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Abstract. In this paper, I motivate a cut free sequent calculus for classical logic with first order
quantification, allowing for singular terms free of existential import. Along the way, I motivate a
criterion for rules designed to answer Prior’s question about what distinguishes rules for logical
concepts, like conjunction from apparently similar rules for putative concepts like Prior’s tonk, and I
show that the rules for the quantifiers—and the existence predicate—satisfy that condition.

§1. Sequents and defining rules. Let’s take it for granted for the moment that learn-
ing a language involves—at least in part—learning how assertions and denials expressed
in that language bear on one another. The basic connection, of course, is that to assert A
and to deny A clash. When we learn conjunction, we learn that there is a clash involved
in asserting A, asserting B and denying A ∧ B. Similarly, when we learn disjunction, we
learn that there is a clash involved in asserting A ∨ B, denying A and denying B.

One way to systematically take account of the kinds of clashes involved in these acts of
assertion and denial is through the language of the sequent calculus. Given collections
� and � of sentences from our language L, a sequent � � � makes the claim that
there is a clash involved in asserting each element of � and denying each element of �.
The structural rules of the sequent calculus can be understood in the following way [16].
Identity:

A � A.

There is a clash involved in asserting A and denying A. Weakening1:

� � �
[KL]

�, A � �

� � �
[KR]

� � A, �
.

If there is a clash involved in a position, it remains after adding an extra assertion or a
denial. Contraction:

�, A, A � �

�, A � �

� � A, A, �

� � A, �
.
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1 I follow the usual convention in proof theory, labelling Weakening with K (corresponding to
Curry’s combinator, K). The contraction rule, to be seen later, is Curry’s W [6]. In what follows,
we’ll run together adjacent weakening steps into one, to save space. So, one step of weakening
(on the left and the right) will take us from � � � to �, �′

� �,�′, combining a ‘primitive’ step
of weakening on the left for each member of �′ and on the right for each member of �′. Rather
than write out each one, we’ll weaken in each of them in a single step, marked with a [K].

c© Association for Symbolic Logic, 2018
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2 GREG RESTALL

The number of times a claim is asserted or denied is irrelevant to the presence or absence
of a clash. If there is a clash when A is asserted [or denied] n + 1 times it would have been
present if it had been asserted [or denied] n times. Cut:

� � A, � �, A � �

� � �
.

If there is a clash involved in asserting A (in concert with asserting � and denying �) and
a clash involved in denying A (in that same context) then there is a clash in the underlying
context.

I will not defend these rules here,2 except by showing how they may be used to shed light
on the behaviour of rules as definitions of logical concepts, and in particular the scope for
rules concerning quantification and the existence predicate.

So, let’s suppose we have a language L governed by some relation �L satisfying the
constrains of Identity, Weakening, Contraction and Cut. How might we extend the language
with a new concept? One way to understand this task is to characterize the new language
L′ (extending L) with a new relation �L′ extending �L. Suppose, for example, we have
a language consisting of some atomic vocabulary, together with the one place operator ¬
satisfying the usual classical principles. Suppose we wish to extend the language with a
binary connective for conjunction. One way to do this is to impose a Left and a Right rule
for conjunction from the sequent calculus, something like this pair of rules:

�, A, B � �
[∧L]

�, A ∧ B � �

� � A, � � � B, �
[∧R]

� � A ∧ B, �
.

And this would certainly have the desired effect, in that the usual behaviour of conjunction
follows, and the original rules for negation remain unperturbed by the addition. Not all rules
work in this way. A superficially similar pair of rules for a connective like ‘tonk’ [14],

�, B � �
[tonkL]

�, A tonk B � �

� � A, �
[tonkR]

� � A tonk B, �
,

does not seem to do quite the same kind of job as the conjunction rules. Adding the tonk
rules to a language containing the usual rules for negation does not leave those original
rules unperturbed. We can derive A � B for any A and B by way of tonk. Imposing an
arbitrary pair of Left and Right rules is too strong for the successful addition of a new
concept, not simply because it leads to Bad Things (like tonk) but because it makes claims
on �L′ that the relation may not be able to meet. Under the assumptions concerning norms
governing assertion and denial we have set out, the rule [tonkL] makes a claim concerning
assertions of tonk-statements, while the rule [tonkR] makes a claim concerning denials of
tonk-statements. An assertion of A tonk B involves a clash when an assertion of B involves
a clash. Similarly, a denial of A tonk B involves a clash when an denial of A involves a
clash. The only way that could work, in the presence of Cut, Identity and Weakening is
when all positions clash. If the original relation �L was nontrivial, then the new language
L′ with its relation �L′ is a revisionary extension of L, not only adding claims about clashes
involving the new vocabulary, but revising our view of what clashes there might be in L. It
is not so much an extension to L as a revision of it.

How did this take place? The rules of Cut and Identity already connect norms governing
assertions and norms governing denials. The rules [tonkL] and [tonkR] say too much, in

2 This has been done elsewhere [16].
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GENERALITY AND EXISTENCE 1: QUANTIFICATION AND FREE LOGIC 3

making independent and ill-fitting impositions on assertion and on denial, and in particular,
on assertions and denials using statements from the original language. They are ill-suited
to be understood as instructions to extend the relation �L on the language L to a relation
�L′ on language L′ satisfying Cut and Identity. They revise the original language instead
of extending it.

On the other hand, in another sense a pair of Left and Right rules may say too little, since
they need not specify precisely when assertions (or denials) of tonk statements involve a
clash. As rules that may not be invertible, they just require that under conditions there is
a clash—they leave open the possibility that there may be clashes under other conditions
too. Consider this pair of rules for the putative connective tink:

�, A � � �, B � �
[tinkL]

�, A tink B � �

� � A, � � � B, �
[tinkR]

� � A tink B, �
.

These rules tell us that an assertion of A tink B clashes where an assertion of A and an
assertion of B would have clashed, and a denial of A tink B clashes where the denial of
A and the denial of B would have clashed. These conditions are satisfied if A tink B is
identified with A ∧ B, or with A ∨ B, or with any of the multitude of other proposi-
tions entailed by A ∧ B and entailing A ∨ B. These rules do too little to characterize a
connective.

The Left and Right rules of a sequent calculus can, under certain circumstances, be
neither too heavy (like the rules for tonk) nor too light (like the rules for tink) to pick out
a single concept. Nuel Belnap characterized the situation by distinguishing those rules that
are not too heavy (they provide a conservative extension to the source language L) nor too
light (they are uniquely defining over that language L) [4]. In the rest of this section I will
offer an explanation of how such rules can arise out of a more fundamental criterion, the
defining rule.3 Here is an example, a defining rule for conjunction:

�, A, B � �========== [∧Df ]
�, A ∧ B � �

.

This differs from a pair of Left and Right rules in two ways. In this case, it characterizes the
behaviour of conjunction formulas on one side (in this case, the left side) of the sequent
alone, and second, it is an invertible rule, to be read from top-to-bottom and also from
bottom-to-top. (This is the function of the double horizontal line.) Understood in terms of
assertion and denial, it states that an assertion of a conjunction A∧ B involves a clash (with
the assertions � and denials �) if and only if the assertions of A and B (with � and �)
also involves a clash.

The [∧Df] rule completely characterizes clashes involving assertions of conjunctions
(alongside the rest of the vocabulary) in terms of clashes involving their components. By
itself, it says nothing concerning denials of conjunctions. However, the denials are not
left out—the characterization of denials of conjunctions is achieved by way of the rules
of Identity and Cut in the extended language. If we have some language L with clashes

3 The importance of rules of this form has been known for some time. Kosta Došen’s important
“Logical Constants as Punctuation Marks” [7] gives a systematic presentation of defining rules
for the concepts of first order predicate logic with identity, though Došen’s rule for conjunction
differs from [∧Df ] given here—Došen’s favoured rule is a right rule with two premises, rather
than a left rule. The operational rules in Sambin’s Basic Logic [3, 8, 20] also take this form, with
the significant difference that the defined concept occurs alone on the left (or the right) of the
concluding sequent.

https://doi.org/10.1017/S175502031800031X Published online by Cambridge University Press

https://doi.org/10.1017/S175502031800031X


4 GREG RESTALL

characterized in that vocabulary by the relation �L, satisfying Identity and Cut (and perhaps
some other rules allowing for composition of arbitrary formulas) then we can consider
adding [∧Df] to characterize conjunction, in a new language L+∧ with a new consequence
relation �L+∧, constrained to still satisfy Identity and Cut. In the extended language we
have, by Identity

[Id]
A ∧ B � A ∧ B

(since the assertion of A ∧ B clashes with its denial), and we can then apply [∧Df] to this
identity sequent to infer something concerning denials of conjunctions:

[Id]
A ∧ B � A ∧ B

[∧Df ]
A, B � A ∧ B

.

We learn that a denial of a conjunction clashes with the assertion of the conjuncts. This
goes some way to characterising denials of conjuncts, but we would like to know more—
in particular, we would like to know whether the denial of a conjunction clashes in other
contexts. Here, we can use the Cut rule.

� � A, �
[K]

� � A, A ∧ B, �

� � B, �
[K]

�, A � A ∧ B, B, �

[Id]
A ∧ B � A ∧ B

[∧Df ]
A, B � A ∧ B

[K]
�, A, B � A ∧ B, �

[Cut]
�, A � A ∧ B, �

[Cut]
� � A ∧ B, �

.

Which gives us a [∧R] rule of the expected form:

� � A, � � � B, �
[∧R]

� � A ∧ B, �
.

This tells us that denying a conjunction A∧B involves a clash when denying either conjunct
involves a clash.

