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Abstract

This paper reports on a computational model developed to study the effects of various modes of social learning on task
coordination in teams through the mapping of distributed team competence, a significant aspect of efficient teamwork.
The computational model emphasizes and operationalizes distinct modes of social learning, differentiated in terms of so-
cialization opportunities. Simulation results demonstrate that computational models based on fundamental principles of so-
cial learning provide a robust approach to study task coordination in teams and can be used to explore ways to organize
opportunities for social learning depending upon member retention, team structure, and the complexity of the design task.
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1. INTRODUCTION

Design practice today is a team activity, where the structure
and organization of the design team is closely intertwined
with the design task (Sosa et al., 2004). Product architecture
may determine the organizational structure of the team,
whereas the conception of the product architecture is itself a
result of teamwork and how the design activity is coordinated
and performed as a team. The structure of the design team as
well as the hierarchy of the design tasks can have unintended
effects on information sharing and social learning among the
team members, and potentially the coordination of the design
activity. This paper presents a computational model devel-
oped to study the role of social learning in the coordination
of design activity across teams with different organizational
structures and requirements. The focus of this computational
model is to simulate and understand social learning as an or-
ganizational activity in design teams, which affects the coor-
dination and performance of the design task.

Various computational models of artificial organizations,
communication networks, and teams have been developed
to study the importance of individual and social learning as
an organizational activity (Jin et al., 1995; Carley & Svoboda,
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1996; Kunz et al., 1998; Monge & Contractor, 2003; Rodan,
2008). In these models, the ability of an individual to learn
about tasks to complete and to learn the knowledge to execute
tasks is seen as integral to organizational performance. In all
of these studies, the foundation of organizational performance
is the ability of the agents to improve their performance
through experience, often modeled as information acquisition.
As succinctly put by Simon (1991, p. 125), the consensus is
that “all learning takes place inside individual human heads;
an organization learns in only two ways: (a) by the learning
of its members, or (b) by ingesting new members who have
knowledge the organization didn’t previously have.”

In this research, rather than modeling how agents improve
their own performance through experience, we model the types
of social experiences that influence individual learning oppor-
tunities. We specifically deal with one aspect of the team that
the agents need to learn, others’ competence. The competence
details of other team members include who can perform which
design task and what is the potential solution that the task per-
former may provide for a given task. We model how agents
learn about competence as they interact with each other and
as they observe interactions between other agents or between
some other agent and a task. Thus, we model and investigate
how cumulative individual experience increases collective ef-
ficiency when agents have the ability to learn what others
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know through socialization (Reagans et al., 2005). The pri-
macy of knowing knowledge sources in a distributed system
has been emphasized in the research on transactive memory
(TM) systems (Wegner, 1987) and is regarded as the basis
for the formation of sociocognitive factors such as trust in col-
laborative design (Wijngaards, 2004).

This paper commences with a discussion on the theoretical
basis of the model and then presents the model. We validate
the model using docking (Axelrod, 1997). We then present
some illustrative findings on the effects of forms of social
learning on team performance (TP) based on factors that
are difficult to control in empirical studies. We conclude
with some discussions on the utility of models of social learn-
ing as a way to understand the effects of socialization oppor-
tunities in varied team environments.

2. THEORY

The computational model in this study is based on the hy-
pothesis that social learning is the basis of group-specific be-
havior (McGrew, 1998). In the study of humans, we must
consider the prominent forms of social learning that are not
necessarily dependent on symbolic representation (Toma-
sello, 1999). Such social learning occurs through social ob-
servations and interactions, where group members are viewed
as actors and observers, who learn about each other through
the assumptions of intentionality in each other’s observable
actions (Tomasello, 1999; Knobe & Malle, 2002; Raven-
scroft, 2004; Malle, 2005).

These kinds of social learning are embedded in the envi-
ronment and need not necessarily be goal directed. Such so-
cial learning skills are believed to be innate to all humans (To-
masello, 1999) and, hence, need not be trained. For example,
a child may observe that the adult goes to the refrigerator to
retrieve an apple, and thus learns through observation that
the refrigerator contains apples. Therefore, if organizations
can maximize the benefits of social learning, they can signif-
icantly reduce the cost of training and development of team
members toward effective task coordination in project teams
(Marsick and Watkins, 1997; Conlon, 2004).

Various modes of social learning in teams have been re-
ported in the literature (Grecu & Brown, 1998; Wu & Duffy,
2004). We consider three predominant modes of social learn-
ing: learning from personal interactions (PIs), learning from
task observations (TOs), and learning from interaction obser-
vations (IOs). These modes of social learning are operational-
ized to model how an individual learns about the competen-
cies of others so that the members can better coordinate their
activity, which is a key factor that affects the rate at which
teams benefit from their own experience (Argote, 1999).
Here, we invoke the concept of TM (Wegner, 1987) to hy-
pothesize that social learning should enhance TM formation,
wherein agents benefit from opportunities for social interac-
tions and observations. That is, team members should be
able to learn about each other’s design knowledge and com-
petence by observing the allocation of tasks and the design
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solutions proposed by other team members. This hypothesis
has support because group training, where team members are
collectively trained as a group, results in increased TM forma-
tion compared to individual training (Moreland, 1999; Ren
etal., 2001). The type of team knowledge that team members
gain in our model is at the level of detailed and concrete
knowledge about who each team member is and the function
of each team member, based on Rouse et al.”s (1992) taxonomy.
A well-developed TM should allow agents to allocate the task to
the agent who is most competent in performing the given task
without having to “ask around” to identify who is proficient at
the task (Wegner, 1987; Rouse et al., 1992; Mathieu et al.,
2000; Langan-Fox et al., 2004). The challenge for a computa-
tional system is to model opportunities for social learning to un-
derstand their influence on the formation of TM.

