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We consider the popular and well-studied push model, which is used to spread information

in a given network with n vertices. Initially, some vertex owns a rumour and passes it to one

of its neighbours, which is chosen randomly. In each of the succeeding rounds, every vertex

that knows the rumour informs a random neighbour. It has been shown on various network

topologies that this algorithm succeeds in spreading the rumour within O(log n) rounds.

However, many studies are quite coarse and involve huge constants that do not allow for a

direct comparison between different network topologies. In this paper, we analyse the push

model on several important families of graphs, and obtain tight runtime estimates. We first

show that, for any almost-regular graph on n vertices with small spectral expansion, rumour

spreading completes after log2 n + log n + o(log n) rounds with high probability. This is the

first result that exhibits a general graph class for which rumour spreading is essentially as

fast as on complete graphs. Moreover, for the random graph G(n, p) with p = c log n/n, where

c > 1, we determine the runtime of rumour spreading to be log2 n + γ(c) log n with high

probability, where γ(c) = c log(c/(c − 1)). In particular, this shows that the assumption of

almost regularity in our first result is necessary. Finally, for a hypercube on n = 2d vertices,

the runtime is with high probability at least (1 + β) · (log2 n + log n), where β > 0. This

reveals that the push model on hypercubes is slower than on complete graphs, and thus

shows that the assumption of small spectral expansion in our first result is also necessary.

In addition, our results combined with the upper bound of O(log n) for the hypercube
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(see [11]) imply that the push model is faster on hypercubes than on a random graph

G(n, c log n/n), where c is sufficiently close to 1.

2010 Mathematics subject classification: Primary 05C85

Secondary 68Q87, 68W20

1. Introduction

Randomized broadcasting is one of the most important communication primitives in

large networks. A classical and well-studied protocol is the following algorithm, which is

known in the literature as the push model or randomized rumour spreading. Initially, some

rumour is placed on one of the n vertices of a given network G. Then, in succeeding

rounds, every vertex that knows the rumour selects one of its neighbours uniformly at

random, and passes the information to it. The crucial question is: How many rounds are

needed until every vertex becomes informed?

The push model has been studied in many works, and its performance on several

different families of graphs is well understood. In one of the first papers dealing with

this topic, Frieze and Grimmett [15] proved that if the underlying graph is the complete

graph with n vertices, then asymptotically almost surely (a.a.s.) (with probability tending

to 1 as n → ∞) the broadcast is completed within (1 + o(1))(log2 n + log n) rounds, where

log n will denote the natural logarithm. The problem has been subsequently studied on a

number of graph classes, such as hypercubes, bounded-degree graphs, and Erdős–Rényi

random graphs: see, e.g., [11, 21]. In particular, for hypercubes and Erdős–Rényi random

graphs G(n, p) with p = c log n/n, c > 1, a runtime bound of O(log n) was shown in [11].

In [9], the authors proved a lower bound of log2 n + log n − o(log n) which holds for any

regular graph. Neglecting low-order terms, this implies that complete graphs have the

fastest broadcast time among regular graphs.

Most of the existing bounds for the performance of the push model on general graphs

show that a.a.s. the number of rounds needed is O(f(G) polylog(n)), where f(G) is some

graph parameter. In particular, Giakkoupis and Sauerwald [18] showed that f(G) can be

chosen as the inverse vertex expansion of G. Moreover, Giakkoupis [17] and Chierichetti,

Lattanzi and Panconesi [5] proved, among other things, that f(G) � cαφ
−1, where φ is

the conductance of G and cα is a quantity depending on the ratio α of the maximum and

minimum degree (see also [26] for a result for regular graphs). All the above results imply

that if the parameter in question is within reasonable bounds, then we obtain a guaranteed

logarithmic broadcast time. However, almost no work addresses the issue of how exactly

the network topology affects the performance of the push model. In other words, we are

interested in the structural properties that may have a favourable or a disadvantageous

effect on the broadcast time. Resolving such questions is a fundamental issue in network

design, and for practical applications, it is important to study the constants that are

hidden in the O(·)-notation. Unfortunately, many theoretical analyses are rough, so the

constants involved are typically huge.

In this context, a precise analysis of the push model was performed by Fountoulakis,

Huber and Panagiotou [13], who studied the case where G is an Erdős–Rényi random

graph. We will denote by G(n, p) a graph on n vertices that is obtained by including each
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possible edge independently with probability p. Among other results, they showed that if

the average degree is ω(log n), then a.a.s. the broadcast time coincides asymptotically with

the broadcast time on the complete graph. So, the performance of the push model remains

essentially unaffected by the fact that most edges are missing. Moreover, Fountoulakis

and Panagiotou studied in [12] the case where G(n, d) is a random d-regular graph,

where d = O(1), and determined the exact effect of d on the broadcast time.

Our results. In this paper we perform a precise analysis of the push protocol on several

graphs. Our first result addresses the broadcast time of the push model on expander

graphs, which have found numerous applications in computer science and mathematics:

see the survey [19]. The crucial property of an expander graph is that every set of vertices

is connected to the rest of the graph by a large number of edges. Here we focus on

a spectral characterization of such graphs, which is related to the spectral gap of their

adjacency matrices.

Let G be a connected graph with n vertices that has minimum degree equal to δ and

maximum degree equal to Δ. Let λ1 � λ2 � · · · � λn be the eigenvalues of the adjacency

matrix of G, and set λ = max2�i�n |λi|. We will say that G is an (n, δ,Δ, λ)-graph. Our

statements about G should be interpreted in the context of a sequence of graphs indexed

by n, where Δ, δ and λ are functions of n. We are interested in asymptotic results as n

tends to infinity. Our main result about expander graphs states that the broadcast time

of the push model is asymptotically the same as on the complete graph. In other words,

expander graphs belong to the same “universality class” with respect to the performance

of the push model. Henceforth we will let T (G) denote the (random) broadcast time if

the underlying graph is G, and the rumour is placed initially on the vertex with label 1

(or equivalently, the rumour is placed on a vertex chosen uniformly at random).

Theorem 1.1. Let G be an (n, δ,Δ, λ)-graph, where Δ/δ = 1 + o(1) and λ = o(Δ), as n → ∞.

Then, a.a.s.

|T (G) − (log2 n + log n)| = o(log n).

Note that the above theorem, together with some well-known facts about random

graphs (see [16, 27]), also implies (up to the magnitude of the error term) the main result

in [13], where the same bounds on the broadcast time were shown for the special case

that G = G(n, p) and p = ω(log n/n). Moreover, Theorem 1.1 also applies to random d-

regular graphs, where d can be any increasing function of n such that d = o(
√
n), as for

this range of d, λ = O(
√
d) was shown in Broder, Frieze, Suen and Upfal [4].