Defining rules can be given for disjunction, the material conditional and negation in the
same way:

� � A, B, �========== [∨Df ]
� � A ∨ B, �

�, A � B, �=========== [⊃Df ]
� � A ⊃ B, �

� � A, �======== [¬Df ]
�, ¬A � �

.

In each case, the top-to-bottom reading of the defining rule provides one of the traditional
sequent calculus Left/Right rules, and the other can be recovered using Identity (on a
primitive sequent involving the introduced concept alone), a Defining Rule to unwrap the
connective on the side on which it is defined, and Cuts to make the context general. Here
is the case for disjunction:
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GENERALITY AND EXISTENCE 1: QUANTIFICATION AND FREE LOGIC 5

[Id]
A ∨ B � A ∨ B

[∨Df ]
A ∨ B � A, B

[K]
�, A ∨ B � A, B, �

�, A � �
[K]

�, A ∨ B, A � B, �
[Cut]

�, A ∨ B � B, �

�, B � �
[K]

�, A ∨ B, B � �
[Cut]

�, A ∨ B � �

.

This gives us the usual rule:

�, A � � �, B � �
[∨L]

�, A ∨ B � �
.

Here is the case for the conditional:

� � A, �
[K]

�, A ⊃ B � A, �

[Id]
A ⊃ B � A ⊃ B

[∨Df ]
A ⊃ B, A � B

[K]
�, A ⊃ B, A � B, �

�, B � �
[K]

�, A ⊃ B, A, B � �
[Cut]

�, A ⊃ B, A � �
[Cut]

�, A ⊃ B � �

.

This gives us the usual rule:

� � A, � �, B � �
[⊃L]

�, A ⊃ B � �
.

And finally, for negation:

[Id]¬A � ¬A
[¬Df ]

� A, ¬A
[K]

� � A, ¬A, �

�, A � �
[K]

�, A � ¬A, �
[Cut]

� � ¬A, �

gives us
�, A � �

[¬R]
� � ¬A, �

.

No such justification can be given for tonk or tink. If we take tonkL to be a defining rule:

�, B � �============ [tonkDf?]
�, A tonk B � �

then we have defined A tonk B to be equivalent to B, and [tonkR] is not satisfied by the
connective. If we take tonkR to be the defining rule:

� � A, �============ [tonkDf?]
� � A tonk B, �

then we have defined A tonk B to be equivalent to A, and [tonkL] is not satisfied by the
connective. As a matter of fact—though there is no space to give the complete proof here—
there is no way to introduce something satisfying both tonk rules by a defining rule of this
kind.4

4 Here is the core of an argument. For sequents of the form � � �, a defining rule for a binary
connective like tonk will either reduce �, A tonk B � � to sequents involving �, A, B and �,
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So, defining rules give us an independently motivated answer to Prior’s original question
concerning when inference rules successfully introduce a new concept. Defining rules in-
troduce a concept to a language, characterising the norms governing assertions (or denials)
featuring that concept. In the next section, we will consider how we can extend the work
of defining rules to consider quantifiers.

§2. Generality and classical quantifiers. Conjunction, disjunction, negation and the
material conditional are propositional connectives that rely on no assumptions about the
internal structure of sentences. Quantifiers are different. For quantifiers, we need our sen-
tences to have some internal structure—in particular, for first order quantifiers, we need to
identify a class of singular terms, so we can articulate the connections between claims like
these:

Fa (∀x)Fx (∃x)Fx Rab (∃x)Rax (∀y)(∃x)Rxy.

So, let’s suppose that our language has a designated class of singular terms (we’ll use
m, n, . . . , s, t, . . . for singular terms of various kinds5), and a class of variables (we’ll use
x, y, z, . . . for variables) for the quantifiers (∀x), (∀y), . . . and (∃x), (∃y), . . .. In general,
if a language allows for sentences to include variables unbound by any quantifier, then the
variables will be among the class of singular terms. We will not make that assumption here,
and for clarity, we will take it that all variables occuring in sentences must be bound by
quantifiers, though nothing important hangs on this.

For each sentence A in our language, we may single out some instances of a singular
term occuring in A by enclosing that term in parentheses. A(n) is a sentence with some
number of instances of n singled out.6 Given A(n), the formula (∀x)A(x) is found by
replacing those designated instances of n by the variable x and binding the formula with
the quantifier (∀x). So, for example, if A(n) is the formula

(Lmn ⊃ Lnm) ∧ Lnm′

with the designated instances of n indicated by underlining, then the corresponding formula
(∃x)A(x) is

(∃x)((Lmx ⊃ Lxm) ∧ Lnm′).
This means that we can replace some number of instances of a singular term in a formula by
variables, and bind them with a quantifier in order to construct a new formula.7 This leads
to the natural question; What is the connection between A(n) and (∀x)A(x)? Or between
A(n) and (∃x)A(x)? The classical behaviour of the quantifiers suggests the following pair
of defining rules:

� � A(n), �============= [∀Df ]
� � (∀x)A(x), �

�, A(n) � �============ [∃Df ]
�, (∃x)A(x) � �

or it will reduce � � A tonk B,� to such sequents. In either case, any such defining rules will
introduce a connective A tonk B which will be equivalent to some boolean combination of A and
B. Which boolean combination depends on the sides of the sequents in which A, B and A tonk B
are given. But no boolean combination of A and B satisfies both left and right rules for A tonk B.

5 A mnemonic: ‘n’ for ‘name’ and ‘t’ for ‘term’. The distinction between names and terms is not
important now, but will become important soon.

6 Yes, that number can be zero.
7 We allow for languages in which variables themselves count as singular terms, and languages in

which they never occur in formulas unbound, and are not themselves proper singular terms.
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GENERALITY AND EXISTENCE 1: QUANTIFICATION AND FREE LOGIC 7

(where n is not present in the bottom sequent of both rules). These rules are satisfied by
the quantifiers in classical first order predicate logic. (∀x)A(x) is false in a model if and
only if we can assign a value for n, for which A(n) is false in that model (provided that n
is free to interpret however we wish). On the other hand (∃x)A(x) is true in a model if and
only if we can assign a value for n such that A(n) is true in that model.

These rules can be understood in terms of assertion and denial, too. Denying (∀x)A(x)
(in the context of asserting � and denying �) involves a clash if and only if denying A(n)
would involve a clash, where n is a name free of any commitments. Asserting (∃x)A(x)
(in the context of asserting � and denying �) involves a clash if and only if asserting A(n)
would involve a clash, where n is a new name.

For these rules to work in the intended way, the name n has to be appropriate. Not every
singular term in every language can do the job. Here is an example. Consider R A, the
finite set of axioms of Robinson’s Arithmetic.8 In the context of classical predicate logic,
we can derive R A � 0 	= 3088. There is a clash involved in asserting the axioms of R A
and in denying that 0 is unequal to 3088. However, the term 3088 does not appear in the
axioms of R A. Nonetheless, it would be a mistake to generalize using [∀Df] to deduce
R A � (∀x)(0 	= x). Although 3088 does not appear in the axioms of R A, it is not logically
independent of them. In the syntax of R A, 3088 is a function term,9 which means that it is
not free to be interpreted arbitrarily, given the commitments made in the other assertions
and denials we have made—in this case, in R A.

In general, in a given language L with a consequence relation �, we will say that a term
α in a category A is deductively general iff for each sequent � � � that can be derived,
so can �[α := β] � �[α := β] where α is globally replaced in that sequent by another
term β in the category A.10 In first order classical predicate logic, function terms are not
deductively general singular terms, but primitive names are. If we consider the conseqence
relation of Peano Arithmetic, defined by setting � �P A � iff P A, � � � over the language
of predicate logic with 0, successor, addition, multiplication and identity, where P A is an
axiomatization of Peano Arithmetic, then the constant term 0 is not deductively general,
since we have (∃x)(0 	= x ′) �P A (that is, it’s inconsistent with the axioms of P A for 0 be
the successor of some number), but we do not have (∃x)(0′ 	= x ′) �P A.

Our proposed defining rules [∀Df] and [∃Df] make sense only when we impose the
restriction that the terms n appearing in the defining rule are deductively general. However,
there is a tension between this condition and the form of the defining rules themselves.
Consider a toy example, in which we have a language with a primitive predicate F , a stock
of names n, m, . . . , and a single one-place function symbol g, and it is interpreted in the
usual classical fashion. In this language, n and m are names, while g(n), g(m), g(g(n)),
etc., are terms but not names. How can we derive (∀x)Fx � Fg(n) when we extend the
language using [∀Df]? We can certainly derive (∀x)Fx � Fn for each name n, as follows:

[Id]
(∀x)Fx � (∀x)Fx

[∀Df ]
(∀x)Fx � Fn

.

8 In fact, we don’t need all of the axioms in R A. The single axiom (∀x)(0 	= x ′) stating that 0 is
not the successor of any number will do.

9 Literally, it is the term ‘0’ with the successor function applied to it 3088 times.
10 In the rest of this paper, the only syntactic category we will consider is the category of singular

terms. However, in other contexts, we will consider other syntactic categories, such as the
category of predicates, and the category of sentences.
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However, there is no way to apply the rule [∀Df] to generate the conclusion Fg(n), since
g(n) is not a name—it is not deductively general. If we were to require that in the extended
language, the names remained deductively general, we would require that the consequence
relation satisfy the condition of Specification:

� � �
[Specn

t ]
�[n := t] � �[n := t]

which permits a gobal replacement of the deductively general term n by the term t of the
same category, which may be less general.11 In other words, the specification rule ensures
that the terms n indeed are deductively general. If we could appeal to the specification rule
in a derivation, we could conclude (∀x)Fx � Fg(n) in the following way:

[Id]
(∀x)Fx � (∀x)Fx

[∀Df ]
(∀x)Fx � Fn

[Specn
g(n)]

(∀x)Fx � Fg(n)

.

