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Abstract

There is empirical evidence suggesting that a person’s family, friends, or social ties influence

who a person votes for. Sokhey & McClurg (2012) find that as political disagreement

in a person’s social network increases, then a person is less likely to vote correctly. We

develop a model where voters have different favorite policies and wish to vote correctly for

the candidate whose favorite policy is closest to their own. Voters have beliefs about each

candidate’s favorite policy which may or may not be correct. Voters update their beliefs about

political candidates based on who their conservative and liberal social ties are supporting.

We find that if everyone’s social network consists only of those most like themselves, then the

conditions needed for correct voting to be stable are fairly weak; thus political agreement in

one’s social network facilitates correct voting. We also give conditions under which correct

voting is stable for networks exhibiting homophily and for networks exhibiting random social

interactions.
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1 Introduction

The influence of social networks on voting was first studied by Lazarsfeld et al.

(1944) who examined voting decisions in the 1940 presidential election in Erie

County, Ohio. They found undecided voters were influenced by family and friends

or by their social network. More recently, Sokhey & McClurg (2012) find that

voters who cast ballots which are different from family and friends are less likely

to vote correctly.1 In fact, they find that as political disagreement increases in a

person’s social network, then that person is more likely to vote incorrectly. We

develop a model where people update their beliefs about candidate’s positions by

observing which candidates their liberal and conservative neighbors are supporting

and updating their beliefs accordingly. We find that if everyone’s network consists

only of those most like themselves then the conditions needed for correct voting to

be stable are fairly weak.2 Thus political agreement in one’s social network facilitates

correct voting as in Sokhey & McClurg (2012).

1 A person is said to vote correctly if he votes the same way he would if he had full information
regarding the candidates; (see Lau & Redlawsk, 1997; Lau et al., 2008).

2 Specifically, stability requires conditions on a voter’s initial beliefs as well as conditions on the favorite
policies of the most conservative liberal voters and the most liberal conservative voters (given the
favorite policies of the second most conservative liberal voter and the second most liberal conservative
voter are fixed). However, conditions on the favorite policies of all other voters are not needed; in
other networks stability of the correct vote requires restrictions on more voters’ favorite policies.
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Additionally, we find that voting correctly is more likely to be stable in a network

exhibiting homophily (where people are more likely to interact with those similar to

themselves and less likely to interact with those who are different) than in a random

interactions network (where people have an equal probability of interacting with all

others) if voters can be divided into two correct voting groups (say conservatives

and liberals) where one group contains voters others consider to be radical. Then

with homophily moderate voters will ignore radicals in their own group and vote

correctly while with random interactions these radical voters are not ignored and

thus moderates may vote incorrectly with the other voting group. Voting correctly

is less likely to be stable in a homophily network than in a random interactions

network if both voting groups contain agents others consider to be radical. Then

with homophily moderates may ignore radicals in the other voting group but pay

attention to radicals in their own group and thus may vote incorrectly with the other

voting group. Note that in Western Europe researchers have found an increase in

voter support of the radical right and a decrease in voter support of the radical left;

(see Rydgren, 2007; Oesch, 2008; Mudde & March, 2005). Thus, we might expect

here for voting correctly to have a greater likelihood of being stable assuming people

have homophilic networks.

We are interested in how homophily in social networks affects who people vote for

and specifically affects whether or not people vote correctly. Thus, we are interested

in how homophily affects voters’ decision making where homophily is defined as the

tendency for people who are similar to associate with each other more frequently

than they associate with others; this term was first coined by Lazarsfeld & Merten

(1954). There is a previous literature which shows the existence of homophily based

on race, gender, age, religion, education, social class, behavior, political ideology, and

other characteristics. An extensive review of this literature is provided by McPherson

et al. (2001); see also Jackson (2011). More recent studies have examined what

causes homophily or how homophilic relationships form. (See Currarini et al., 2009;

Currarini & Vega Redondo, 2011; Joyner & Kao, 2000; Kossinets & Watts, 2009).

It is also important to understand how homophily affects decision making. Jackson

& López-Pintado (2012) and Golub & Jackson (2012) examine how homophily

affects the diffusion of a new idea and the speed of diffusion (respectively), while

we show that the presence and absence of homophily can even affect correct voting

decisions.

Empirical studies show that decisions on whether or not to vote and on who to

vote for often are influenced by close social ties such as one’s spouse, immediate

family, or close personal friends (see Lazarsfeld et al., 1944; Nickerson, 2008).

Our voting network model provides a mathematical framework representing these

findings. Our approach is slightly different in that we ask how these ties influence

voting and examine the affects of different network configurations on correct voting.

There is a literature focusing on the flow of information from influencers or opinion

leaders to those connected to them. Katz & Lazarsfeld (1955) and Lazarsfeld et al.

(1944) were pioneers of this literature. More recent developments on the theory

of influencers and their emergence can be found in Galeotti & Goyal (2010),

see also Jackson (2008) for a literature review. We do not focus on the role of

influencers, but instead focus on how the shape of the network affects correct

voting.
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Our model is related to those of information aggregation as in Golub & Jackson

(2012), Acemoglu et al. (2010), and DeGroot (1974).3 Our model is different in that it

is a voting model not a consensus model and our diffusion process is different from

the average based updating processes discussed in these information aggregation

models. In average based updating a person’s opinion of a new product is the

average of his friend’s opinions about the product. In our model, a person’s beliefs

about candidate X is an average of the favorite policies of her friends who support

X not an average of her friends beliefs about X. For example, in a city council

election a person decides that candidate X is conservative because her conservative

neighbors are supporting him not because she learns her neighbor’s specific beliefs

about the candidate. Beliefs are modeled in this way to capture the notion that

it may be easier to learn who a person supports than to learn why a person

supports a certain candidate. Note that modeling beliefs this way allows agents

to obtain information that may be mistaken. It is possible for an agent’s friend

to mistakenly be supporting the wrong candidate thus using the friend’s favorite

policy as a proxy for the candidate’s favorite policy will be inaccurate. We are

interested in when do agents vote correctly even amid the possibility of mistaken

information.

