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Estimating numerically the spectral radius of a random walk on a non-amenable graph

is complicated, since the cardinality of balls grows exponentially fast with the radius. We

propose an algorithm to get a bound from below for this spectral radius in Cayley graphs

with finitely many cone types (including for instance hyperbolic groups). In the genus 2

surface group, it improves by an order of magnitude the previous best bound, due to

Bartholdi.
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1. Main algorithm

Let Γ be a countable group, generated by a finite symmetric set S of cardinality |S |. The

simple random walk X0, X1, . . . on Γ is defined by X0 = e, the identity of Γ, and Xn+1 = Xns

with probability 1/|S | for any s ∈ S . A crucial numerical parameter of this random walk

is its spectral radius ρ = lim P(X2n = e)1/2n. Equivalently, let Wn denote the number of

words of length n in the generators that represent e in Γ; then P(Xn = e) = Wn/|S |n,
so that ρ = limW

1/2n
2n /|S |. It is equivalent to study the spectral radius or the cogrowth

limW
1/2n
2n .

The spectral radius is at most 1, and ρ = 1 if and only if Γ is amenable. In the free

group with d generators, the generating function
∑

Wnz
n can be computed explicitly (it

is algebraic), and the exact value of the spectral radius follows: ρ =
√

2d − 1/d. Since

words that reduce to the identity in the free group also reduce to the identity in any group

with the same number of generators, one infers that in any group Γ, ρ � 2
√

|S | − 1/|S |.
Moreover, equality holds if and only if the Cayley graph of Γ is a tree [6].

In general, there are no explicit formulas for ρ, and even giving precise numerical

estimates is a delicate question. In this short note, we will describe an algorithm giving

bounds from below on ρ in some classes of groups, particularly for the fundamental group
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Γg of a compact surface of genus g � 2, given by its usual presentation

Γg = 〈a1, . . . , ag, b1, . . . , bg | [a1, b1] · · · [ag, bg] = e〉. (1.1)

Since there are 4 generators in Γ2, the above trivial bound obtained by comparison to the

free group gives ρ � 0.661437. Our main estimate is the following result.

Theorem 1.1. In the surface group Γ2, one has ρ � 0.662772.

This improves on the previously best known result, due to Bartholdi [1], giving ρ �
ρBar = 0.662421.1 Bartholdi’s method is to study a specific class of paths from the identity

to itself (called cactus trees), for which he can compute the generating function. The radius

of convergence of this generating function is a lower bound for ρ.

The best known upper bound for ρ in Γ2 is ρ � ρNag = 0.662816, due to Nagnibeda [7].

Non-rigorous numerical estimates2 suggest that ρ = 0.662812 . . . , so the upper bound is

still sharper than our lower bound, although our lower bound is an order of magnitude

better than the bound of [1]: indeed, ρNag − ρBar ∼ 4.10−4, while our estimate ρ from

Theorem 1.1 satisfies ρNag − ρ ∼ 4.10−5.

Nagnibeda’s upper bound does not rely on a counting argument for closed paths, but

on another spectral interpretation of ρ. Indeed, ρ is also the spectral radius of the Markov

operator Q on �2(Γ) corresponding to the random walk, i.e., the convolution with the

probability measure μ which is uniformly distributed on S (see for instance [10, Corollary

10.2]). It is also the norm of this operator, since it is symmetric. Nagnibeda gets the

above upper bound by using a lemma of Gabber about norms of convolution operators

on graphs and the precise geometry of Γ2.

Our approach to get Theorem 1.1 is very similar to Nagnibeda’s. To bound from below

the norm of the convolution operator Q, it is sufficient to exhibit one function u (which

ought to be close to a hypothetical eigenfunction for the element ρ of the spectrum of Q)

for which ‖Qu‖/‖u‖ is large. This is exactly what we will do.

1 Bartholdi claims that ρ � 0.662418, but implementing his algorithm in multiprecision, one in fact gets the

better bound ρ � 0.662421.
2 I obtained this estimate as follows. One can count exactly the number Wn of words of length n representing

the identity in the group, for reasonable n, say up to n = 24 – for the record, W24 = 4214946994935248 –

giving the first values of the sequence pn = P(X2n = e). We know rigorously from [5] that pn ∼ Cρ2n/n3/2

when n → ∞. Define qn = log(n3/2pn)/(2n); it follows that qn → log ρ. In the free group, where pn is known

very explicitly, the sequence qn has a further expansion in powers of 1/n. Assuming that the same holds in the

surface group, we get qn = log ρ +
∑K

k=1 ak/n
k + o(1/nK ), where the ak are unknown. Using the known value

of q24, this gives an estimate for log ρ, with an error of the order of 1/24, which is very bad. However, it is

possible to accelerate the convergence of sequences having an asymptotic expansion in powers of 1/n: there

are explicit recipes (for instance Richardson extrapolation or Wynn’s rho algorithm) taking such a sequence,

and giving a new sequence converging to the same limit, with an expansion in powers of 1/n, but starting at

1/n2. Iterating this process, one can eliminate the first few terms, and get a speed of convergence O(1/nL) for

any L (but one needs to know enough terms of the initial sequence). Applying this process to our sequence

qn, one gets the claimed estimate for ρ. To make this rigorous, one would need to know that an asymptotic

expansion of qn exists, with explicit bounds on the ak and on the o(1/nK ) term. This seems completely out

of reach.
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For any α < ρ, the function uα =
∑∞

n=0 α
nQnδe is in �2, and ‖Quα‖/‖uα‖ converges to ρ

when α tends to ρ. Unfortunately, uα is not explicit enough. To find estimates, one should

instead find an ansatz for the function u, depending on finitely many parameters, and

then optimize over these parameters.

A first strategy would be the following: take a very large ball Bn in the Cayley graph,

and compute the function u supported in this ball such that ‖Qu‖/‖u‖ is largest. This

gives a lower bound ρn on ρ, and ρn converges to ρ when n tends to infinity. However,

this strategy is computationally not efficient at all: one would need to take a very large n

to obtain good estimates (since most mass of uα is supported close to infinity if α is close

to ρ), and the cardinality of Bn grows exponentially with n. On the other hand, it can be

implemented in any finitely presented group for which the word problem is solvable (see

for instance [3] for examples in Baumslag–Solitar and Thompson groups). We will use a

more efficient method, but one which requires more assumptions on the group: it should

have finitely many cone types.

