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The effective method of carbon nanotubes antennas’ parameters calculation has been developed. The frequency dependencies
of input impedance of CNT in dielectric medium have been investigated. It is shown that an increase in the length of a nano-
tube length does not lead to the appearance of resonances in the centimeter wavelength range.
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I . I N T R O D U C T I O N

At present, the possibility of carbon nanotube’s (CNT) appli-
cation as centimeter and millimeter wavelength range anten-
nas is under investigation because of the possibility of mass
production of centimeter-long CNTs. The area of application
of such antennas is their use for interconnection between
nanoelectronic circuits and macroscopic devices.

The electric length of nanotube, which is larger than electric
length of metallic vibrators, is mentioned in [1–5]. Because of
that, the resonances of input impedance are observed in the
millimeter wavelength range for 20–50 mm length nanotubes.

The problems, which have to be solved for effective appli-
cation of CNTs as nanoantennas are high resistance per unit
length and relatively low efficiency. These factors significantly
influence the impossibility of CNT antenna’s usage for large
distances. The researches of ways to increase the nanoanten-
nas’ efficiency are being performed, and the first results
show that efficiency of radiation could be improved by the
use of several (up to few hundred) nanotubes distant from
each other on a length of the order of CNT’s radius.

The main objective of this work is to determine the circum-
stances to lower working frequency of CNT vibrator – by
means of increase of its length and by their placing in dielectric.

I I . T H E O R Y

To calculate properties of CNT antennas, we applied the
modified collocation method, presented in [6]. Let us consider
that the surface current j(z′) on a nanotube, which has only
longitudinal component and does not depend on the
azimuth w. Besides, we shall ignore the current at the edges.
In this case, we obtain

�E(z) = 1
iv110

∂2A
∂z2

+ k2A

[ ]
+ Ee(z), (1)

where Ee(z) is the external field, A the vectorial potential,
which could be expressed in the following form according to
simplifications, indicated above:

A(z) =
∫l

−l
j(z′)g1(z, z′) dz′,

where 2l is the vibrator’s length, and a is its radius,

g1(z, z′) = a
4p
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K(P) is the complete elliptic integral of the first kind,

P = 2a/
�����������������
4a2 + (z − z′)2

√
.

Let us write down boundary conditions at the vibrator’s
surface:

Ez = rnj, (2)

rn is the surface resistance, which for CNT can be expressed in
the following form [5]:

rn = −i
p2ah− (v− in)

2e2vF
,

where nF is the Fermi speed (for CNT nF ¼ 9.71 × 105 m/s), n
the relaxation frequency (for CNT n ¼ 3.33 × 1011 Hz), e the
electron charge, and h− the Planck’s constant (Fig. 1).

Substituting (1) into (2) we obtain

1
iv110

∂2A
∂z2

+ k2A

[ ]
+ Ee = rnj.

Let us make some transformations: (1/iv110) =
(1/(iv

���������
110mm0

√
))

������������
(mm0/110)

√
= (1/ik)Zc, where k, Zc is the

wave number and wave impedance in a dielectric with permit-
tivity and permeability equal to 1 and m, correspondingly.
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Then the above equation could be expressed in the following
form:

d2

dz2
+ k2

( )
A − hj = − ik

Zc
Ee, (3)

where h = jrn, and j = (ik/Zc).
Differential equation (3) has the following solution:

A = C cos kz + D sin kz + A1 + A2, (4)

where C, D are unknown constants, A1 is the particular sol-
ution of the following differential equation:

d2

dz2
+ k2

( )
A1 = − ik

Zc
Ee, (5)

A2 the particular solution of the following differential
equation:

d2

dz2
+ k2

( )
A2 = hj. (6)

Green function for differential equations (5, 6) is

gg = − 1
2ik

e−ik|z−z′ |,

therefore,

A1 = − ik
Zc

∫l

−l
Ee(z′)gg (z, z′) dz′, (7)

A2 = h

∫l

−l
j(z′)gg (z, z′) dz′ = − h

2ik

∫l

−l
j(z′)e−ik|z−z′ | dz′.

