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This paper presents a reliable in-motion alignment algorithm for a low cost Strapdown Inertial
Navigation System/Global Positioning System (SINS/GPS) combination under random mis-
alignment angles, which transforms attitude alignment into an attitude estimation problem.
Based on Rodrigues parameters, an alignment model with a linear state-space equation and a
second order nonlinear measurement equation is established. Furthermore, by employing a Tay-
lor expansion on the nonlinear measurement equation, we implement a second order Extended
Kalman Filter (EKF2). The proposed method uses a single filter that can not only determine the
initial attitude, but also estimate the sensor errors. In addition, a scheme is given for avoid-
ing singularity, which makes the algorithm more widely suitable for random misalignment
angles. Experimental ground tests are performed with a low-cost Micro-Electromechanical Sys-
tem (MEMS) SINS, which validates the efficacy of the proposed method. The performance
compared to the traditional alignment algorithm is also given.
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1. INTRODUCTION. The Inertial Navigation System (INS) is essentially a dead reck-
oning system. Hence, the initial condition, which is determined by the initial alignment,
should be provided prior to navigation computation. Generally, the initial alignment for a
high-precision INS can be achieved directly based on the output of gyros and accelerom-
eters, known as self-alignment. For the low-cost INS, the noise threshold of gyros is near
or higher than the Earth’s rotation rate (≈15◦/h), which means it cannot detect the Earth’s
rotation rate properly (Han and Wang, 2010). In this respect, the initial alignment approach
for high-end INS is not feasible for low-cost INS. A popular approach is to use an external
aiding sensor to provide additional information as reference for alignment.
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With the vehicle held stationary, low cost systems initialise the pitch and roll angles
using an accelerometer-measured gravitational field vector (Burak and Bekir, 2015).
Heading is obtained externally using a magnetometer (Li and Wang, 2013). For sys-
tems integrated with the Global Positioning System (GPS), the velocity supplied by GPS
provides a heading after the vehicle has started to move (Dissanayake et al., 2001). Unfor-
tunately, the former method can only work effectively without dynamic accelerations and
the measurements of magnetometers suffer from local magnetic interference. The latter
method requires the vehicle to move at a strictly constant speed. In addition to this, the
installation situation of INS relative to the vehicle should be determined prior to heading
alignment.

The last decade has shown an increasing demand for small-sized and low-cost inertial
navigation systems in many applications. However, initial alignment is still a challenging
issue for these domains. It is especially difficult to estimate the attitude when the vehicle is
moving. For example, smart munitions and guided missiles with a GPS-aided navigation
system can be launched at any given time. The alignment must be done in-flight based on
GPS information.

Various in-motion alignment techniques have been reported. Joon et al. (2004) sug-
gested an in-flight alignment for a Strapdown Inertial Navigation System/Global Position-
ing System (SINS/GPS) using carrier phase rate measurement. The proposed method is
more efficient than the velocity-aided one, which, nevertheless, requires two GPS anten-
nae. Han and Wang (2010) introduced a two-stage Kalman filtering mechanism for the
initial alignment of low-cost INS aided by GPS. The first stage is designed for the coarse
alignment, and the second is for the fine alignment. Obviously, the alignment process must
switch from a coarse alignment filter to a fine alignment filter. However, the error dynamic
is just suitable for small attitude errors. To deal with large initial attitude error, some works
provided nonlinear filtering methods (Scherzinger, 1996; Kong et al., 1999; Bimal and
Ashok, 2015; Yuan et al., 2016). Kong et al. (1999) developed a non-linear error dynam-
ics model for all three large misalignment angles. The benefit of this method is that the
coarse alignment stage is eliminated. However, this model suffers from complex non-linear
operations. Li et al. (2013) proposed a scheme for a Doppler Velocity Log (DVL)-aided
Strapdown Inertial Navigation System (SINS) in-motion alignment using the Unscented
Kalman Filter (UKF), which can deal with any initial heading errors. Bimal and Ashok
(2015) developed a nonlinear wander azimuth error model that can be used for DVL-aided
in-motion alignment and compared the performance of a UKF and an Extended Kalman Fil-
ter (EKF). This study did not consider sensor biases. The drawbacks of the above methods,
however, are well-known linearization effects and computational load.