Specification differs from the other sequent rules we have seen. It is not a local rule in a
derivation introducing a single formula, but a global rule modifying the entire sequent.12 In
the classical sequent calculus it is an admissible rule, rather than a primitive rule, because
any step in the derivation which ends in a sequent involving a general term could be
converted into a step in which that term is replaced by a more specific one. The rules
[∀Df] and [∃Df] do not have this feature, when read from bottom to top.

Now consider what happens when we attempt to convert [∀Df] into Left and Right rules
using the technique of the previous section. The [∀R] rule is the introduction half of [∀Df].
For [∀L] we can reason as follows:

[Id]
(∀x)A(x) � (∀x)A(x)

[∀Df ]
(∀x)A(x) � A(n)

[K]
�, (∀x)A(x) � A(n), �

�, A(n) � �
[KL]

�, (∀x)A(x), A(n) � �
[Cut]

�, (∀x)A(x) � �

.

Notice that the resulting derived rule

�, A(n) � �
[∀L: for names]

�, (∀x)A(x) � �

no longer requires the side condition to the effect that n is absent from � or �. The � and
� in this derivation are arbitrary, and do not pass through the inference step [∀Df], where
the side condition is in force. However, this algorithm does not give us the more general
rule of the form

11 The first paper in which a rule of this form is explicitly considered in a Gentzen system is Arnon
Avron’s (1993) paper “Gentzen-type systems, resolution and tableaux” [2].

12 So, it is not easily understood as corresponding to a natural deduction rule in which a proof
is modified either at a premise or a conclusion position, but is rather understood as a global
transformation of a proof. We transform a proof involving the deductively general term n into a
proof involving the more specific term t .
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�, A(t) � �
[∀L]

�, (∀x)A(x) � �

where t is an arbitrary singular term (not necessarily a deductively general one). To justify
this form of the [∀L] rule we must apply the algorithm not to an application of [∀Df] to an
identity sequent (∀x)A(x) � (∀x)A(x), but to the result of specifying the result:

[Id]
(∀x)A(x) � (∀x)A(x)

[∀Df ]
(∀x)A(x) � A(n)

[Specn
t ]

(∀x)A(x) � A(t)
[K]

�, (∀x)A(x) � A(t), �

�, A(t) � �
[KL]

�, (∀x)A(x), A(t) � �
[Cut]

�, (∀x)A(x) � �

which then gives us the fully general left rule [∀L]. The same holds for the rules for
the existential quantifier. Using [∃Df] and Specification, we can motivate the standard
existential quantifier Right rule:

� � A(t), �
[∃R]

� � (∃x)A(x), �
.

So, when we keep in mind the difference between deductively general terms and terms
with more restricted behaviour (such as function terms), we can see that the standard Left
and Right rules for the quantifiers can be understood in terms of their defining rules. In
particular, the defining rule for a quantifier depends on the presence of deductively general
terms, and the behaviour of these general terms—and their interaction with Identity, Cut
and Specification generates the special asymmetric behaviour of these rules. One rule (the
right rule for the universal quantifier; the left rule for the existential quantifier) invokes side
conditions. The other rule does not.

§3. Quantifiers and non-denoting terms. However, there are reasons why we might
want to reject these classical quantification rules. In particular, we may want to assert
(∀x)Fx while denying Ft for some terms t in the language. For example, you might take
it that according to the theory of real numbers we have (∀x)(x < 0 ∨ x = 0 ∨ x > 0)—
everything can be compared with 0—without concluding that ( 1

0 < 0 ∨ 1
0 = 0 ∨ 1

0 > 0)—
we don’t want to claim that 1

0 is comparable with 0—rather, this seems like something to
be denied. One way to avoid concluding ( 1

0 < 0 ∨ 1
0 = 0 ∨ 1

0 > 0) is to banish items like
“ 1

0 ” from the language. Perhaps we might banish the term on the grounds that, according
to the theory of real numbers, division is not a total function. There is no such number as
1
0 so ( 1

0 < 0 ∨ 1
0 = 0 ∨ 1

0 > 0) is not an instance of (∀x)(x < 0 ∨ x = 0 ∨ x > 0).
However, this is not, as a matter of fact, how everyday mathematical discourse regiments

the language. The freedom of allowing singular terms such as x
y and limx→∞ f (x) which

may occasionally fail to take values is a flexibility that is very useful for mathematical
practice. It would be needlessly complicated to banish all such terms from our vocabulary.
Rather, it seems that we may allow undefined terms in the vocabulary, provided that we are
careful about the behaviour of those terms.

There are many ways to admit nondenoting terms to the vocabulary without doing too
much violence to the norms of classical logic. One such attempt that is very congenial to
the proof-theoretical framework we’re exploring is due to Solomon Feferman, in his paper
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“Definedness” [9]. In that paper, Feferman provides a straightforward Hilbert-style proof
system and Tarskian semantics for a logic which minimally modifies classical first order
predicate logic by allowing for undefined singular terms. The result is a simple negative
free logic [11, 21, 22]. In the rest of this paper, I will show how considerations concerning
generality and defining rules can independently motivate that logic.

If we are to admit undefined terms to the vocabulary, we need to be careful with regard
to our rules for the quantifiers. No longer is the rule [∀Df ] appropriate if the name n is
allowed to be undefined—or rather, if n is deductively general, and an undefined term can
be found in the same category as n. For otherwise, we could derive

(∀x)(x < 0 ∨ x = 0 ∨ x > 0) � n < 0 ∨ n = 0 ∨ n > 0

and then, specify to the undefined term 1
0 . So, something has to give, if we are to accept

(∀x)(x < 0 ∨ x = 0 ∨ x > 0) and reject ( 1
0 < 0 ∨ 1

0 = 0 ∨ 1
0 > 0). One option would be

to deny that 1
0 is in the same syntactic category as the deductively general term n. The

name n is general, but it is not so general as to encompass the behaviour of nondenoting
singular terms. This seems against the spirit of the enterprise, where we allow terms to be
undefined, and where it is a matter of the theory (or the different views of the participants in
a dialogue) as to whether terms are defined or not. That seems to be a matter of semantics,
and not of syntactic category alone. We would very much like to allow the use of logical
techniques in a discussion where we have participants who disagree not only about what
is the case, but also disagree about what there is13—in a shared vocabulary with an agreed
upon syntactic regimentation.14

So, if we allow for assertion and denial of sentences, a natural generalization is to allow
for sequents to register pro and con attitudes toward terms, too. The guiding idea is that to
rule a term in is allow it as an appropriate term to substitute into a quantifier, or to take it to
denote. To rule a term out is to keep it in the vocabulary (mathematicians do not reject 1

0 as
syntactically ill-formed) but to not take it as a suitable substitution for generalizations. To
make room for this, our sequents will not feature sentences alone on the left and the right,
but also terms. A sequent is now a pair � � � where each of � and � can contain terms
as well as sentences.15 To derive a sequent � � � is to show that there is a clash involved
in asserting each sentence in � and ruling in each term in �, and denying each sentence in
� and ruling out each term in �.16

13 Of course, we can express disagreement about what there is by way of disagreement about
whether or not a given thing is the case—that is, the claim that a particular thing exists. What
is at stake here is the order of explanation. In this proof theory, we will explain the behaviour of
the existence predicate in terms of the norms governing ruling terms in and out. This will have
the advantage of allowing us to give a proof theoretical characterization of the fragment of our
logic in which the existence predicate is not present.

14 This is not to say that fruitful and rational discussion requires agreement on the syntax of the
shared language, just that some such discussion is possible with agreement on grammar without
thereby requiring agreement on whether or not a singular term denotes.

15 A referee drew my attention to a 2017 paper by Mark Textor, which introduces natural deduction
rules ruling terms in or out, on neo-Brentanian lines [26]. For Textor, predicating existence of t
is grounded in the act of ruling t in; denying existence of t is grounded in the act of ruling t out.
This analysis is consonant with the approach in this paper.

16 The result is a sequent calculus similar to Gratzl’s (independently developed) sequent calculus for
negative free logic, except that in Gratzl’s calculus, terms do not occur alone. The occurrence of
a term t in this sequent calculus is presented in Gratzl’s by the existence claim concerning t [10].
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GENERALITY AND EXISTENCE 1: QUANTIFICATION AND FREE LOGIC 11

How are we to reflect this understanding of terms in the rules for quantifiers? The natural
change to the defining rules for the universal and existential quantifier is to require in the
premises the condition that the term n is ruled in.

�, n � A(n), �============= [∀Df ]
� � (∀x)A(x), �

�, n, A(n) � �============ [∃Df ]
�, (∃x)A(x) � �

.

The upshot of denying (∀x)A(x) is to be prepared to deny A(n) for a some new name
which you rule in. To assert (∃x)A(x) is to be prepared to grant A(n) for a new name n,
which you rule in.

When we apply the algorithm to use Identity, Cut and Specification to generate the
remaining Left/Right rule for each quantifier, the following derivation

[Id]
(∀x)A(x) � (∀x)A(x)

[∀Df ]
(∀x)A(x), n � A(n)

[Specn
t ]

(∀x)A(x), t � A(t)
[K]

�, (∀x)A(x), t � A(t),�

�, A(t) � �
[KL]

�, (∀x)A(x), A(t) � �
[s-Cut]

�, (∀x)A(x), t � �

� � t,�
[K]

�, (∀x)A(x) � t,�
[t-Cut]

�, (∀x)A(x) � �

generates the [∀L] rule:
�, A(t) � � � � t, �

[∀L]
�, (∀x)A(x) � �

which can be read as follows (contrapositively). If I assert (∀x)A(x), and t is a term, then
my options are to also grant A(t), or to rule t out.