To illustrate our method of construction of u, let us describe it quickly in the case

of the free group Fd with d generators. The sphere S
n of radius n � 1 has cardinality

2d(2d − 1)n−1. Fix some α < 1/
√

2d − 1, and define a function uα by uα(x) = αn for x ∈ S
n,

n � 1. This function belongs to �2(Fd). We write x ∼ y if x and y are neighbours in the

Cayley graph of Γ, and x → y if x ∼ y and d(e, y) = d(e, x) + 1. Then

〈Quα, uα〉 =
1

2d

∑
x∼y

uα(x)uα(y) =
1

d

∑
x→y

uα(x)uα(y) =
1

d

∞∑
n=1

(2d − 1)α2n+1|Sn|,

since a point in S
n has 2d − 1 successors in S

n+1. Since

〈uα, uα〉 =

∞∑
n=1

α2n|Sn|,

we get

〈Quα, uα〉 = α
2d − 1

d
〈uα, uα〉.

Hence,

ρ = ‖Q‖ � α
2d − 1

d
.

Letting α tend to 1/
√

2d − 1, we finally obtain ρ �
√

2d − 1/d, which is the true value of

the spectral radius.

In the free group, it is natural to take a function u that is constant of the sphere S
n of

radius n, since all the points in such a sphere are equivalent: the automorphisms of the

Cayley graph of Fd fixing the identity act transitively on S
n. In more general groups, for

instance surface groups, this is not the case. Intuitively, we would like to take a function

that decays exponentially as above, but with different values on different equivalence

classes under the automorphism group. However, this automorphism group is finite in

the case of surface groups, so instead of true equivalence classes (which are finite), we

will consider larger classes, of points that ‘locally behave in the same way’, and we will
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construct functions that are constants on such classes of points (leaving only finitely many

parameters which one can optimize using a computer).

This intuition is made precise with the notion of type of the elements of the group (as

in [7]). Let Γ be a countable group generated by a finite symmetric set S . Assume that

there are no cycles of odd length, so that any edge can be oriented from the closer point

from e to the farther point. Let S(x) be the set of successors of x, i.e., the points y which

are neighbours of x with |y| = |x| + 1, where we write |x| = d(e, x).

Definition 1.2. Let T be a finite set, let t be a function from Γ to T and let M be a

square matrix indexed by T . We say that (T , t,M) is a type system for (Γ, S) if, for all i

and j in T , for all but finitely many x ∈ Γ with t(x) = j, one has

Card{y ∈ S(x) : t(y) = i} = Mij.

We will often simply say that t is a type system, since it determines T and M.

In other words, if one knows the type of a point x, then one knows the number of

successors of each type, thanks to the matrix M. For instance, in Fd, one can use one

single type, with M11 = 2d − 1: every point but the identity has 2d − 1 successors.

Using a type system, we will be able to find a lower bound for the spectral radius of

the simple random walk. While the argument works in general, it is more convenient to

formulate using an additional assumption, which is satisfied for surface groups.

Definition 1.3. A type system (T , t,M) is Perron–Frobenius if the matrix M is Perron–

Frobenius, i.e., some power Mn has only positive entries.

The algorithm to estimate the spectral radius follows.

Theorem 1.4. Let (Γ, S) be a countable group with a finite symmetric generating set, whose

Cayley graph has no cycle of odd length. Let (T , t,M) be a Perron–Frobenius type system

for (Γ, S).

Define a new matrix M̃ by M̃ij = Mij/pi, where pi is the number of predecessors of a point

of type i (it is given by pj = |S | −
∑

i Mij). Since it is Perron–Frobenius, its dominating

eigenvalue ev is simple. Let (A1, . . . , Ak) be a corresponding eigenvector, with positive entries,

let D be the diagonal matrix with entries Ai, and let M ′ = D−1/2MD1/2. Define

λ = max
|q|=1

〈M ′q, q〉. (1.2)

Then

ρ � 2e−v/2λ

|S | . (1.3)
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Proof. Let sn(i) = Card{x ∈ S
n : t(x) = i}. By definition of a type system, if n is large

enough (say n � n0),

pisn+1(i) =
∑
y∈Sn

Card{x ∈ S(y) : t(x) = i} =
∑
j

Mijsn(j).

This shows that sn+1 = M̃sn. Therefore, the cardinality of S
n grows like cenv for some

c > 0. Moreover, sn(i) = c′Aie
nv + O(en(v−ε)) for some ε > 0.

Take some parameters b1, . . . , bk > 0 to be chosen later, and let α < e−v/2. We define a

function uα by uα(x) = αnbi if x ∈ S
n and t(x) = i with n � n0. For n < n0, let uα(x) = 0.

We have when α tends to e−v/2

〈Quα, uα〉 =
1

|S |
∑
x∼y

uα(x)uα(y) =
2

|S |
∑
x

∑
y∈S(x)

uα(x)uα(y)

=
2

|S |
∑
n�n0

∑
i,j

sn(j)bjα
nMijbiα

n+1

=
2α

|S |
∑
n�n0

∑
i,j

c′Aje
nvbjα

2nMijbi + O(1)

=
2α

|S |
∑
i,j

c′AjbjMijbi/(1 − α2ev) + O(1).

On the other hand,

〈uα, uα〉 =
∑
n�n0

∑
i

sn(i)b
2
i α

2n =
∑
n�n0

∑
i

c′Aie
nvb2

i α
2n + O(1)

=
∑
i

c′Aib
2
i /(1 − α2ev) + O(1).

We have ρ � 〈Quα, uα〉/〈uα, uα〉. Comparing the above two equations and letting α tend to

e−v/2, we get

ρ � 2e−v/2

|S |

∑
i,j AjbjMijbi∑

i Aib
2
i

.