3. CONCEPTUAL MODEL

The key objective of this research is to develop a model that
provides the following:

1. The ability to set combinations of social learning modes
as simulation parameters.

2. The ability to control what agents learn from socializa-
tion opportunities. In this model, agents learn only
about what other agents know and not about the task,
which ensures that the observed effects of social learn-
ing are limited to teamwork and not task work. In real-
world empirical studies, this is difficult to control be-
cause agents simultaneously learn about the task and
the team. Once the effects of social learning modes on
teamwork are studied in isolation, in future research,
both teamwork and task work can be the dependent vari-
ables such that their interaction effects can be studied.

3. The ability to control how agents learn from socializa-
tion. In real-world empirical studies, the ability to learn
from socialization opportunities may vary from person
to person. Factors such as the kinds of assumptions
team members make and how those assumptions are in-
fluenced by other sociocognitive variables such as trust
and reputation may differ from person to person. These
factors may diminish or exaggerate the knowledge that
agents take away from a social learning experience. The
use of a computational model eliminates these factors
because social learning is implemented as a set of rules.
Though the researchers recognize that sociocognitive
factors are likely to affect the veracity of the reported
findings, additional parameters can be modeled to study
their effects in future research.

4. The ability to simulate typical parameters of project-
based teams that are related to the opportunities for so-
cialization in teams. The parameters included in this
model are

e business levels (BLs), which determine the availabil-
ity of a team member to attend to socialization oppor-
tunities within the team;
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e team structure (TS), which determines the socializa-
tion opportunities that are available or constrained by
how the team is organized;

e member retention (MR), which determines how
much can a team benefit from the social learning
achieved in previous projects; and

e task complexity (TC), which determines the effective-
ness of social learning in enhancing task coordination.

The effects of these parameters on teamwork are measured
through

1. the amount of TM formation, which shows how much
the team members have learned about each other
through socialization; and

2. the amount of team communication needed for task
work, which provides a measure of the efficiency of
task coordination between the team members. Teams
that require less communication to coordinate the
same set of tasks are deemed as higher performing
teams (Entin & Sarfaty, 1999).

The agent society in this simulation has three types of
agents:

1. design agents, which form the team and complete the
tasks;

2. client agents, which allocate the task to the team; and

3. asimulation controller agent, which initiates, manages,
and controls the number of simulations, as specified by
the researcher.

In the remainder of this paper, the design agent is referred
to as the agent and the client agent is referred to as the client.

3.1. Social learning

In this computational model, agents learn about the other
agents in the team based on the actions of the others, which

Can you do the
task T17? If yes,
can you pass on
the resulting task
T2to A3,

So A' knows
that A® knows
how to do T2
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are observable (Irene Frieze, 1971; Wallace & Hinsz,
2009). Interactions and observations allow team members
to learn about each other’s competence. The team members
learn through PI with each other, by observing the other
members perform a task, and by observing the interaction be-
tween the other agents. For example, in Figure 1, the team
member A' allocates a task T' to the team member A% and
asks the team member A” to pass on the resulting next task
T2 to a third team member, A>. At the same time, another
team member A* gets an opportunity to observe A! allocating
the task T' to A2. A? responds, confirming that it can perform
the task T!. In another instance, A* observes team member A’
performing a task T*. During these interactions the following
learning opportunities are created (Table 1):

1. Learning from PI: A% may assume that A' is asking it to
do the task T' because A! does not have the competence
to perform T!. Similarly, based on A!’s statement about
allocation of task T2, A?> may assume that A! knows
about A*’s competence in T2. Further, when A' gets a
positive feedback from A%, A! knows that A” can per-
form T'.

2. Learning by observing the other member perform a task
(TO): A* knows that A3 can perform T*. A* may be able
to use this knowledge later, if at some other stage it is
looking for someone to perform T*.

3. Learning by observing interaction between other agents
(I0): A* may assume that because A is allocating the
task T! to A2, A itself does not have the competence
to perform T'. At the same time, A* may also assume
that it is likely that A% knows how to perform T' be-
cause it is being allocated that task by A'.

As team members interact and observe each other, they de-
velop TM. The development of TM involves learning about
the competence of each agent in the team in each of the dif-
ferent tasks the team needs to perform, that is, “who knows
what.” The TM formed by each agent may be different
from the TM of the other agents because all the agents will

| see A5 doing task
T4. So A5 knows
how to do T4.

| see Al allocating task T' to A2,

So A! does not know how to do

T', and A2 may know how to do
T

So A2 knows
how to do T'.

Fig. 1. Social learning opportunities in a team environment.
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Table 1. Learning assumptions corresponding to learning
opportunities shown in Figure |

Condition (IF) Deduction (THEN)

Then A” knows that A' does not have
the competence to perform task T!

Then A! knows about A%’s
competence for T!

If an agent A! allocates a task T! to
another agent A”

If an agent A” gives afeedback to
another agent A! that had
allocated task T' to A2

Then A* knows that A% has the
competence to perform the task
preceding T? (i.e., T') as per the
task dependencies

If an agent A’ receives a task T?
from another agent A”

Then A! knows that A® does not have
the competence to perform task T°

If an agent A! observes another
agent A’ allocating task T° to a
third agent A*

Then A' knows that A> has the
competence to perform task T*

If an agent A! observes another
agent A> performing task T*

not have the same interactions and observations. Competence
is defined in two ways: as a binary value (an agent does or
does not have the competence to perform the task) and as a
range of values (an agent has the competence to provide so-
lutions to a task within a certain range of solutions). Compe-
tence range is a proxy for the level of skill in an area corre-
sponding to the attributes of the solutions. For example, a
team member with a higher competence mean value can be
expected to provide solutions with higher values of the attri-
butes (e.g., quality). This knowledge of others’ competence
range allows agents to propose solutions that will be accepta-
ble to the agent evaluating the solution.