Similarly, this derivation for the existential quantifier

� � t, �
[K]

� � t, (∃x)A(x), �

� � A(t), �
[K]

�, t � A(t), (∃x)A(x), �

[Id]
(∃x)A(x) � (∃x)A(x)

[∃Df ]
A(n), n � (∃x)A(x)

[Specn
t ]

A(t), t � (∃x)A(x)
[K]

�, A(t), t � (∃x)A(x), �
[s-Cut]

�, t � (∃x)A(x), �
[t-Cut]

� � (∃x)A(x), �

generates this [∃R] rule:
� � t, � � � A(t), �

[∃R]
� � (∃x)A(x), �

.

The second Cut step in the justification for the [∀L] rule was a t-Cut, a Cut on a term. This
form of the Cut rule

� � t, � �, t � �
[t-Cut]

� � �
is just as motivated as a Cut on sentences. (If there is a clash involved ruling t in and in
ruling t out in a context, there is a clash in the underlying context.)

To complete the motivation of our logic with nondenoting terms we need to consider
the interaction between denotation, predication and function terms, and to consider the

https://doi.org/10.1017/S175502031800031X Published online by Cambridge University Press

https://doi.org/10.1017/S175502031800031X


12 GREG RESTALL

behaviour of an ‘existence predicate’ which makes explicit in assertion and denial the term
judgements involved in ruling in and ruling out terms. The latter is straightforward. Here
is a defining rule for the existence predicate:

�, t � �======= [↓Df ]
�, t↓ � �

‘↓’ is syntactically a predicate, and it makes explicit the judgement that the term t denotes
as a sentence. To rule 1

0 as undefined is to deny 1
0↓—to assert its negation ¬ 1

0↓. Generating
the Right rule for ↓ is straightforward:

� � t, �
[K]

� � t, t↓�

[Id]
t↓ � t↓

[↓Df ]
t � t↓

[K]
�, t � t↓, �

[t-Cut]
� � t↓, �

.

The right rule replaces a term judgement t in the right hand side of a sequent with the
corresponding sentence t↓, as expected.

For function terms, a natural constraint is that an n-place function f is defined on inputs
t1, . . . , tn only when those inputs are defined.17 This motivates the following interaction
rule18 for term judgements and function application:

ti , � � �
[ f L]

f (t1, . . . , tn), � � �
.

Feferman’s free logic, being a negative free logic [11], makes the same choice for predi-
cation. Given a primitive n-ary predicate F , it can be truly applied to the terms t1, . . . , tn
only when those terms are defined.

ti , � � �
[FL]

Ft1 · · · tn, � � �
.

This seems very natural in the mathematical case ( 1
0 is not even, and neither is 1

0 prime), so
we will adopt the rule here. Note that adopting such a rule involves drawing a distinction
between primitive and complex predicates. While 1

0 is not even, the complex predicate ‘not
even’ is truly applied to the term 1

0 . This rule, while satisfied by simple predicates F is not
necessarily satisfied by other complex predicates—and of course, it cannot be satisfied by
the negation of the definedness predicate ↓. That only truly applies to nondenoting terms
by design.19

17 So, on this view, 1
0 − 1

0 is undefined, even if the function λx .(x − x) is the constant zero function
that is everywhere defined. To use the distinction from computer science, we adopt a call-by-value
semantics rather than a call-by-name semantics for function evaluation [27]. Inputs to functions
are evaluated before the evaluation of the function.

18 Both the rule [ f L] here and [FL] below can be understood as single rules for each function term
f and predicate F , or as n different rules for each i = 1, . . . , n. Nothing here hangs on the choice
here of what inferences count as falling under a single rule.

19 In a sequel to this paper, I will discuss this issue further, when examining generality and
predicates. It is enough to leave that intersection in the highway of options for later, and to follow
along with Feferman in this choice for free logic and predication.
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GENERALITY AND EXISTENCE 1: QUANTIFICATION AND FREE LOGIC 13

With this motivation behind us, let’s see where we have arrived, and examine this proof
system in some detail.

§4. Derivations and systems. To be relatively precise, let’s assume we work with a
language consisting of a supply of names (m, n, n1, n2, . . .), and function symbols ( f , g,
etc.), and predicates (F, G, L , R, . . .). We include a special one-place predicate ‘↓’, to be
written postfix. A term in the language is either a name or a function symbol applied to an
appropriate number of terms.

We also have an infinite supply of variables (x, y, z, x1, x2, . . .) to feature in our quan-
tifiers. Formulas are combined with the usual connectives ∧, ∨, ⊃ and ¬. Sentences do
not contain any free variables. To apply a quantifier (∃x) to a sentence A(n) with some
number of instances of the name n designated, replace the name n by variable x and prefix
the result with the quantifier.

We use the capital Greek letters � and � variously for sets and multisets of sentences
and terms. Two multisets are identical if they have the same members the same number of
times, and two sets are identical if they merely have the same members. We write these
multisets and sets in list notation without any parentheses since the only members are
sentences or terms, and we use a comma to indicate adding a member to a set or multiset.
(So, if t is a term and � is a multiset, then t, � is another multiset that contains every-
thing to the same degree that � does, except for t , which it contains one more time than
� does.)

In our sequent calculus, sequents are pairs of multisets, � � � consisting of sentences
and terms. We call � the left hand side (LHS) of the sequent and � its right hand side
(RHS). The sequent calculus defines a class of derivations of sequents—trees of sequents
constructed using the following rules. The leaves of derivations are Identity sequents of the
following shapes:

�, A � A, � [s-Id] �, t � t, � [t-Id].

These identity sequents are not of the form A � A or t � t but allow irrelevant side formu-
las to be weakened in. (For the model construction of the next section, such a formulation
works well, so we will use it here.)

The Identity rules are structural rules. A structural rule pays no heed to the internal
structure of sentences or terms. Another structural rule is the rule of Contraction, which
comes in four flavours: two left rules, and two right rules, two sentence rules and two term
rules.

�, A, A � �
[s-WL]

�, A � �

� � A, A, �
[s-WR]

� � A, �

�, t, t � �
[t-WL]

�, t � �

� � t, t, �
[t-WR]

� � t, �
.

The contraction rules ensure that repeats of formulas or terms have no effect on the conse-
quence relation.20 Our next pair of structural rules are the Cut rules, again, one for a cut on

20 You may wonder why we work with multisets of formulas, which allow for repeats, while sets of
formulas do not. The difference is important for when we consider derivations as representing the
structure of a proof. If a sequent A, B � A ∧ B makes use of two premises, one used to justify
the first conjunct of the conclusion, and the other to justify the second, then the proof would have
still had that shape had A and B been the same formula. A proof step from A and A to A ∧ A is,
in some sense, a different proof from a proof step from A to A ∧ A, even though they are equally
valid.
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a sentence and the other for a cut on a term.

� � A, � �, A � �
[s-Cut]

� � �

� � t, � �, t � �
[t-Cut]

� � �
.

Finally, we have the nonlocal rule of specification, which allows for the global replacement
of a deductively general term n (a name) by a term t in the entire sequent.

� � �
[Specn

t ]
�[n := t] � �[n := t]

.

That rounds out the structural rules of the calculus. To those we add the rules for function
application and predication. These are not structural rules—they dictate the interaction
between definedness of terms and function terms and predications, and so, they depend on
the particular form of the sentences displayed in the rules.

ti , � � �
[ f L]

f (t1, . . . , tn), � � �

ti , � � �
[FL]

Ft1 · · · tn, � � �
.

Yet, these are not defining rules for any particular vocabulary. They are certainly not
defining rules for the function terms or predicates, because they are the same shape rule for
each predicate and function symbol of a given arity.

We have one defining rule for each logical concept in the vocabulary. Here are the
defining rules for the propositional connectives:

�, A, B � �========== [∧Df ]
�, A ∧ B � �

� � A, B, �========== [∨Df ]
� � A ∨ B, �

�, A � B, �=========== [⊃Df ]
� � A ⊃ B, �

� � A, �======== [¬Df ]
�, ¬A � �

.

And here are the defining rules for the quantifiers and the definedness predicate:

�, n � A(n), �============= [∀Df ]
� � (∀x)A(x), �

�, n, A(n) � �============ [∃Df ]
�, (∃x)A(x) � �

�, t � �======= [↓Df ]
�, t↓ � �

.

As usual, the quantifier rules have the usual side condition: the name n (a deductively
general term) is not present in the conclusion of the rule. Let’s call the system DL[Df, Cut,
Spec] the proof system for definedness logic with Defining Rules, the Cut rules and the
Specification Rule.

A derivation of a sequent � � � in DL[Df, Cut, Spec] is a tree of sequents, starting
with Identity sequents at the leaves, each step of which is an instance of one of the rules,
and which ends at the root in � � �. Here is an example derivation in the proof system, of
(∀x)A(x), t↓ � A(t).

(∀x)A(x) � (∀x)A(x)
[∀Df ]

(∀x)A(x), n � A(n)
[Specn

t ]
(∀x)A(x), t � A(t)

[↓Df ]
(∀x)A(x), t↓ � A(t)

.

For derivations using [s-Cut] or [t-Cut], it is often useful to allow for cuts between sequents
with different side formulas (or side terms). The alternate Cut rules

� � A, � �′, A � �
[s-Cut∗]

�, �′
� �, �′

� � t, � �′, t � �
[t -Cut∗ ]

�, �′
� �, �′
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can be justified as follows:

� � A, �
[K]

�, �′
� A, �, �′

�′, A � �
[K]

�, �′, A � �, �′
[s-Cut]

�, �′
� �, �′

� � t, �
[K]

�, �′
� t, �, �′

�′, t � �
[K]

�, �′, t � �, �′
[t -Cut]

�, �′
� �, �′

.