(8)

Substituting (7) and (8) into (4) we obtain integral equation
(IE) in unknown j(z)′:

∫l

−l
j(z′) g1(z, z′) + h

2ik
e−ik|z−z′ |

( )
dz′

= C cos kz + D sin kz −− ik
Zc

∫l

−l
Ee(z′)gg (z, z′) dz′.

(4′)

The above calculations could be easily generalized for the

system of N parallel vibrators (Fig. 2):

∑N

n=1

∫
Ln

jn(z′)Gnm(z, z′) dz′ = Cm exp [−ikj(Zm + lm − z)]

+ Dm exp [−ikj(Zm − lm + z)] + ik
Zc

∫l

−l
Ee(z′)gg

× (z, z′) dz′, z [ Lm, m = 1, . . . , N,

(9)

where jn is the current density on nth vibrator, n, m the
vibrators’ indices, related to point of origin z′ and observation
point z, correspondingly; an, Ln the radius and generatrix of
vibrator, Gnm(z, z′) the kernel of IE:

Gnm(z, z′) = gnm(z, z′) + h

2ik
e−ik|z−z′ |, (10)

gnm(z, z′) = an
4p

∫2p

0

exp (−ikR)
R

dc′.

If points z and z′ do not belong to the same vibrator, i.e.
n = m, the distance between vibrators is much larger than
an, so the kernel of IE becomes

gnm(z, z′) = an

∫2p

0

e−ikR

4pR
df ≈ an

2
e−ikR

R
.

Here R is the distance between point, lying at the vibrators’
axes.

If points z and z′ belong to the same vibrator, i.e. n ¼ m,
then the function gnm(z,z′) contain singular part gn0 (z, z′),
which can be expressed in terms of complete elliptic integral
of the first kind K(Pn):

gn0 (z, z′) = anPn K(Pn), Pn = 2an/
�����������������
4a2

n + (z − z′)2
√

. (11)

As the direct application of the collocation method is
impossible to solve the IE with singular kernel, the source
equations were transformed first. The static singular part of
the kernel was analytically isolated. Transformed IE was
solved by means of the collocation method [6]. On solving,
the quadrature considering the edge condition was used:

To solve IE by means of modified collocation method let us
consider the solution of IE (9) with the kernel (10). To analyti-
cally isolate the singularity in current behavior at the vibrators’
edges we shall search the solution in the following form:

jn(z) = rn(z) fn(z),

Fig. 1. The model of the CNT.

Fig. 2. The system of parallel CNTs.
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where rn(z) =
������������������
l2
n − (z − Zn)2/l2

n

√
, and fn(z) is the unknown

function.
The kernel of IE (9) at n ¼ m and z � z′ have logarithmic

singularity:

gn0 (z, z′) ≈ gn00(z, z′), gn00(z, z′) = −am ln
|z − z′|

8an

. (12)

Let us perform the regularization of the IE by isolating this
singularity in explicit form. To do that let us transform the
mth term of the sum in (9):

∫
Ln

rm(z′)( fm(z′)gm(z, z′) − fm(z)gmS (z, z′)) dz′

+ fm(z)Im(z), (13)

In(z) =
∫

Ln

rn(z′)gnS (z, z′) dz′. (14)

In expressions (13) and (14) we can set gnS = gn00, i.e. isolate
the logarithmic part, or we can isolate the whole static part by
setting gnS = gn0 .

If we set gnS = gn00, then integral (14) is calculated in analyti-
cal form:

Im(z) = − am
lm

∫lm

−lm

�������������
1 − (z′/lm)2

√
ln

�zm − z′

8am

∣∣∣∣
∣∣∣∣ dz′ = I0,m.

In IE (9) let us substitute the variables z = Zm + lm cosw,
then

I0,m = − am
2

∫p
0

ln
cosw− cosw′

8am/lm

∣∣∣∣
∣∣∣∣dw′

+ am
2

∫p
0

cos 2w′ ln
cosw− cosw′

8am/lm

∣∣∣∣
∣∣∣∣dw′

= pam
2

ln
16am

lm
− 1

2
cosw′

{ }
,

where �zm = z − Zm.
To calculate the integral I0,m(z) we shall use the following

expression:

− 1
p

∫1

−1
cos nf′ ln

cosf− cosf′

C

∣∣∣∣
∣∣∣∣df′ = ln cos (nf),

ln =
ln 2C, n = 0,

1
n

, n = 0,

{

which can be easily obtained using the integral’s value:

− 1
p

∫1

−1

Tn(x′)��������
1 − x′2

√ ln
|x − x′|

C
dx′ = lnTn(x),

where Tn(x) is the Chebyshev’s polynomials of the first kind.