Recently, the Optimisation-Based initial Alignment (OBA) method has been developed
(Gu et al., 2008; Silson, 2011; Wu et al., 2011; Kang et al., 2012; Li et al., 2014; Lu et al.,
2016). The essence of the OBA method is to determine the constant attitude matrix at start-
up of the initial alignment using infinite vector observations. Wu and Pan (2013) proposed
an optimisation-based in-flight coarse alignment approach based on velocity/position inte-
gration. Flight tests of a navigation-grade SINS were used to evaluate the two alignment
algorithms. However, they did not take the sensor bias into account and no test was done
on low-cost SINS. Similar to Wu and Pan’s method, Chang et al. (2015) extended the idea
of the OBA method and gave a filtering called Modified Unscented Quaternion Estimator
(MUSQUE) which can estimate the gyroscope biases other than the attitude quaternion.

https://doi.org/10.1017/S037346331700039X Published online by Cambridge University Press

https://doi.org/10.1017/S037346331700039X


1226 XIAO CUI AND OTHERS VOL. 70

In the present work, a Rodrigues parameters-based optimal estimator is proposed as
a synthesis of the approaches mentioned above. Like the quaternion-based estimator, the
proposed estimator consists of two stages. The first stage features an optimal estimation
of a constant Rodrigues parameters vector. Then, the second stage produces a constant
attitude matrix from the filtered Rodrigues parameters vector via the Cayley transform.
Our contribution resides in the following properties:

• An ordinary linear Kalman Filter (KF) is applied on the state-space model. The mea-
surement equation is quadratic with respect to the Rodrigues parameters vector. This
equation is linearized by employing a Taylor expansion and the linearized model is
implemented in a second order Extended Kalman Filter (EKF2), thus reducing the
linearization effects of the EKF and avoiding the computational load of the nonlinear
filter method.

• The initial alignment process does not need to be divided into two stages. A single
Kalman Filter can complete the initial alignment under random misalignment angles.

• The proposed method circumvents one drawback of previous alignment methods,
which is the difficulty of estimating parameters other than the attitude, such as the
gyroscope and accelerometer biases. This is a desirable property for MEMS-based
low-cost SINS.

The remainder of this paper is organised as follows. In Section 2, we review the conven-
tional initial alignment scheme for low-cost SINS aided by GPS. In Section 3, based on
Rodrigues parameters, the alignment dynamic model under random misalignment angles is
established. Furthermore, employing exact Taylor series expansions, second-order EKF
update equations are derived. Experimental tests on a vehicle with a low-cost MEMS
Inertial Measurement Unit (IMU) are presented in Section 4. The data from dynamic exper-
iments is processed by the proposed method and conventional in-motion initial alignment
method for comparison. The conclusions of the present work are presented in the last
section.

2. CONVENTIONAL INITIAL ALIGNMENT SCHEME FOR LOW-COST SINS
AIDED BY GPS. The traditional initial alignment scheme aided by GPS is divided into
two stages, namely, the coarse alignment stage and the fine alignment stage. The coarse
alignment can be achieved through the classical least-squares approach generally intro-
duced in 1965, the so-called Wahba’s problem (Choukronun et al., 2004), which is a
constrained least-squares estimation problem for finding the attitude matrix.

The fine alignment can be performed by a basic Kalman filter based on the INS linear
error models of small attitude errors (Li et al., 2015; Han and Wang, 2010). Velocity and
position information from the GPS with manoeuvring is employed as a measurement to
estimate the residual attitude errors coming from the coarse alignment stage.