We now demonstrate that the two conditions in Theorem 1.1 are best possible in the

sense that if we replace any of two o(.) terms in the statement by O(.), then there are

graphs that do not satisfy the conclusion. For instance, consider a random d-regular graph

with constant d. It trivially satisfies the first condition, but satisfies only λ � 3
√
d [4]. Since

G is a constant-degree, regular graph, it follows by Theorem 1 and Lemma 1 of [9] that

T (G(n, d)) = log2 n + log n + Ω(log n), a.a.s. Let us now address the condition on Δ/δ. It

is well known ([16, 27]; see Lemmas A.1 and 3.2) that a random graph G(n, p) with

https://doi.org/10.1017/S0963548314000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000194


460 K. Panagiotou, X. Pérez-Giménez, T. Sauerwald and H. Sun

Table 1. Overview of the previous and our new results concerning the push model

Graph Asymptotic broadcast time Reference

complete graph log2 n + log n [15]

G(n, p), p = ω(log n)/n log2 n + log n [13]

G(n, d), d = O(1) log2(1−1/d) n + log(1−1/d)−d n [12]

d-reg. graph, λ = O(
√
d), d = ω(

√
n) log2 n + log n [12]

hypercube O(log n) [11]

G(n, p), p = c log n/n, c > 1 log2 n + γ(c) log n, γ(c) > 1 Theorem 1.2

G(n, d), d = ω(1) log2 n + log n Theorem 1.1

graph with Δ/δ = 1 + o(1), λ = o(Δ) log2 n + log n Theorem 1.1

hypercube log2 n + log n + Ω(log n) Theorem 1.3

p = (c log n)/n for c > 1 satisfies λ = o(Δ) and Δ/δ = Θ(1). However, the next theorem

implies that T (G(n, p)) = log2 n + log n + Ω(log n) a.a.s.

Theorem 1.2. Let c > 1 be any constant and p = (c log n)/n. Set γ(c) = c log(c/(c − 1)) >

1. Then, a.a.s.

|T (G(n, p)) − (log2 n + γ(c) log n)| = o(log n).

Moreover, this result settles an important question that was left open by the previous

results by extending the analysis of the performance of the push model to sparser random

graphs with p = (c log n)/n for a constant c > 1 (see [11, 13] and Table 1). In particular, it

shows that the broadcast time for a constant c > 1 is larger than for c = ω(1). Moreover,

if c < 1, then G(n, p) is a.a.s. not connected: see, e.g., [20]. So, a complete broadcast is not

possible in this case. Observe that γ(c) → 1 when c → ∞, which nicely matches the result

of Theorem 1.1. On the other hand, γ(c) → ∞ when c → 1.

Our final result addresses the performance of the push model on hypercubes, which

constitute popular topologies for the analysis of algorithms in distributed systems. We

show that the push model on the hypercube is slower than on the complete graph, but

faster than on a random graph G(n, p) with p = c log n/n where c is sufficiently close to 1.

In other words, the regular degree distribution of the hypercube seems to be of more help

for rumour spreading than the higher expansion of a random graph. Interestingly, our

analysis reveals that on random graphs, the number of informed vertices nearly doubles in

each round, as long as their number is o(n). In contrast to that, the growth is significantly

smaller on the hypercube for the same range. However, to inform the remaining vertices,

the random graph suffers from its heterogeneous structure, that is, there are too many

vertices of small degree that are connected to higher-degree vertices.

Theorem 1.3. Let Hn be a hypercube with n vertices, where n is a power of 2. Then there

is a constant β > 0 such that a.a.s. T (Hn) � (1 + β) · (log2 n + log n).

Our results, together with some earlier bounds, are summarized in Table 1.
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Techniques and methods. One of the most fundamental results in spectral graph theory

is the famous expander mixing lemma: see [1]. Let G be an n-vertex d-regular graph such

that the adjacency matrix has eigenvalues λ1 � λ2 � · · · � λn. Then, roughly speaking,

the expander mixing lemma guarantees that the number of edges between any two

subsets of the vertices is close to what one would expect in a random d-regular graph,

if λ = max2�i�n |λi| is not too large. Unfortunately, we cannot apply this lemma directly

to support us in the proof of Theorem 1.1, as the relevant graphs are only close to

being regular. In order to overcome this limitation, we prove in Section 2 a general

statement, which provides similarly sharp bounds for almost regular graphs. Based on

this, we perform a tight analysis of the push model by separating the evolution of the set

of informed vertices into phases, and controlling the growth in each phase individually.

In Section 3 we prove Theorem 1.2. The proof is based mainly on techniques from

the theory of random graphs, which allow us to prove various facts about the degree

sequence and the distribution of the edges in certain structures. The most challenging

aspect in this proof is that G(n, p), for the range of parameters considered here, is quite

far from being a regular graph. This introduces a significant bias in the actual evolution

of the set of informed vertices. However, also in this case it is possible to perform a tight

analysis of the push model, by using our knowledge of the degree sequence and from the

fact that a.a.s. all vertices have the property that most of their neighbours have degree

close to average. We hope that similar methods might be useful for studying randomized

broadcasting on other classes of random graphs with stronger fluctuations in their degree

sequences.

Finally, a further important ingredient in our proofs is a general-purpose technique

that we use for obtaining lower bounds for the broadcast time in terms of random walks.

While the relation between random walks and rumour spreading has been studied before

(e.g., [3, 10, 26]), all the obtained relations are of asymptotic nature. Our new approach

establishes a direct link between rumour spreading and the transition probabilities of

random walks, which is described in more detail in Section 4. Theorem 1.3 is a consequence

of this general principle.

Notation. In order to avoid ambiguities we will introduce some notation that will be used

throughout the paper. Let G = (V , E) be a graph, v a vertex of G, and U,W two subsets of

its vertices. We will write NG(v) for the set of neighbours of v in G, and degG(v) = |NG(v)|
for its degree. For any vertex set S , let N(S) = ∪v∈SN(v). Moreover, we will write EG(U,W )

for the set of edges with one endpoint in U and one in W , and eG(U,W ) = |EG(U,W )|.
We will abbreviate EG(U,U) = EG(U). Finally, we will omit the subscript if the graph in

question is clear from the context. For any round t, we denote by It the set of informed

vertices at the end of round t. Similarly, Ut := V \ It is the set of uninformed vertices.

Recall that log x denotes the logarithm of x to the base e.

2. Rumour spreading on expander graphs

Throughout this section, let d = 2|E|/n be the average degree of G. Our main goal here

is to prove Theorem 1.1.
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2.1. Expansion lemmas

The first ingredient in our proofs addresses the structure of regular graphs. The following

statement is a strengthened version of the famous expander mixing lemma, where in

comparison to the bound below, the factors (1 − |U|/n)(1 − |W |/n) do not occur.

Lemma 2.1 ([22, Theorem 2.11]). Let G = (V , E) be an (n, d, d, λ)-graph. Then for any

two subsets U,W ⊆ V , we have

∣∣∣∣e(U,W ) − d|U||W |
n

∣∣∣∣ � λ

√
|U||W |

(
1 − |U|

n

)(
1 − |W |

n

)
.