The model simulates four factors that attenuate opportu-
nities for social learning. Attention plays a critical role dur-
ing these interactions and observations because the learner
is concerned with only a subset of all the things that can
be perceived at the given moment (Tomasello, 1999; Malle,
2005). Observation is subject to an agent’s availability to at-
tend to the observable data and, hence, mitigated by their
level of busyness (Gilbert et al., 1988; Gilbert & Osborne,
1989). If an agent is busy when the observable data is
available, then the observation is not made in that instance.
A “busyness” factor is introduced for the agent’s attention to
the observable data. Busyness is implemented as the prob-
ability that an agent is not able to sense interactions among
other agents and task performance by some other agent at
that instance. When an agent performs a design task, the
agent always learns from PI, but if the agent is not perform-
ing a design task during a simulation cycle, the “busyness”
factor simulates an agent being preoccupied with other mat-
ters.

In addition, social learning opportunities may vary with the
TS (i.e., how the team is organized). Three types of TSs are
differentiated based on the opportunities and constraints for
socialization: flat teams, distributed flat teams, and functional
teams organized in task-based subteams.
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Flat teams: These have no hierarchy and no subdivisions.
Such teams are generally used for consultation, task-
force, and design exploration (Katzenbach, 1993; Per-
kins, 2005; OpenLearn, 2009). In flat teams all team
members have the opportunity to interact with and ob-
serve all other members of the team.

Distributed flat teams: With the increased use of commu-
nication technology, project-based teams are often
distributed across geographies (McDonough et al.,
2001). In such teams, sometimes social cliques develop,
where the project team is divided into two to three col-
located clusters. Thus, even if the teams are flat for the
purpose of task allocation, the opportunities for social
learning are skewed owing to the physical boundaries
(McDonough et al., 2001; Leinonen et al., 2005; Suther-
land et al., 2007). Examples of distributed flat teams can
be found in global product development teams (McDon-
ough et al., 2001) and the current practice of outsourcing
(Seshasai et al., 2006; Sutherland et al., 2007). Virtual
teams can be considered as a kind of distributed team
where it is possible that all the team members are distrib-
uted geographically such that there are no collocated
clusters (Clancy, 1994; Desanctis & Monge, 1999).

Functional teams: Many work teams are organized into
functional subteams (Malone, 1987; Hackman, 1987;
Grant, 1996; OpenLearn, 2009). In such teams, the task
is passed to the members from the subteams with rele-
vant domain knowledge. Even if the hierarchy is not
predefined, hierarchy emerges as the hierarchical task
is decomposed into subtasks and members are chosen
to coordinate those tasks. A team member from each
subgroup emerges as the task coordinator, who coordi-
nates the activities of that group, at the higher level,
with the coordinators from other groups.

The three types of TSs implemented are summarized in
Table 2. Flat teams allow members unrestricted access to all
the agents in the team for task allocations as well observa-
tions. In functional teams, an agent’s ability to observe the
other agents is limited within the subteam, and even most
of the task-allocation interactions are within the subteam. In
distributed flat teams, agents can allocate tasks to any other
agent in the team, but their ability to observe other agents is
limited to the members within their social cliques.

Table 2. Team types and corresponding scope for task
allocation or social observation

Team Type Task Allocation Scope of Observation
Flat teams Any member of the Any member of the team
team
Distributed flat teams Any member of the Only members of the social
team group
Functional teams Only members of the ~ Only members of the task
task group group
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Personnel turnover is known to hamper coordination
through disruption of the current TM (Carley, 1992; Rao &
Argote, 2006). This is a particular problem in design teams,
which are often project based. As a consequence, team com-
position is likely to vary from one project to another. The
composition of teams with members from an array of skill
sets and specializations introduces new management and re-
search challenges in harnessing the skills of those involved
(Badke-Schaub et al., 2007; Townley et al., 2009). In order
to achieve higher TP, the managers and project leaders strive
to maximize the number of members in the team who have
previously worked together on a similar project (Hinds
et al., 2000). This strategy is based on the belief that the
greater the number of members who have worked together
previously, the higher is the team familiarity, which in turn
should lead to increased TP. For example, higher team famil-
iarity is expected to result in improved coordination among
the team members (Hinds et al., 2000; Espinosa et al.,
2002; Harrison et al., 2003; Huckman et al., 2008). There-
fore, this research adopts MR as a parameter.

Finally, because teamwork relies on task coordination, the
complexity of the task determines the extent of social learning
required to obtain sufficient knowledge of the agents’ compe-
tences to complete the tasks. As the TC increases, agents will
need greater information sharing and knowledge transfer,
suggesting a potentially greater need for social learning to im-
prove task coordination. Gero (1990) classifies design tasks
as routine and nonroutine depending on the exploration of
the design space. Brown (1996) suggests another additional
dimension for classification of design tasks, namely, paramet-
ric/conceptual designs, based on the explication of the attri-
butes that specify the desired design solutions. In this re-
search, two types of parametric design tasks are modeled,

Sequentialallocation
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»  Solutionintegration
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such that they are differentiated in terms of the potential val-
ues for the attributes that specify the design problem. The
tasks modeled have sequential dependence.

Simple tasks: Simple tasks are those parametric design
tasks for which there are unique possible values for the
attributes such that any two agents will provide the
same solution. For simple tasks, the task handling is se-
quential (Figure 2a). Therefore, all that the agents need to
learn is “who knows what.” Because the solutions to sim-
ple tasks are unique, the solutions are not subject to any
coordination or compatibility check. Initially, the client
allocates the first task on the basis of an expression of in-
terest. Thereafter, the agents coordinate among them-
selves to pass on the resulting task to other agents.
Once the last of the tasks is completed, the client is in-
formed of the completion, closing the project simulation.