2.1. Coarse Alignment in the Inertial Coordinate Frame. It is easy to show that the
apparent gravity expressed within the inertial space defines a cone whose main axis is the
rotational axis of the earth, by using vector observations of the projective gravity vec-
tor to accomplish the initial Attitude Determination (AD), which transforms the attitude
alignment into a constant attitude estimation problem.
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The attitude matrix can be decomposed into three parts based on the chain rule as
follows:

Cn
b(t) = Cn

in (t)Cin
ib Cib

b (t) (1)

where n and b are the local-level geographic frame and the body frame. in and ib denote the
auxiliary inertial frame, which are aligned with n and b at start-up of the alignment and are
inertially “frozen” thereafter, respectively.

Equation (1) shows that the attitude matrix Cn
b(t) is composed of three parts:

(a) C ib
b (t) represents the time-varying attitude due to the rotation of the b-frame relative

to the inertial frame ib as a function of inertial angular rate which is measured by gyros

Ċ
ib
b (t) = C ib

b (t)(ωb
ib×), C ib

b (t) = I (2)

using the two-sample coning correction algorithm (Savage, 1998; Qin, 2014).
The updating algorithm can be constructed as follows using the product chain rule:

C ib
b (tk) = C ib

b (tk−1)C b(tk−1)
b(tk) (3)

(b) Cn
in (t) describes the time-varying attitude due to the earth rotation rate and the

vehicle’s transport rate relative to the Earth. The analytic expression is

Cn
in (t) =

⎡
⎢⎢⎢⎢⎢⎣

cos δλ sin L0 sin δλ − cos L0 sin δλ

− sin Lk sin δλ
(

sin L0 sin Lk cos δλ
+ cos L0 cos Lk

) (− sin Lk cos L0 cos δλ
+ cos Lk sin L0

)

cos Lk sin δλ
(− sin L0 cos Lk cos δλ

+ sin Lk cos L0

) (
cos L0 cos Lk cos δλ

+ sin Lk sin L0

)

⎤
⎥⎥⎥⎥⎥⎦ (4)

where L0 and λ0 are the latitude and longitude at the start time of the alignment process; Lk
and λk are the latitude and longitude at time tk (output of GPS); δλ = λk − λ0 + ωiet.

(c) The core part Cin
ib is a constant matrix, which represents the relationship between

inertial frames ib and in. According to Gu et al. (2008) and Wu and Pan (2013), Cin
ib can be

derived by solving the attitude determination problem using infinite vector observations as

Vin = Cin
ib Vib (5)

where

V ib =
∫ t

0
C ib

b (t)f b(t)dt

V in =
∫ t

0
C in

n (t)
[
v̇n + (2ωn

ie + ωn
en) × vn − gn] f b(t)dt

Equation (5) is known as the classic Wahba’s problem using two or more vector pair
observations, and various authors (Choukronun et al., 2004) have presented solutions to
this least squares optimisation problem. If the initial attitude matrix Cin

ib is known, the
continuous time Cn

b(t) can be obtained by Equation (1).
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2.2. Fine Alignment based on Kalman Filter. The coarse alignment discussed in
Section 2.1 will make the misalignment converge to a small angle. Under the condition
of small platform misalignment, the fine alignment can proceed.

The state vector of the KF in the fine alignment process is generally selected as

X =
[
(ϕn)T (δvn)T (δpn)T

(
εb

)T (∇b)T
]T

(6)

where ϕn denotes the misalignment angle, δvn is the velocity error vector, and δpn is the
position error vector. εb and ∇b denote the gyro and accelerometer biases, respectively.

Using navigation-frame GPS velocity and position aiding, the measurements used in the
Kalman filter are the velocity and position differences between INS and GPS. Hence the
measurement model is given below:

Z =
[

vn
INS − vn

GPS
pn

INS − pn
GPS

]
= HX + V (7)

where H =
[
06×3 I 6×6 06×6

]
.