Remark. An inspection of the proof of Theorem 2.11 in [22] shows that the statement

continues to hold for graphs (possibly with loops) that correspond to adjacency matrices

A where each row sum equals d, but the diagonal elements Ai,i can be any non-negative

integer, provided that the sets U and W are disjoint.

Let us now turn our attention to non-regular graphs.

Lemma 2.2 ([22]). Let G = (V , E) be any graph with average degree d and spectral ex-

pansion λ < d. Then, for any subsets U,W ⊆ V we have∣∣∣∣e(U,W ) − d|U||W |
n

∣∣∣∣ � λ
√

|U||W |.

We prove the following generalization of Lemma 2.1 to almost regular graphs.

Lemma 2.3. Let G = (V , E) be an (n, δ,Δ, λ)-graph. Then, for any two disjoint subsets

U,W ⊆ V , we have

∣∣∣∣e(U,W ) − Δ|U||W |
n

∣∣∣∣ � (λ + (Δ − δ))

√
|U||W |

(
1 − |U|

n

)(
1 − |W |

n

)
.

Proof. Define a matrix B := A + D, where D is the diagonal matrix defined by Di,i = Δ −
deg(i), and A is the adjacency matrix of G. The eigenvalues of D are ε1 � ε2 � · · · � εn. The

matrix B is an integer-valued, symmetric matrix with eigenvalues Δ = β1 � β2 � · · · � βn.

This allows us to apply Lemma A.2, which yields λ2 � β2 � λ2 + ε1 and λn � βn � λn + ε1

(as all eigenvalues of D are positive). Therefore, with β := max2�i�n |βi|, we have

β = max{|β2|, |βn|}
� max{|λ2| + |β2 − λ2|, |λn| + |βn − λn|}
� max{|λ2|, |λn|} + ε1 � λ + (Δ − δ).
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Since every row (and column) sum of B equals Δ, we can apply Lemma 2.1 to the graph

induced by the matrix B to conclude that

∣∣∣∣eB(U,W ) − Δ|U||W |
n

∣∣∣∣ � β

√
|U||W |

(
1 − |U|

n

)(
1 − |W |

n

)

� (λ + (Δ − δ))

√
|U||W |

(
1 − |U|

n

)(
1 − |W |

n

)
.

As U and W are disjoint, we have eB(U,W ) = e(U,W ), which proves the claim.

Corollary 2.4. Let G = (V , E) be an (n, δ,Δ, λ)-graph satisfying the preconditions of The-

orem 1.1. Then, for any subset U ⊆ V of size 1 � |U| � n/2, it holds that∣∣∣∣e(U,V \ U) − Δ|U|(n − |U|)
n

∣∣∣∣ = o(Δ) · |U|, (2.1)

2.2. Analysis of the algorithm (upper bound)

Lemma 2.5. Let G be a graph that satisfies the preconditions of Theorem 1.1. Then all the

following statements are a.a.s. true.

(I) Suppose 1 � |It| � n/ log n. Then there exists τ = log2 n + o(log n) such that |It+τ| >
n/ log n.

(II) Suppose n/ log n � |It| � n − n/ log n. Then there exists τ = o(log n) such that |It+τ| >
n − n/ log n.

(III) Suppose |It| � n − n/ log n. Then there exists τ = log n + o(log n) such that |It+τ| = n.

Proof. (I) |It| ∈ [1, n/ log n]. By Corollary 2.4, we know that

e(It, V \ It) � Δ|It|(n − |It|)
n

− o(Δ)|It| �
(

1 − 1

log n
− o(1)

)
Δ|It|. (2.2)

Define

λ̃ :=
λ

d
+

1

log n
.

Let

A = {v ∈ N(It) \ It : |N(v) ∩ It| � 2d
√

λ̃}.

Then, by definition of A,

e(A, It) � |A| · 2d
√

λ̃.

By Lemma 2.2, we have

e(A, It) � d|A||It|
n

+ λ
√

|A||It| <
d|A||It|

n
+ dλ̃

√
|A||It|.
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Thus

|A| · 2d
√

λ̃ <
d|A||It|

n
+ dλ̃

√
|A||It| ⇐⇒ 2

√
λ̃ − |It|

n
< λ̃

√
|It|
|A| ,

which implies that

|A| < λ̃2 · |It| ·
(

n

2n
√
λ̃ − |It|

)2

� λ̃2 · |It| ·
(

n

2n
√
λ̃ − n/ log n

)2

� λ̃2 · |It| ·
(

1

2
√
λ̃ − 1/ log n

)2

< λ̃ · |It|.

Define B = (N(It) \ It) \ A. Using (2.2), we can bound e(It, B) by

e(It, B) = e(It, V \ It) − e(It, A)

� (1 − o(1))Δ|It| − d|A||It|
n

− dλ̃
√

|A||It|

� (1 − o(1))Δ|It| − d

(
λ

d
+

1

log n

)
|It|

� (1 − o(1))Δ|It|.

With the above estimate at hand, we compute the expected value of |It+1 ∩ B|. Note that

for any v ∈ B, the probability that it gets informed is at least

1 −
∏

u∈N(v)∩It

(
1 − 1

Δ

)
.

We have

E[|It+1 ∩ B|] �
∑
v∈B

[
1 −

∏
u∈N(v)∩It

(
1 − 1

Δ

)]
=

∑
v∈B

1 −
(

1 − 1

Δ

)|N(v)∩It|
.

Using the inequality that (1 − x)n � 1 − nx + n2x2, we get

E[|It+1 ∩ B|] �
∑
v∈B

1 −
(

1 − |N(v) ∩ It|
Δ

+
|N(v) ∩ It|2

Δ2

)

=
∑
v∈B

|N(v) ∩ It|
Δ

(
1 − |N(v) ∩ It|

Δ

)
�

(
1 − 2d

√
λ̃

Δ

)
e(It, B)

Δ
.

Since the last expression is at least(
1 − 2d

√
λ̃

Δ

)
e(It, B)

Δ
� (1 − o(1))(1 − o(1))|It| = (1 − o(1))|It|,

we obtain

E[|It+1 \ It|] � E[|It+1 ∩ B|] � (1 − o(1))|It|.
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Since |It+1 \ It| � |It|, it follows by using Markov’s inequality (applied to |It| − |It+1 \ It|)
that

P[|It+1| � (2 − f(n))|It|] � 1 − g(n),

where f(n) and g(n) are both functions that tend to zero. Hence the time to reach

|It| � n/ log n can be upper-bounded by the sum of log2−f(n) n independent, identically

distributed geometric random variables with expectation at most 1 + o(1) each. Using

the Chernoff bound from Theorem A.4 yields for τ := log2 n + o(log n) that P[|It+τ| >
n/ log n] = 1 − o(1).

(II) |It| ∈ [n/ log n, n − n/ log n]. We further divide this phase into the two cases

|It| ∈ [n/ log n, n/2] and |It| ∈ [n/2, n − n/ log n].