Using this form of Cut, we have a short derivation of (∀x)(Fx ⊃ Gx) � (∃x)Fx ⊃
(∃x)Gx .

(∀x)(Fx ⊃ Gx) � (∀x)(Fx ⊃ Gx)
[∀Df ]

(∀x)(Fx ⊃ Gx), n � Fn ⊃ Gn

Fn ⊃ Gn � Fn ⊃ Gn
[⊃Df ]

Fn ⊃ Gn, Fn � Gn

(∃x)Gx � (∃x)Gx
[∃Df ]

n, Gn � (∃x)Gx
[s-Cut∗]

Fn ⊃ Gn, n, Fn � (∃x)Gx
[s-Cut∗]

(∀x)(Fx ⊃ Gx), n, Fn � (∃x)Gx
[∃Df ]

(∀x)(Fx ⊃ Gx), (∃x)Fx � (∃x)Gx
[⊃Df ]

(∀x)(Fx ⊃ Gx) � (∃x)Fx ⊃ (∃x)Gx

.

As we have seen in the first two sections of this paper, Specification can be eliminated as
a rule if we are willing to generalize the Defining Rules, and the Defining Rules can be
traded in for the traditional pairs of Left/Right rules of a sequent calculus. We will end this
section precisely stating and proving these two facts. First, the elimination of Specification.
The Generalized Defining Rules for the quantifiers are given as follows:

�, n � A(n), �
[∀Df⇓]

� � (∀x)A(x), �

� � (∀x)A(x), �
[∀Df⇑]

�, t � A(t), �

�, n, A(n) � �
[∃Df⇓]

�, (∃x)A(x) � �

�, (∃x)A(x) � �
[∃Df⇑]

�, t, A(t) � �
.

The ⇓ parts of these rules are one half of each of the original defining rules for the
quantifiers, and they retain the side condition to the effect that the name n does not ap-
pear in the concluding sequent. The ⇑ parts of the rules are generalizations of the other
halfs, allowing an implicit specification from the deductively general name n to the more
specific term t . Let’s call the system DL[GDf, Cut] the proof system for definedness
logic with the Generalized Defining Rules, and the Cut rules but without the Specification
Rule.

FACT 4.1. A derivation of a sequent � � � in DL[Df, Cut, Spec] can be systematically
transformed into a derivation of that sequent in DL[GDf, Cut], and vice versa.

Proof. For the left-to-right direction, we argue as follows: The rule of specification is
admissible in DL[GDf, Cut] in the following sense. Any derivation in DL[GDf, Cut] of a
sequent � � � can be transformed into a DL[GDf, Cut] derivation of the sequent �[n :=
t] � �[n := t]. Consider each of the rules in DL[GDf, Cut]. They are all closed under
specification, in the sense that if a rule ends in some sequent � � � from some premise
sequents, another instance of that rule leads to the conclusion �[n := t] � �[n := t] in
which each of the instances of n in that sequent are replaced by t . There are no rules in
which a name occurs in a conclusion sequent where it could not have been everywhere
replaced by an arbitrary term. (This is why we replaced the direction of the defining rules
for the quantifier in which the name occurred in the concluding sequent. They are the only
rules in the system to not have this propertty.) So, given any derivation in DL[Df, Cut,
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Spec], replace each appeal to the Specification rule by a transformation of the derivation of
the premise of that rule into a DL[GDf, Cut] derivation of the conclusion. The end result
of this process is a derivation of the concluding sequent in DL[GDf, Cut].

Conversely, any DL[GDf, Cut] derivation can be transformed into a DL[Df, Cut, Spec]
derivation by replacing each instance of a [∀Df⇑] or [∃Df⇑] step by a [∀Df] or [∃Df] step
composed with the appropriate instance of [Specn

t ] to convert the name in the conclusion
of the Df step into the term required for the conclusion of the corresponding GDf step. The
result is a derivation of our end sequent � � �. �

The process for replacing Defining Rules by Left and Right rules is also straightforward.
As we have seen, the defining rules for the connectives, quantifiers and existence predicate
can be replaced by the following Left/Right rules. The system DL[LR, Cut] consists of
the structural rules of Identity, Contraction and Cut (so we leave out Specification), the
predicate and function term rules, and these Left and Right rules for the connectives,
quantifiers and definedness predicate.

�, A, B � �
[∧L]

�, A ∧ B � �

� � A, � � � B, �
[∧R]

� � A ∧ B, �

�, A � � �, B � �
[∨L]

�, A ∨ B � �

� � A, B, �
[∨R]

� � A ∨ B, �

� � A, � �, B � �
[⊃L]

�, A ⊃ B � �

�, A � B, �
[⊃R]

� � A ⊃ B, �

� � A, �
[¬L]

�, ¬A, � �

�, A � �
[¬R]

� � ¬A, �

�, A(t) � � � � t, �
[∀L]

�, (∀x)A(x) � �

�, n � A(n), �
[∀R]

� � (∀x)A(x), �

�, n, A(n) � �
[∃L]

�, (∃x)A(x) � �

� � t, � � � A(t), �
[∃R]

� � (∃x)A(x), �

�, t � �
[↓L]

�, t↓ � �

� � t, �
[↓R]

� � t↓, �
.

FACT 4.2. A derivation of a sequent � � � in DL[LR, Cut] can be systematically
transformed into a derivation of that sequent in DL[GDf, Cut], and vice versa.

Proof. The examples of the previous section show how each Left/Right rule can be
constructed out of the defining rules together with Identity and Cut, so we may take any
derivation in DL[LR, Cut] and replace each appeal to a Left or Right rule with the corre-
sponding appeal to the Defining rule for the concept involved, composed with appropriate
Cut and Identity steps.

We have not yet shown the converse. We wish to show how appeals to defining rules can
be reconstructed in DL[LR, Cut]. For each step of a defining rule in which the defined con-
cept is introduced in the conclusion of the rule (the downward half of the rule), that part of
the rule is either a Left or Right rule in DL[LR, Cut]. Our work is to reconstruct the upward
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half. Here are some examples, for ⊃, ∀ and ↓. The others are natural generalizations of this
technique.

A � A B � B
[⊃L]

A, A ⊃ B � B � � A ⊃ B, �
[s-Cut∗]

�, A � B, �

A(t), t � A(t) t � t, A(t)
[∀L]

(∀x)A(x), t � A(t) � � (∀x)A(x), �
[s-Cut∗]

�, t � A(t), �

t � t
[↓R]

t � t↓ �, t↓ � �
[s-Cut∗]

�, t � � �

So, in this section we have defined three different proof systems for DL: DL[Df, Cut,
Spec], with Defining Rules and Specification, DL[GDf, Cut], with Generalized Defining
Rules, where specification is no longer a primitive rule but is folded into the remaining
rules, and DL[LR, Cut], which replaces the defining rules with traditional Left and Right
rules of a Gentzen-style sequent calculus. These proof systems are motivated by normative
pragmatic considerations—derivable sequents record norms governing assertion and denial
in a language which allows for singular terms with reference failure.

Each of these three proof systems makes use of Cut rules, both the traditional s-Cut for
cuts on sentences, and the novel t-Cut for cuts on terms. In the next two sections we will
move to show that DL[LR,Cut] is equivalent to DL[LR], that any sequent derivable with the
Cut rules is also derivable without them. To demonstrate this, we will more closely analyse
those sequents which are not derivable in these proof systems, and explore the connection
between underivable sequents and models [17].

§5. Positions and refinement. If a sequent � � � cannot be derived, then, as far as
the norms of our logic are concerned, there is no clash involved in asserting everything in
� and denying something in �. If we think of the logic as informing and inscribing a field
of play in which various assertions and denials are made and various terms are ruled in or
ruled out, the underivable sequents � � � are different positions in that field of play.
To be precise, let us take a position (relative to a proof system) to be a pair [� : �] of sets
� and � where every �′

� �′ is underivable in that proof system, for any finite multisets
�′ and �′ where each element of �′ is in � and every element of �′ is in �.
In this definition the components of a position differ from the LHS and RHS of a sequent
in two ways. First, we do not care to keep track of the repetitions of sentences or terms in
� and �, so we take them to be sets and not multisets. Furthermore, we allow � and � to
be infinite, while the LHS and RHS in a sequent in our proof systems are always finite. If
[� : �] is a position, then there is no clash involved in selecting any assertions from � and
any denials from �, however many we take.

Let us say that the position [�2 : �2] is a refinement of the position [�1 : �1] if and
only if �1 ⊆ �2 and �1 ⊆ �2. We will say that a position [� : �] is finite if and only if
the sets � and � are finite.

Our focus will be on positions in the system DL[LR], and our aim will be, in this
section and the next, to show that those sequents which can not be derived without the
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use of the Cut rules could not have been derived with those rules, either. We will show
this by way of a model construction, showing how DL[LR] positions may be “filled out”
or “idealized” into models which serve as a witness (a model witnessing a position will
evaluate each formula in its LHS as true, each term in its LHS as defined, each formula
in its RHS as false, and each term in its RHS as undefined). These models will turn out to
be models of the system DL[LR,Cut] too—it will be straightforward to show that these
models only witness positions in DL[LR,Cut], so it will follow that DL[LR] positions are
in fact DL[LR,Cut] positions, so any sequent derivable with Cuts is derivable without them.
That is our target in this section and the next.21

To start, let us focus on how positions may be progressively refined to make them
more informative. First, let’s consider a DL[LR] position in which A∧ B occurs in the LHS:
[�, A∧ B : �]. Suppose [�, A∧ B, A, B : �] weren’t a position. Then it would follow that
for some �′ ⊆ � and �′ ⊆ � that there is a derivation of �′, A ∧ B, A, B � �′. It would
follow that there is a derivation of �′, A ∧ B � �′ too, and that (contrary to hypothesis)
[�, A ∧ B : �] is not a DL[LR] position. Here is why:

�′, A ∧ B, A, B � �′
[∧L]

�′, A ∧ B, A ∧ B � �′
[s-WL]

�′, A ∧ B � �′
.