In the second case, we have to make some additional trans-
formations while calculating the integral (14):

Im(z) = 1
lm

∫lm

−lm

�������������
1 − (z′/lm)2

√

× gm0 (�zm, z′) + am ln
�zm − z′

8am

∣∣∣∣
∣∣∣∣

{ }
dz′ + I0,m.

(14a)

Integral in (14a) does not contain any singularities and is
calculated numerically.

The first integral in (13) does not have a singularity at
z � z′, and so IE (9) after transformation could be solved
by means of the collocation method.

Let us substitute the integrals with the rectangle quadrature
with the number of nodes M and require the satisfaction of
transformed IE in nodes zmm = Zm + lm cosfm, fm

m =
(m p/(Mm + 1)) and at the vibrator’s edges
zmM+1 = Zm + lm, zmM+2 = Zm − lm. Thus, the solution of IE
(9) is reduced to solving of the system of linear algebraic
equations, which contains

∑N
m=1 (Mm + 2) equations and∑N

m=1 (Mm + 2) unknowns: f nn = f̃ (znn), C̃n, D̃n:

p

M + 1

∑M

n=1

sin2 fn

∑N

n=1

[
f nn gmnmn − dnmf mm gm0,mn

]
+f mm Im(zmm)

= C̃m exp [−ik(Zm + lm − zmm)]

+ D̃m exp [−ik(Zm − lm + zmm)] +Cm(zmm);

m = 1, . . . , N, m = 1, . . . , M + 2,

(15)

where gmnmn = gn(zmm, znn), gm0,mn = gm0 (zmm, zmn ), dnm is the
Kronecker symbol.

As was mentioned above, the use of expression (11) as gnS is
in preference, because logarithmic singularity poorly describes
the IE’s kernel for thin vibrators. The number of quadrature
nodes at calculating the integral (13) in this case weakly
depends on the ratio a/l, and is less than at use of expression
(12), i.e. the order of the system will be smaller, and so the cal-
culation time will be significantly reduced. On calculating
(14a), we can use the higher order of quadrature, than on cal-
culating (13). Because the integral (14a) does not depend on
the frequency, it is calculated only once, and the time of its
calculation weakly affects the overall calculation time.

I I I . R E S U L T S O F N U M E R I C A L
C A L C U L A T I O N

Input impedance of only single-walled CNTs of different
lengths was investigated (Fig. 3). Here and further we use nor-
malized R0 ¼ h/(2e2) ≈ 12.9 kV resistance. Solid lines – real
part of Zin, dashed lines – imaginary part.

In this frequency range, the CNT with half-length l ¼
10 mm has three pronounced resonances. In case of CNT
with l ¼ 50 mm the number of resonances is much greater,
and their amplitude is less than in case of l ¼ 10 mm. It is
necessary to point out that for the imaginary part of l ¼
50 mm CNT’s input impedance is negative up to 300 GHz.
Thus, there are no radiation resonances for nanotube
antenna of 50 mm length in frequency range up to 300 GHz.
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Mean value of real and imaginary parts of input impedance of
l ¼ 100 mm CNT is of the same order, that in case of l ¼
50 mm, but there are no resonances at frequency range
under investigation. The character of curves of input impe-
dance of l ¼ 100 mm CNT is analogous to the curve of tra-
ditional dipole antenna of classic metals. Thus, the increase
of the nanotube’s length does not lead to the appearance of
resonances in the centimeter wavelength range.

In Fig. 4, the results of calculation of CNT antenna, placed
in dielectric, are presented. An increase of dielectric permittiv-
ity leads to the increase in the number of resonances in the fre-
quency range under investigation, and to the decrease in
resonant frequencies values. The value of input impedance
also decreases.

As mentioned above, the electric length of a nanotube
vibrator is much greater than that of a metal vibrator.
Therefore, the current distribution on a CNT vibrator is
much more complicated and has some extremums (Fig. 5).