We start with the first case, |It| ∈ [n/ log n, n/2]. By Lemma 2.3, we have

e(It, V \ It) � Δ|It||V \ It|
n

− (λ + Δ − δ) · |It||V \ It|
n

� 1

2
(δ − λ)|It| >

1

4
δ|It|,

where in the last inequality we used the assumptions that λ = o(Δ) and Δ/δ = 1 + o(1).

Similar to the analysis of phase (I), we can lower-bound the expected number of vertices

that become informed in round t + 1:

E[|It+1 \ It|] �
∑

u∈N(It)\It

[
1 −

∏
v∈N(u)∩It

(
1 − 1

Δ

)]
�

∑
u∈N(It)\It

1 − e−|N(u)∩It|/Δ

�
∑

u∈N(It)\It

|N(u) ∩ It|
2Δ

=
e(It, V \ It)

2Δ
� δ

8Δ
|It|,

where the third inequality used the fact that e−x � 1 − x/2 for any x ∈ (0, 1).

Since |It+1| � 2|It|, we obtain as long as |It| � n/2 that there are constants α, β > 0 so

that P[|It+1| � (1 + α)|It|] � β. Hence the time to reach |It| � n/2 can be upper-bounded by

the sum of log1+α(log n) independent, identically distributed geometric random variables

with expectation at most 1/β each. Using a Chernoff bound for the sum of geometric

random variables (see Theorem A.4) yields that with probability 1 − o(1), we reach

|It| � n/2 within at most o(log n) additional rounds.

Consider now the case |It| ∈ [n/2, n − n/ log n]. To analyse this case, we examine the

shrinking of Ut := V \ It. Again, as |Ut| � n/2, by Lemma 2.3 we have

e(Ut, It) >
1

4
δ|Ut|.
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Let us now compute the expected number of uninformed vertices after one additional

round:

E[|Ut+1|] =
∑
u∈Ut

∏
v∈N(u)∩It

(
1 − 1

deg(v)

)
�

∑
u∈Ut

e−|N(u)∩It|/Δ

�
∑
u∈Ut

1 − |N(u) ∩ It|
2Δ

� |Ut| − δ

8Δ
|Ut| =

(
1 − δ

8Δ

)
|Ut|.

A simple inductive argument yields for any integer τ � 1 that

E[|Ut+τ|] �
(

1 − δ

8Δ

)τ

|Ut|,

so for

τ := 2 log log n/ log

(
1/

(
1 − δ

8Δ

))
= o(log n)

we have

E[|Ut+τ|] � |Ut|/ log2 n = o(n/ log n).

Hence, by Markov’s inequality, P[|Ut+τ| � n/ log n] = o(1).

(III) |It| ∈ [n − n/ log n, n]. Again, we analyse the shrinking of the set Ut. Recall from

(2.2) that e(It, Ut) � (1 − f(n)) · Δ · |Ut|, where f(n) is any function with f(n) = o(1). Let

A ⊆ Ut be the set of vertices v ∈ Ut for which |N(v) ∩ It| � (1 −
√
f(n)/2) · Δ. We assume

for a contradiction that |A| > 2
√
f(n) · |Ut| and conclude

e(It, Ut) =
∑
v∈A

|N(v) ∩ It| +
∑

v∈Ut\A

|N(v) ∩ It|

� |A| · (1 −
√
f(n)/2) · Δ + |Ut \ A| · Δ

= |Ut| · Δ − |A| ·
√

f(n) · Δ/2

< (1 − f(n)) · Δ · |Ut|,

which yields the desired contradiction. Now define B := Ut \ A so that for each u ∈ B,

|N(v) ∩ It| > (1 −
√
f(n)/2) · Δ and |B| � (1 − 2

√
f(n)) · |Ut|.

Using linearity of expectations,

E[|Ut+1|] �
∑
v∈B

P[v /∈ It+1] +
∑
v∈A

P[v /∈ It+1]

�
∑
v∈B

(
1 − 1

Δ

)|N(v)∩It|
+

∑
v∈A

1

Using the inequality (1 − 1/Δ) � e−1/Δ, we get

E[|Ut+1|] �
∑
v∈B

e−|N(v)∩It|/Δ + |A|

<
(
e−1 · e

√
f(n)/2

)
· |B| + 2

√
f(n) · |Ut|
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�
(
e−1 ·

(
1 + e

√
f(n)/2

))
· |B| + 2

√
f(n) · |Ut|

�
(
e−1 + 3

√
f(n)

)
· |Ut|,

where the third inequality used the fact that ex � 1 + e · x for any x ∈ [0, 1]. By induction,

it follows that for any round τ > t,

E[|Uτ|] �
(
e−1 + 3

√
f(n)

)τ−t · |Ut|.

We choose

τ := t + loge−1+3
√
f(n)(n) = t + log n + o(log n)

and obtain that

E[|Ut+τ|] � 1

n
· |Ut|.

Since by assumption |Ut| � n/ log n, this implies E[|Ut+τ|] � 1/ log n, so that

P[|Ut+τ| � 1] � E[|Ut+τ|] � 1/ log n.

2.3. Analysis of the algorithm (lower bound)

We first note that if the graph G is regular, then the lower bound follows directly from

Theorem 1 and Lemma 1 of [9]. If the graph G is not regular, then it must hold that

δ = ω(1). For the proof of the lower bound, observe that after t := log2 n − 1 rounds we

have |It| � n/2. For a lower bound on the running time of the algorithm, we may assume

that each vertex u ∈ Ut may get the rumour from any of its neighbours at any time. So we

can forget about who actually knows the rumour but consider the model in which at each

round each vertex in V picks a neighbour. We want a lower bound on the probability

that some vertex in Ut never gets selected in

τ := (log n − h(n)) · δ − 3/4

Δ
= log n − o(log n)

rounds, where h(n) is any slow growing function satisfying h(n) = o(log n) and h(n) = ω(1).

For each u ∈ Ut, let Eu denote the event that u is never selected within those rounds. We

compute

P[Eu] =
∏

v∈N(u)

(
1 − 1

|N(v)|

)τ

�
(

1 − 1

δ

)Δτ

� eΔτ/(δ−3/4) = e− log n+ω(1),

where we used the fact that (1 − 1/x)x−3/4 � e−1 for any x � 2. Summing over all vertices

in Ut, we obtain ∑
u∈Ut

P[Eu] � n/2 · e− log n+ω(1) → ∞.

By construction, the events {Eu : u ∈ Ut} are negatively correlated in the sense that, for

any set of different vertices u, u1, · · · , uk ∈ Ut, we have that P[Eu | Eu1
∧ · · · ∧ Euk ] � P[Eu].
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Therefore,

P

[ ∧
u∈Ut

Eu

]
�

∏
u∈Ut

P[Eu] � e−
∑

u∈Ut
P[Eu] = o(1).

To conclude, we have shown that P[T (G) � log2 n + log n − o(log n)] � 1 − o(1). This

lower bound together with the upper bound obtained in Lemma 2.5 immediately yields

Theorem 1.1.