There exists a large voting literature which answers questions such as why do

people vote (Feddersen, 2004; Feddersen & Sandroni, 2006; Evren, 2012) as well

as normative questions such as which voting policies or rules are socially beneficial

(Krasa & Polborn, 2009; Börgers, 2004), does the correct candidate win (Young,

1988; Krishna & Morgan, 2012; McMurray, 2012), and is an efficient outcome

achieved (Besley & Coate, 1997; Krishna & Morgan, 2012). We add to this debate

in that we also examine a normative question of do people vote correctly; however,

our paper is different from this voting literature in that voters are modeled in a

network where voters update their beliefs about candidates based on information

received from their social networks.

Lastly, correct voting is related to sincere voting; see Austen-Smith & Banks

(1996), Groseclose & Milyo (2010; 2013), and Wolitzky (2009) for an analysis of

sincere voting. A person votes sincerely if he votes for the candidate he thinks is

best, while a person votes correctly if he votes for the candidate that he thinks is

best when he has complete information regarding the candidates. Thus, a sincere

vote may not be a correct vote. In our model, agents are myopic (as in Golub &

Jackson (2012) and Acemoglu et al. (2010)) in that when they update their candidate

support they do not consider how this update will affect other voters’ candidate

support. Thus, in our model agents always vote sincerely, but they do not always

vote correctly.

The paper proceeds as follows. We present the model in Section 2 and the results

in Section 3. Conclusions are provided in Section 4.

3 Krishna & Morgan (2012) and McMurray (2012) consider information aggregation in a voting context
however in their models information is aggregated when players vote instead of in a diffusion of
information process.
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2 Model

There is a set C = {c1, c2} of two candidates who are running for election. There is

a set N = {1, 2, . . . , n} of voters who interact over a social network, g to exchange

information regarding the candidates. A link in g between i ∈ N and j ∈ N, i �= j,

is represented by ij ∈ g. We assume for each i ∈ N there exists at least one j �= i,

j ∈ N such that ij ∈ g. Thus, each voter has at least one neighbor.

Each candidate ck ∈ C has a favorite policy yk ∈ [0, 1]. At time 0, each voter

i ∈ N has an initial belief about ck ’s favorite policy yk represented by yik(0) ∈ [0, 1].

Each voter i has favorite policy xi ∈ [0, 1], which is known to himself and to

all of his friends and neighbors. We order voters so that x1 < x2 < . . . < xn
and let x ≡ {x1, x2, . . . , xn}. At time 0, voter i supports candidate ci(0) = ck if

k = arg min�{| yi�(0) − xi |}. If multiple k solve the minimization problem, then i

selects one of these candidates at random to support.

Time is divided into periods T ≡ {0, 1, 2, . . . , t, . . .} and at each period every agent i

interacts with each of his neighbors. The strength of i’s interaction with his neighbor

j is measured by pij where pij > 0 if and only if ij ∈ g. If ij /∈ g, then pij = 0. If

pij > pi� we say that i spends more time interacting with j than with � or that j

has a bigger influence on i than does �. Additionally, we assume
∑n

j=1 pij = 1 and

pii = 0. Let pi ≡ {pi1, pi2, . . . , pin} and p ≡ {p1, p2, . . . , pn}.
A network g with corresponding interaction strengths p exhibits homophily4 if

pij > pik for all |xi − xj | < |xi − xk| where i �= j and i �= k. Thus, players in these

networks spend more time interacting with those similar to themselves. A network

g exhibits random interactions if pij = 1
n−1

for all i �= j. Thus, here each player

interacts equally with all other players. A network is called a line network if pij = 1
2

for all j = i + 1, j = i − 1 and i ∈ {2, 3, . . . , n − 1}; pij = 1 for i = 1, j = 2 or i = n,

j = n−1; and pij = 0 for all other i, j ∈ N. In a line network, each i ∈ {2, 3, . . . , n−1}
is connected only to i + 1 and i − 1 and interacts with each neighbor equally. If

max{|xi − xi−1|, |xi − xi+1|} < |xi − xj | for all i ∈ N and j /∈ {i − 1, i, i + 1}, then the

line network exhibits homophily.

Define Si
k(t) = {j|cj(t) = ck, j �= i and ij ∈ g} as the set of i’s neighbors who

support k at time t. Define |Si
k(t)| as the number of i’s neighbors who support k at

time t.

Players observe who their neighbors support and they observe their neighbors’

favorite policies, but they do not observe their neighbors’ beliefs. Players use these

observations to update their beliefs regarding candidate favorite policies as follows.

At time t � 1, i updates his beliefs such that for all k ∈ {1, 2, . . . , m}

yik(t) =

yik(t − 1) +

∑
j∈Si

k
(t−1)

pijxj∑
j∈Si

k
(t−1)

pij

2
if Si

k(t − 1) �= � and

yik(t) = yik(t − 1) if Si
k(t − 1) = �

Thus if i has neighbors who support k in the previous period, then i updates his

beliefs about k by taking an average of his previous period beliefs with a weighted

4 Our notion of homophily is more simplistic than that of Golub & Jackson (2012) who define a measure
of the degree of homophily based on the second largest eigenvalue of a matrix of relative densities of
links between various groups.
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average of the favorite policies of his neighbors who support k.5 If none of i’s

neighbors support k in the previous period then i keeps his (t − 1) beliefs. Let

yi(t) ≡ {yi1(t), yi2(t), . . . , yim(t)} and y(t) ≡ {y1(t), y2(t), . . . , yn(t)}.
At the end of time t, voter i updates his candidate preferences and will support

candidate ci(t) = ck if k = arg min�{| yi�(t) − xi |}. If multiple candidates solve this

minimization and if ci(t − 1) = c
k̃

where k̃ ∈ arg min�{| yi�(t) − xi |} then ci(t) = c
k̃

otherwise i will pick a candidate that solves the minimization at random to support.

Let c(t) ≡ {c1(t), c2(t), . . . , cn(t)}.
Voter beliefs y are stable if yik(t) = yik implies yik(t + 1) = yik for all i ∈ N,

k ∈ {1, 2, . . . , m} and all t. Thus no individual voter will update his beliefs.

Candidate support c is stable if the corresponding voter beliefs y are stable. Note

that if candidate support is stable then no individual voter will change his candidate

choice or support.