To conclude, we need to optimize in bi. Writing bi as A
−1/2
i ci, this lower bound becomes

2e−v/2

|S |

∑
A

1/2
j cjMijA

−1/2
i ci∑

c2
i

.

The maximum of the last factor is the maximum on the unit sphere of the quadratic form

with matrix M ′ = D−1/2MD1/2. This proves (1.3).

Remark 1.5. It follows from the formula (1.2) that λ is the maximum on the unit sphere

of 〈M ′′q, q〉, where M ′′ is the symmetric matrix (M ′ + M ′∗)/2. Since any symmetric matrix

is diagonal in some orthogonal basis, it also follows that λ is the maximal eigenvalue of

M ′′, i.e., its spectral radius. Hence, it is easy to compute using standard algorithms.
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The formula given by Theorem 1.4 depends not only on the geometry of the group, but

also on the choice of a type system: in a given group (with a given system of generators),

there may be several type systems, giving different estimates. We will take advantage of

this fact for surface groups in Section 3: applying Theorem 1.4 with the canonical type

system for surface groups, constructed by Cannon, we obtain in (3.1) an estimate for the

spectral radius which is weaker than the estimate of Theorem 1.1. This stronger estimate

is proved by applying Theorem 1.4 to a different type system, constructed as a refinement

of the canonical type system.

This dependence on the choice of a type system should be contrasted with the upper

bound of Nagnibeda in [7]. Indeed, it is shown in [8] that this upper bound, computed

using a type system, has a purely geometric interpretation (it is the spectral radius of a

random walk on the tree of geodesics of the group), which does not depend on the choice

of the type system. In particular, the refined type system we use to prove Theorem 1.1

cannot improve the upper bound of Nagnibeda.

2. Geometric interpretation

In this section, we describe a geometric interpretation of Theorem 1.4, similar to

Nagnibeda’s interpretation in [8] of the bound she obtained in [7].

We first recall Nagnibeda’s construction. Consider a group Γ with a finite system of

generators S , whose Cayley graph has no cycle of odd length. Let X be its tree of

geodesics, i.e., the graph whose vertices are the finite geodesics in Γ originating from the

identity e, and where one puts an edge from a geodesic with length n to its extensions

with length n + 1. There is a canonical projection πX from X to Γ, taking a geodesic to

its endpoint. One can think of X as obtained from Γ by unfolding the loops based at e.

Consider the random walk in X whose transitions are as follows. From x, one goes to

any of its successors with probability 1/|S |, and to its unique predecessor with probability

px/|S | where px is |S | minus the number of successors of x (it is the number of predecessors

in Γ of the projection πX(x)). This random walk on X does not project to the simple

random walk on Γ, since it does not follow loops in Γ (the projected random walk is not

Markov in general). The transition probabilities coincide when going towards infinity, but

not when going back towards the identity. One expects that the probability of coming

back to the identity is higher in X than in Γ, thanks to the following heuristic: since the

process in X is less random when coming back toward the identity, once the walk is in a

subset where it comes back often to the identity, it cannot easily escape from this subset,

and therefore returns even more.

To illustrate this heuristic, suppose that two points x and x′ in X have successors y

and y′ in X with py = py′ = 2, and consider a new random walk in which y and y′ are

identified (this is what the projection πX does, all over the place), so that from this new

point one can either jump back to x or to x′ with probability 1/|S |. Let un and u′
n be

the probabilities in X of being at time n at x and x′. For the sake of argument, we will

assume some form of symmetry, i.e., un and u′
n are also the probabilities of reaching e at

time n starting respectively from x or x′. In X, one can form paths from e to itself of

length 2n + 2 by jumping to x in time n, then to y, then back to x, and then from x to e.
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This happens with probability

un · 1

|S | · 2

|S | · un.

One can do the same with x′, giving an overall probability

a =
2

|S |2 (u2
n + u′

n
2
).

On the other hand, if y and y′ are identified, then from this new point one can either

jump back to x or to x′. The corresponding probability of coming back to e at time 2n + 2

following such paths is therefore

b =
1

|S |2 (un + u′
n)

2.

As 2(v2 + w2) � (v + w)2, we have a � b, i.e., the probability of returning to e using

corresponding paths is bigger in X than in the random walk where y and y′ are identified.

This explains our heuristic that more randomness in the choice of predecessors in the

graph creates a mixing effect that decreases the spectral radius.

In [7] and [8], Nagnibeda justifies this heuristic rigorously as follows. Consider a group

Γ and a generating system S such that the Cayley graph of Γ with respect to S has

no cycle of odd length, and finitely many cone types. By applying a spectral lemma of

Gabber, she gets an upper bound ρ (given by a minimax formula, complicated to estimate

in general) for the spectral radius ρΓ of the simple random walk on (Γ, S). Since the

tree of geodesics X also has finitely many cone types, she is able to compute exactly the

spectral radius ρX of the random walk in X. It turns out that this is exactly ρ. Hence,

ρΓ � ρX , the interest of this formula being that ρX can be easily computed (it is algebraic

as the tree X has finitely many cone types: see [9]). Note, however, that this bound does

not come from a direct argument using the projection πX : X → Γ, but rather from two

separate computations in X and in Γ.

We now turn to a similar geometric interpretation of the lower bound given in

Theorem 1.4. We are looking for a natural random walk, related to the original random

walk on Γ, whose spectral radius can be computed exactly and coincides with the lower

bound given in (1.3). Following the above heuristic, this random walk should have more

randomness than the original random walk regarding the choice of predecessors, to

decrease the probability of returning to the origin.

We use the setting and notations of Theorem 1.4. In particular, Γ is a group with a type

system (T , t,M), and (A1, . . . , Ak) and M̃ are defined in the statement of this theorem. We

define a random walk as follows. It is a walk on the space Y = Z × T (where T is the

space of types), whose transition probabilities are given by

p((n, j) → (n + 1, i)) = Mij/|S |, p((n, j) → (n − 1, i)) = e−v AiMji

Aj |S | . (2.1)

The spectral radius of this random walk is by definition ρY = lim P(X2n = e)1/2n (this is not

a spectral definition). Note that this random walk admits a quasi-transitive Z-action (i.e.,

Y is endowed with a free action of Z, with finite quotient, and the transition probabilities
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are invariant under Z). Such random walks are well studied: see for instance [10, Section

8.B].