3. Rumour spreading on G(n, p)

In this section we analyse the push protocol on the classical Erdős–Rényi random

graphs, and prove Theorem 1.2. We let G(n, p) denote the random graph on vertex set

V = {1, . . . , n} where each edge is selected independently with probability p. Throughout

this section, we will write f(n) ∼ g(n) if limn→∞ f(n)/g(n) = 1.

3.1. Properties of G(n, p)

In this subsection we collect some basic facts about G(n, p), which will be useful in

the forthcoming proofs. We begin by computing tight bounds for the degree sequence

of G(n, p), where p = Θ(log n/n). The next two lemmas provide us with the required

information.

Lemma 3.1. Let x1 > x0 > 0 and c > 1 be constants, and let p ∼ c log n/n. Fix V ′ ⊆ V

with |V ′| = n − o(n) (where V ′ = V is allowed ). Let Ni be the number of vertices in V ′

with degree i in G(n, p). Then, uniformly for all i ∈ [x0 log n, x1 log n] we have that E[Ni] =

ng(i/ log n)±o(1), where g(x) = x(1 + log(c/x)) − c + 1. Moreover, the variance satisfies

V[Ni] � o(E[Ni]
2) + E[Ni].

Proof. The degree deg(v) of any given vertex v ∈ V ′ is distributed as Bin(n − 1, p). Then,

Stirling’s formula implies that

E[Ni] = |V ′|P[deg(v) = i]

= (n − o(n))

(
n − 1

i

)
pi(1 − p)n−1−i

= n1−o(1)

(
en

i

)i

pi(1 − p)n−1−i.

Hence, writing x = i/ log n, we get

E[Ni] = n1−o(1)

(
ec ± o(1)

x

)i

e−pn±o(1) = nlog((ec/x)x)−c+1±o(1) = ng(x)±o(1).

Next, we estimate the probability that two different vertices v and w in V ′ have the same

degree i. To compute that, we take into account whether or not v and w share a common

edge, which occurs with probability p, and then rearrange the expression obtained in
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terms of P[deg(v) = i]:

P[deg(v) = i ∩ deg(w) = i]

= p

(
n − 2

i − 1

)2

p2i−2(1 − p)2n−2−2i + (1 − p)

(
n − 2

i

)2

p2i(1 − p)2n−4−2i

=

(
i2

p(n − 1)2
+

(n − 1 − i)2

(1 − p)(n − 1)2

)
(P[deg(v) = i])2 ∼ (P[deg(v) = i])2.

Finally, we have

V[Ni] = |V ′|P[deg(v) = i] + |V ′|(|V ′| − 1)P[deg(v) = i ∩ deg(w) = i] − E[Ni]
2

= E[Ni] + (1 ± o(1))E[Ni]
2 − E[Ni]

2

� o(E[Ni]
2) + E[Ni].

Lemma 3.2. Let c > 1 be any constant and p = c log n/n. Let δ and Δ be the minimum and

maximum degrees of G(n, p). Then there exist constants c0, c1 with 0 < c0 < c − 1 < c < c1

such that a.a.s.

(1 − o(1))c0 log n � δ � Δ � (1 + o(1))c1 log n.

Proof. Define

c0 = − c − 1

W0(−e−1(c − 1)/c)
and c1 = − c − 1

W1(−e−1(c − 1)/c)
,

where W0 and W1 are respectively the lower and upper branch of the Lambert W function

on [−e−1, 0] (recall that each branch of the Lambert W function satisfies W (y)eW (y) = y).

Let g(x) be defined as in the statement of Lemma 3.1. By direct substitution and easy

computations, we can check that g(c0) = g(c1) = 0, g(c − 1) > 0 and g(c) > 0. Moreover,

by looking at the derivative g′(x) = log(c/x) we see that g(x) is increasing in (0, c) and

decreasing in (c,∞). Thus we can conclude that the only positive solutions of g(x) = 0 are

precisely x = c0 and x = c1, and moreover 0 < c0 < c − 1 < c < c1.

Given any constant ε > 0, for each vertex v we have

P[deg(v) � (c0 − ε) log n] =

�(c0−ε) log n�∑
j=0

(
n − 1

j

)
pj(1 − p)n−1−j

= O(P[deg(v) = �(c0 − ε) log n�]),

since the ratio between any two consecutive terms in the above sum is at most c0/c < 1.

Similarly,

P[deg(v) � (c1 + ε) log n] =

n−1∑
j=�(c1+ε) log n�

(
n − 1

j

)
pj(1 − p)n−1−j

= O(P[deg(v) = �(c1 + ε) log n�]),
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since the corresponding ratio is at least c1/c > 1. In view of these facts and by Lemma 3.1,

the expected number of vertices of degree at most (c0 − ε) log n is

O
(
n · P[deg(v) = �(c0 − ε) log n�]

)
= ng(c0−ε)±o(1) = o(1),

since g(c0 − ε) < 0. A totally analogous argument shows that the expected number of

vertices of degree at least (c1 + ε) log n is o(1). Since the choice of ε was arbitrary, we

conclude that the required bounds on δ and Δ hold a.a.s.

We will also use the following property of G(n, p), which essentially says that the

neighbourhood of all vertices contains many vertices with actual degree close to the

expected degree.

Lemma 3.3. Let c > 1 be any constant and p = c log n/n. For each vertex u in G(n, p),

define

Ñ(u) = {v ∈ N(u) : ||N(v)| − pn| � log3/4 n}. (3.1)

Then, a.a.s. for every vertex u we have |N(u) \ Ñ(u)| � log3/4 n.

Proof. In view of Lemma 3.2, there is a constant x1 > c such that a.a.s. Δ � x1 log n.

We call this event E, and restrict our analysis to that case. Let us fix a vertex u ∈ V . Put

N = N(u) and N ′ = N(u) \ Ñ(u). To prove the lemma, it suffices to show that P
[
(|N ′| >

log3/4 n) ∩ E
]

= o(1/n), and then apply a union bound over all the vertices u ∈ V .

First, we expose the neighbours of u, and condition upon the particular N obtained.

We use a subscript star to denote probabilities in the conditional space. We assume that

|N| � x1 log n (as implied by event E). Then we expose all internal edges in N, and let

X be the number of them. Since there are at most |N|4 � (x1 log n)4 possible pairs of

internal edges, we have that

P∗[X � 2] � (x1 log n)4p2 = n−2+o(1). (3.2)

Next we expose the edge set E(N,V0), where V0 = V \ (N ∪ {u}). For each v ∈ N, consider

the number Xv = |N(v) ∩ V0| of neighbours of v which lie in V0. Note that each Xv

is distributed as Bin(|V0|, p), so a version of the Chernoff bounds (see, e.g., Alon and

Spencer [2, Theorems A.1.11 and A.1.13]) yields

P∗
[
|Xv − pn| > log3/4 n − 2

]
= e−Ω(log1/2 n).