Agent i votes correctly at time t if ci(t) = ck and | xi − yk |�| xi − yj | for all j �= k.

We say that voting correctly is stable as t → ∞ if voter beliefs y(t) converge to

stable voter beliefs y as t → ∞, in which every voter votes correctly.

Agent i is an expert if yik(t) = yk for all k and t. Note that an expert will always

vote correctly and an expert’s beliefs are not influenced by his friends.

In the appendix, we examine a variant of the model in which agents always pay

some attention to initial beliefs:

yik(t) = α(yik(0)) + (1 − α)

⎛
⎜⎜⎝
yik(t − 1) +

∑
j∈Si

k
(t−1)

pijxj∑
j∈Si

k
(t−1)

pij

2

⎞
⎟⎟⎠ if Si

k(t − 1) �= � and

yik(t) = α(yik(0)) + (1 − α)(yik(t − 1)) if Si
k(t − 1) = �

for 0 � α � 1. Such a model changes the conditions presented in the propositions as

would be expected in that the results become dependent on initial beliefs; however,

the results are not substantially changed. Therefore, for simplicity we focus on the

α = 0 case in the main text and refer the interested reader to the appendix.

3 Results

For the first proposition, we fix the candidate choices of all agents other than i at

cj(t) = cj(0) for all t � 0 and all j ∈ N, j �= i. Then we ask whether or not yik(t)

converges as t → ∞ for all k ∈ {1, 2, . . . , m}. Note that although we focus on the two

candidate case, Proposition 1 also holds true for the m candidate case.

Proposition 1

Let cj(t) = cj(0) for all t � 0 and all j ∈ N, j �= i. If Si
k(0) �= �, then yik(t) →∑

j∈Si
k
(0)

pijxj∑
j∈Si

k
(0)

pij
as t → ∞. If Si

k(0) = �, then yik(t) = yik(0) for all t � 0.

5 Alternatively, we could assume that voter i learns something about k if i’s neighbor j does not support
k. In the two candidate case, i could assume that his neighbor j dislikes k if j does not support k.
Perhaps i might believe that yk is closer to (1 − xj ) than to xj since j does not support k and i could
update his beliefs about k accordingly. Such an updating rule should not qualitatively affect the results
but would make them more complicated; for simplicity, we focus on the case where i updates his
beliefs about k based on the favorite policies of his neighbors who support k.
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Proof. First consider the case where Si
k(0) �= �. Note that since cj(t) = cj(0) for all t

and j �= i, it must be that Si
k(0) = Si

k(t). Let

Y i
k (t) ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

yik(t)

x1

x2

...

xi−1

xi+1

...

xn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

and

T i
k ≡

⎡
⎢⎢⎢⎢⎢⎢⎣

1
2

pi1
2

∑
j∈Si

k
(0)

pij
. . .

pi(i−1)

2
∑

j∈Si
k
(0)

pij

pi(i+1)

2
∑

j∈Si
k
(0)

pij
. . . pin

2
∑

j∈Si
k
(0)

pij

0 1 0 0 . . . 0 0

0 0 1 0 0 . . . 0
...

. . .
...

0 0 . . . . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

Then

Y i
k (t) = T i

k · [Y i
k (t − 1)]

and

Y i
k (t) = (T i

k)
t · Y i

k (0).

Thus, if (T i
k)

t converges as t → ∞, then yik(t) converges. It is easy to show that

(T i
k)

t =

⎡
⎢⎢⎢⎢⎢⎢⎣

( 1
2
)t αpi1

2
∑

j∈Si
k
(0)

pij
. . .

αpi(i−1)

2
∑

j∈Si
k
(0)

pij

αpi(i+1)

2
∑

j∈Si
k
(0)

pij
. . . αpin

2
∑

j∈Si
k
(0)

pij

0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

. . .
...

0 0 . . . . . . 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

where α =
∑t−1

�=0(
1
2
)�.

Here ( 1
2
)t → 0 as t → ∞ and

∑t−1
�=0(

1
2
)� → 2. Thus, yik(t) →

∑
j∈Si

k
(0)

pijxj∑
j∈Si

k
(0)

pij
as t → ∞.

Next consider the case where Si
k(0) = �. By definition, i never updates his beliefs

about k and so yik(t) = yik(0) for all t � 0.

Proposition 1 shows that i’s beliefs about candidate k converge to a weighted

average of his neighbor’s favorite policies and do not depend at all on i’s initial

beliefs about k. Additionally, if none of i’s neighbors ever support candidate k then

i will keep his initial beliefs about k and will not update them.

Corollary 1

Let cj(t) = cj(0) for all t � 0 and all j ∈ N, j �= i and let pij = 1
n−1

for all i, j. If

Si
k(0) �= �, then as t → ∞

yik(t) →
∑

j∈Si
k(0) xj

|Si
k(0)| .
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If candidate choice for all agents except for i is fixed and if all agents interact

with equal probability, then i’s expected beliefs regarding candidate k converge to a

simple average of the favorite policies of i’s neighbors who support k.

Note from Proposition 1 that if i is only linked to j and if j always supports k

then yik(t) → xj as t → ∞. Thus, by changing the j that i is linked to we change what

i’s beliefs converge to. So the configuration of the network and/or the interaction

strengths are quite important in determining how beliefs converge6 which is why we

focus most of our results on random networks and homophilic networks as many

empirical networks have evidence of these types of interactions (see McPherson

et al., 2001).

For the remainder of the paper, we make the following assumption. Assume that

if all agents vote correctly then {1, 2, . . . , i} vote for c1 and {i + 1, i + 2, . . . , n} vote

for c2 or that xi <
y1+y2

2
and xi+1 >

y1+y2

2
for some i ∈ {2, .., n − 2}.7

Proposition 2

Let the network be a line network and let (xi −xi−1) < (xi+1 −xi) and (xi+2 −xi+1) <

(xi+1 − xi). Let y
j
2(0) /∈ [xj−1, xj+1] for all 1 < j < i and y

j
1(0) /∈ [xj−1, xj+1] for

all i + 1 < j < n and let y1
k (0) /∈ [x1, x2] and ynk (0) /∈ [xn−1, xn]. Then voting

correctly is stable as t → ∞. Furthermore, voting correctly is uniquely stable if i and

(i + 1) are experts and if (xj+1 − xj) < (xj − xj−1) for all j ∈ {1, 2, . . . , i − 1} and

(xj − xj−1) < (xj+1 − xj) for all j ∈ {i + 2, . . . , n} as t → ∞.