Theorem 2.1. With the notations of Theorem 1.4, the random walk on Y has spectral radius

ρY = 2e−v/2λ/|S |.

Hence, the result of Theorem 1.4 reads ρΓ � ρY , and ρY is easy to compute.

Let us first explain why this random walk is natural, and related to the random walk

on Γ. Starting from a point x ∈ Γ, of type j and length n, the original random walk goes

to any of its successors with probability 1/|S |. In particular, it reaches points of type i

and length n + 1 with probability Mij/|S |, just like the probability given in (2.1). On the

other hand, it goes to any of its predecessors with probability 1/|S |, but the types of these

predecessors depend on x, not only on j. A random walk which is simpler to estimate

may be constructed by randomizing the predecessors: from x, one chooses to go to any

point of length n − 1 and type i, provided that there is an edge from type i to type j, i.e.,

Mji > 0. The probability of going from x to such points should be given by the average

number of predecessors of type i to a point of type j. Writing

sn(i) = Card{x ∈ S
n : t(x) = i},

this quantity is ∑
|x|=n,t(x)=j

∑
|y|=n−1,t(y)=i 1(x ∈ S(y))∑
|x|=n,t(x)=j 1

=
sn−1(i)Mji

sn(j)
. (2.2)

As sn(i) ∼ c′Aie
nv for some c′ > 0 (see the proof of Theorem 1.4), the quantity in (2.2)

converges when n → ∞ to e−vAiMji/Aj , giving the transition probability (2.1) in the limit.

Note that, in this randomized random walk, all the points of the same length and the

same type are equivalent. Hence, we may identify them, to get a smaller space and a

simpler random walk. This is precisely our random walk on Y .

Thus, the random walk on Y is obtained by starting from the random walk on Γ,

randomizing the choice of predecessors, going in the asymptotic regime n → ∞, and

identifying the points on the sphere that are equivalent. One can define a projection

map πY : Γ → Y by πY (x) = (|x|, t(x)), under which the two random walks correspond

in a loose sense (going towards infinity, the transition probabilities are the same, but

coming back towards the identity they differ, just as for the projection πX in Nagnibeda’s

construction, with more randomness in Y than in Γ).

Proof of Theorem 2.1. We define two matrices P+ and P− giving the transition

probabilities of the walk on Y to the right and to the left, respectively, i.e.,

P+
ij = Mij/|S |, P−

ij = e−v AiMji

Aj |S | .

In other words, P+ = M/|S | and P− = e−vDM∗D−1/|S |, where D is the diagonal matrix

with entries Ai and M∗ is the transpose of M.
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Figure 1. Two examples of geodesics from e to x.

Although this is clear from the geometric construction, let us first check algebraically

that the transition probabilities in (2.1) indeed define probabilities, i.e.,
∑

i P
+
ij + P−

ij = 1

for all j. Let pj be the number of predecessors of a point of type j in Γ. By definition of

A, the matrix M̃ji = Mji/pj satisfies M̃A = evA. Hence,∑
i

MjiAi = pj
∑
i

M̃jiAi = pje
vAj .

Therefore,

∑
i

Mij +
∑
i

e−v AiMji

Aj

= |S | − pj + e−v pje
vAj

Aj

= |S |,

proving that (2.1) defines transition probabilities.

While one can give a pedestrian proof of the equality ρY = 2e−v/2λ/|S |, it is more

efficient to use results available in the literature. Define a function ϕ on R by ϕ(c) =

ρ(ecP+ + e−cP−) (where this quantity is the spectral radius of a bona fide finite-dimensional

matrix). It is proved in [10, Proposition 8.20 and Theorem 8.23] that ϕ is convex, that it

tends to infinity at ±∞, and that its minimum is precisely ρY . Since the spectral radius is

invariant under transposition and conjugation, we have

|S |ϕ(c) = ρ(ecM + e−ce−vDM∗D−1) = ρ(ecM∗ + e−c−vD−1MD)

= ρ(ecDM∗D−1 + e−c−vM) = |S |ϕ(−c − v).

Hence, the function c 
→ ϕ(c) is symmetric around c = −v/2. As it is convex, it attains its

minimum at c = −v/2. Therefore,

ρY = ϕ(−v/2) =
e−v/2

|S | ρ(M + DM∗D−1) =
e−v/2

|S | ρ(D−1/2MD1/2 + D1/2M∗D−1/2).

By Remark 1.5, the last term is equal to 2λ.

3. Application to surface groups

3.1. Cannon’s types

Consider a countable group with the word distance coming from a finite generating set S .

The cone of a point x is the set of points y for which there is a geodesic from e to y going

through x. The cone type of x is the set {x−1y}, for y in the cone of x. Note that knowing

the cone type of a point determines the number of its successors, and the number of its
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successors having any given cone type. Cannon proved that, in any hyperbolic group,

there are finitely many cone types. Therefore, such a group admits a type system in the

sense of Definition 1.2. This is in particular the case of the surface groups Γg . However,

the number of cone types is too large, and it is more convenient for practical purposes

to reduce them using symmetries. We obtain Cannon’s canonical types for the surface

groups, described in [2] or [4] as follows.

The hyperbolic plane can be tessellated by regular 4g-gons, with 4g of them around

each vertex. The Cayley graph of Γg (with its usual presentation (1.1)) is dual to this

(self-dual) tessellation, and is therefore isomorphic to it. Define the type of a point x ∈ Γg

as the maximal length along the last 4g-gon of a geodesic starting from e and ending at

x. Beware that one really has to take the maximum: for instance, in Figure 1, the thick

geodesic from e to x shares only one edge with the last octagon, while the wiggly one

shares two edges. Hence, the type of x is 2.