Complex tasks: Complex tasks are those parametric design
tasks for which multiple values are possible for the same
attributes, such that any two agents performing the same
task may provide different solutions. Complex tasks re-
quire decomposition into simple tasks (Figure 2b).
These are similar to the design of complex engineering
products that require decomposition according to
product function or (modular) subsystem (Eppinger &
Salminen, 2001; Siddique & Rosen, 2001). The team-
work involves more coordination and evaluation com-
pared to simple tasks. For the complex tasks, one task
may branch out into multiple subtasks, and their solu-
tions need to be compatible. Hence, such tasks require
solution integration and compatibility check. This may
require reallocation of the same tasks to the same or

o AN

Sequentialallocation

Parallel allocation

(b)

Fig. 2. Model task complexity for (a) simple tasks and (b) complex tasks.
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some other agent. Hence, a higher degree of social learn-
ing is necessary to complete the tasks efficiently.

In general, the descriptions of the model and simulations
assume complex tasks, unless otherwise stated. The main
task T (first task) is divided into m subtasks, represented as
T ..., T’ﬁ, where L is lowest level of detail. For each sub-
task, there are | acceptable solutions. The overall design
space is defined by a w x m matrix. A complete solution, C,
is a combination of the subsolutions and can be represented
as an m dimensional vector, C = [T} (x)), T5 (x2), . . ., T%
(xy)], where x; is the solution chosen for the ith subtask
(Tl-L) and where 1 < (x, X2, . . ., Xy) < W, such that there is
a solution for each of the m subtasks, which may be one of
the w possible solutions for that subtask, with the possibility
that x; = x» = x,,. The average quality of the overall solution
(Vc) can be calculated as

1
Ve :ﬁ(xl + x1 +L+xn).

4. MODEL IMPLEMENTATION

The computational model is implemented in the Java Agent
Development Environment (Bellifemine et al., 2007). A com-
prehensive detail of model implementation, including the algo-
rithms, is published in Singh (2010). The following section
provides a brief description of the key implementation aspects.

4.1. Implementing agent interactions and
observations

Each agent has a unique ID. All the agents must register with
the simulation controller. At the time of registering with the
simulation controller, each agent registers its task expertise
(tasks that it can perform) and affiliations (task groups/social
groups), which allows for the simulation of TS. A single
agent may have expertise in multiple tasks so that multiple
agents may have expertise in the same task.

Figure 3 shows the activity diagram for agents. Agents can
sense/receive four kinds of data: a task to perform, feedback/
reply for the task performed earlier by this agent, a solution
for the task allocated earlier by this agent to another agent,
and observed interaction between two other agents or another
agent and some task.

All interactions and observations are implemented through
message exchange. All messages sent from one agent to the
other are wrapped in a message envelope based on the
FIPA-ACL message protocol (FIPA, 2002). The parameters
in the FIPA-ACL message envelope include sender, receiver,
content, in-reply-to, and performative. Agents are able to as-
sign values to the required parameters while sending the mes-
sage. The observation of the interaction between two agents
(or an agent and the client) by other agent(s) or the observa-
tion of the task performed by some other agent is also imple-
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mented using message transfer. When one agent sends a mes-
sage to another agent or performs a task, a duplicate message
is created and sent to all the agents that are not busy at that in-
stance. The duplicate message serves as a mechanism to sim-
ulate observation opportunities in a computationally simple
manner. The duplicate message contains the details of the in-
teracting agents and the contents of the interaction. Upon pars-
ing the message, the observer can identify the original sender
and receivers of the message and what the message conveyed.
Therefore, all the messages for observation have the same
representation. TO and 10 are differentiated in the way the
agent parses the data.

4.2. Implementing knowledge of competence and TM

Each agent stores another agent’s competence details as an m-
dimensional vector showing the competence values, the
lower range, and the upper range of the m possible tasks
within the team, shown as the grayed column in Figure 4.
The competence details for agents consists of a task identifier,
counters for the number of times the agent has performed the
task assigned P, the number of times a task has been allocated
(given) to the agent G, the perceived lower range of solution
for each task Ly, and the perceived upper range of solution for
each task, Ug.

When an agent receives a positive feedback on another
agent’s competence, both P and G are incremented by one.
If a negative feedback is received, only the G value is incre-
mented by one. Updating just the competence values is not
enough. Agents check the solutions provided or rejected by
another agent to update the competence range of that agent
in the given task. If an agent provides a solution or accepts
a solution, it means that the solution lies within the specified
range of solutions for that agent for the given task. If an agent
rejects a solution provided by someone else, it can be as-
sumed that the solution is outside the range of solutions ac-
ceptable to that agent for the given task.

As part of the common knowledge about the competence
range of a typical agent in the team, agents assume that the
difference between the upper range and lower range of any
other agent’s competence, for a given task, is similar. The so-
lution span refers to the range of solutions that an agent may
provide for a given task. The solutions that an agent can pro-
vide fall in a continuous range, within a limited span, corre-
sponding to the competence range. The solution span is rep-
resented in terms of a MaxWindow and a MinWindow.
MaxWindow refers to the maximum possible span (i.e., the
maximum number of solutions known to an agent for a task
that it can perform). MinWindow refers to the minimum pos-
sible span (i.e., the minimum number of solutions known to
an agent for a task that it can perform). For example, let us as-
sume that for any task, the upper and lower range of valid so-
lutions has a value of 9 and 0, respectively. Let MaxWindow
= 4 and MinWindow = 2. Now, if an agent provides a solu-
tion with value 9 and if the agent has the maximum compe-
tence span (i.e., span = MaxWindow) in this task, then this
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Fig. 3. An activity diagram for a design agent.

agent provides a solution between 9 and 6 (9 — 4 + 1). How-
ever, if the agent has a minimum competence span (i.e., span
= MinWindow) in this task, then the agent only provides so-
lutions between 9 and 8 (9 — 2 + 1). In the simulations, Max-
Window and MinWindow values are precoded into the agents
as part of their common knowledge about the simulated team.
When an agent observes another agent either performing or

https://doi.org/10.1017/50890060412000340 Published online by Cambridge University Press

rejecting a task, the observer agent uses the known values
of the typical MaxWindow and MinWindow to calculate
and update the likely span (lower and upper competence
range) of the observed agent for the observed task.