Let B be the event that there are more than log3/4 n vertices v ∈ N for which |Xv − pn| >
log3/4 n − 2 holds. Note that by definition, the random variables {Xv : v ∈ N(u)} are

mutually independent. Hence,

P∗[B] � |N|
( |N|

�log3/4 n�

)
exp

(
−Ω(log1/2 n)�log3/4 n�

)
= e−Ω(log5/4 n). (3.3)

Since the bounds in (3.2) and (3.3) hold uniformly for all N satisfying |N| � x1 log n, we

deduce that

P
[
((X � 2) ∪ B) ∩ (|N| � x1 log n)

]
� n−2+o(1) = o(1/n).
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Note that if X < 2 then Xv � deg(v) � Xv + 1 for each v ∈ N. We conclude the proof by

observing that the event (|N ′| > log3/4 n) ∩ E implies ((X � 2) ∪ B) ∩ (|N| � x1 log n) by

construction, and thus we get the desired bound P
[
(|N ′| > log3/4 n) ∩ E

]
= o(1/n).

The lemma below bounds the number of edges contained in small subsets of the

vertices. The first statement follows immediately from Lemma 5.3 in [7], while the second

statement is from [6, Property 3].

Lemma 3.4. Let c > 1 be any constant and p = c log n/n. A.a.s. for every subset S ⊆ V of

G(n, p) of size |S | = O(n/ log n) we have that e(S) = o(|S | log n). Moreover, for any set S

with 1 � |S | � n/2, e(S, V \ S) = Ω(|S |np).

Finally, we include a lemma that addresses the typical structure of the neighbourhoods

of small sets.

Lemma 3.5. Let c > 1 be any constant and p = c log n/n. There is a function f(n) = o(1)

such that the following is a.a.s. true. For every set S of vertices of G(n, p) such that |S | �
n/log n, there are at most f(n)|S | vertices outside of S that have more than f(n) log n

neighbours in S .

Proof. We will show the claim for f(n) = (log log n)−1/3. Let H be a fixed subset of the

vertex set of G(n, p), and let v ∈ V \ H . Then, if |H | � n/log n,

P[|N(v) ∩ H | � f(n) log n] �
(

|H |
�f(n) log n�

)
p�f(n) log n�

�
(

en

f(n) log2 n
· c log n

n

)�f(n) log n�
= n−Ω((log log n)2/3).

Hence, the probability that there are at least f(n)s vertices v in V \ H with |N(v) ∩ H | �
f(n) log n (i.e., set H contradicts the claim in the statement) is at most

nf(n)s · n−Ω((log log n)2/3)·f(n)s = n−Ω((log log n)2/3)·f(n)s.

By linearity of expectation, the expected number of subsets of G(n, p) with 1 � s � n/log n

vertices having the property above is at most

nsn−Ω((log log n)2/3)·f(n)s = o(1/n),

and the proof is completed by summing for all s and applying Markov’s inequality.

3.2. Analysis of the algorithm

We first analyse the evolution of It as long as 1 � |It| � n − n/ log2 n. The following lemma

proves that as long as |It| is not too large, |It| almost doubles in each round.

Lemma 3.6. Let c > 1 be any constant and set p = c log n/n. Then there is some t =

log2 n + o(log n) such that we have a.a.s. that |It| � n − n/ log2 n.
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Proof. Before we proceed with the actual proof, let us recall some basic properties of

G(n, p). First, by applying Lemma 3.2 we infer that there are constants 0 < c0 < c1 such

that a.a.s. the minimum degree δ of Gn,p satisfies δ = (1 − o(1))c0 log n and the maximum

degree satisfies Δ = (1 + o(1))c1 log n. Moreover, let f(n) = o(1) be the function guaranteed

to exist by Lemma 3.5. Set

A := {v ∈ N(It) \ It : |N(v) ∩ It| � f(n) log n}.

Then, a.a.s. we may assume that |A| � f(n)|It|.
Let us first consider the case where 1 � |It| � n/ log n. By applying Lemma 3.4 we infer

that a.a.s. the set It spans o(|It| log n) edges, that is, e(It) = o(|It| log n). From now on we

will assume that G(n, p) has all these properties without further reference.

Let B := (N(It) \ It) \ A. Define for any vertex u ∈ It an indicator random variable Xu,

which is one if u sends the rumour to a vertex v ∈ B and no other vertex sends a rumour

to v. We have

P[Xu = 1] =
∑
v∈B

P[u is the only vertex that informs v]

�
∑

v∈B∩N(u)

1

deg(u)
·
(

1 − 1

δ

)f(n) log n

= (1 − o(1))
|N(u) ∩ B|

deg(u)
.

Let X :=
∑

u∈It Xu. By linearity of expectation,

E[X] =
∑
u∈It

E[Xu] � (1 − o(1)) ·
∑
u∈It

deg(u) − |N(u) ∩ It| − |N(u) ∩ A|
deg(u)

� (1 − o(1))

(
|It| − 1

δ

∑
u∈It

|N(u) ∩ It| − 1

δ

∑
u∈It

|N(u) ∩ A|
)
.

Note that
∑

u∈It |N(u) ∩ It| = 2e(It) = o(|It| log n). Moreover, a simple double-counting

argument implies
∑

u∈It |N(u) ∩ A| � |A|Δ. As |A| � f(n)|It| and δ,Δ = Θ(log n) we infer

that E[X] � (1 − o(1))|It|, and we infer that E[|It+1| | |It| � n/ log n] � (2 − o(1)) · |It|. As

in Lemma 2.5, we can prove that for t = log2 n + o(log n) a.a.s. |It| � n/ log n.

Now consider the case where n/ log n � |It| � n − n/ log2 n. We can do exactly the same

analysis as in Lemma 2.5 and use the fact that the ratio Δ/δ is a constant. Here, the

second statement of Lemma 3.4 provides a sufficiently large lower bound on the expansion.

Therefore, after τ := O(log log n) additional rounds a.a.s. |It+τ| � n − n/ log2 n.

The next proposition analyses the last stages of the rumour spreading algorithm when

|It| is large. Its conclusion, combined with Lemma 3.6, provides us with an upper bound

on the broadcast time for G(n, p).

Proposition 3.7 (upper bound). Let ε > 0, c > 1 be any constants, and p = c log n/n. Let

t be such that |It| � n − n/ log2 n. Then, all the remaining vertices will a.a.s. get informed

within additional �(γ + ε) log n� rounds, where

γ = γ(c) = c log

(
c

c − 1

)
.
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Proof. Recall from Lemma 3.2 that there exist constants x1 > x0 > 0 such that a.a.s.

x0 log n < δ � Δ < x1 log n. Call this event E1. Let Vi denote the set of vertices of degree i.

By Markov’s inequality, the event |Vi| � log2 nE[|Vi|] has probability at most 1/ log2 n.