The type can also be described combinatorially as follows. Write x = c1 · · · c|x| as a

product of minimal length in the generators a1, . . . , bg , look at the length n of its longest

common suffix with a fundamental relator (i.e., a cyclic permutation of the basic relation

[a1, b1] · · · [ag, bg] in (1.1) or its inverse: c|x|−n+1 · · · c|x| should be a subword of the basic

relation or its inverse, up to cyclic permutation), and take the maximum of all such n

over all ways to write x = c1 · · · c|x|. It is obvious that the geometric and combinatorial

descriptions are equivalent; we will mostly rely on the geometric one.

The type of a group element x can be at most 2g (otherwise, taking the same path

but going the other way around the last 4g-gon, one would get a strictly shorter path,

contradicting the fact that the initial path is geodesic), and it is 0 only for the identity.

Points x of type i < 2g have only one predecessor, and 4g − 1 successors. Among them,

two are followers of x on the 4g-gon to its left and to its right, while the other ones

correspond to newly created 4g-gons (whose closest point to e is x). It follows that those

points have 4g − 3 successors of type 1, one of type 2 and one of type i + 1. Points of

type 2g are special, since they have two predecessors (one can reach them with a geodesic

either from the left or from the right of a single 4g-gon). They have two successors of

type 2, corresponding to the extremal outgoing edges of x (they extend the two 4g-gons

adjacent to both incoming edges to x), and the 4g − 4 remaining successors are on

newly created 4g-gons, and are of type 1. See Figure 2 for an illustration in genus 2 (of

course, additional octagons should be drawn around all outgoing edges, but since this

is notoriously difficult to do in a Euclidean drawing, we have to rely on the reader’s

imagination).

Keeping only the types from 1 to 2g (since type 0 only happens for the identity, while

Definition 1.2 allows us to discard finitely many points), we obtain a type system for Γg

with T = {1, . . . , 2g}, where the matrix M has been described in the previous paragraph.

For instance, in genus 2,

M =

⎛
⎜⎜⎝

5 5 5 4

2 1 1 2

0 1 0 0

0 0 1 0

⎞
⎟⎟⎠.
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Figure 2. Types of the points in (part of) the Cayley graph of Γ2.

One can now apply the algorithm of Theorem 1.4 to this matrix to bound the spectral

radius of the simple random walk from below. All points but points of type 4 have one

predecessor, so the matrix M̃ is

M̃ =

⎛
⎜⎜⎝

5 5 5 4

2 1 1 2

0 1 0 0

0 0 1/2 0

⎞
⎟⎟⎠.

The dominating eigenvalue of this matrix is ev = 6.979835 . . . (this is also the growth of

the group), while the corresponding eigenvector is

A = (0.715987 . . . , 0.246211 . . . , 0.035274 . . . , 0.002526 . . . ).

We obtain that the matrix M ′′ of Remark 1.5 is

M ′′ =

⎛
⎜⎜⎝

5 3.171316 . . . 0.554905 . . . 0.118814 . . .

3.171316 . . . 1 1.510223 . . . 0.101307 . . .

0.554905 . . . 1.510223 . . . 0 1.868132 . . .

0.118814 . . . 0.101307 . . . 1.868132 . . . 0

⎞
⎟⎟⎠,

with dominating eigenvalue λ = 7.000902 . . . . Finally,

ρ � 2e−v/2λ

8
= 0.662477 . . . . (3.1)

This is already slightly better than Bartholdi’s estimate ρ � 0.662421, but much weaker

than the estimate ρ � 0.662772 that we claimed in Theorem 1.1 (to be compared with the

‘true’ value ρ ∼ 0.662812).

In the next sections, we will explain how to get better estimates by using different type

systems, that distinguish between more points (but, of course, give rise to larger matrices

M and therefore to more computer-intensive computations).
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Remark 3.1. Using cone types instead of Cannon’s canonical types does not give rise to

better estimates for ρ (although the number of types is much larger). Indeed, if some type

system t′ is obtained from some type system t by quotienting by some symmetries of t, then

the dominating eigenvector of M̃(t), being unique, is invariant by those symmetries and

reduces to the dominating eigenvector of M̃(t′). It follows that the dominating eigenvector

of M ′′(t) is also invariant by those symmetries, and that the dominating eigenvalue of

M ′′(t) is the same as that of M ′′(t′). Hence, the estimates on ρ given by Theorem 1.1 for t

and t′ are the same.

3.2. Suffix types

There are many ways to define new type systems in surface groups, that separate more

points. If a type system is finer than another one, then the estimate on the spectral radius

coming from Theorem 1.4 is better, but the matrix involved in the computation is larger.

To get manageable estimates, we should find the right balance.

In this subsection, we describe a very simple extension of Cannon’s canonical type

systems in surface groups, which we call suffix types. Given a point x ∈ Γg , there can be

several geodesics from e to x. Consider the longest ending that is common to all these

geodesics, say xn−k+1, . . . , xn (with xn = x), and define the suffix type of x to be

tsuff(x) = (t(xn), t(xn−1), . . . , t(xn−k+1)),

where t is the canonical type of Cannon.

For any x, tsuff(x) is easy to compute inductively.

• If t(x) = 0, i.e., x = e, then tsuff(x) = (0).

• If x is of type 2g, it has two predecessors, so the common ending to all geodesics

ending at x is simply x, and tsuff(x) = (2g).

• If t(x) ∈ {1, . . . , 2g − 1}, then x has a unique predecessor z. The common ending to all

geodesics ending at x is the common ending to all geodesics ending at z, followed by

x. Hence, tsuff(x) = (t(x), tsuff(z)).

It also follows from this description that, if one knows tsuff(x), it is easy to determine

tsuff(y) for any successor y of x: if t(y) = 2g, then tsuff(y) = (2g), otherwise x is the only

predecessor of y and tsuff(y) = (t(y), tsuff(x)).

We have shown that tsuff shares most properties of type systems as described in

Definition 1.2, except that it does not take its values in a finite set. To ensure this

additional property, one should truncate the suffix type. For instance, one can fix some

maximal length k, and define the k-truncated suffix type t
(k)
suff(x) by keeping only the first

k elements of tsuff(x) if its length is > k.