The TM is represented as an m x n matrix (Figure 4), where
n is the total number of agents. Each element [*7", *Lg,, SUg.]
is a vector that holds the values for the competence, the lower
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Fig. 4. A matrix representing the transactive memory of an agent.

range, and the upper range of the sth agent for the rth task.
Because at the start of the simulation (i.e., at time ¢ = 0),
agents have no details of other agents’ competence in any
of the tasks, they have equal belief that an agent can either
perform the task or not. Hence, the default value of P/G is
1/2. At t = 0, the default values of Lg and Uy for each of
the tasks is set to Lrmin and Ugrmax, respectively, where
LRmin 18 the minimum possible lower range and Ugpax is max-
imum possible upper range for any solution. As agents learn
about each other’s competence details, these assumed default
values are updated to converge toward the actual competence
values.

4.2.1. Measuring TM formation

TM formation is measured as a ratio of the number of TM
matrix elements for which the values are different from the in-
itial values by the end of the simulation. The measure of TM
formation adopted for these simulations is similar to existing
measures, which calculate the density and accuracy of TM
formation (Moreland et al., 1998; Ren et al., 2006). Density
measures “how much of the TM is learned” whereas accuracy
measures “how much of what is learnt is correct.” In this pa-
per, accuracy need not be measured because whatever the
agents learn is accurate, and hence density (amount) is the
only measurement required. Because each agent starts (at
time ¢ = 0) with a default value for each element in the matrix,
the values in each element will change only if the agent has
learned it through social interactions and observations.
Each value in the TM matrix should proceed toward O or 1,
that is, that another agent cannot or can complete a specified
design task.

Only the changes in the competence values are considered
for assessing the TM formation of the agents. For example, let
there be 10 agents in the team and altogether 10 tasks to be
performed by the team. In that case, the TM is represented
as a 10 x 10 matrix such that there are 100 elements in the
TM. When the simulation starts, all the elements have a de-
fault competence value (P/G) = 1/2 because there is an equal
likelihood that a given agent may or may not be able to per-
form any of the given tasks. As agents interact with and ob-
serve each other and the task, they learn about each other’s
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competence in the different tasks and update the values of
the corresponding elements in their TM. By the end of the
simulation, let us assume that 60 of the 100 values were up-
dated, such that the value of each of these 60 elements is
different from 1/2. Thus, the TM formed in this case is 60%.

Each agent maintains a separate TM, which it updates
based on its own interactions and observations. Therefore,
by the end of the simulation, it is expected that each agent’s
TM will be different. However, overlap and similarities
across the TM of the agents is likely. The overall TM forma-
tion for the team is calculated as an average of the TM forma-
tion for each agent in the team. For example, in a team of 10
agents, if 4 agents have 60% TM formation, 4 agents have
40% TM formation, and 2 agents have 50% TM formation,
then the overall TM formation for the team is 50%.

4.2.2. Using the TM for task allocation and handling

Agents allocate the task to the agent who has the highest
competence value in the given task. When the simulation
starts (at time # = 0), all the agents have the same default value
for the competence in each task. In such a scenario, agents al-
locate the task to a random agent. Once the agents have
gained experience working with each other, there will be dif-
ferences in known competence of the agents in a given task.
However, in that scenario, it is possible that more than one
agent has the highest competence value. In that case, the
agent creates a shortlist of all the agents with the highest com-
petence value, and the task is allocated to any one of them.

Agents propose solutions based on their own competence
range and the range of acceptable solutions for the agent
who allocated the task, that is, the task allocator. The task per-
former looks up the competence range of the task allocator
corresponding to the given task in its TM. For the selected so-
lution to be accepted, the solution must also overlap with the
solution range acceptable to the task allocator. Once the agent
has identified a shortlist of solutions that it can provide and
that are also acceptable to the task allocator, it can choose
any of the solutions from the shortlist, provided the chosen
solution has not already been proposed in the same project.
If the agent does not find an overlap between its own compe-
tence range and the solution range acceptable to the task
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allocator (i.e., if the shortlist is null), it shows failure to pro-
vide a solution. Because the agent constantly updates the task
allocator’s acceptable solution range as soon as it gets feed-
back, the task performer is able to adapt the solution to suit
the task allocator. Thus, teams with well-developed TM
will perform faster.

4.3. Implementing MR

The level of MR is taken as the number of team members re-
tained from the previous project, such that if all the team
agents are the same in the training round and test round, the
level of MR is 100%. If the MR is 100%, all the team agents
retain their TM. If the MR is less than 100%, new team agents
are introduced into the team, such that each new team agent
acquired in the team replaces a team agent that was part of
the training round. For example, let there be 10 team agents,
A! to A'” that were part of the team in the training round.
Now, if the desired MR in the test round is 80%, then the
new team has 8 team agents retained from the training round
and 2 new team agents, for example, A* and A7, such that
they replace the other 2 team agents, A3 and A’, that were
not retained from the training round.

Although all new team agents (i.e., A and A7) start with a
default TM, the team agents retained from the training round
(e, A, A%, A* A3, A®, A% A® and A'°) reset the compe-
tence details of the team agents that have been replaced
(A3, A7) while retaining the competence details of the rest
of the agents (i.e., A, A%, A* A% A® A% A% and A'0).
That is, the retained team agents retain part of their TM,
whereas the other part that may not be useful (i.e., related
to A% and A7) is reset to default values (to be used for com-
petence details of A% and A”").

4.4. Implementing the client agent

The client is not a part of the team, but it interacts with the
team to call for the initial proposals, nominate the coordinator
for the first task, and approve the overall solution.