3. IN-MOTION ALIGNMENT FOR LOW-COST SINS/GPS AIDED BY GPS.
3.1. Alignment Dynamic Model under Random Misalignment Angles. Equation (5)

cannot be satisfied by all the measurements, due to sensor noise. In particular, we assume
that the integration of the accelerometer-measured specific force at time tk in the inertial
frame ib is given by following expression:

V̂
ib (tk) = Vib (tk) + δVib (tk) (8)

where δVib (tk) is the integration error of Vib (tk).
Then Equation (5) can be rewritten as

Vin (tk) = Cin
ib

(
V̂

ib (tk) − δVib (tk)
)

(9)

Our method is developed from the relationship equivalent to Equation (5), but written
in terms of the Rodrigues vector. This is obtained by mapping the attitude matrix to a
minimum-element attitude parameterisation expressed by the skew-symmetric Rodrigues
matrix, using the Cayley transform (Daniele et al., 2007; Junkins and Kim, 1993). The
relationship of attitude matrix C ib

in and the Rodrigues matrix is

Cib
in = [I + l(×)]−1 [I − l(×)] (10)

where l(×) is a skew-symmetric matrix related to the elements of the Rodrigues vector l.
Substituting Equation (10) into Equation (9) and reorganising the equation yields

V̂
ib (tk) = Vin (tk) = (V̂

ib (tk) + Vin (tk)) × l + l × δVib (tk) + δVib (tk) + wtk (11)

where wtk is the integration of the inertial sensor error.
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Defining the sum and difference as follows:

Stk = V̂
ib (tk) + Vin (tk), Dtk = V̂

ib (tk) − Vin (tk) (12)

Substituting Equation (12) into Equation (11), we obtain

Dtk = Stk × l + l × δVib (tk) + δVib (tk) + wtk (13)

Equation (13) is the measurement equation of Rodrigues parameters vector l, which is
equivalent to constant attitude matrix Cib

in . If the optimal estimate of Rodrigues parameters
vector l is known, Cib

in can be obtained by Equation (10).

In Equation (2), we substitute Cib
b , ωb

ib by Ĉ
ib
b and ω̂

b
ib , respectively. The time subscripts

are omitted for the sake of clarity, that is

˙̂C ib
b = Ĉ

ib
b (ω̂b

ib×) (14)

assuming that the error of Ĉ
ib
b just introduced by gyro bias of SINS, and the computing

platform misalignment angles ϕib is small in alignment process. Then we obtain

Ĉ
ib
b (t) =

[
I 3 − (ϕib×)

]
Cib

b (15)

ω̂
b
ib = ωb

ib + εb + wb
g (16)

where εb, wb
g are gyro biases and the noise of SINS, respectively.

Now if we can differentiate both sides of Equation (15) and substitute Equations (2),
(14) and (16) then we obtain the following differential equation

ϕ̇ib = −Ĉ
ib
b (εb + wb

g), ϕib (0) = 0 (17)

From Equations (5) and (8) we can see that

V̂
ib = Vib + δVib =

∫ t

0
Ĉ

ib
b f̂

b
dt (18)

f̂
b

= f b + ∇b + wb
a (19)

where ∇b, wb
a are accelerometer biases and the noise of SINS, respectively.

Substituting Equations (15) and (19) into Equation (18), and discarding the higher order
slim terms, we have

δV̇ ib = f̂
ib × ϕib + Ĉ

ib
b (∇b + wb

a), δVib (0) = 0 (20)

As the matrix Cib
in can be considered as a constant attitude matrix during the alignment

process, the correlated Rodrigues parameters vector in Equation (10) satisfies the following
differential equation

l = 0 (21)

Equations (17), (20), and (21) constitute the dynamic model. Taking the gyroscope
drifts εb and accelerometer biases ∇b into account as constant, the complete state vector is
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selected as follows

X =
[
lT (

ϕib
)T (

δVib
)T (

εb
)T (∇b)T

]T
(22)

The alignment dynamic model under random misalignment angles can therefore be written
as ⎡

⎢⎢⎢⎢⎢⎢⎢⎣

l̇
ϕ̇ib

δV̇ ib

ε̇b

∇̇b

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 −Ĉ
ib
b 03×3

03×3 f̂
ib× 03×3 03×3 Ĉ

ib
b

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

l̇
ϕ̇ib

δVib

εb

∇b

⎤
⎥⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

03×1

−Ĉ
ib
b wg

Ĉ
ib
b wa

03×1

03×1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(23)

Equation (13) can be rewritten as

Z k = Dk = h(X k) + wk = Sk × l + (I + l×)δVib + wk (24)

Note that the measurement Equation (24) is derived without any assumption for mis-
alignment, which means that the alignment dynamic model can be established in the same
form whether the misalignment angle is small or not. In this respect, a unified in-motion
alignment model under random misalignment angles is proposed based on integration of
the specific force.

