n−1∑
k=0

(−1)n+kdetk

(
ωωω(0), . . . ,ωωω(n−1),−

n−1∑
l=0

αlωωω
(l)

)
d(k)

= W (ωωω)d(n) +
n−1∑
k=0

(−1)n+kdetk

(
ωωω(0), . . . ,ωωω(n−1),−αkωωω

(k)
)
d(k)

= W (ωωω)d(n) +
n−1∑
k=0

det
(
ωωω(0), . . . ,ωωω(n−1)

)
αkd(k)

= W (ωωω)d(n) +
n−1∑
k=0

W (ωωω)αkd(k).

This proves dωωω = W (ωωω)d, and hence dωωω and d are nonnegative simultaneously.
Therefore, the statement of the Corollary follows from theorem 2.1. �

Corollary 3.4. Assume that the polynomial p(λ) = λn + αn−1λ
n−1 + · · · + α0 of

real coefficients has real zeros λ1, . . . , λk with multiplicities m1, . . . , mk. Then a
function f ∈ C n(I, R) is a solution of the differential inequality

f (n) + αn−1f
(n−1) + · · · + α0f

(0) � 0

if and only if, it is monotone with respect to ωωω(t) =
(
tjl exp(λlt)

)ml−1, k

jl=0, l=1
.

Proof. Clearly, ωωω = (ω1, . . . , ωn) is a fundamental system of the corresponding lin-
ear differential equation. Moreover, (ω1, . . . , ωk) is a fundamental system of some
linear differential equation since the characteristic zeros are reals. Therefore the
Wronskian of (ω1, . . . , ωk) is positive. Thus ωωω is an extended complete Chebyshev
system by lemma 2.2, and hence corollary 3.3 completes the proof. �
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Continuous interpolation families of arbitrary parameter can also be applied to
establish even more general monotonicity notions. Some basic results for this kind
of monotonicity were obtained by Tornheim [11]. These extensions involve both
the cases of Beckenbach families and Chebyshev systems. As we have seen, in these
particular settings, the induced monotonicity property can always be characterized
via the nonnegativity of an adequate differential operator. However, the analogous
problem for interpolation families of arbitrary parameters is still open and may be
the topic of further research.
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