The following proposition is obvious from the previous discussion.

Proposition 3.2. For any k� 1, the k-truncated suffix type system t
(k)
suff is a (Perron–Frobenius)

type system in the sense of Definition 1.2.

The matrix size increases with k, but the estimates on the spectral radius following from

Theorem 1.4 get better. For instance, in Γ2, for k = 5, the matrix size is 148, and we get

ρ � 0.662694.
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A drawback of this truncation process is that it truncates uniformly, independently of

the likeliness of the type, while it should be more efficient to extend mostly those types

that are more likely to happen. This intuition leads to another truncation process: fix

a system of weights w = (w0, . . . , w2g) ∈ [0,+∞)2g+1, a threshold k, and truncate a suffix

type (t0, t1, . . . ) at the smallest n such that t0 + · · · + tn > k. This gives another type system

denoted by t
(k,w)
suff (t(k)suff corresponds to the weights w = (1, . . . , 1) and the threshold k − 1).

Define for instance a weight system w̄ by w̄0 = 1 and w̄i = i for i � 1: the corresponding

type system t
(k,w̄)
suff truncates more quickly the suffix types involving a lot of large types,

that happen less often in the group. Hence, it should give a smaller matrix than the naive

truncation only according to length, while retaining a comparatively good estimate for

the spectral radius.

This intuition is correct. For instance, in Γ2, using t
(k,w̄)
suff with k = 6, one gets a matrix

with size 109 and an estimate ρ � 0.662697: the matrix is smaller than for the naive

truncation t
(5)
suff , while the estimate on the spectral radius is better.

We can now push the computations, to a larger matrix size. Using the weight w̄ and

the truncation threshold k = 25 in Γ2, one obtains a type system where the matrix is of

size 2 774 629, and the following estimate on the spectral radius.

Proposition 3.3. In Γ2, one has ρ � 0.662757.

This is definitely better than (3.1), but not yet as good as Theorem 1.1.

Here follow a few comments on the practical implementation. There are three main

steps in the algorithm of Theorem 1.4.

(1) Compute the matrix M corresponding to the type system.

(2) Find the eigenvector A, to define the matrix M ′.

(3) Find the maximal expansion rate of M ′.

Computing the matrix of the type system is a matter of simple combinatorics: we explained

above all the transitions from one suffix type to the next ones. The resulting matrix M

is very sparse: each type has at most 2g successors. However, it is extremely large, so

that finding the eigenvector A and then the maximal expansion rate of M ′ might seem

computationally expensive. This is not the case, as we now explain.

Let A(0) be the eigenvector for the original Cannon type, so that

Card{x ∈ S
n : t(x) = i} ∼ A

(0)
i env.

Further, let M(0) be the matrix for the original Cannon type. Given a new type ī =

(i0, . . . , im), the entry Aī of the eigenvector A for the new type t
(w,k)
suff is such that

Card{x ∈ S
n : t

(w,k)
suff (x) = ī} ∼ Aīe

nv.

Such a point x can be obtained uniquely by starting from a point y ∈ S
n−m with type im,

and then taking successors respectively of type im−1, . . . , i0. Hence,

Card{x ∈ S
n : t

(w,k)
suff (x) = (i0, . . . , im)} (3.2)

= M
(0)
i0i1

· · ·M(0)
im−1im

Card{y ∈ S
n−m : t(y) = im}.
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Figure 3. The points x and x′ have the same essential type, contrary to y and y′.

It follows that the new eigenvector is given by

Aī = M
(0)
i0i1

· · ·M(0)
im−1im

A
(0)
im
e−mv.

This shows that A is very easy to compute.

By Remark 1.5, to determine the maximal expansion rate λ of M ′, it suffices the find

the maximal eigenvalue of M ′′ = (M ′ + M ′∗)/2. This matrix is real, symmetric, with non-

negative coefficients, and it is Perron–Frobenius (i.e., it has one single maximal eigenvalue).

It follows that, for any vector v with positive coefficients, λ = lim ‖M ′′nv‖/‖M ′′n−1
v‖ (and

moreover this sequence is non-decreasing: see for instance [10, Corollary 10.2]). Hence,

one can readily estimate λ from below, by starting from a fixed vector v and iterating M ′′.

Again, there is no issue of instability or complexity.

3.3. Essential types

To improve the suffix types, to separate even more points, one can for instance replace

the canonical Cannon types with the true cone types. However, the matrix size increases

so quickly that this is not usable in practice. Moreover, this does not solve the main

problem of suffix types: they do not separate at all points with Cannon type 2g, although

such points are clearly not always equivalent. In this subsection we introduce a new type

system that can separate such points, which we call the essential type.

The basic idea (which will not work directly) is to memorize not only the common

ending of all geodesics ending at a point x, but all the parts that are common to such

geodesics: i.e., the sequence Fess(x) = (x0 = e, x1, . . . , xn = x) (with n = |x|) where xi = ∗
if there are two geodesics from e to x that differ at position i, and xi is the point that

is common to all those geodesics at position i otherwise. We then associate with x the

sequence

tess(x) = (t(xn), t(xn−1), . . . , t(x0)),

where t(xi) is the Cannon type of xi if xi �= ∗, and t(∗) = ∗.

The problem with this notion is that tess(x) does not determine tess(y) for y a successor of

x: in Figure 3, the points x and x′ have the same essential type (3, 2, 1, 3, 2, 1, 0), while their
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Figure 4. Modified Cannon types of the points in (part of) the Cayley graph of Γ2.

successors y and y′ have respective essential types (4, ∗, ∗, ∗, 3, 2, 1, 0) and (4, ∗, ∗, ∗, ∗, ∗, ∗, 0)

(this follows from the fact that the thick paths and wiggly paths are geodesics). This

shows that, as we have defined it, tess cannot be used to define a type system.

This problem can be solved if we do not use the Cannon types directly in the

definition of tess, but a slightly refined notion, the Cannon modified type, taking values in

{1, . . . , 2g, 1′, 2′}. The modified type of a point is the same as its Cannon type, except for

some points of Cannon types 1 and 2, which have modified types 1′ and 2′ respectively.