The client receives the proposed solutions for the first task
from agents that can coordinate the first task. The proposals
from different agents are likely to be different because each
agent can propose a different range of solutions. The client se-
lects a proposed solution that is the best match to its own accep-
table range of solutions. If more than one proposal is short-
listed, the client selects any one of the shortlisted agents as
the coordinator of the first task. The agents coordinating partial
solutions directly report to the client about the completion of the
partial solutions. The client has to ensure that all the partial so-
lutions are received before informing the simulation controller
that the project has been successfully completed.

4.5. Overview of a simulation run

A single simulation run consists of two simulation rounds.
The first round of a simulation is the training round in which
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the agents start with default (experimenter-defined) values.
None of the agents have any TM formed at this stage. Once
the training round is completed, a second round of simulation
is run as the test round. Depending on the level of MR, some
or all the agents carry over the TM formed during the training
round to the test round. The results from the training round are
used as the basis from which to measure TM formation. Mea-
surement of TP is based on the results from the test round.

Each simulation round is said to be complete when the set
of tasks is complete. Completion of the set of tasks (i.e., one
simulation round), requires multiple simulation cycles. For
each simulation cycle, a team agent may perform a task, com-
municate with another agent to assign a task, or observe other
agents. Opportunities for social learning occur when the
agents interact, thereby forming a TM. There is one design
task related activity in each simulation cycle. This activity,
which could be task allocation, refusal to perform a task, or
task performance, allows agents that are not directly involved
in these activities to make observations. The social learning
mode of PI occurs when agents are communicating with other
agents to assign tasks or provide solutions, and the social
learning modes of 10 and TO occur when agents are not en-
gaged in any design work during a simulation cycle and can
thus observe other agents working. The number of simulation
cycles in a simulation round corresponds to the number of
messages exchanged between the agents to complete the set
of tasks. Hence, test rounds are expected to have fewer simu-
lation cycles than the training rounds, and the comparison
across the training rounds and test rounds indicates the im-
provement in TP.

At the start of a simulation round, the client calls for pro-
posals for the first task from all the agents in the team. Agents
that can perform the first task propose a solution. This pro-
posal includes the range of solutions that the agents can pro-
vide. Once the deadline for the receipt of solutions is over, the
client evaluates each of the proposals and shortlists the solu-
tions that are closest to its acceptable range of solutions. If
more than one proposed solution is shortlisted, one of the
shortlisted proposals is chosen at random and the task is allo-
cated to the agent, who coordinates the task at the highest
level with the rest of the team. The coordinator of the first
task decomposes the task into subtasks, which it allocates
to the other agents that it expects to be able to competent in
performing those tasks. Because the solutions for the decom-
posed tasks must be compatible, the source agent (i.e., the
agent that allocates task) needs to evaluate the solutions.
Agents that receive the task but cannot perform the given
task send a refusal message, while agents that receive the
task and can perform the task communicate a proposed solu-
tion. Once the source agent has received the solutions for all
the related subtasks, it checks the solutions for compatibility.
The subtasks for which the solutions may not be compatible
are sent for rework, based on the task handling protocol. The
cycle of rework and task allocation continues unless the solu-
tions for all the subtasks are approved. Once the solution for a
subtask is approved, the agent that performed the subtask
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checks if the given subtask needs to be decomposed further to
detail the solution. If no decomposition is required, it informs
the client that the subtask is performed. If the task needs to be
decomposed further, the same cycle of task allocation, coor-
dination, and rework continues until all the subtasks are per-
formed and the compatibility is ascertained.

5. VALIDATION OF THE COMPUTATIONAL
MODEL

Teams trained in groups are known to perform better because
of higher TM formation, as compared to teams where mem-
bers are trained individually (Moreland et al., 1998; Ren
etal., 2001, 2006). Hence, initial simulations were conducted
to simulate similar scenarios, such that the simulation results
can be compared to the expected results based on published
findings (Moreland et al., 1998; Ren et al., 2001, 2006). If
the results from the validation simulations conform to the
published findings from the literature, the model can be
used with confidence to conduct “what if” studies.

The validation simulations are conducted with simple tasks,
flat teams, and 100% MR. Two types of agents are used. In any
given simulation, only one kind of agent is used at a time. The
differences in the agents are based on their learning capabil-
ities. Agents of type Al learn only from their PIs. Agents of
type AS are not only capable of learning from PIs but also ob-
serve and learn from the other interactions in the team.

The simulations with these two types of agents correspond
to the studies on individual training and group training of the
team members, as reported by Moreland et al. (1998) and Ren
et al. (2001, 2006). Group training involves PIs, communica-
tion, and observations. This matches the case where the
agents have all learning modes available to them (AS). In con-
trast, the simulations where the agents can only learn from PI
(A") are similar to the individual training case.

The measures for TP include the time taken to perform the
task and the quality of output. The quality of output is not as-
sessed in this paper, because none of the acceptable solutions
is dominant. The TP is measured only in terms of the amount

V. Singh et al.

of communication required to complete the set of tasks,
which determines how much time the team takes to perform
the tasks.

Findings for the validation studies are based on 60 simula-
tion runs. Simulations were conducted with two different
team sizes (6 and 12 members) to see whether team size pro-
duced a qualitative difference in behavior. Two-tailed ¢ tests
reject the null hypothesis that the means of the results from
the experiments are similar. The teams in which the agents
can learn from social observations, in addition to their PIs,
have higher level of TM formation (Figure 5).

These results conform to the findings reported in the two
cases studies. The two cases studies (Moreland et al., 1998;
Ren et al., 2006) also reported positive effects of group train-
ing on the TP. The findings from the validation simulations
are similar (Figure 6). In both the cases, the teams of AS
agents performed better than the teams of Al agents.