3.2. Second-order Nonlinear Measurement Filter Algorithm based on Second-order
Extended Kalman Filter. The state process Equation (23) is linear. In contrast, the mea-
surement Equation (24) is quadratic nonlinear. Measurement Equation (24) is linearized
accurately by applying a Taylor series expansion around X k0 to second-order terms as

h(X k) = h(X k0) + H kX k +
1
2

3∑
i=1

eiTr(DiX̃ kX̃
T
k ) (25)

where X k0 is the current best estimate of X k, X̃ k = X k − X k0, ei is a 3 × 1 unit vector
with 1 in the element i and 0 elsewhere, H k denotes the Jacobian matrix of the nonlinear
function h, Di denotes the Hessian matrix of the nonlinear function h, and “Tr” denotes the
trace operator.

Note that the second partial derivative matrix of nonlinear function is a constant matrix.
That is, the element of matrix Di is scalar. From Equations (23) and (24), nonzero scalars
of Di are as follows:

D1(2, 9) = 1, D2(1, 9) = −1, D3(1, 8) = 1,
D1(3, 8) = −1, D2(3, 7) = 1, D3(2, 7) = −1,
D1(9, 2) = 1, D2(9, 1) = −1, D3(8, 1) = 1,
D1(8, 3) = −1, D2(7, 3) = 1, D3(7, 2) = −1,

(26)

The remaining elements in matrix Di are zeros.
Equation (23) is clearly a linear state equation. This means we can use the standard KF

equations to estimate the state.
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Now we will derive the measurement update equations based on Equation (25) in the
form of a second-order Taylor series expansion. Suppose that the state estimate at tk is
given as

X̂ k = X̂ k/k−1 + K k

[
Z k − h(X̂ k/k−1) − Lk

]
(27)

where Lk is a correction term to assure the estimate X̂ k is unbiased, and we will then choose
K k to minimise the trace of the covariance of the estimate.

Define the estimate errors as

X̃ k = X k − X̂ k = X̂ k/k−1 − (X̂ k − X̂ k−1) (28)

where X̃ k/k−1 = X k − X̂ k/k−1
From Equations (25), (27) and (28), we have

X̃ k = X̃ k/k−1 − K kH kX̃ k/k−1 − K kwk − K k

[
1
2

3∑
i=1

eiTr(DiX̃ k/k−1X̃
T
k/k−1) − Lk

]
(29)

Assuming that time-update X̂ k/k−1 is unbiased, taking the expected value of both sides
of Equation (29) and making the result zeros, we obtain

Lk = E

[
1
2

3∑
i=1

eiTr(DiX̃ k/k−1X̃
T
k/k−1)

]
=

1
2

3∑
i=1

eiTr(DiPk/k−1) (30)

Substituting Equation (30) into Equation (29) we have

X̃ k = (I − K kH k)X̃ k/k−1 + K kA − K kwk (31)

where

A =
1
2

3∑
i=1

eiTr
[
(DiPk/k−1)(Dj Pk/k−1)

]
(32)

Since E(X̃ k) = 0, E(wk) = 0, wk and A are uncorrelated, we can see from Equations (31)
and (32) that

Pk = E
[
X̃ kX̃

T
k

]
= (I − K kH k)Pk/k−1(I − K kH k)T + K k(Rk +�k)K T (33)

where
�k = E

[
AAT]

(34)

The second-order EKF can be summarised in the following. Additional derivations can
be found in Simon (2006) or Qin et al. (2014).