Considering any point y of type 2g − 1, it has a unique successor z of type 2g, and a

unique successor x of type 1 that is on the same 4g-gon as z. We say that x is of modified

type 1′. Moreover, x has a unique successor of type 2 that is also on the same 4g-gon

as z; we say that it is of modified type 2′. See Figure 4 for an example in genus 2. By

definition, the modified Cannon type t′ is also a type system. The transition matrix is the

same as for the usual Cannon type, except for the following.

• A point of type 2g − 1 has one successor of type 1′, one successor of type 2g, one

successor of type 2, and 4g − 4 successors of type 1.

• A point of type 1′ has one successor of type 2, one successor of type 2′, and 4g − 3

successors of type 1.

• A point of type 2′ has one successor of type 2, one successor of type 3, and 4g − 3

successors of type 1.

We define tess(x) = (t′(xn), . . . , t
′(x0)), where (x0, . . . , xn) = Fess(x) and t′(∗) = ∗.

Proposition 3.4. The essential type tess(x) of a point x determines the essential type of its

successors.

Proof. We argue by induction on |x| = d(x, e).

Consider a point x, and one of its successors y. If the type of y is not 2g, then x is the

unique predecessor of y, and tess(y) = (t′(y), tess(x)). Assume now that t′(y) = 2g (so that
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Figure 5. Determining the essential type of y from that of x.

t′(x) = 2g − 1). Let z2g−1 = x, and define inductively zi as the unique predecessor of zi+1

for i � 1, so that F(x) = (e, . . . , z1, z2, . . . , z2g−1 = x). Those points are on a common 4g-gon

R, and t(zi) = i for i � 2, while t(z1) can be anything. In the same way, let z̃2g−1, . . . , z̃1 be

the successive pre-images of y going around R in the other direction. They also satisfy

t(z̃i) = i for i � 2.

If t(z1) �= 2g, then z1 has a unique pre-image z0, which also belongs to R. Moreover,

z0 is the unique closest point to e on R. The path P = (z0, z1, . . . , z2g−1, y) is a geodesic

path going around R in one direction, and P̃ = (z0, z̃1, . . . , z̃2g−1, y) is also geodesic and

goes around R in the other direction. If, along P̃ , all points different from z0, y have type

< 2g (so that they have a unique pre-image), then any geodesic from e to y has to follow

either P or P̃ , so that tess(y) = (2g, ∗, . . . , ∗, tess(z0)), with 2g − 1 ambiguous points. See

Figure 5(a) for an illustration.

The only way to have a point of type 2g along P̃ is if t(z0) = 2g − 1 and t(z̃1) = 2g, since

t(z̃i) = i for i � 2: see Figure 5(b). By definition of the modified type, this happens exactly

when t′(z1) = 1′ and t′(z2) = 2′. In this case, a geodesic from e to y can either go through

z0 and then follow P , or go through z̃1 and then follow (z̃2, . . . , z̃2g−1, y). In the first case,

if one truncates the geodesic when it reaches z0 and then adds the edge [z0z̃1], one gets a

geodesic from e to z̃1. It follows that the essential type of y is (2g, ∗, . . . , ∗, t̂ess(z̃1)), where

t̂ess(z̃1) is the essential type of z̃1 minus its first entry (i.e., the type 2g of z̃1), and where

there are 2g − 1 stars. Since z̃1 is a successor of z0, the induction hypothesis ensures that

its essential type can be determined from that of z0, which is given by that of x. When

t(z1) �= 2g, we have shown that in all situations tess(x) determines tess(y) in an algorithmic

way.

Assume now that t(z1) = 2g: see Figure 5(c). This case is very similar to the previous

one. To reach y, one has to reach z1 or its pre-image on R, and then reach y by going

around R in one direction or the other. It follows that tess(y) = (2g, ∗, . . . , ∗, t̂ess(z1)) as

above. Since tess(z1) is obtained by removing the last 2g − 2 entries of tess(x), it follows

again that tess(x) determines tess(y).
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For k > 0, let t
(k)
ess(x) be the truncated essential type, obtained by keeping the first k

entries of the essential type of x. The above proof also shows that t
(k)
ess(x) determines

t
(k+1)
ess (y) (and therefore t

(k)
ess(y)) for any successor y of x. In the same way, if one considers a

truncation according to a weight w = (w0, w1, . . . , w2g, w1′ , w2′ , w∗) and a threshold k, then

t
(k,w)
ess (x) determines t

(k,w)
ess (y) for any successor y of x, if the weight w∗ is maximal among

all weights. This last requirement is necessary for the following reason: the essential type

of y can be obtained from that of x by replacing some entries with stars; if this could

decrease the weight of the resulting sequence, one might need to look further to determine

t
(k,w)
ess (y), and t

(k,w)
ess (x) might not be sufficient.

Under these conditions, it follows that t(k)ess and t
(k,w)
ess are (Perron–Frobenius) type systems,

in the sense of Definition 1.2. Hence, we can use Theorem 1.4 to estimate the spectral

radius of the corresponding random walk. Again, it turns out that it is more efficient to

truncate using weights than length.

In genus 2, taking the weights w = (1, 2, 3, 4, 1, 2, 4) and the threshold k = 25, we obtain

a matrix of size 8 999 902. The corresponding bound on the spectral radius is ρ � 0.662772,

proving Theorem 1.1. Those bounds were obtained on a personal computer with a memory

of 12GB (memory is indeed the main limiting factor, since one should store all truncated

essential types to create the matrix M). With more memory, one would get better estimates,

but it is unlikely that those estimates converge to the true spectral radius when k tends to

infinity: to recover it, it is probably necessary to distinguish even more points, for instance

by using Cannon’s cone types instead of the canonical types (but this would become

totally impractical).

In higher genus, here are the bounds we obtain.

Theorem 3.5. In genus 3, using t
(k,w)
ess with w = (1, 2, 3, 4, 5, 6, 1, 2, 6) and k = 25, we get a

matrix of size 7 307 293 and the estimate ρ � 0.5527735593.