As the team size increases, the differences in TM formation
across individual learning scenarios and social learning sce-
narios increases (Figure 5). Furthermore, as the team size in-
creases, the level of TM formation decreases, indicating that
the lack of social learning is more detrimental to TM forma-
tion in larger teams (Figure 5). These findings are consistent
with Ren et al. (2006), who found that larger groups suffer
more from the lack of TM formation opportunities that are
available to the smaller groups.

6. RESULTS AND DISCUSSION

The simulation results presented in Section 5 validate the suit-
ability of the model for studies on TM formation and social
learning in teams. The model provides the basis for a simula-
tion environment that can be used to study the differential
contributions of the different social learning modes to the pro-
social team processes, mediated by the formation of TM. The
validated model can be used to investigate different research
questions and hypotheses relating the independent variables
(i.e., social learning modes, TS, BLs, level of MR, and TC)
to the dependent variables (i.e., TM formation and task
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Fig. 5. Transactive memory formation across individual and social learning scenarios.
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coordination). Table 3 shows the experiment matrix and the
potential research questions that can be investigated using
the developed computational model.

Simulation results testing the following hypothesis are pre-
sented to demonstrate the utility of the model in generating
findings.

Hypothesis: The increase in TP, with the increase in MR, is
lower in teams with fewer learning modes (LMs) avail-
able to the agents. This hypothesis is derived from Q2
and Q3 in Table 3.

Results from simulations conducted to test this hypothesis
are shown in Figure 7. These results are for simulations with
simple tasks, flat teams, and BL = 0%. Thus, the independent
variables for this simulation are: learning modes (PI/PI + 10/
PI + TO/PI 4 10O + TO) and team retention level MR (17/33/
50/66/83/100%, these values are derived from a team size =
12 and six levels of retention), and the dependent variable is
TP, measured as the amount of communication needed to per-
form the set of tasks. TM formation is the intervening variable
in the studies with MR because the level of MR determines
how much of the TM formed during the training rounds is re-
tained in the test round.

Simulation results plotted in Figure 7 support this hypoth-
esis. The pattern in Figure 7 suggests that when MR is higher,
the TP is higher. Further, these results show that the rate of in-
crease in TP is higher with the increase in MR. This is demon-
strated by a positive concave curve across all learning scenar-
i0s. These results indicate that below a certain level of MR,
the lack of MR is less detrimental to the TP. Statistical compar-
isons provide some indication of marginally higher correlation
between MR and TP at higher levels of MR (Table 4). Each
row in Table 4 shows the correlation between MR and TP
for a given learning mode, across lower (0, 17, 33, 50) and
higher (50, 66, 83, 100) levels of MR. The interaction effects
of learning modes and MR are explored further in Table 5.

The pattern of change in TP with the change in MR is
found to be contingent on the learning modes (i.e., the differ-
ent learning modes are found to have differential contribu-
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tions to the increase in TP). For example, in these simulations,
the differential contributions of PIs, TO, and IOs to the in-
crease in TP are more distinct at intermediate levels of MR
(50%—83%), as shown in the differences across PI, PI +
IO, and PI + TO graphs. Analysis of variance results pre-
sented in Table 5 show that there is significant difference in
TP across the different learning modes at intermediate and
higher levels of MR. Each row in Table 5 shows analysis of
variance across the TP for the different learning modes at a
given level of MR. At lower levels of MR (0, 33), the differ-
ences in performance across the different learning modes is
not significant, supporting the claim that below a certain level
of MR, the lack of MR is less detrimental to the TP. Further, a
statistical analysis confirms that the differences observed in
Figure 7 across the PI + 10 and PI + TO graphs is significant
(F=37.122, p < 0.01).

Although it is known from the literature that MR typically
enhances TP, these simulation results provide an insight into
the pattern of increase, as well as the potential contributions
of the different learning modes in fostering this causal rela-
tionship. Recent studies on team familiarity in real-world sce-
narios (Huckman et al., 2008; Huckman & Staats, 2008;
Staats, 2011) have started to explore underlying conditions
in which team familiarity is achieved and how the differential
conditions have differential effects on the relationship
between team familiarity and TP. The simulation results
shown in Figure 7 demonstrate the usefulness of the model
in testing and generating hypotheses related to team behavior,
which was the main objective of this paper. These results
show that the model can be used to test theories on social
learning, through simulation of scenarios that are difficult
to control and test in real-world studies. The model is particu-
larly relevant to the current research on teams and organiza-
tions because contemporary teams vary in their scope of so-
cial interaction and dissemination of information among team
members. These variations in scope for social learning can
result from TSs, geographical distribution of team members,
information protocols within teams, reports and documenta-
tions of past projects, and use of information and communi-
cation technology. For example, how the information is
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Table 3. Simulation parameters and research questions to be investigated using the model

V. Singh et al.

TS

TC

Q5: How does the effect and
contribution of LM toward TP/
TM formation vary across
different TSs?

Q6: How does the effect of BL on
TP and TM formation vary
across different TSs?

Q7: How does the pattern/rate of
increase in TP with an increase
in MR vary across different

Q8: TP is likely to decrease with
a reduction in LM. If so, how
does the rate of decrease vary
with the TC?

Q9: How does the effect of BL on
TP/TM formation vary with
TC?

Q10: How does the pattern/rate of
increase in TP with an increase
in MR vary with TC?

BL MR
LM Q1: How does the increase in BL Q2: An increase in MR is known
affect TP/TM formation? How to increase TP, mediated by TM
is this correlation affected by formation. However, what is
the different LMs? the pattern/rate of increase in
TP with the increase in MR?
Q3: How does this pattern/rate
vary across different LMs?
BL Q4: How does this pattern/rate
vary with BL?
MR
TS

TSs?

QI11: How does the relative
difference in TP/TM formation
across different TSs vary with
TC?