Proof. First, we show that voting correctly is stable. Assume t is sufficiently large

so that the convergence results of Proposition 1 hold true.8 We show that if all

agents k �= j vote correctly, then so will agent j ∈ N, j �= i, i + 1. First let 1 < j < i.

As all other agents vote correctly, agents (j + 1) and (j − 1) must both vote for

c1. Therefore, from Proposition 1 y
j
1(t) → xj−1+xj+1

2
as t → ∞ and y

j
2(t) = y

j
2(0). By

assumption, yj2(0) /∈ [xj−1, xj+1] , then it must be that | yj2(0) − xj |>| xj−1+xj+1

2
− xj |.

Thus, agent j prefers to vote for c1. If j = 1, then y
j
1(t) → x2 and by assumption

| yj2(0) − x1 |>| x2 − x1 | and j will vote for c1. Similarly, j > (i + 1) will choose to

vote for c2. Next we show that i will vote for c1 given that i − 1 and i+ 1 both vote

correctly for c1 and c2 respectively. By Proposition 1, yi1(t) → xi−1 and yi2(t) → xi+1.

Thus i votes correctly for c1 if | yi1(t) − xi| < | yi2(t) − xi| or if |xi−1 − xi| < |xi+1 − xi|
which is true by assumption. Similarly, i + 1 will vote correctly for c2.

Next, we show that voting correctly is the unique stable outcome given the

conditions stated in the proposition. Assume t is sufficiently large. As i and i+1 are

experts we know i votes for c1 and i + 1 votes for c2. Next consider agent (i − 1). If

(i − 2) votes for c1, then i − 1 will vote for c1 since yi−1
1 (t) → xi−2+xi

2
as t → ∞ and

6 In fact if cj (t) = cj (0) for all t and j �= i, then there exists a network and interaction strengths pi such
that yik(t) converges to any specific number in the convex hull of {xj} for j who initially support k.

7 We assume i /∈ {1, n−1} or that when agents vote correctly at least two agents vote for each candidate.
This assumption is made for simplicity as including the case of i ∈ {1, n − 1} does not change the
ensuing propositions except to add extra conditions on the initial beliefs of agents 1 and n.

8 We assume that t is sufficiently large, say t > T . Players interact in the first T periods, but may or
may not vote correctly. After period T we show that if all other players vote correctly then so will j.
Additional conditions on initial beliefs could be added to the proposition which would guarantee that
voting correctly is stable for all t. However, these conditions would add to the length of the proposition
without changing its essence. (Such conditions would require for instance that agent j < i prefer to

vote for 1 even in period 0 which would require |yj1(0) − xj | < |yj2(0) − xj |.) Instead of adding such
conditions we choose to focus on the t > T case so that the results of Proposition 1 can be applied.
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yi−1
2 (t) = yi−1

2 (0) /∈ [xi−2, xi] . If i−2 votes for c2, then yi−1
1 (t) → xi and yi−1

2 (t) → xi−2

as t → ∞. Since (xi −xi−1) < (xi−1 −xi−2), then i− 1 votes for c1. Similarly, i− 2 will

choose to vote for c1 as will all j ∈ {2, . . . , i − 1}. Next consider j − 1. Since agent 2

votes for c1 we know y1
1(t) → x2 as t → ∞. Since y1

2(t) = y1
2(0) /∈ [x1, x2] then 1 votes

for c1. Similar reasoning shows all j � i + 2 will vote for c2. Thus, correct voting is

the unique stable outcome.

In Proposition 2, voting correctly is stable since each person j /∈ {i, i + 1} prefers

to vote with his two neighbors rather than against them as they have similar views

to j’s views. And agent i (respectively, i + 1) prefers to vote with i − 1 (resp., i + 2)

over i + 1 (resp. i), thus i (resp. i + 1) will vote correctly if i − 1 (resp. i + 2) does.

Voting correctly is the unique stable outcome if every agent has more in common

with or prefers to vote with his neighbor who is closest to the expert rather than

with his other neighbor. Note that the assumptions needed for correct voting to be

stable are fairly weak as they simply require that each agent j initially believes that

his incorrect candidate’s favorite policy is a sufficient distance from j’s own as well

as conditions on the location of the favorite policies of voters i and i + 1 who are

the voters where the correct vote changes (as i should correctly vote for 1 and i + 1

for 2).

Note that experts are needed to guarantee that the correct vote is the unique

stable outcome. Experts always vote correctly and their presence allows other voters

to learn how to vote correctly. If there are no experts then having everyone vote

opposite of the correct vote where {1, 2, . . . , i} vote for c2 and {i + 1, . . . , n} vote for

c1 would also be stable.

Proposition 3

Let the network exhibit random interactions. Voting correctly is stable if |
∑i−1

k=1 xk
i−1

−
xi| < |

∑n
k=i+1 xk
n−i

− xi| and |
∑n

k=i+2 xk
n−i−1

− xi+1| < |
∑i

k=1 xk
i

− xi+1| as t → ∞.