In genus 4, using t
(k,w)
suff with w = (1, 2, 3, 4, 5, 6, 7, 8) and k = 24, we get a matrix of size

4 120 495 and the estimate ρ � 0.48412292068.

When the genus increases, the groups look more and more like free groups. This

means that the spectral radius is very close to that of the random walk on a tree with

the corresponding number of generators (i.e.,
√

4g − 1/(2g) in general, specializing to

0.55277079 in genus 3 and 0.48412291827 in genus 4), and to get a significant improvement

one needs to take very large matrices. The path counting arguments of Bartholdi [1],

on the other hand, are more and more precise when the groups looks more and more

like a free group: in genus 3, he gets ρ � 0.5527735401, which is just slightly worse

than our estimate, while requiring considerably less computer power. In genus 4, he gets

ρ � 0.48412292074, which is already better than our estimate, and the situation is certainly

the same in higher genus.

In genus 3, the upper bound of Nagnibeda [7] is ρ � 0.552792, while our lower bound

(or Bartholdi’s) is much closer to the naive lower bound coming from the free group. It

is unclear which one is closer to the real value of the spectral radius.
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For the practical implementation, as in the end of Section 3.2, it is important to know

the asymptotics of the number of points on S
n having a given truncated essential type.

We illustrate how to compute such asymptotics in three significant examples, which can

be combined to handle the general case.

(1) Assume first that the type (i0, . . . , im) does not contain any ambiguous letter, i.e., i� �= ∗
for all �. In this case, the formula (3.2) still holds.

(2) Assume now that the type is of the form (i, ∗, . . . , ∗, j) for some types i, j �= ∗, and some

number N of stars. Let x be a point with the above truncated essential type, on a sphere

S
n, and let y be the point of modified type j, on the sphere S

n−N−1, such that any geodesic

from e to x goes through y. Since the type 2g is the only one to have several predecessors,

necessarily i = 2g. On the other hand, j can be any type in {1, 1′, 2, 2′, 3, . . . , 2g}.
The discussion in the proof of Proposition 3.4 (see in particular Figure 5(b,c)) implies

that N = (2g − 1)m, for some integer m: a geodesic from e to x goes through y, and then

it follows m 4g-gons.

Let us first study the case m = 1. Consider a point y of type j, and a 4g-gon R based

at y (i.e., y is the closest point to e on this 4g-gon). There are 4g − 2 such R if j �= 2g and

4g − 3 if j = 2g (since a point of type 2g has two incoming edges). On R, consider the

point x that is the farthest from e: it has type 2g, and one can reach it from y by going

around R in one direction or the other. It follows that

Card{x ∈ S
n : t

(w,k)
suff (x) = (2g, ∗, . . . , ∗, j) with N = 2g − 1 stars}

= aj Card{y ∈ S
n−N−1 : t′(y) = j},

where aj = 4g − 3 if j ∈ {2g − 1, 2g}, and aj = 4g − 2 otherwise. The case of a point y of

type j = 2g − 1 is special since, on the 4g-gon R containing the successors of y of types 1′

and 2′, one of the geodesic paths from y to the opposite point x goes through a vertex of

type 2g, giving rise to further ambiguities. Hence, this 4g-gon should be discarded from

the above counting, leaving only 2g − 3 suitable 4g-gons.

In the case of a general m � 1, the number of points x corresponding to a given

point y of type j may be obtained first by choosing a suitable 4g-gon R1 based at y

(giving aj choices). Further ambiguities can only be obtained by choosing one of the two

predecessors (of type 2g − 1) of the point that is opposite to y on R1, and then following

the 4g-gon R2 based at this point and containing its successors of type 1′ and 2′. This

gives two choices for R2, then two more choices for the next 4g-gon R3, and so on. In the

end, we obtain

Card{x ∈ S
n : t

(w,k)
suff (x) = (2g, ∗, . . . , ∗, j) with N = (2g − 1)m stars}

= aj2
m−1 Card{y ∈ S

n−N−1 : t′(y) = j}.

(3) Finally, assume that the type is (i, ∗, . . . , ∗) with some number N of stars (the situation

is very similar to the previous one). Necessarily, as above, i = 2g. Write N = (2g − 1)m + k

for some k ∈ {1, . . . , 2g − 1}.
For m = 0, a point of type 2g has two predecessors, so there are always ambiguities

regarding his first 2g − 1 ancestors. Hence, the set of points we are considering is simply

the set of points of type 2g on the sphere S
n, and there is nothing to do.
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For m = 1, there can be further ambiguities only if x has an ancestor x′ of generation

2g − 1 that has type 2g, and x is at the tip of the 4g-gon R based at one of the two

predecessors of x′ (of type 2g − 1), and containing x′. There are two choices for R.

Proceeding inductively in the case of a general m, we get

Card{x ∈ S
n : t

(w,k)
suff (x) = (2g, ∗, . . . , ∗) with N = (2g − 1)m + k stars}

= 2m Card{y ∈ S
n−(2g−1)m : t(y) = 2g}.

A general truncated essential type is the concatenation of successive types of the form

just described in the examples. We can thus count the number of points with a given type

just by combining the above formulas.
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Éc. Norm. Supér. (4) 46 129–173.

[6] Kesten, H. (1959) Symmetric random walks on groups. Trans. Amer. Math. Soc. 92 336–354.

[7] Nagnibeda, T. (1997) An upper bound for the spectral radius of a random walk on surface

groups. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI) 240 154–165, 293–294.

[8] Nagnibeda, T. (2004) Random walks, spectral radii, and Ramanujan graphs. In Random Walks

and Geometry, de Gruyter, pp. 487–500.

[9] Nagnibeda, T. and Woess, W. (2002) Random walks on trees with finitely many cone types.

J. Theoret. Probab. 15 383–422.

[10] Woess, W. (2000) Random Walks on Infinite Graphs and Groups, Vol. 138 of Cambridge Tracts

in Mathematics, Cambridge University Press.

https://doi.org/10.1017/S0963548314000819 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000819