So, if [�, A ∧ B : �] is a position, so is [�, A ∧ B, A, B : �]. This is called a left-
conjunction refinement of [�, A ∧ B : �].

Now consider a position in which A ∧ B occurs in the RHS: [� : A ∧ B, �]. We can
show that at least one of [� : A, A ∧ B, �] and [� : B, A ∧ B, �] are also positions,
because if they fail to be positions, [� : A ∧ B, �] must fail to be a position too:

�′
� A, A ∧ B, �′ �′

� B, A ∧ B, �′
[∧R]

�′
� A ∧ B, A ∧ B, �′

[s-WR]
�′

� A ∧ B, �′
.

So, if [� : A ∧ B, �] is a position, then at least one of [� : A, A ∧ B, �] and [� : B, A ∧
B, �] is a position too. Those that are positions are called right-conjunction refinements of
[� : A ∧ B, �].

In the same way we can define refinements for disjunctions, conditionals and nega-
tions occuring in the LHS or RHS of positions. The complete table of refinements for
propositional connectives is given in Figure 1.

Propositional refinement relations fill out our positions to carry more information con-
cerning the components of sentences in positions. The same will hold for the definedness
predicate and the quantifiers. If [�, t↓ : �] is a position, then [�, t↓, t : �] is a left-
definedness refinement of that position. If [� : t↓, �] is a position, then [� : t, t↓, �] is
a right-definedness refinement of that position. The left-definedness and right-definedness
refinements of positions are themselves positions for the following reasons: A derivation
that shows a refinement fails to be a position would show that the position of which it is a
refinement were also not a position, contrary to hypothesis:

21 The technique here is due to Schütte [23], and a straightforward presentation is found in Takeuti’s
Proof Theory [25, p. 42].
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Position Refinements

[�, A ∧ B : �] [�, A ∧ B, A, B : �]
[� : A ∧ B,�] At least one of [� : A, A ∧ B,�] and [� : B, A ∧ B,�]

[�, A ∨ B : �] At least one of [�, A, A ∨ B : �] and [�, B, A ∨ B : �]
[� : A ∨ B,�] [� : A, B, A ∨ B,�]

[�, A ⊃ B : �] At least one of [�, A ⊃ B : A, �] and [�, B, A ⊃ B : �]
[� : A ⊃ B,�] [�, A : B, A ⊃ B,�]

[�,¬A : �] [�,¬A : A,�]
[� : ¬A,�] [�, A : ¬A,�]

Fig. 1. Refinements for propositional connectives.

�′, t↓, t � �′
[↓L]

�′, t↓, t↓ � �′
[s-WL]

�′, t↓ � �′

�′
� t, t↓, �′

[↓R]
�′

� t↓, t↓, �′
[s-WR]

�′
� t↓, �′

.

Similarly, we can define refinements for formulas featuring the quantifiers. Consider a posi-
tion in which (∀x)A occurs in the LHS: [�, (∀x)A(x) : �]. Then one of [�, (∀x)A(x), A(t) :
�] and [�, (∀x)A(x) : t, �] is a position, too, where t is any of the terms in the language.
If these both failed to be a position, so would our starting position:

�′, (∀x)A(x), A(t) � �′ �′, (∀x)A(x) � t, �′
[∀L]

�′, (∀x)A(x), (∀x)A(x) � �′
[s-WL]

�′, (∀x)A(x) � �′
.

For the RHS, consider the position [� : (∀x)A, �]. Then [�, n : A(n), (∀x)A(x), �] is a
position too, where n is a name not present in [� : (∀x)A(x), �].

�′, n � A(n), (∀x)A(x), �′
[∀R]

�′
� (∀x)A(x), (∀x)A(x), �′

[s-WR]
�′

� (∀x)A(x), �′
.

Dual reasoning applies to the existential quantifier rules. The table in Figure 2 presents
refinements for quantifiers and the definedness predicate.

Position Refinements

[�, (∀x)A(x) : �] At least one of [�, (∀x)A(x), A(t) : �], [�, (∀x)A(x) : t,�]
for each term t in [�, (∀x)A(x) : �].

[� : (∀x)A(x), �] [�, n : A(n), (∀x)A(x), �], where n is new.

[�, (∃x)A(x) : �] [�, (∃x)A(x), A(n), n : �], where n is new.
[� : (∃x)A(x), �] At least one of [� : A(t), (∃x)A(x), �], [� : t, (∃x)A(x), �]

for each term t in [� : (∃x)A(x), �].

[�, t↓ : �] [�, t↓, t : A, �]
[� : t↓,�] [�, A : t, t↓,�]

Fig. 2. Refinements for quantifiers and the definedness predicate.
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We aim to find positions which are closed under these particular refinement relations, for
these will be our guide to constructing a model. Consider refinement for conjunctions. If a
conjunction is present in the LHS of such a position, so are its conjuncts. If a conjunction is
in the RHS of such a position, so is one of its conjuncts (at least). Being on the LHS does a
good job as a proxy for truth and being on the RHS does the same for falsity, at least as far
as conjunction goes. For the definedness predicate, if the position places t↓ on the LHS, if
it is closed under the definedness refinement conditions, t is also on the LHS. If t↓ is in the
RHS, then so is t . So, if a term is on the LHS, according to that position, it is defined. If it is
in the RHS, then according to that position it is undefined. For the quantifiers, if (∀x)A(x)
is in the LHS of a position, and it is closed under quantifier refinement for each term in its
own vocabulary, then for every such term t , either t is in the RHS (so, according to that
position, t is undefined) or A(t) is in the LHS (so, A(t) is taken to be true). Similarly, if
(∀x)A(x) is in the RHS of a position, then we have added a name n to the vocabulary of the
position such that n occurs in the LHS and A(n) in the RHS. In other words, if the position
takes (∀x)A(x) to be false, then we have equipped the vocabulary with some name n where
according to the position n denotes, and A(n) is false.

In other words, positions closed under the refinement conditions do a good job of re-
specting natural truth conditions, at least for conjunction, definedness and the universal
quantifier. But that is not quite enough for us to define models in which the entire logic
is respected. For that, we need to consider the interaction between definedness, predi-
cation and function application. We would like to find positions which fully respect the
conditions on predication and function application. If Ft1 · · · tn is true, then each ti is
defined. If f (t1, . . . , tn) is defined, then each ti is defined. So, we will refine positions for

Position Refinements

[�, Ft1 · · · tn : �] [�, Ft1 · · · tn, t1, . . . , tn : �]

[�, f (t1, . . . , tn) : �] [�, f (t1, . . . , tn), t1, . . . , tn : �]

Fig. 3. Refinements for predication and function application.

predication and function application in the following way. If a position takes a predication
to be true, we will add the terms of that predication to the LHS. If a position features
a function application in the LHS, we add the terms of that function application to the
LHS too. The result in either case is a position, as the following derivations show, first for
predication:

�′, Ft1 · · · tn, t1, . . . , tn � �′
[FL]

�′, Ft1 · · · tn, Ft1 · · · tn, t2, . . . , tn � �′
[s-WL]

�′, Ft1 · · · tn, t2, . . . , tn � �′
···

�′, Ft1 · · · tn, Ft1 · · · tn, tn � �′
[s-WL]

�′, Ft1 · · · tn, tn � �′
[FL]

�′, Ft1 · · · tn, Ft1 · · · tn � �′
[s-WL]

�′, Ft1 · · · tn � �′

and then for function application:
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�′, f (t1, . . . , tn), t1, . . . , tn � �′
[ f L]

�′, f (t1, . . . , tn), f (t1, . . . , tn), t2, . . . , tn � �′
[t-WL]

�′, f (t1, . . . , tn), t2, . . . , tn � �′
···

�′, f (t1, . . . , tn), f (t1, . . . , tn), tn � �′
[t-WL]

�′, f (t1, . . . , tn), tn � �′
[ f L]

�′, f (t1, . . . , tn), f (t1, . . . , tn) � �′
[t-WL]

�′, f (t1, . . . , tn) � �′

.

This completes the definition of the refinement relations for the connectives, the quantifiers,
the definedness predicate, and for primitive predication and function application. Now we
will use this to construct a position closed under each of these relations in the appropriate
fashion.22

A set D of positions is said to be directed if it is (1) closed downward under refine-
ment, in the sense that if [� : �] is refined by some [�′ : �′] in D, then [� : �] is in D too;
and (2) D contains upper bounds, in the sense that if [�1 : �1] and [�2 : �2] are in D then
there is some position refining both that is also in D. (Note that the smallest joint refinement
of [�1 : �1] and [�2 : �2], if there is any such refinement, is [�1 ∪ �2 : �1 ∪ �2].)

FACT 5.1. A set D of finite positions is directed if and only if there is some position
[� : �] (finite or infinite) such that D is the set of finite positions refined by [� : �].