a) Time-update equations:

X̂ k/k−1 = �k/k−1X̂ k−1 (35)

Pk/k−1 = �k/k−1Pk−1�
T
k/k−1 + Qk (36)
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b) Measurement update equations:

X̂ k = X̂ k/k−1 + K k

[
Z k − h(X̂ k/k−1) − Lk

]
(37)

K k = Pk/k−1H T
k (H kPk/k−1H T

k + Rk +�k)−1 (38)

�k(i, j ) =
1
2

Tr
[
(DiPk/k−1)(Dj Pk/k−1)

]
(39)

Pk = (I − K kH k)Pk/k−1(I − K kH k)T + K k(Rk +�k)K T (40)

From Measurement update Equations (35)∼(40), we know that the second-order EKF
equations are similar to the conventional linear KF, just with two additional terms, Lk
and �k.

3.3. Scheme for Avoiding Singularity. The well-known Rodrigues parameters
algorithm suffers from a singularity in the case of a π -rotation between the coordinate
frames, ib and in, because the norm of the Gibbs vector becomes unbounded for such a
rotation (Qin et al., 2014; Mei et al., 2015). This problem can be eliminated completely by
employing the method of sequential rotations, as introduced in Shuster and Oh (1980). We
apply a certain virtual rotation from the frame ib to a new coordinate frame ib′ , and make
the Rodrigues parameters that represent the orientation of ib′ and in away from the singular
position. By so doing, the estimation of lib

in can also be obtained indirectly from the result
lib′
in , which is the basic idea of designing the scheme for avoiding singularity.

However, in practice, it is possible to know in advance which rotation is not needed due
to the principal axis being far from its singular position (Daniele et al., 2007). For example,
in the Rodrigues parameters algorithm singularity for land vehicles or airborne vehicles,
which occurs only when the attitude angles are small, the yaw angle is close to π (Mei
et al., 2015). Then, the singularity avoiding method of GPS-aiding is summarised below.

Step 1: At the start-up of the alignment, the estimate of yaw angle and pitch angle are
available by using only the GPS velocity measurement vector v̂n

0

⎧⎨
⎩
ψ̂ = arctan 2(v̂n

0E , v̂n
0N )

θ̂ = arctan 2
(

v̂n
0U,

√(
v̂n

0E

)2 +
(
v̂n

0N

)2
)

(41)

where arctan 2 is the four-quadrant tangent inverse, v̂n
0i(i = E, N , U) are the GPS velocity

measurement components in the East, North and vertical direction, respectively.
Step 2: Compute the projected components of specific force in the inertial frame using

the GPS velocity outputs v̂n
1 at 1s (the sample period for GPS is 1 s) and v̂n

0

f̂
n

= (v̂n
1 − v̂n

0) + (2ωn
ie + ωn

en) × v̂n
1 + v̂n

0

2
− gn (42)

Step 3: We define a frame as a rotation sequence: the frame must be rotated by −ψ
around its z-axis and then by θ about its x-axis. Therefore, we can obtain the transformation
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from the n′′-frame to the n-frame using the result of Step 1

Ĉ
n′′

n (ψ̂ , θ̂ ) =

⎡
⎣1 0 0

0 cos θ̂ sin θ̂
0 sin θ̂ cos θ̂

⎤
⎦

⎡
⎣cos ψ̂ − sin ψ̂ 0

sin ψ̂ cos ψ̂ 0
0 0 1

⎤
⎦ (43)

Then, we use the computed attitude matrix Ĉ
n′′

n (ψ̂ , θ̂ ) to project f̂
n

into the n′′-frame

f̂
n′′

= Ĉ
n′′

n (ψ̂ , θ̂ )f̂
n

(44)

Step 4: Compute the mean of the specific force in inertial b-frame using the
accelerometer outputs over 1 s

ˆ̄f b =
1
N

N∑
k=1

f̂
b
(tk), tk ∈ [0, 1] (45)

where tk is the current sample time, tk = k · ts(k = 0, 1, · · · N ), where the sample period is ts.
Step 5: From the former definition of the n′′-frame, we see that the transformation matrix

from the n′′-frame to the b-frame corresponds to the elementary matrix only with an angle
γ , so the results of ˆ̄f n′′

and ˆ̄f b in Step 3 and Step 4 can be used to estimate the roll angle.