Proof. For j � i and t is sufficiently large, if all other players vote correctly, then

j will also vote correctly if |yj1(t) − xj | < |yj2(t) − xj |. By Proposition 1 as t → ∞,

y
j
1(t) →

∑i
k=1,k �=j xk

i−1
and y

j
2(t) →

∑n
k=i+1 xk
n−i

. Thus, j votes correctly if |
∑i

k=1,k �=j xk

i−1
− xj |

< |
∑n

k=i+1 xk
n−i

− xj | which is true by assumption for j = i. Next we show that if

|
∑i−1

k=1 xk
i−1

− xi| < |
∑n

k=i+1 xk
n−i

− xi| then |
∑i

k=1,k �=j xk

i−1
− xj | < |

∑n
k=i+1 xk
n−i

− xj | for j < i. First

assume that xj �
∑i

k=1,k �=j xk

i−1
. Since x1 < x2 < . . . < xj < . . . < xi it must be that∑i−1

k=1 xk
i−1

<
∑i

k=1,k �=j xk

i−1
and that xi −

∑i−1
k=1 xk
i−1

> xj −
∑i

k=1,k �=j xk

i−1
� 0. And so |

∑i
k=1,k �=j xk

i−1
− xj |

< |
∑i−1

k=1 xk
i−1

− xi| < |
∑n

k=i+1 xk
n−i

− xi| < |
∑n

k=i+1 xk
n−i

− xj | and j will vote correctly. Second

assume to the contrary that xj <
∑i

k=1,k �=j xk

i−1
. Then xj <

∑i
k=1,k �=j xk

i−1
<

∑n
k=i+1 xk
n−i

and so

|
∑i

k=1,k �=j xk

i−1
−xj | < |

∑n
k=i+1 xk
n−i

−xj | and again j votes correctly. Similarly analysis shows

that if j > i and if everyone else votes correctly, then j prefers to vote correctly as

well.

With random interactions each person votes correctly given that others do if each

person has more in common with the average favorite policies of those in his own
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group than with the average favorite policies of those in the other group.9 Comparing

Proposition 2 to Proposition 3, we see that Proposition 2 involves conditions on

favorite policies guaranteeing that i and i+1 vote correctly and that these conditions

only restrict xi−1, xi, xi+1, and xi+2. However, Proposition 3 involves conditions on

favorite policies guaranteeing that i and i + 1 vote correctly and each of these

conditions restricts all of the xj ’s. Thus when interactions are uniformly at random

and not within the line network, correct voting requires restrictions involving all of

the xj ’s instead of restrictions involving only xi−1, xi, xi+1, and xi+2.

Proposition 4

There exists g, p that exhibits homophily and such that the correct vote with

homophily is stable as t → ∞ if for all j � i there exists 1 � � � j such that

|
∑i

k=�,k �=j xk

i−�
− xj | < |

∑n
k=i+1 xk
n−i

− xj | and if � > 1, then |x�−1 − xj | > |xn − xj |. And for

all j � i + 1 there exists j � � � n such that |
∑�

k=i+1,k �=j xk

�−i
− xj | < |

∑i
k=1 xk
i

− xj | and if

� < n, then |x�+1 − xj | > |x1 − xj |.
Proof. We show that there exists p such that g, p exhibits homophily and such that

the correct vote with homophily is stable. Assume t is sufficiently large. Consider

any agent j � i. If � � 2, then let pjk = εk > 0 for all k ∈ {1, 2, . . . , � − 1} and k �= j

and if � = 1, then let pj1 = 1
n
+ ε1 where ε1 > 0. For all other pjk , k ∈ {1, 2, . . . , i} and

k �= j, let pjk = 1
n−�+1

+ εk where εk < 0. Size the εk ’s so that
∑i

k=1,k �=j εk = 0 and so

that pjk > pjm for all |xk − xj | < |xm − xj | and k, m ∈ N and k �= j, m. We assume

|x�−1 −xj | > |xn−xj | so that only x�−1 not close to xj is given a weight of ε�−1 which

is needed for homophily. We will show that if all other agents vote correctly, then

so will agent j. Agent j votes correctly if |yj1(t) − xj | < |yj2(t) − xj |. By Proposition 1,

y
j
1(t) →

∑i
k=1,k �=j pjkxk∑i
k=1,k �=j pjk

and y
j
2(t) →

∑n
k=i+1 pjkxk∑n
k=i+1 pjk

as t → ∞. From the way we defined the

pjk ’s, we know that
∑i

k=1,k �=j pjkxk∑i
k=1,k �=j pjk

=
∑�−1

k=1 εjkxk+
∑i

k=�,k �=j (
1

n−�+1 +εk)xk∑�−1
k=1 εjk+

∑i
k=�,k �=j (

1
n−�+1 +εk)

≈
∑i

k=� xk
i−�

for εk ’s small

enough. Similarly,
∑n

k=i+1 pjkxk∑n
k=i+1 pjk

=
∑n

k=i+�(
1

n−�+1 +εk)xk∑n
k=i+�(

1
n−�+1 +εk)

≈
∑n

k=i+� xk
n−i

for εk ’s small enough.

Thus, j votes correctly if |
∑i

k=� xk
i−�

− xj | < |
∑n

k=i+� xk
n−i

− xj | which is true by assumption.

Similarly, one can find pj for j > i such that the assumptions of homophily are met

and such that j votes correctly given that everyone else votes correctly.

Proposition 4 states that there exists a homophily network such that each player

votes correctly given others do if each agent j has more in common with the average

favorite policies of those in his own group (excluding any agents in j’s group that

j considers radical10) than with the average favorite policies of those in the other

9 Note that with random interactions if i and i + 1 are both experts it is still difficult to guarantee that
voting correctly is the unique stable outcome. To ensure uniqueness, any voting configuration where
a subset of non-expert agents vote incorrectly must be unstable or have at least one agent who does
not want to vote the perscribed way. Thus with n voters the number of such subsets is quite large
and so the number of conditions needed to guarantee uniqueness is quite large. In the line network,
we can rule out such a scenario as each voter interacts with at most two other voters and so the
expert’s influence can spread to his neighbors and then to his neighbor’s neighbors, etc. With random
interactions each voter interacts with every other voter equally thus the influence of the two experts
on any other voter or on the rest of the network is much smaller and so the correct vote may not
always spread and thus the correct vote may not be the only stable vote.

10 Let j � i. If in Proposition 4 there exists � > 1, then we say that j considers {1, . . . , � − 1} to be
“radical” agents. From j’s point of view these agents have ideal points that are far away from j’s ideal
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group. Comparing Propositions 3 and 4, if correct voting with random interactions

is stable, then there exists a network with homophily where correct voting is stable.

However, this does not guarantee that correct voting in all homophily networks is

stable. Similarly, stability of correct voting in a network with homophily does not

guarantee stability of correct voting in a network with random interactions. The

next two propositions illustrate these points.