Note: BL, business levels; MR, member retention; TS, team structure; TC, task complexity; LM, learning modes; TP, team performance (measured as task
coordination); TM, transactive memory (measured as the density of TM formation).

documented and presented determines what assumptions the
information seeker is making. Similarly, geographically
distributed teams skew the opportunity for social learning.
Collocated team members have multiple modes of communi-
cation channels available to them, whereas noncollocated
team members are generally dependent on discrete sets of in-
formation such as texts (McDonough et al., 2001). Typically,
in some of the fully virtual teams, such noncollocated interac-
tions might be the only source of team building and team for-
mation. Discussion forums, blogs, group mails, corporate so-
cial networking sites, and general social networking sites
such as Twitter are other sources of information that team
members may use to impute about others’ capabilities. For

example, plain text messages and status updates on social
media such as Twitter and Facebook are reported to have
been used by managers and colleagues to identify what others
are doing, even to the extent of locating potential employees
in some cases (Skeels & Grudin, 2009). Users of social net-
working sites can learn about the relationships and associa-
tions between two other individuals based on the messages
exchanged between them. Although it remains an open re-
search question whether the social media provide new forms
of social learning modes or not, it is evident that they support
varying levels of social interaction and observation opportu-
nities, allowing individuals to make assumptions about others
in their network.
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Fig. 7. The rate of increase in team performance with the increase in the level of member retention across different learning modes. Team perfor-
mance is marked as a negative of the number of messages. [A color version of this figure can be viewed online at http:/journals.cambridge.org/aie]
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Table 4. Correlation between member retention and team
performance (BL = 0%)

LM MR Values (Low/High) Correlation
PI + 10 + TO (0, 17, 33, 50)/(50, 66, 83, 100) 0.9907/0.9998
PI + TO (0, 17, 33, 50)/(50, 66, 83, 100) 0.7658/0.9930
PI + 10 (0, 17, 33, 50)/(50, 66, 83, 100) 0.9739/0.9988
PI (0, 17, 33, 50)/(50, 66, 83, 100) 0.9151/0.9749

Note: BL, business levels; LM, learning modes; MR, member retention;
PI, personal interaction; IO, interaction observation; TO, task observation;
MR, member retention.

Design teams are increasingly project based and distrib-
uted across different locations. Factors such as the available
learning modes, TS, level of MR, and TC can affect the
TM, and hence the task coordination in such teams. Knowing
the differential contributions of the different modes of learn-
ing across different team environments will be useful for ef-
fective team management.

7. CONTRIBUTIONS AND LIMITATIONS

The main contribution of this research is the introduction and
validation of a computational model that uses fundamental
modes of social learning as the basis for agent learning.
This model allows the study of the differential effects of the
social learning modes on TP, mediated by the formation of
TM. The social learning modes are distinctly identified and
operationalized as simulation parameters. Other potential in-
dependent variables currently implemented in the model are
TS, BLs, levels of MR, and TC. The use of a computational
method allows control and isolation of parameters such as
learning modes and BLs that are difficult to isolate and con-
trol in real-world scenarios, besides the challenges posed in
real-world studies in accurate elicitation of what the team
members have learned (Mohammed et al., 2000). The confor-
mity of the results from the validation simulations to the es-
tablished finding reported in the literature suggests that this

Table 5. Differences in team performance across the four
learning modes (PI, PI + 10, PI + TO, PI + 10 + TO) at given
level of member retention, measured through an analysis of
variance

MR (%) F p F > F Critical
17 2.3829 0.07 No
33 0.8751 0.46 No
50 5.7821 <0.01 Yes
66 11.3326 <0.01 Yes
83 3.8530 <0.01 Yes
100 27.3997 <0.01 Yes

Note: PI, personal interaction; IO, interaction observation; TO, task
observation; MR, member retention.
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computational model of TM and social learning modes can
provide useful insights into the theories of TM formation
and task coordination.

However, the simplified scenarios are also the main limita-
tions of this work. This model currently uses reactive agents
with assumptions of intentionality and rationality in actions
and observations. Sociocognitive behavior is much more
complex, determined by factors such as trust, motivation,
and forgetfulness that may influence an agent’s willingness
to perform a task as well the inferences made from social ob-
servations. Although the fundamental models of social learn-
ing are differentiated in terms of PIs, TOs, and IOs, in the real
word learning scenarios associated with each of these learn-
ing modes are much wider and varied. For example, PIs in
real-world scenarios may include interactions such as recom-
mendations (informing an agent about another agent’s com-
petence) and queries (asking an agent about another agent’s
competence), where agents explicitly exchange information
about the other agents, in both formal and informal interac-
tions (Bobrow & Whalen, 2002; Borgatti & Cross, 2003).
The computational model needs to be extended to include
other learning scenarios.

In the current model, the task-related capabilities of agents
do not change over time, which is rarely the case in real-world
scenarios that may require constant updates of the TM for ac-
curacy and recency, other aspects of TM that are critical to ef-
fective task coordination. The current model adopts one of the
many different ways to represent a design task. The results
may also vary with the complexity of the task modeled and
the knowledge and coordination required by the agents. De-
sign tasks are often creative and exploratory and result in
the production of new knowledge and expertise. Modeling
creative design tasks and the generation of new knowledge
is by itself a computationally challenging task. Extensions
to the current model can simulate some of the specific char-
acteristics of the creative design processes and tasks. In par-
ticular, this model can be extended to study how social ex-
periences and cumulative learning of individuals in teams
may influence collective learning and the generation of exper-
tise in creative design teams. For instance, simulations can in-
vestigate how members collectively learn to design better.
This model can also be extended to study the density effects
on learning (Huber, 1981; Rodan, 2008) and to understand
why some teams are more creative than others.

In summary, this paper presents a computational model
based on fundamental modes of social learning in teams
and provides a robust platform that can be extended across
different dimensions of design TS and design tasks to test as-
pects of team learning and behavior.
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