This position [� : �] is said to be the limit of the directed set D.
Proof. Given a position P , if D is the set of finite positions refined by P , this set is

clearly closed downward under refinement, and it contains upper bounds, so it is directed.
Conversely, if D is some directed class, define the limit position [� : �] of D in the
obvious way: � is the set of all formulas or terms occuring in the LHS of some position in
D, and � is the set of all formulas or terms occuring in the RHS of some position in D. Let
P = [L1, . . . , Ln : R1, . . . , Rm] be some finite position refined by [� : �]. We want to
show that P is in D. Each Li is a formula or term occuring in � and each R j is a formula
or term occuring in �. This means that each Li occurs in the LHS of some position in D
and each R j occurs in the RHS of some position in D. Since D is directed, it is closed
downward under refinement, so the atomic positions [Li : ] and [ : R j ] are in D, so their
finite upper bound, namely P , is in D too. �

FACT 5.2. For any sequence of positions [�1 : �1], [�2 : �2], . . . where each [�i+1 :
�i+1] is a refinement of [�i : �i ], the set D of all finite positions refined by some [�i : �i ]
in the sequence is the directed set with limit [

⋃∞
i �i :

⋃∞
i �i ].

Proof. If �′ ⊆ ⋃∞
i �i and �′ ⊆ ⋃∞

i �i are finite, there must be some n where �′ ⊆ �n

and �′ ⊆ �n . Since [�n : �n] is a position, it follows that [�′ : �′] is a position too, and
since �′ and �′ were arbitrary finite subsets of

⋃∞
i �i and

⋃∞
i �i respectively, it follows

that [
⋃∞

i �i :
⋃∞

i �i ] is indeed a position. So, the set of all finite positions refined by
[
⋃∞

i �i :
⋃∞

i �i ] is a directed set, and these are exactly the positions refined by some
position in the sequence. �

22 Readers familiar with tableaux proofs will recognize the construction [1, 24].
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In such a construction, we call the directed set D the wake of the sequence [�i : �i ] of
finite positions.

We will end this section with the characterization of a construction of a special sequence
of positions, with the target, in the limit, a fully refined position.
A sequence of finite positions [�1 : �2], [�2 : �2], . . . is said to be fully refining if for
each member [�i : �i ] in the sequence, and each formula or term occuring in �i or �i ,
an appropriate refinement of the position for that formula or term (a refinement occuring in
Figures 1, 2 or 3) is refined by some other member [� j : � j ] of the sequence.

FACT 5.3. The following algorithm constructs a fully refining sequence of positions
starting from a finite position [� : �]:

1. Enumerate each sentence or term in the starting position [� : �]. The number for
each sentence or term will be the order in which it is processed for refinement. Keep
track of the next available number.

2. Form the finite set T of terms that occur somewhere in [� : �], either directly as
members of � or �, or as components of formulas or terms occuring in formulas in
� and �.

3. Reserve an infinite stock N of {n1, n2, . . .} from the language L which do not appear
in T .

4. Now we start the loop. Take the first available formula in our enumeration.

(a) If it is a negation ¬A in the LHS, form the next position by adding A to the
RHS, assign A the next available number, mark ¬A as unavailable and repeat.

(b) If it is a negation ¬A in the RHS, form the next position by adding A to the
LHS, assign A the next available number, mark ¬A as unavailable and repeat.

(c) If it is a conjunction A ∧ B in the LHS, form the next position by adding A
and B to the LHS, assign A and B the next available numbers, mark A ∧ B
as unavailable and repeat.

(d) If it is a conjunction A ∧ B in the RHS, then either a position is formed
by adding A or by adding B to the RHS. Choose whichever works, and add
that formula to the RHS, assign it the next available number, mark A ∧ B as
unavailable and repeat.

(e) If it is a disjunction A ∨ B in the LHS, then either a position is formed by
adding A or by adding B to the LHS. Choose whichever works, and add
that formula to the LHS, assign it the next available number, mark A ∨ B as
unavailable and repeat.

(f) If it is a disjunction A ∨ B in the RHS, form the next position by adding A
and B to the RHS, assign A and B the next available numbers, mark A ∨ B
as unavailable and repeat.

(g) If it is a conditional A ⊃ B in the LHS, then either a position is formed by
adding A to the RHS or by adding B to the LHS. Choose whichever works,
and add that formula, assign it the next available number, mark A ⊃ B as
unavailable and repeat.

(h) If it is a conditional A ⊃ B in the RHS, form the next position by adding
A to the LHSand B to the RHS, assign A and B the next available numbers,
mark A ⊃ B as unavailable and repeat.
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(i) If is a definedness statement t↓ on either side, form the next position by
adding the term t to the same side, assign this term the next available number,
mark t↓ as unavailable, and repeat.

(j) If it is a universal quantifier (∀x)A(x) in the LHS, then do this for each term
t in T —either adding A(t) to the LHS, or t to the RHS results in a position,
so add whichever works, tagging the added formula or term with the next
available number. Mark (∀x)A(x) as unavailable, but add it to the reserve
list, to be processed whenever new terms are added to T .

(k) If it is a universal quantifier (∀x)A(x) in the RHS, then remove the first name
from the list N of fresh names, add it to the set T of used terms, and form a
new position by adding n to the LHS of the position and adding A(n) to the
RHS, tagged with the next available number, and mark (∃x)A(x) as complete.
Then revisit each formula on the reserve list as follows:

(i) For each universal quantifier (∀x)B(x) in the LHS, add B(n) to the
LHS, assigning it the next available number.

(ii) For each existential quantifier (∃x)C(x) in the RHS, add C(n) to the
RHS, assigning it the next available number.

(l) If it is an existential quantifier (∃x)A(x) in the LHS, then remove the first
name from the list N of fresh names, add it to the set T of used terms, and
form a new position by adding n and A(n) to the LHS, tagging A(n) with the
next available number, and marking (∃x)A(x) as unavialable. Then revisit
each formula on the reserve list as follows:

(i) For each universal quantifier (∀x)B(x) in the LHS, add B(n) to the
LHS, assigning it the next available number.

(ii) For each existential quantifier (∃x)C(x) in the RHS, add C(n) to the
RHS, assigning it the next available number.

(m) If it is an existential quantifier (∃x)A(x) in the rhs, then do this for each term
t in T —either adding A(t) to the RHS, or t to the RHS results in a position,
so add whichever works, tagging the added formula or term with the next
available number. Mark (∃x)A(x) as unavailable, but add it to the reserve
list, to be processed whenever new terms are added to T .

(n) If it is a primitive predication Ft1 · · · tn in the LHS, add t1, . . . , tn to the LHS,
tagging each term with the next available numbers, and marking Ft1 · · · tn as
unavailable.

(o) If it is a function term f (t1, . . . , tn) in the LHS, add t1, . . . , tn to the LHS, tag-
ging each term with the next available numbers, and marking f (t1, . . . , tn)
as unavailable.

(p) If it is a primitive predication or a function term in the RHS, mark it as
unavailable immediately, and repeat.

5. End only when there is no formula available in the enumeration.

Proof. At each stage of the process, the result is another position, refining the previous
positions. At each stage of the process, only finitely many formulas or terms are added, to
construct the new position, so each formula or term added to a position along the way is
assigned a finite number, except for fresh names added to the stock of defined terms—they
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get no numbers because they do not need to be processed. The process then considers each
formula or term in the order of the number assigned, and ensures that we add the relevant
formulas or terms in order to construct a position closed under the appropriate refinement
condition. The result is a fully refining sequence of positions. The limit of such a sequence
is a fully refined position which refines the starting position. �

§6. Fully refined positions and models. A fully refined position [� : �] is very
special indeed. We will use such positions to motivate the definition of models for our
logic. These models are standard semantics for Negative Free Logic in this style [9], and it
is the natural extension of Tarski’s semantics allowing for an empty domain [15].
A model for the logic DL is a structure M consisting of

1. A domain D.

2. An n-ary predicate F is interpreted as a subset FM of Dn (as usual).

3. An n-ary function symbol f is interpreted as a partial function f M : Dn ⇀ D.

Given an assignment α of values to variables, we recursively define the interpretation
partial function [[·]]M,α assigning values to terms as follows:23

• [[x]]M,α = α(x)
• [[ f (t1, . . . , tn)]]M,α = f M([[t1]]M,α, . . . , [[tn]]M,α) if each [[ti ]]M,α is defined, and

f M is defined on the inputs [[t1]]M,α, . . . , [[tn]]M,α .

Then given the interpretation of terms, we define the interpretation of sentences or open
formulas (sentences with some quantifiers removed, exposing variables) relative to an
assignment of values to variables, as follows:

• M �α t↓ iff [[t]]M,α is defined.
• M �α Ft1 · · · tn iff for each i , the value [[ti ]]M,α is defined, and the n-tuple

〈[[tn]]M,α, . . . , [[tn]]M,α〉 ∈ FM

• M �α A ∧ B iff M �α A and M �α B.
• M �α A ∨ B iff M �α A or M �α B.
• M �α A ⊃ B iff M 	�α A or M �α B.
• M �α ¬A iff M 	�α A.
• M �α (∀x)A(x) iff M �α[x :=d] A(x) for every d in D.
• M �α (∃x)A(x) iff M �α[x :=d] A(x) for some d in D.

We say that a model M is a model of the position [� : �] if and only if every sentence
in � is true in M, every term in � is defined in M, every sentence in � is false in M and
every term in � is undefined in M.

FACT 6.1. For any fully refined position [� : �], a model where (1) the domain D
consists of the terms occuring as members of �, such that (2) every n-ary predicate F is
interpreted as the set of n-tuples 〈t1, . . . , tn〉 where Ft1 · · · tn is in �, and (3) where the
n-ary function symbol f is interpreted by setting f (t1, . . . , tn) to be defined if and only if
the term occurs in �, and then in that case takes itself as its value is indeed a model of the
position [� : �].