Proposition 5

Let correct voting be stable with random interactions as t → ∞ and assume there

exists either a j � i and a 1 � � < n − i such that |
∑i+�

k=i+1 xk
�

− xj | < |
∑i

k=1,k �=j xk

i−1
− xj |

and |xi+�+1 − xj | > max{|x1 − xj |, |xi − xj |} or that there exists a j > i and 1 < � � i

such that |
∑i

k=� xk
i−�+1

−xj | < |
∑n

k=i+1,k �=j xk

n−i
−xj | and |x�−j −xj | > max{|xn −xj |, |xi+1 −xj |}.

Then there exists g, p that exhibits homophily and such that the correct vote with

homophily is not stable as t → ∞.

Proof. Let t be sufficiently large. First assume there exists such a j � i and

1 � � � n− i−1 that meet the assumptions of the proposition. Let pj(i+�+1) = εi+�+1,

pj(i+�+2) = εi+�+2, . . . , pjn = εn and let pjk = 1
i+�

− εk for k ∈ {1, 2, . . . , i + �}, k �= j.

Assume εk > εk+1 > 0 for all k ∈ {1, 2, . . . , j − 2} ∪ {j + 1, j + 2, . . . , n − 1} and that

εi+�+1 + . . .+εn − ( ε1 + . . .+εi+�) = 0. Thus our assumption of homophily is satisfied.

Note that our assumption |xi+�+1 − xj | > max{|x1 − xj |, |xi − xj |} ensures that no

xk close to xj is given a weight of only εk which is needed for homophily to be

satisfied. Choose εi’s small enough so that |
∑i

k=1,k �=j (
1

i+�
−εk)xk∑i

k=1,k �=j (
1

i+�
−εk)

− xj | ≈ |
∑i

k=1,k �=j xk

i−1
− xj |

and |
∑i+�

k=i+1(
1

i+�
−εk)xk+

∑n
k=i+�+1 εkxk∑i+�

k=i+1(
1

i+�
−εk)+

∑n
k=i+�+1 εk

− xj | ≈ |
∑i+�

k=i+1 xk
�

− xj |. Given everyone else votes

correctly, agent j does too if |yj1(t) − xj | < |yj2(t) − xj |. By Proposition 1, yj1(t) →∑i
k=1,k �=j pjkxk∑i
k=1,k �=j pjk

and y
j
2(t) →

∑n
k=i+1 pjkxk∑n
k=i+1 pjk

as t → ∞. Thus as t → ∞, j votes correctly if

|
∑i

k=1,k �=j pjkxk∑i
k=1,k �=j pjk

− xj | < |
∑n

k=i+1 pjkxk∑n
k=i+1 pjk

− xj |. However, |
∑i

k=1,k �=j pjkxk∑i
k=1,k �=j pjk

− xj | ≈ |
∑i

k=1,k �=j xk

i−1
− xj |

and |
∑n

k=i+1 pjkxk∑n
k=i+1 pjk

−xj | ≈ |
∑i+�

k=i+1 xk
�

−xj |. By assumption |
∑i+�

k=i+1 xk
�

−xj | < |
∑i

k=1,k �=j xk

i−1
−xj |,

thus j will not vote correctly in this homophily network. The case for j � i + 1 is

similar.

Proposition 5 shows that it is possible for correct voting to be stable with random

interactions and not stable with homophily. In Proposition 5, there exists an agent j

such that if j ignores the agents in the other group that j considers to be “radicals”

(or agents k > i + � for j � i who are the agents in the other group most different

from j), then j prefers the opinions of the other group to the opinions of those

in his own voting group. This preference will be especially true if j’s own group

has agents j considers radical with favorite policies closer to xj than the favorite

policies of the radicals in the other group. Thus, with homophily j may ignore the

agents he considers to be “radical” in the other group but pay attention to the

radicals in his own group, which can cause j to vote incorrectly. However, with

random interactions j interacts with the agents he considers to be “radical” in the

other group and learns their opinions. Since their opinions are quite different from

point. Note that this set may vary with j, but all such non-empty sets of such radicals would have
some overlap as for instance all sets would contain agent 1.
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Fig. 1. Each voter’s favorite policy. (color online)

j’s he chooses not to vote with these agents. The following example illustrates this

proposition.

Example 1

In this example we show that correct voting may be stable with random in-

teractions but unstable with homophily. Let n = 6 and let {x1, x2, . . . , x6} =

{0.001, 0.1, 0.4, 0.6, 0.8, 1}. This data is presented in Figure 1 and shows that agents 1,

2, 5, and 6 are quite different from agent 3. Assume that if all agents vote correctly

then {1, 2, 3} vote for c1 and {4, 5, 6} vote for c2. It is easy to check that under

random interactions correct voting is stable. To see this first consider voter 3. We

will show that if all other voters vote correctly, then so will 3. Agent 3 votes correctly

if |y3
1(t) − x3| < |y3

2(t) − x3|. By Proposition 1, y3
1(t) → x1+x2

2
and y3

2(t) → x4+x5+x6

3

as t → ∞. Plugging in values we get y3
1(t) → 0.05 and y3

2(t) → 0.8. Thus, 3 votes

correctly if |0.05 − x3| < |0.8 − x3| which is always true for x3 = .4. Similar analysis

shows that all other agents vote correctly. Next we show that there exists p such

that g, p exhibits homophily and such that the correct vote with homophily is not

stable. Let p be such that p3 = {0.33233, 0.33323, 0, 0.33333, 0.001, 0.0001}. This data

is presented in Figure 2 and shows that 3 does not interact much with the agents

most different from him in the other group. (Recall that by definition p33 = 0.) Let all

remaining pi be anything such that the assumptions of homophily are met. Assume

that all i �= 3 vote correctly; we will show that 3 does not vote correctly. Agent

3 votes correctly if |y3
1(t) − x3| < |y3

2(t) − x3|. By Proposition 1, y3
1(t) → p31x1+p32x2

p31+p32

and y3
2(t) → p34x4+p35x5+p36x6

p34+p35+p36
as t → ∞. Plugging in values we get y3

1(t) → 0.05 and

y3
2(t) → 0.6. Thus, 3 votes correctly if |0.05 − x3| < |0.6 − x3| which is not true for

x3 = .4. In this network with homophily agent 3 votes incorrectly for c2 and so

correct voting is not stable.