Therefore, we can apply a union bound and also Lemma 3.1 to deduce that a.a.s. all

degrees i ∈ [x0 log n, x1 log n] satisfy |Vi| < log2 nE[|Vi|] � ng(i/ log n)+o(1). Call this event E2.

Let E3 be the event that |N(u) \ Ñ(u)| � log3/4 n for every vertex u, where Ñ(u) is defined

as in (3.1). By Lemma 3.3, E3 holds a.a.s.

Let us write I = It and U = Ut for simplicity, and note that the internal edges of U

were not exposed during the rumour spreading, so each one still occurs independently

with probability p. For any vertex u in U, using the inequality
(
m
k

)
� (em/k)k , we obtain

P

[
|N(u) ∩ U| � log n

log log n

]
�

( |U|
� log n

log log n
�

)
p� log n

log log n � �
(

ec log log n

log2 n

) log n
log log n

� n−2+o(1).

Thus taking the union bound over all vertices in U, we obtain that a.a.s. each vertex in U

has at most log n/ log log n neighbours in U. Call this event E4.

Henceforth, assume that E1, E2, E3 and E4 hold together. We can partition U into the

sets Ui = U ∩ Vi, for i ∈ [x0 log n, x1 log n], which must satisfy |Ui| � |Vi| � ng(i/ log n)+o(1)

(since E1 and E2 hold). Pick an i in that range and a vertex u ∈ Ui. Set x = i/ log n.

Define N1 = Ñ(u) ∩ I and N2 = (N(u) \ Ñ(u)) ∩ I , and observe that events E3 and E4

imply |N1| ∼ i = x log n and |N2| = o(log n). We can upper-bound the probability that u

does not receive the rumour in �(γ + ε) log n� rounds from any vertex in I by

∏
v∈N(u)∩I

(
1 − 1

|N(v)|

)�(γ+ε) log n�
�

∏
v∈N1

e
− (γ+ε) log n

|N(v)|
∏
v∈N2

e
− (γ+ε) log n

|N(v)| � n−(γ+ε)x/c+o(1),

and therefore the expected number of vertices in Ui not being informed in that time is

at most ng(x)−(γ+ε)x/c+o(1). Standard analysis shows that the function cg(x)/x maximizes at

x = c − 1 and takes the value γ. Therefore, g(x) � γx/c, and the expectation above is at

most

n−εx/c+o(1) � n−εx0/c+o(1).

Hence taking a union bound over all degrees i ∈ [x0 log n, x1 log n], we obtain that a.a.s.

all vertices get informed.

Finally, we bound from below the time it takes to inform the last uninformed vertices

of the graph, when |It| is not too large. This will be used to obtain a lower bound on the

broadcast time for G(n, p).

Proposition 3.8 (lower bound). Let c > 1 and p = c log n/n. Let us assume that t is such

that |It| � n/ log2 n. Then, given any ε > 0, a.a.s. after �(γ − ε) log n� rounds there are still

some uninformed vertices in G(n, p), where

γ = γ(c) = c log

(
c

c − 1

)
.
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Proof. Let us write I = It for brevity. In view of Lemma 3.2, we assume that all vertices

in I have degree at most x1 log n, for some constant x1 > c, and in particular |N(I)| �
x1n/ log n. We define U = V \ I and U ′ = U \ N(I), which must satisfy |U| � n − n/ log2 n

and |U ′| � n − x1n/ log n. Moreover, observe that the internal edges of U have not been

exposed yet by the rumour spreading algorithm.

Let i = �(c − 1) log n�, and let Ui be the set of vertices in U ′ with exactly i neighbours.

We wish to estimate the size of Ui. Since there are no crossing edges between U ′ and I ,

henceforth we confine our attention only to G(n, p) restricted to U, which can be regarded

as G(|U|, p). We apply Lemma 3.1 to G(|U|, p) and to the subset U ′, and infer that

E[|Ui|] � ng(c−1)−o(1) → ∞ and
√

V[|Ui|] = o(E[|Ui|]),

so as a consequence of Chebyshev’s inequality we deduce that a.a.s. |Ui| � ng(c−1)−o(1).

Summarizing, we obtained a.a.s. a set Ui of at least ng(c−1)−o(1) uninformed vertices with

degree i. In view of Lemma 3.3, for every vertex u ∈ Ui we have |N(u) \ Ñ(u)| � log3/4 n,

where Ñ(u) is defined as in (3.1). We may assume for our lower bound on the running time

of the algorithm that each vertex u ∈ Ui may get the rumour from any of its neighbours

at any time. So we can forget about who actually knows the rumour at a given time but

consider the model in which in each round each vertex in U picks a neighbour. We want a

lower bound on the probability that some vertex in Ui never gets selected in �(γ − ε) log n�
rounds. For each u ∈ Ui let Eu denote the event that u is never selected within those

rounds. We compute

P[Eu] =
∏

v∈N(u)

(
1 − 1

|N(v)|

)�(γ−ε) log n�
�

∏
v∈N(u)

e
− (γ−ε) log n

|N(v)| −o(1)

=
∏

v∈Ñ(u)

e
− (γ−ε) log n

|N(v)| −o(1)
∏

v∈N(u)\Ñ(u)

e
− (γ−ε) log n

|N(v)| −o(1) � n−(γ−ε)(c−1)/c−o(1),

and summing over all vertices in Ui,∑
u∈Ui

P[Eu] � ng(c−1)−(γ−ε)(c−1)/c−o(1) = nε(c−1)/c−o(1) → ∞.

As in Section 2.3, we arrive at

P

[ ∧
u∈Ui

Eu

]
�

∏
u∈Ui

P[Eu] � e−
∑

u∈Ui
P[Eu] = o(1),

and in particular we will a.a.s. have some uninformed vertices after �(γ − ε) log n�
rounds.

At this stage, we have all the ingredients we need to prove Theorem 1.2. The upper

bound on T (G(n, p)) follows immediately from Lemma 3.6 and Proposition 3.7. For the

lower bound, we simply observe that after t = �log2(n/ log2 n)� = log2 n − o(log n) rounds

we still have |It| � n/ log2 n, and combine this fact with Proposition 3.8.
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4. Lower-bounding rumour spreading time by random walks

In this section, we develop a new technique for lower-bounding the rumour spreading

time in terms of random walk matrices. We consider (lazy) random walks on G based

on the transition matrix P := 1
2

· (I + D−1A), where D is the (n × n)-diagonal matrix with

deg(u) at entry (u, u). Note that in each step, the random walk stays at the current vertex

with probability 1/2 and otherwise moves to a neighbour chosen uniformly at random.

We first derive a general lemma that relates the probability of informing a vertex to

the corresponding entry of the transition matrix P. Then we apply this lemma to the

hypercube and show that after log2 n rounds, less than 5n0.9 log n nodes are informed.

Once we have established this, the lower bound of log2 n + log n + Ω(log n) is almost

immediate.

Lemma 4.1. For any round t and any pair of vertices u, v, we have

P[v ∈ It | I0 = {u}] � 2t · Pt
u,v .