In Fig. 6, the results of calculation of the system of two par-
allel nanotubes with l ¼ 10 mm, distant from each other on
d ¼ 1 mm, at different values of the CNT’s radius a are

presented. The increase in the radius leads to a decrease in
the number of resonant frequencies. Subsidiary maximums
on frequency dependency appear because of interaction
between nanotubes’.

Also the frequency dependencies of far field for the
systems, containing several nanotubes disposed in line, are
presented. The increase in the number of nanotubes leads to
significant increase in the far field.

Also the CNT’s radiation patterns were calculated (Figs 7
and 8). In this case, the nanotubes of l ¼ 10 mm and radius
a ¼ 2.712 nm were considered. The radiation pattern for the
systems, which contain of one, three, and five nanotubes, dis-
posed parallel in line, are presented. The radiating nanotube in
case of three and five antenna systems was the one at the end,
others being situated in line along the azimuth w ¼ 0. The
plane, perpendicular to the vibrators, was selected, and the cal-
culation was performed under such frequencies, where the far
field reaches its maximum for every investigated system.

The radiation pattern of a single nanotube has an expected
shape and coincides with the radiation pattern of a classic
vibrator. In case of three and five nanotubes systems, the radi-
ation pattern has a clearly defined maximum. It is necessary to

Fig. 4. The dependence of input impedance on frequency for a single
nanotube of radius a ¼ 2.712 nm and l ¼ 10 mm. Curves 1 – 1 ¼ 1; 2 – 1 ¼

3; and 3 – 1 ¼ 10.

Fig. 3. The dependence of input impedance on frequency for nanotubes of
radius a ¼ 2.712 nm. Curves 1 – l ¼ 10 mm; 2 – l ¼ 50 mm; and 3 – l ¼
100 mm.

Fig. 5. The current distribution on a nanotube with l ¼ 10 mm, a ¼ 2.712 nm.
Solid curves – 1 ¼ 1, dashed curves –1 ¼ 10. Curves 1 – f ¼ 100 GHz; 2 – f ¼
1000 GHz; and 3 – f ¼ 1000 GHz, perfect metal.

Fig. 6. The dependence of input impedance on frequency for two parallel
nanotubes, half-length l ¼ 10 mm, distance between nanotubes d ¼ 1 mm,
curves 1 – a ¼ 2.712 nm; 2 – a ¼ 0.678 nm; and 3 – a ¼ 0.339 nm.
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say that maximums on radiation patterns correspond to oppo-
site direction of the arrangement of antennas. In case of
systems, where the distance between nanotubes is equal to
100 nm, the directivity is more clearly defined than for
systems with d ¼ 10 nm.

I V . C O N C L U S I O N

The effective method of CNT antennas’ parameters calcu-
lation was developed. The investigation of input impedance
for the systems of parallel radiating nanotubes has shown
that an increase of antennas’ length leads to an increase in
the number of resonances in the frequency range under

investigation and simultaneously leads to efficiency drop.
Thus, consequently, it is not possible to reach efficient radi-
ation at the centimeter frequency range by simply increasing
the antennas’ dimensions. But placing of CNT in dielectric
it is possible to decrease the resonance frequency at the
same physical dimensions of antenna. The use of the system
of parallel nanotubes leads to the appearance of intermediate
extremums, which become less expressed if the distance
between nanotubes is increased. To increase the radiation effi-
ciency of nanotubes, it seems reasonable to use several nano-
tubes, distant one from another on the distance of CNTs’
radius’ order. The use of the systems of parallel nanotubes
makes possible the creation of directional antennas.
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Fig. 7. Radiation pattern of the systems, consisting of parallel nanotubes,
distant on 10 nm from each other. Curves: 1 – single nanotube (frequency
f ¼ 160 GHz); 2 – three nanotubes (frequency f ¼ 180 GHz); and 3 – five
nanotubes (frequency f ¼ 220 GHz).

Fig. 8. Radiation pattern for the systems, consisting of parallel nanotubes,
distant from each other on 100 nm. Curves: 1 – single nanotube (frequency
f ¼ 160 GHz); 2 – three nanotubes (frequency f ¼ 140 GHz); and 3 – five
nanotubes (frequency f ¼ 180 GHz).
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