Proposition 6

Let g, p exhibit homophily and let the correct vote with homophily be stable as

t → ∞. If there exists a j � i and a 1 < � � j such that |
∑i

k=�,k �=j xk

i−�
− xj | <
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Fig. 2. Voter 3’s interaction strengths with voter j. (color online)

|
∑n

k=i+1 xk
n−i

− xj | < |
∑i

k=1,k �=j xk

i−1
− xj | and |x�−1 − xj | > |xn − xj | or if there exists a j > i

and a j � � < n such that |
∑�

k=i+1,k �=j xk

�−i
− xj | < |

∑i
k=1 xk
i

− xj | < |
∑n

k=i+1,k �=j xk

n−i−1
− xj | and

|x�+1 − xj | > |x1 − xj |, then the correct vote is not stable with random interactions

as t → ∞.

Proof. Let t be sufficiently large. We show that if such a j � i exists then with

random interactions j prefers to vote for c2 which is incorrect. Given everyone

else votes correctly, j does as well if |yj1(t) − xj | < |yj2(t) − xj |. By Proposition

1, y
j
1(t) →

∑i
k=1,k �=j xk

i−1
and y

j
2(t) →

∑n
k=i+1 xk
n−i

as t → ∞. Thus, j votes correctly if

|
∑i

k=1,k �=j xk

i−1
− xj | < |

∑n
k=i+1 xk
n−i

− xj | which is not true by assumption. However, as

|
∑i

k=�,k �=j xk

i−�
− xj | < |

∑n
k=i+1 xk
n−i

− xj | and |x�−1 − xj | > |xn − xj | our assumptions for

Proposition 6 are met for j and thus j votes correctly with homophily for g, p.

Similarly, if the conditions for j > i are met then agent j will vote incorrectly for c1

in a random interactions network, but will vote correctly for c2 with homophily for

g, p.

Proposition 6 shows that it is possible for the correct vote to be stable with

homophily and not stable with random interactions. In Proposition 6, there exists

an agent j who votes incorrectly with random interactions, because in j’s voting

group there are agents j considers “radical” (agents k < � for j � i) who j interacts

with and j prefers not to vote with these agents. However, with homophily j ignores

or interacts less with the agents he considers to be “radicals” in his own group and

j votes correctly with the moderate agents in his own group.

Proposition 6 can also provide intuition for when correct voting is stable with

random interactions. Roughly speaking if only one correct voting group contains

agents some consider radical then correct voting may not be stable with random

interactions. This is illustrated in the following example where only j(= 4)’s correct

voting group contains agents considered radical by j and correct voting is not stable

with random interactions.
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Fig. 3. Each voter’s favorite policy. (color online)

Example 2

In this example we show that correct voting may be stable with homophily, but un-

stable with random interactions. Let n = 7 and let x = {0, 0.1, 0.4, 0.45, 0.51, 0.6, 0.67}.
This data is presented in Figure 3 and shows that agents 1 and 2 are quite different

from agent 4. Assume that if all agents vote correctly then {1, 2, 3, 4} vote for c1

and {5, 6, 7} vote for c2. First we will show that there exists p satisfying homophily

for which correct voting is stable. Let p3 = {0.001, 0.002, 0, 0.985, 0.005, 0.004, 0.003},
p4 = {0.001, 0.002, 0.985, 0, 0.005, 0.004, 0.003}, and p5 = {0.1649, 0.1651, 0.167, 0.169,

0, 0.168, 0.166}. Given these p’s it is straight forward to show that if everyone else

votes correctly then so does i ∈ {3, 4, 5}. For instance, consider agent 4. Agent 4

votes correctly if |y4
1(t) − x4| < |y4

2(t) − x4|. By Proposition 1, y4
1(t) →

∑3
k=1 p4kxk∑3
k=1 p4k

and

y4
2(t) →

∑7
k=5 p4kxk∑7
k=5 p4k

as t → ∞. Plugging in values we get y4
1(t) → 0.399 and y4

2(t) → 0.58.

Thus, 4 votes correctly if |0.399−0.45| < |0.58−0.45| which is always true as t → ∞.

Similarly, 3 and 5 always vote correctly. Using the techniques described in the proof

of Proposition 5 it is easy to find values for p1, p2, p6 and p7 that meet the conditions

of homophily and for which these agents also vote correctly given everyone else

does.

Next we show that voting correctly is not stable with random interactions. Here

we show that given everyone else votes correctly, agent 4 votes for c2 which is

incorrect. Agent 4 votes correctly if |y4
1(t) − x4| < |y4

2(t) − x4|. By Proposition 1,

y4
1(t) → x1+x2+x3

3
and y4

2(t) → x5+x6+x7

3
as t → ∞. Plugging in values y4

1(t) → 0.167

and y4
2(t) → 0.593. So, 4 votes correctly as t → ∞ if |0.167 − 0.45| < |0.593 − 0.45|

which is not true; and so 4 votes incorrectly for c2 as 4 wants to avoid voting with

1 and 2 who are the agents 4 considers to be radical in his own group.

With homophily voters may ignore or give less weight to some information.

This action can encourage correct voting if voters ignore those they consider to

be “radicals” in their own voting group (Proposition 6) but can discourage correct
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voting if they ignore those they consider to be “radicals” in the other voting group

(Proposition 5).

4 Conclusion

There is a body of empirical evidence illustrating that social networks influence

voting decisions. We provide conditions for when voting correctly is a stable

outcome in a line network, random interactions network, and homophily network.

Additionally, conditions are provided under which correct voting is stable in a

homophily network, but not in a random interactions network and vice versa; these

conditions can be interpreted as conditions on the distribution of favorite policies

among voters.