Proof. Consider the matrix M := I + D−1A. Clearly, M = 2 · P. Fix a vertex u ∈ V ,

which originates the rumour. We now prove the statement by induction on t. To this

end, let p0 be the unit-vector with p0
u = 1 and p0

v = 0 for any v �= u. Define pt := pt−1 · M.

Clearly, pt = p0Mt, and for any vertex v,

ptv =
∑
w∈V

p0
w · Mt

w,v = Mt
u,v .

Hence it suffices to prove that for any step t, P[v ∈ It | I0 = {u}] � ptv . This holds for

t = 0 by definition. For the induction step,

P[v ∈ It+1 | I0 = {u}]

�
∑

w∈N(v)

P[w sends rumour to v in round t + 1 | I0 = {u}] + P[v ∈ It | I0 = {u}]

�
∑

w∈N(v)

P[w ∈ It | I0 = {u}] · 1

deg(w)
+ ptv

�
∑

w∈N(v)

ptw · 1

deg(w)
+ ptv = [pt · M]v = pt+1

v ,

where the last two inequalities hold due to the induction hypothesis.

We now use the above lemma to prove Theorem 1.3.

Proof of Theorem 1.3. Assume that the rumour starts at the vertex 0 = (0)d, where

d := log2 n. Our aim is to use Lemma 4.1, so we have to analyse Pt
u,v . Recall that a

random walk according to the matrix P stays at the current vertex with probability 1/2

or moves to a randomly chosen neighbour. This is equivalent to saying that in each step

the random walk chooses a coordinate {1, . . . , d} uniformly at random and flips the bit

with probability 1/2. Our aim is to prove that for t := d = log2 n, the random walk is

https://doi.org/10.1017/S0963548314000194 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548314000194
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unlikely to reach a vertex which has approximately (1/2)d or more ones in its binary

representation. To this end, we let Ct denote the number of coordinates that are chosen at

least once within the first t steps of the random walk. Moreover, Ft denotes the number

of coordinates that are set to 1 at step t. Then, Ft has distribution Bin(Ct, 1/2). The

idea is now to prove that Ct can be approximated by Bin(d, 1 − 1/e), which implies that

Ft ≈ Bin(d, p), where p := (1 − 1/e)/2.

To make this more formal, let us first consider Ct. Note that Ct can be seen as the

number of non-empty bins when throwing t = d balls into d bins, where each bin is

chosen independently and uniformly at random (we refer to [25, Chapter 5] for more

on balls-into-bins). Now consider a setting where the number of balls in each bin is an

independent Poisson random variable with expected value 1. Then, if Y is the number of

non-empty bins in this setting, Y has distribution Bin(d, 1 − 1/e). From [25, Theorem 5.10]

we know that for any 0 � k � d,

P[Ct � k] � 2 · P[Y � k] = 2 · P[Bin(d, 1 − 1/e) � k].

Since P[Bin(i, 1/2) � r] is increasing in i, we apply [14, Lemma A.1] to conclude that

P[Ft � r] =

d∑
i=0

P[Ct = i] · P[Bin(i, 1/2) � r]

�
d∑

i=0

2 · P[Bin(d, 1 − 1/e) = i] · P[Bin(i, 1/2) � r]

= 2 · P[Bin(d, p) � r],

so that P[Ft � r] � 2 · P[Bin(d, p) � r]. By the Chernoff bound,

P[Ft � (1 + δ)pd] � 2 · P[Bin(d, p) � (1 + δ)pd] � 2 ·
(

eδ

(1 + δ)1+δ

)pd

Denoting by |v|1 the number of ones in the binary representation of a vertex v ∈ {0, 1}d,
we can now upper-bound the expected number of informed nodes after t = log2 n rounds

with the help of Lemma 4.1 as follows:

E[|It|] � 1 +
∑

v∈V\{0}

min{1, 2t · Pt
0,v}

� 1 +
∑

v∈V\{0}
|v|1�(1+δ)pd

1 +
∑

v∈V\{0}
|v|1>(1+δ)pd

2t · Pt
0,v

� 1 +

(1+δ)pd∑
k=1

(
d

k

)
+ 2t · 2 ·

(
eδ

(1 + δ)1+δ

)dp

� 1 + nH((1+δ)p) + 2n ·
(

eδ

(1 + δ)1+δ

)dp

,

where H(x) is the binary entropy of x ∈ (0, 1). By choosing δ = 0.315, we infer that the

last expression is at most 3n0.98. Using Markov’s inequality, P[|It| � log n · E[|It|]] = o(1).

But if |It| � 3n0.98 log n, we need at least additional 0.02 log2 n − o(log n) rounds to reach
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a step τ = t + 0.02 log2 n − o(log n) with |Iτ| ∈ [n/4, n/2], since |It| can at most double in

each round.

It only remains to prove that the probability that all the |Uτ| � n/2 uninformed nodes

become informed within log n − o(log n) additional rounds goes to 0. This follows from

the argument in [9, Proof of Theorem 1] setting p = 1/ log n and Δ = log2 n (see also the

end of the proof of Proposition 3.8). This completes the proof.

Appendix: Auxiliary lemmas

Lemma A.1 ([16, 27]). Let A be the adjacency matrix of G(n, p), where 0 < p < 1/2. Then

with probability 1 − o(1), for every 2 � i � n, we have |λi| = O(
√
pn).

Lemma A.2 ([24, Example 7.5.2, p. 551]). Let A and E be the two n × n, symmetric and

real-valued matrices, and let B := A + E. Let λ1 � λ2 � · · · � λn be the n eigenvalues of

A, let ε1 � ε2 � · · · � εn be the n eigenvalues of E and let β1 � β2 � · · · � βn be the n

eigenvalues of B. Then, for every i, the following double inequality holds:

λi + ε1 � βi � λi + εn.

The following concentration inequalities are used to analyse the evolution of the

informed nodes over time.

Theorem A.3 (method of bounded differences [23, Lemma 1.2]). Let X1, X2, . . . , Xn be

independent random variables, with Xi taking values in a set Ai for each i. Suppose that the

function f :
∏n

i=1 Ai → R satisfies |f(x) − f(x′)| � ck , whenever the vectors x and x′ differ

only in the kth coordinate. Let Y := f(X1, X2, . . . , Xn). Then, for any ρ > 0,

P[|Y − E[Y ]| � ρ] � 2 · exp

(
−2ρ2

/ n∑
k=1

c2
k

)
.

We note the following standard Chernoff bound for sum of geometric random variables

which can be easily derived by using a Chernoff bound for a sum of Bernoulli random

variables.

Theorem A.4 ([8]). Suppose that X1, . . . , Xn are independent geometric random variables

on N with parameter δ, so E[Xi] = 1/δ for each i. Let

X :=

n∑
i=1

Xi, μ = E[X] = n/δ.

Then, for any ε > 0,

P[X � (1 + ε)μ] � e−ε2n/2(1+ε).
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