23 In the special case where D is empty, which we allow, there are no assignments of values
to variables, all predications are false, all function symbols and terms are undefined, and the
interpretation function is trivial, with all existentially quantified formulas false and all universally
quantified formulas true.
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Proof. We prove this first for terms and then sentences in the position. For terms, the
result is nearly immediate. Any term in � is defined and has itself as its value. The closure
of [� : �] under function application ensures that f (t1, . . . , tn) is defined (in the LHS)
only when its components t1, . . . , tn are defined (in the LHS).

For sentences, if Ft1 · · · tn is in �, then since the position is predicate refined, each ti is
defined in the model and has itself as its value. The interpretation of Ft1 · · · tn in the model
assigns it to be true. If it is in �, then it is in � (lest [� : �] fail to be a position), so it is
not true in the model.

If t↓ is in �, then by refining under definedness, t is in �, so t is defined in the model
and hence t↓ is true in the model. Similarly, if t↓ is in �, then t is in �, so t cannot be
defined in the model (it is defined only when t is in �, but [� : �] is a position, so we
cannot have t in �), so t↓ is false in the model.

For A ∧ B in �, by refinedness under conjunction, A and B are in �, and by hypothesis,
they are true in the model. So, A ∧ B is true in the model. If A ∧ B is in �, by refinedness
under conjunction, either A or B is in �, so by hypothesis,one is false in the model.
So, A ∧ B is false in the model. The cases for the other propositional connectives are
similar.

For (∀x)A(x) in �, for every term t occuring in the position, either t is in �, and hence
is not defined in the model, or A(t) is in � and hence, is true in the model. It follows that
for every object t in the domain, A(t) is true in the model. It follows that A(x) is true
in the model whenever x is assigned the value t , and hence, that (∀x)A(x) is true in the
model, too. If (∀x)A(x) is in �, then for some name n we have n in � (and hence, n is
defined in the model) and A(n) in �. By hypothesis, A(n) is false in the model, and hence,
A(x) is false in the model when x is assigned the value n, so (∀x)A(x) is false in the
model.

The case for the existential quantifier is similar, and that ends the proof. This model
constructed from the fully refined position is a model of that position. �

§7. Completeness and cuts. The fact we have just proved gives us a completeness
result for the sequent calculus with respect to the models. We have shown that for any
underivable sequent, there is a model (a model constructed out of a fully refined extension
of that sequent) in which that sequent fails in the sense that it takes the LHS of the sequent
to be true (defined) and the RHS to be false (undefined).

However, we have proved much more than the completeness of the sequent calculus.
We have also shown that any derivation in DL[LR, Cut] can be derived in DL[LR] without
making use of either sentence or term Cuts. Here is why. We have already shown

FACT 7.1. Any finite position in DL[LR] is refined by some fully refined position.

Fact 5 shows us how to extend any finite DL[LR] position by a fully refining sequence,
whose limit is a fully refined position.

FACT 7.2. Any finite DL[LR] position has some model.

Fact 6 shows us that a model defined from a fully refined DL[LR] position is a model of that
position. Since by Fact 7, any finite DL[LR] position is refined by a fully refined position,
and since a model of a position is also a model of any position that refines to that position,
any finite DL[LR] position has some model.
On the other hand, it is straightforward to prove a soundness theorem. We can show that
derivable sequents � � � hold in all models in the sense that in any model M if each
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element of � is true (for sentences) or defined (for terms) then some element of � is true
(for sentences) or defined (for terms). In fact, this holds for sequents derivable not only in
DL[LR], but also DL[LR, Cut].

FACT 7.3. If � � � is derivable in DL[LR, Cut] then it holds in all models M.

Proof. A straightforward induction on the structure of the derivation. Identity axioms
hold trivially: if A is true, it is true. If t is defined, it is defined. The structural rules—
including Cuts—are straightforward. If � � t, � and �, t � � both hold in M then by
� � t, � if each element of � is true then either an element of � is true (in which case
� � � holds in M) or t is defined in M. In that case, since �, t � � holds in M, in any
case an element of � is true, and so, � � � holds in M regardless. The case for sentence
Cut has the same structure.

The connective, predication, function application, definedness and quantifier rules are
satisfied trivially by way of the truth conditions for formulas, and the result is straightfor-
ward to prove. �

It follows then, that we have the admissibility of Cut.

FACT 7.4. If � � � is derivable in DL[LR, Cut], then it is derivable in DL[LR]
too.

Proof. If � � � were not derivable in DL[LR] then [� : �] would be a DL[LR] position.
Then Fact 8 tells us that this position has some model, a model in which each element of �
is true (defined) and each element of � is false (undefined). This means that � � � cannot
be derived in DL[LR, Cut] either. �

§8. Consequences and questions. I will end with some brief observations and ques-
tions for further exploration.

First and foremost, this paper has explored defining rules as a new way to answer
Prior’s question concerning the difference between rules for logical constants familiar to
us, like conjunction, and defective rules like Prior’s rules for tonk. We have seen that this
treatment of defining rules naturally extends to quantifiers, once we have not only the
syntax of the predicate/term distinction, but also the notion of a deductively general term.
This notion seems to be deeply embedded in proof-theoretical treatments of the quantifiers,
and it seems well suited to the normative pragmatic intepretation of the sequent calculus in
terms of norms governing assertion and denial.

If we allow for disagreement not only on what we take to be true or false, but also
on what there is, then it seems very natural to extend the normative pragmatic treatment
of assertion and denial to pro and con attitudes to terms, as well. The result is a relatively
straightforward sequent calculus for a logic in which terms are free of existential import.
This sequent calculus has pleasing theoretical properties, and natural Left and Right rules
for the quantifiers can be understood as arising out of simple defining rules in a straightfor-
ward way. The fact that the results are so straightforward—using techniques known from
elsewhere [17, 18], with small changes to incorporate the behaviour of deductively general
terms and the rule of Specification—lends some support to the thought that defining rules
play a useful part in the design of a proof-theoretical framework.

We have seen that the rules for the quantifiers

�, n � A(n), �============= [∀Df ]
� � (∀x)A(x), �

�, n, A(n) � �============ [∃Df ]
�, (∃x)A(x) � �
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may be understood as defining those quantifiers. Given a language with deductively general
terms n, we can add the quantifiers to that language by setting the denial of a universally
quantified sentence (∀x)A(x) in a context [� : �] to be coherent if and only if it is coherent
to both deny A(n) and take n to be defined for some deductively general term n new to the
context. Similarly, taking the assertion of an existentially quantified sentence (∃x)A(x) in
a context [� : �] to be coherent if and only if it is coherent to assert A(n) and grant n to
be defined for some deductively general term n new to that context. This suffices to add
those quantifiers to the vocabulary in such a way as to validate all of the constraints of the
definedness logic DL, without requiring that all singular terms be treated as referring.
The same can be said for the “definedness” or “existence” predicate ↓. This, too, is given
by a straightforward defining rule:

�, t � �======= [↓Df ]
�, t↓ � �

where the assertion of t↓ is coherent if and only if taking t to be defined is coherent.
Any practice in which we rule terms in as defined or out as undefined, provided that the
structural rules of Identity, Weakening, Contraction and Cut (both sentence and term Cut)
are satisfied, will allow for the extension of the practice to ‘make explicit’ the ruling in
and out of terms in assertions and denials, by way of the predicate ‘↓.’ In this sense, at
least, those engaging in such a practice are treating the existence predicate as a logical
concept, as rigorously and precisely defined as the concepts of conjunction, negation or the
quantifiers.

Questions remain. In papers to follow, I will address questions concerning modality
and identity. Both are very important if the issue of the semantics of quantifiers and the
behaviour of nondenoting terms is to be thoroughly understood. It is clear that we have
broached only some of the questions concerning quantification and free logic. A fuller
treatment would address the semantics of identity. It is clear that a thorough understanding
of quantification and singular terms must have something to say concerning the behaviour
of the identity predicate. The only defence for leaving out such a treatment from this paper
is that it is long enough as it is, and appropriate and well-behaved sequent calculus rules
for identity are not at all straightforward.

The same might go for modality: we have focussed here on one motivation for nonde-
noting terms: from mathematics. The behaviour of contingently nondenoting terms seems
to be very different, but these techniques seem like they may be appropriate there, too.
But are they? The proof of this will be in the detail, and there is more detail than could
reasonably fit in this paper, so I will follow that thread in the sequel to this paper.
Before that sequel, however, I will end with a question which raises concerns for the
significance of the choice of the free logic for quantifiers, and of the kind of criterion
for meaningfulness that may be provided by defining rules in a logical system. Suppose we
take our definedness logic DL seriously. Consider the following defining rules for concepts
that certainly look like quantifiers:

� � A(n), �============= [�Df ]
� � (�x)A(x), �

�, A(n) � �============= [	Df ]
�, (	x)A(x) � �

.

These have the same shape as quantifier rules, except the definedness conditions have been
left out. These are defining rules, so the question arises. Do they define concepts? Do they
define meaningful concepts? If someone takes a linguistic practice in which we already
have quantifiers like ∀ and ∃ constrained by the rules for our free logic, and extends
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that linguistic practice to add the quantifiers � and 	 with these new defining rules—
what have they done? At the very least, the semantics generated is now for a positive
free logic, rather than a negative one. If these rules succeed in defining coherent and
interesting concepts with the broad form of quantification, in which (	x)¬x↓ follows
immediately from ¬ 1

0↓, then what does this 	 mean? There are many questions to be
explored. Perhaps exploring those questions will provide the beginnings of a new kind of
defence of Meinong’s quantifiers [5, 12, 13, 19], which allow us to make sense of claims
to the effect that there are some things that do not exist.
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