There are a number of possible extensions to the current research. For instance,

our model can be applied to other situations besides voting. Consider the decision of

whether or not to attend college where some agents have the ability and/or drive to

succeed in higher education while others may lack such ability and/or drive. Agents

may decide whether or not to apply to college based on recommendations from

their social network. One could ask for which types of social networks is it more

likely that high ability and/or highly motivated agents choose to apply to college

and for which networks do they choose not to apply. Additionally, our model could

be applied to a decision of religious affiliation. Each person may have a set of

religious beliefs or an absence of religious beliefs and may also be influenced by her

spouse, friends, and social network about whether or not to attend a church and

about which church to attend. Again one could determine for which social network

configurations do people choose a religious institution which most closely matches

their beliefs. Such extensions would be an additional step toward understanding how

social networks influence other types of correct and incorrect decision making.
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A Appendix

Next we examine a variant of the model in which agents give some weight to initial

beliefs. Specifically, the updating rule is changed to the following:

yik(t) = α
(
yik(0)

)
+ (1 − α)

⎛
⎜⎜⎝
yik(t − 1) +

∑
j∈Si

k
(t−1)

pijxj∑
j∈Si

k
(t−1)

pij

2

⎞
⎟⎟⎠ if Si

k(t − 1) �= � and

yik(t) = α
(
yik(0)

)
+ (1 − α)

(
yik(t − 1)

)
if Si

k(t − 1) = �

for 0 � α � 1.

In what follows we give updated versions of the propositions, but not the proofs

as these can easily be derived using the proofs given in the main text. Note that most

of the propositions extend in the obvious way making all propositions dependent

on initial beliefs.

Proposition A1 Let cj(t) = cj(0) for all t � 0 and all j ∈ N, j �= i. If Si
k(0) �= �,

then yik(t) → α(yik(0))+(1−α)(

∑
j∈Si

k
(0)

pijxj∑
j∈Si

k
(0)

pij
) as t → ∞. If Si

k(0) = �, then yik(t) = yik(0)

for all t � 0.

Proposition A2 Let the network be a line network and let |α(yi1(0))+(1−α)(xi−1)−
xi| < |α(yi2(0))+(1−α)(xi+1)−xi| and |α(yi+1

2 (0))+(1−α)(xi+2)−xi+1| < |α(yi+1
1 (0))+

(1 − α)(xi) − xi+1|. Let y
j
2(0) /∈ [xj−1, xj+1] for all 1 < j < i and y

j
1(0) /∈ [xj−1, xj+1]

for all i+1 < j < n and let y1
k (0) /∈ [x1, x2] and ynk (0) /∈ [xn−1, xn]. Let |yj1(0)−xj | <

|yj2(0)−xj | for j � i and let |yj2(0)−xj | < |yj1(0)−xj | for j > i. Then voting correctly

is stable as t → ∞. Furthermore, voting correctly is uniquely stable if i and (i + 1)

are experts and if |α(yj1(0))+(1−α)(xj+1)−xj | < |α(yj2(0))+(1−α)(xj−1)−xj | for all

j ∈ {1, 2, . . . , i− 1} and |α(yj2(0)) + (1 − α)(xj−1) − xj || < |α(yj1(0)) + (1 − α)(xj+1) − xj |
for all j ∈ {i + 2, . . . , n} as t → ∞.

Proposition A3 Let the network exhibit random interactions. Voting correctly is

stable if for all j � i, |α(yj1(0))+(1−α)(
∑i

k=1,k �=j xk

i−1
)−xj | < |α(yj2(0))+(1−α)(

∑n
k=i+1 xk
n−i

)−xj |
and for all j > i, |α(yj2(0))+ (1−α)(

∑n
k=i+1,k �=j xk

n−i−1
)−xj | < |α(yj1(0))+ (1−α)(

∑i
k=1 xk
i

)−xj |
as t → ∞.

Proposition A4 There exists p such that g, p exhibits homophily and such that the

correct vote with homophily is stable as t → ∞ if for all j � i there exists 1 � � � j

such that |α(yj1(0)) + (1 − α)(
∑i

k=�,k �=j xk

i−�
) − xj | < |α(yj2(0)) + (1 − α)(

∑n
k=i+1 xk
n−i

) − xj | and

|x�−1 − xj | > |xn − xj | for � > 1. And for all j � i + 1 there exists j � � � n

such that |α(yj2(0)) + (1 − α)(
∑�

k=i+1,k �=j xk

�−i
) − xj | < |α(yj1(0)) + (1 − α)(

∑i
k=1 xk
i

) − xj | and

|x�+1 − xj | > |x1 − xj | for � < n.

Proposition A5 Let correct voting be stable with random interactions as t → ∞
and assume there exists either a j � i and a 1 � � < n − i such that |α(yj2(0)) + (1 −
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α)(
∑i+�

k=i+1 xk
�

) − xj | < |α(yj1(0)) + (1 − α)(
∑i

k=1,k �=j xk

i−1
) − xj | and |xi+�+1 − xj | > max{|x1 −

xj |, |xi − xj |} or that there exists a j > i and 1 < � � i such that |α(yj1(0)) + (1 −
α)(

∑i
k=� xk

i−�+1
) − xj | < |α(yj2(0)) + (1 − α)(

∑n
k=i+1,k �=j xk

n−i
) − xj | and |x�−j − xj | > max{|xn −

xj |, |xi+1 − xj |}. Then there exists p such that g, p exhibits homophily and such that

the correct vote with homophily is not stable as t → ∞.

Proposition A6 Let g, p exhibit homophily and let the correct vote with homophily

be stable as t → ∞. If there exists a j � i and a 1 < � � j such that |α(yj1(0))+ (1 −
α)(

∑i
k=�,k �=j xk

i−�
)−xj | < |α(yj2(0))+(1−α)(

∑n
k=i+1 xk
n−i

)−xj | < |α(yj1(0))+(1−α)(
∑i

k=1,k �=j xk

i−1
)−xj |

and |x�−1 − xj | > |xn − xj | or if there exists a j > i and a j � � < n such that

|α(yj2(0)) + (1 − α)(
∑�

k=i+1,k �=j xk

�−i
) − xj | < |α(yj1(0)) + (1 − α)(

∑i
k=1 xk
i

) − xj | < |α(yj2(0)) +

(1−α)(
∑n

k=i+1,k �=j xk

n−i−1
)−xj | and |x�+1 −xj | > |x1 −xj |, then the correct vote is not stable

with random interactions as t → ∞.
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