γ̂ = arctan 2
( ˆ̄f b

z f̂
n′′

x − ˆ̄f b
x f̂

n′′

z , ˆ̄f b
x f̂

n′′

z + ˆ̄f b
z f̂

n′′

z

)
(46)

where ˆ̄f b
x , ˆ̄f b

z , are the first and third components of ˆ̄f b, respectively; f̂
n′′

x , f̂
n′′

z are the first

and third components of ˆ̄f n′′
, respectively.

Step 6: we denote an attitude matrix C ib′
ib computed using the estimates, ψ̂ , θ̂ and γ̂ ,

as the virtual rotation, which indicates the transformation from the frame ib to a new
coordinate frame ib′ .

Furthermore, the necessity of determining the Rodrigues parameters vector lib′
in must

be resolved though the Cib′
ib to obtain the vector observations in the ib′-frame. That is, the

corresponding vectors in the ib-frame should be transformed into the ib′-frame by Cib′
ib .

When the Cib′
in can be obtained by Equation (10), the Cib

in is

Cib
in = (Cib′

ib )T · Cib′
in (47)

Steps 1∼6 introduce a scheme for avoiding singularity, which occurs when the attitude
angles are small, and the yaw angle is close to π .

4. ALIGNMENT EXPERIMENTAL TEST ON A VEHICLE. In this section, road test
experiments in a land vehicle are carried out to validate and corroborate the performance of
the proposed algorithm with a focus on the comparison with the traditional in-motion initial
alignment method. The experimental platform is shown in Figure 1, which is composed of
a MEMS Inertial Measurement Unit (MIMU, Stim-300 from the Sensonor company), GPS
and a POS (Position and Orientation System, POS) system (LV-610 from the Applanix
company). The POS system is a type of high-accuracy integrated navigation system. Here
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Figure 1. Setup of the experimental platform.

Table 1. Specifications of the Stim-300.

Gyroscope Accelerometer

Dynamic range ±400◦/s ±10 g
Update rate 100 Hz 100 Hz
Bias −250◦/h ∼ +250◦/h −0·75 mg ∼ +0·75 mg
Bias stability 0·5◦/h(Allan) 0·05 mg(Allan)
Random Walk 0·15◦/

√
h(Allan) 0·06 m/s/

√
h(Allan)

Table 2. Accuracy Specifications of the POS LV-610(PP).

GPS Outage
With GPS (1 km or one minute)

Roll and Pitch (◦) 0·005 0·005
Heading (◦) 0·15 0·15
X,Y Position (m) 0·02 0·1
Z Position (m) 0·05 0·07

it is used to provide the reference attitude with high accuracy for initial alignment perfor-
mance comparison. The specifications of the MIMU and the accuracy specifications of the
POS are listed in Tables 1 and 2, respectively.

It is known that the yaw misalignment angle is not observable without horizontal accel-
erations. Based on attitude estimation using the vector observations algorithm, we know
that all possible constraint manoeuvres should be performed to change the acceleration to
change the direction of the integration vector. Therefore, after beginning alignment, the
vehicle should accelerate in a straight line or make turning manoeuvres as a necessary con-
dition for in-motion alignment. The reference yaw and velocity during the test are shown
in Figure 2.

In the experiment, the initial state covariance matrix P0 has diagonal entities of the
corresponding state variances. The proposed method and the conventional fine alignment
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Figure 2. Velocity and yaw during the test.

Figure 3. Alignment errors comparison between the proposed method and conventional coarse alignment.

are set as follows{
P0 = diag([P l, Pϕib , PδVib , Pε, P∇]), (proposed method)
P0 = diag([Pφ , Pδv , Pδp , Pε, P∇]), (conventional method)

where P lj = (1)2, P
ϕ

ib
j

= (1e − 4′)2, P
δVib

j
= (0·1m/s)2, Pφj

= (1◦)2, Pδvj = (0·1m/s)2,

PδP = (10m)2, Pεj = (100◦/h)2, P∇j = (3mg)2.
The two methods have the same measurement noise covariance matrix

R = diag([0·1 0·1 0·1]2) and this is chosen based on the GPS output uncertainties. The
Q matrix is created using the inertial sensors’ noise statistics shown in Table 1.
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Figure 4. Alignment errors comparison between the proposed method and conventional fine alignment.

Figure 5. Gyroscope biases estimation.

The results of our method and conventional alignment algorithm are compared to the
reference POS system. Figures 3 and 4 illustrate the alignment error in the alignment pro-
cess. Figure 3 shows the alignment error from 0 s to 300 s to compare the proposed method
with conventional coarse alignment, while Figure 4 compares results of our method and
conventional fine alignment from 300 s to 600 s.

It is shown that the alignment performance of the proposed approach has obvious
improvements compared with that of the conventional approach. In particular, the yaw
estimation converges much faster and achieves higher accuracy than that of the more con-
ventional algorithm. The results indicate that the heading could reach around 0·1◦ accuracy
and the pitch and roll could be aligned up to 0·05◦ during the alignment.
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Figure 6. Accelerometer biases estimation.

Figure 7. Gyroscope biases estimation (unknown true constant + 50◦/h).

The gyroscope and accelerometer bias estimates are shown in Figures 5 and 6, respec-
tively. Since the sensor biases have a dominating effect on the performance of initial
alignment, especially for the low-cost SINS, a better knowledge of the sensor biases yields
a more accurate attitude estimate. This is why the proposed approach has superior perfor-
mance over the conventional algorithm. In addition, we have added 50◦/h and 5 mg biases
into the outputs of gyroscopes and accelerometers, respectively. We can compare the bias
estimation accuracy indirectly by the biases estimation results before and after the addition.
Figures 7 and 8 show the estimation results of biases after the addition, and the estimation
results at the final time of alignment are summarised in Table 3.

It is seen that the proposed approach provides a slight improvement in estimation
accuracy over the classical fine alignment by comparing the bias estimation results
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Figure 8. Accelerometer biases estimation (unknown true constant + 5 mg).

Table 3. Gyroscope and Accelerometer biases estimation results.

Bias Value Classical Fine Alignment Proposed Approach

Gyro unknown true constant −85·4848 −85·1443
93·4871 94·3245

−48·8330 −48·0853
unknown true constant + 50◦/h −35·2789 −35·1794

143·7221 144·3871
1·9972 1·9868

Acc unknown true constant 1·5169 1·4461
−1·5948 −1·5145
1·6033 1·6011

unknown true constant + 5 mg 6·4521 6·5052
2·9294 3·4680
6·5199 6·6652

before and after the addition. The former can reach [49·9649 50·0626 50·0721]T◦/h
and [5·0591 4·9825 5·0641]T mg respectively, whereas the latter is [50·2059 50·2350
50·8302]T◦/h and [4·9352 4·5242 4·9166]T mg. Moreover, we also deduce that the
proposed approach performs better during the steady state from Figure 5 to 8.

5. CONCLUSION. This paper describes the in-motion alignment procedure for a low-
cost INS/GPS integrated system under random misalignment angles using the second
order extended Kalman filter structure. Based on Rodrigues parameters representation,
an alignment model with a linear system equation and second order nonlinear measure-
ment equation is established. The second order extended Kalman filter framework enables
the proposed method to estimate the gyroscope and accelerometer biases apart from
the initial alignment, which is optimised for low-cost Micro Electro Mechanical System
(MEMS)-based SINS.
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From the experimental test results, it has been clearly indicated that the proposed
alignment approach can achieve the initial alignment more quickly and more accurately
compared with the conventional approaches.
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